1
|
Dikalova A, Ao M, Lantier L, Gutor S, Dikalov S. Depletion of Mitochondrial Cyclophilin D in Endothelial and Smooth Muscle Cells Attenuates Vascular Dysfunction and Hypertension. FUNCTION 2025; 6:zqaf006. [PMID: 39919759 PMCID: PMC11931617 DOI: 10.1093/function/zqaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025] Open
Abstract
Hypertension is a major risk factor of cardiovascular disease affecting nearly half of adult population. It is associated with mitochondrial dysfunction and understanding these mechanisms is important to develop new therapies. Cyclophilin D (CypD) promotes mitochondrial swelling and dysfunction. The objective of this study is to test if CypD depletion attenuates vascular dysfunction and hypertension using endothelial and smooth muscle-specific CypD knockout mice in angiotensin II model of vascular dysfunction and hypertension. Our results show that depletion of endothelial CypD prevents angiotensin II-induced impairment of endothelial-dependent vasorelaxation, preserves endothelial nitric oxide and mitochondrial respiration, attenuates hypertension, vascular oxidative stress and vascular metabolic glycolytic-switch. Depletion of smooth muscle CypD slightly reduces angiotensin II-induced hypertension, protects vascular nitric oxide and vasorelaxation, decreases vascular superoxide, diminishes angiotensin II-induced vascular glycolysis, hypertrophy and fibrosis. These data suggest "metabolic" and "redox" crosstalk between endothelial and smooth muscle cells. Endothelial CypD depletion reduces not only endothelial glycolysis but also attenuates smooth muscle cell glycolytic switch. Smooth muscle CypD depletion reduced not only smooth muscle glycolysis, but it also attenuated endothelial glycolysis. Vascular oxidative stress was inhibited both in EcCypDKO and SmcCypDKO mice, therefore, cell-specific CypD depletion had "global" antioxidant effect in vasculature. Our results support a novel function of mitochondrial CypD in regulation of superoxide and metabolism in vascular smooth muscle and endothelial cells which affect endothelial barrier and smooth muscle vascular functions. We suggest that blocking vascular CypD reduces vascular oxidative stress, improves vascular metabolism and vascular function which may be beneficial in cardiovascular disease.
Collapse
Affiliation(s)
- Anna Dikalova
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mingfang Ao
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Sergey Dikalov
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
An Z, Liu G, Shen L, Qi Y, Hu Q, Song J, Li J, Du J, Bai Y, Wu W. Mitochondrial dysfunction induced by ambient fine particulate matter and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 262:119930. [PMID: 39237017 DOI: 10.1016/j.envres.2024.119930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Air pollution is one of the major environmental threats contributing to the global burden of disease. Among diverse air pollutants, fine particulate matter (PM2.5) poses a significant adverse health impact and causes multi-system damage. As a highly dynamic organelle, mitochondria are essential for cellular energy metabolism and vital for cellular homeostasis and body fitness. Moreover, mitochondria are vulnerable to external insults and common targets for PM2.5-induced cellular damage. The resultant impairment of mitochondrial structure and function initiates the pathogenesis of diverse human diseases. This review mainly summarizes the in vivo and in vitro findings of PM2.5-induced mitochondrial dysfunction and its implication in PM2.5-induced health effects. Furthermore, recent advances toward the underlying mechanisms of PM2.5 and its components-induced mitochondrial dysfunction are also discussed, with an attempt to provide insights into the toxicity of PM2.5 and basic information for devising appropriate intervention strategies.
Collapse
Affiliation(s)
- Zhen An
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Guangyong Liu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lingling Shen
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qinan Hu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jie Song
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juan Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jinge Du
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yichun Bai
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Weidong Wu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Li K, Geng Y, Lin B, Xi Z. Molecular mechanisms underlying mitochondrial damage, endoplasmic reticulum stress, and oxidative stress induced by environmental pollutants. Toxicol Res (Camb) 2023; 12:1014-1023. [PMID: 38145103 PMCID: PMC10734609 DOI: 10.1093/toxres/tfad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/09/2023] [Accepted: 09/15/2023] [Indexed: 12/26/2023] Open
Abstract
Mitochondria and endoplasmic reticulum (ER) are essential organelles playing pivotal roles in the regulation of cellular metabolism, energy production, and protein synthesis. In addition, these organelles are important targets susceptible to external stimuli, such as environmental pollutants. Exposure to environmental pollutants can cause the mitochondrial damage, endoplasmic reticulum stress (ERS), and oxidative stress, leading to cellular dysfunction and death. Therefore, understanding the toxic effects and molecular mechanisms of environmental pollution underlying these processes is crucial for developing effective strategies to mitigate the adverse effects of environmental pollutants on human health. In the present study, we summarized and reviewed the toxic effects and molecular mechanisms of mitochondrial damage, ERS, and oxidative stress caused by exposure to environmental pollutants as well as interactions inducing the cell apoptosis and the roles in exposure to environmental pollutants.
Collapse
Affiliation(s)
- Kang Li
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanpei Geng
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bencheng Lin
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
4
|
Yellon DM, Beikoghli Kalkhoran S, Davidson SM. The RISK pathway leading to mitochondria and cardioprotection: how everything started. Basic Res Cardiol 2023; 118:22. [PMID: 37233787 PMCID: PMC10220132 DOI: 10.1007/s00395-023-00992-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Ischaemic heart disease, which often manifests clinically as myocardial infarction (MI), remains a major cause of mortality worldwide. Despite the development of effective pre-clinical cardioprotective therapies, clinical translation has been disappointing. Nevertheless, the 'reperfusion injury salvage kinase' (RISK) pathway appears to be a promising target for cardioprotection. This pathway is crucial for the induction of cardioprotection by numerous pharmacological and non-pharmacological interventions, such as ischaemic conditioning. An important component of the cardioprotective effects of the RISK pathway involves the prevention of mitochondrial permeability transition pore (MPTP) opening and subsequent cardiac cell death. Here, we will review the historical perspective of the RISK pathway and focus on its interaction with mitochondria in the setting of cardioprotection.
Collapse
Affiliation(s)
- Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| | | | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| |
Collapse
|
5
|
Sun J, Liu Y, Chen C, Quarm AK, Xi S, Sun T, Zhang D, Qian J, Ding H, Gao J. Cyclophilin D-mediated angiotensin II-induced NADPH oxidase 4 activation in endothelial mitochondrial dysfunction that can be rescued by gallic acid. Eur J Pharmacol 2023; 940:175475. [PMID: 36563952 DOI: 10.1016/j.ejphar.2022.175475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Vascular endothelial dysfunction plays a central role in the most dreadful human diseases, including stroke, tumor metastasis, and the coronavirus disease 2019 (COVID-19). Strong evidence suggests that angiotensin II (Ang II)-induced mitochondrial dysfunction is essential for endothelial dysfunction pathogenesis. However, the precise molecular mechanisms remain obscure. Here, polymerase-interacting protein 2 (Poldip 2) was found in the endothelial mitochondrial matrix and no effects on Poldip 2 and NADPH oxidase 4 (NOX 4) expression treated by Ang II. Interestingly, we first found that Ang II-induced NOX 4 binds with Poldip 2 was dependent on cyclophilin D (CypD). CypD knockdown (KD) significantly inhibited the binding of NOX 4 to Poldip 2, and mitochondrial ROS generation in human umbilical vein endothelial cells (HUVECs). Similar results were also found in cyclosporin A (CsA) treated HUVECs. Our previous study suggested a crosstalk between extracellular regulated protein kinase (ERK) phosphorylation and CypD expression, and gallic acid (GA) inhibited mitochondrial dysfunction in neurons depending on regulating the ERK-CypD axis. Here, we confirmed that GA inhibited Ang II-induced NOX 4 activation and mitochondrial dysfunction via ERK/CypD/NOX 4/Poldip 2 pathway, which provide novel mechanistic insight into CypD act as a key regulator of the NOX 4/Poldip 2 axis in Ang II-induced endothelial mitochondrial dysfunction and GA might be beneficial in the treatment of wide variety of diseases, such as COVID-19, which is worthy further research.
Collapse
Affiliation(s)
- Jing Sun
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China; Department of Traditional Chinese Medicine & Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Yunxi Liu
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chen Chen
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Anthony Kwesi Quarm
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Siyu Xi
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tingkai Sun
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Dingqi Zhang
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jinjun Qian
- Department of Neurology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212001, PR China
| | - Hongqun Ding
- Department of Clinical Laboratory Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Gao
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
6
|
de Paula LJC, Uchida AH, Rezende PC, Soares P, Scudeler TL. Protective or Inhibitory Effect of Pharmacological Therapy on Cardiac Ischemic Preconditioning: A Literature Review. Curr Vasc Pharmacol 2022; 20:409-428. [PMID: 35986546 DOI: 10.2174/1570161120666220819163025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023]
Abstract
Ischemic preconditioning (IP) is an innate phenomenon, triggered by brief, non-lethal cycles of ischemia/reperfusion applied to a tissue or organ that confers tolerance to a subsequent more prolonged ischemic event. Once started, it can reduce the severity of myocardial ischemia associated with some clinical situations, such as percutaneous coronary intervention (PCI) and intermittent aortic clamping during coronary artery bypass graft surgery (CABG). Although the mechanisms underlying IP have not been completely elucidated, several studies have shown that this phenomenon involves the participation of cell triggers, intracellular signaling pathways, and end-effectors. Understanding this mechanism enables the development of preconditioning mimetic agents. It is known that a range of medications that activate the signaling cascades at different cellular levels can interfere with both the stimulation and the blockade of IP. Investigations of signaling pathways underlying ischemic conditioning have identified a number of therapeutic targets for pharmacological manipulation. This review aims to present and discuss the effects of several medications on myocardial IP.
Collapse
Affiliation(s)
| | | | - Paulo Cury Rezende
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Soares
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thiago Luis Scudeler
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Lv Y, Cheng L, Peng F. Compositions and Functions of Mitochondria-Associated Endoplasmic Reticulum Membranes and Their Contribution to Cardioprotection by Exercise Preconditioning. Front Physiol 2022; 13:910452. [PMID: 35733995 PMCID: PMC9207531 DOI: 10.3389/fphys.2022.910452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are important components of intracellular signaling and contribute to the regulation of intracellular Ca2+/lipid homeostasis, mitochondrial dynamics, autophagy/mitophagy, apoptosis, and inflammation. Multiple studies have shown that proteins located on MAMs mediate cardioprotection. Exercise preconditioning (EP) has been shown to protect the myocardium from adverse stimuli, but these mechanisms are still being explored. Recently, a growing body of evidence points to MAMs, suggesting that exercise or EP may be involved in cardioprotection by modulating proteins on MAMs and subsequently affecting MAMs. In this review, we summarize the latest findings on MAMs, analyzing the structure and function of MAMs and the role of MAM-related proteins in cardioprotection. We focused on the possible mechanisms by which exercise or EP can modulate the involvement of MAMs in cardioprotection. We found that EP may affect MAMs by regulating changes in MFN2, MFN1, AMPK, FUNDC1, BECN1, VDAC1, GRP75, IP3R, CYPD, GSK3β, AKT, NLRP3, GRP78, and LC3, thus playing a cardioprotective role. We also provided direction for future studies that may be of interest so that more in-depth studies can be conducted to elucidate the relationship between EP and cardioprotection.
Collapse
|
8
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
9
|
Liang L, Lin R, Xie Y, Lin H, Shao F, Rui W, Chen H. The Role of Cyclophilins in Inflammatory Bowel Disease and Colorectal Cancer. Int J Biol Sci 2021; 17:2548-2560. [PMID: 34326693 PMCID: PMC8315013 DOI: 10.7150/ijbs.58671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclophilins (Cyps) is a kind of ubiquitous protein family in organisms, which has biological functions such as promoting intracellular protein folding and participating in the pathological processes of inflammation and tumor. Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are two common intestinal diseases, but the etiology and pathogenesis of these two diseases are still unclear. IBD and CRC are closely associated, IBD has always been considered as one of the main risks of CRC. However, the role of Cyps in these two related intestinal diseases is rarely studied and reported. In this review, the expression of CypA, CypB and CypD in IBD, especially ulcerative colitis (UC), and CRC, their relationship with the development of these two intestinal diseases, as well as the possible pathogenesis, were briefly summarized, so as to provide modest reference for clinical researches and treatments in future.
Collapse
Affiliation(s)
- Lifang Liang
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Rongxiao Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Ying Xie
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Huaqing Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Fangyuan Shao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Wen Rui
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| | - Hongyuan Chen
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| |
Collapse
|
10
|
Milduberger N, Bustos PL, González C, Perrone AE, Postan M, Bua J. Trypanosoma cruzi infection in Cyclophilin D deficient mice. Exp Parasitol 2021; 220:108044. [PMID: 33253715 DOI: 10.1016/j.exppara.2020.108044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/10/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, which is endemic in Latin America and around the world through mother to child transmission. The heart is the organ most frequently affected in the chronic stage of the human infection and depends on mitochondria for the required energy for its activity. Cyclophilins are involved in protein folding and the mitochondrial isoform, Cyclophilin D (CyPD), has a crucial role in the opening of the mitochondrial permeability transition pore. In the present study, we infected CyPD deficient mice, with ablation of the Ppif gene, with T. cruzi parasites and the course of the infection was analyzed. Parasite load, quantified by PCR, was significantly lower in skeletal and cardiac tissues of Ppif-/- mice compared to wild type mice. In vitro cultured cardiomyocytes and macrophages from mice lacking CyPD exhibited lower percentage of infected cells and number of intracellular parasites than those observed for wild type mice. Although histopathological analysis of heart and mRNA of heart cytokines showed differences between T. cruzi-infected mice compared to the uninfected animals, no significant differences were found mice due to the ablation of the Ppif gene. Our results suggest that cells deficient for mitochondrial CyPD, inhibited for the mitochondrial membrane potential collapse, reduces the severity of parasite aggression and spread of cellular infection.
Collapse
MESH Headings
- Animals
- Chagas Disease/parasitology
- Peptidyl-Prolyl Isomerase F/deficiency
- Cytokines/analysis
- Cytokines/genetics
- DNA, Protozoan/isolation & purification
- Heart/parasitology
- Liver/pathology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/parasitology
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/parasitology
- Muscle, Skeletal/pathology
- Myocardium/pathology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/parasitology
- Parasite Load
- RNA, Messenger/analysis
- RNA, Protozoan/analysis
- RNA, Protozoan/isolation & purification
- Spleen/pathology
- Trypanosoma cruzi/genetics
- Trypanosoma cruzi/physiology
Collapse
Affiliation(s)
- Natalia Milduberger
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina
| | - Patricia L Bustos
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina
| | - Carolina González
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina; Centro de Altos Estudios en Ciencias Humanas y de La Salud (CAECIHS), Universidad Abierta Interamericana, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Alina E Perrone
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina
| | - Miriam Postan
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Jacqueline Bua
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina; Centro de Altos Estudios en Ciencias Humanas y de La Salud (CAECIHS), Universidad Abierta Interamericana, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Gao P, Yan Z, Zhu Z. Mitochondria-Associated Endoplasmic Reticulum Membranes in Cardiovascular Diseases. Front Cell Dev Biol 2020; 8:604240. [PMID: 33240899 PMCID: PMC7680862 DOI: 10.3389/fcell.2020.604240] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria are physically connected to form dedicated structural domains known as mitochondria-associated ER membranes (MAMs), which participate in fundamental biological processes, including lipid and calcium (Ca2+) homeostasis, mitochondrial dynamics and other related cellular behaviors such as autophagy, ER stress, inflammation and apoptosis. Many studies have proved the importance of MAMs in maintaining the normal function of both organelles, and the abnormal amount, structure or function of MAMs is related to the occurrence of cardiovascular diseases. Here, we review the knowledge regarding the components of MAMs according to their different functions and the specific roles of MAMs in cardiovascular physiology and pathophysiology, focusing on some highly prevalent cardiovascular diseases, including ischemia-reperfusion, diabetic cardiomyopathy, heart failure, pulmonary arterial hypertension and systemic vascular diseases. Finally, we summarize the possible mechanisms of MAM in cardiovascular diseases and put forward some obstacles in the understanding of MAM function we may encounter.
Collapse
Affiliation(s)
- Peng Gao
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Nudelman V, Zahalka MA, Nudelman A, Rephaeli A, Kessler-Icekson G. Cardioprotection by AN-7, a prodrug of the histone deacetylase inhibitor butyric acid: Selective activity in hypoxic cardiomyocytes and cardiofibroblasts. Eur J Pharmacol 2020; 882:173255. [PMID: 32553737 DOI: 10.1016/j.ejphar.2020.173255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/19/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
The anticancer prodrug butyroyloxymethyl diethylphosphate (AN-7), upon metabolic hydrolysis, releases the histone deacetylase inhibitor butyric acid and imparts histone hyperacetylation. We have shown previously that AN-7 increases doxorubicin-induced cancer cell death and reduces doxorubicin toxicity and hypoxic damage to the heart and cardiomyocytes. The cardiofibroblasts remain unprotected against both insults. Herein we examined the selective effect of AN-7 on hypoxic cardiomyocytes and cardiofibroblasts and investigated mechanisms underlying the cell specific response. Hypoxic cardiomyocytes and cardiofibroblasts or H2O2-treated H9c2 cardiomyoblasts, were treated with AN-7 and cell damage and death were evaluated as well as cell signaling pathways and the expression levels of heme oxygenase-1 (HO-1). AN-7 diminished hypoxia-induced mitochondrial damage and cell death in hypoxic cardiomyocytes and reduced hydrogen peroxide damage in H9c2 cells while increasing cell injury and death in hypoxic cardiofibroblasts. In the cell line, AN-7 induced Akt and ERK survival pathway activation in a kinase-specific manner including phosphorylation of the respective downstream targets, GSK-3β and BAD. Hypoxic cardiomyocytes responded to AN-7 treatment by enhanced phosphorylation of Akt, ERK, GSK-3β and BAD and a significant 6-fold elevation in HO-1 levels. In hypoxic cardiofibroblasts, AN-7 did not activate Akt and ERK beyond the effect of hypoxia alone and induced a limited (~1.5-fold) increase in HO-1. The cell specific differences in kinase activation and in heme oxygenase-1 upregulation may explain, at least in part, the disparate outcome of AN-7 treatment in hypoxic cardiomyocytes and hypoxic cardiofibroblasts.
Collapse
Affiliation(s)
- Vadim Nudelman
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Muayad A Zahalka
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Abraham Nudelman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel.
| | - Ada Rephaeli
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Gania Kessler-Icekson
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
13
|
Yu H, Kalogeris T, Korthuis RJ. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med 2019; 135:182-197. [PMID: 30849489 PMCID: PMC6503659 DOI: 10.1016/j.freeradbiomed.2019.02.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells line the inner surface of the entire cardiovascular system as a single layer and are involved in an impressive array of functions, ranging from the regulation of vascular tone in resistance arteries and arterioles, modulation of microvascular barrier function in capillaries and postcapillary venules, and control of proinflammatory and prothrombotic processes, which occur in all segments of the vascular tree but can be especially prominent in postcapillary venules. When tissues are subjected to ischemia/reperfusion (I/R), the endothelium of resistance arteries and arterioles, capillaries, and postcapillary venules become dysfunctional, resulting in impaired endothelium-dependent vasodilator and enhanced endothelium-dependent vasoconstrictor responses along with increased vulnerability to thrombus formation, enhanced fluid filtration and protein extravasation, and increased blood-to-interstitium trafficking of leukocytes in these functionally distinct segments of the microcirculation. The number of capillaries open to flow upon reperfusion also declines as a result of I/R, which impairs nutritive perfusion. All of these pathologic microvascular events involve the formation of reactive species (RS) derived from molecular oxygen and/or nitric oxide. In addition to these effects, I/R-induced RS activate NLRP3 inflammasomes, alter connexin/pannexin signaling, provoke mitochondrial fission, and cause release of microvesicles in endothelial cells, resulting in deranged function in arterioles, capillaries, and venules. It is now apparent that this microvascular dysfunction is an important determinant of the severity of injury sustained by parenchymal cells in ischemic tissues, as well as being predictive of clinical outcome after reperfusion therapy. On the other hand, RS production at signaling levels promotes ischemic angiogenesis, mediates flow-induced dilation in patients with coronary artery disease, and instigates the activation of cell survival programs by conditioning stimuli that render tissues resistant to the deleterious effects of prolonged I/R. These topics will be reviewed in this article.
Collapse
Affiliation(s)
- Hong Yu
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ted Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|
14
|
Hamilton S, Terentyeva R, Kim TY, Bronk P, Clements RT, O-Uchi J, Csordás G, Choi BR, Terentyev D. Pharmacological Modulation of Mitochondrial Ca 2+ Content Regulates Sarcoplasmic Reticulum Ca 2+ Release via Oxidation of the Ryanodine Receptor by Mitochondria-Derived Reactive Oxygen Species. Front Physiol 2018; 9:1831. [PMID: 30622478 PMCID: PMC6308295 DOI: 10.3389/fphys.2018.01831] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
In a physiological setting, mitochondria increase oxidative phosphorylation during periods of stress to meet increased metabolic demand. This in part is mediated via enhanced mitochondrial Ca2+ uptake, an important regulator of cellular ATP homeostasis. In a pathophysiological setting pharmacological modulation of mitochondrial Ca2+ uptake or retention has been suggested as a therapeutic strategy to improve metabolic homeostasis or attenuate Ca2+-dependent arrhythmias in cardiac disease states. To explore the consequences of mitochondrial Ca2+ accumulation, we tested the effects of kaempferol, an activator of mitochondrial Ca2+ uniporter (MCU), CGP-37157, an inhibitor of mitochondrial Na+/Ca2+ exchanger, and MCU inhibitor Ru360 in rat ventricular myocytes (VMs) from control rats and rats with hypertrophy induced by thoracic aortic banding (TAB). In periodically paced VMs under β-adrenergic stimulation, treatment with kaempferol (10 μmol/L) or CGP-37157 (1 μmol/L) enhanced mitochondrial Ca2+ accumulation monitored by mitochondrial-targeted Ca2+ biosensor mtRCamp1h. Experiments with mitochondrial membrane potential-sensitive dye TMRM revealed this was accompanied by depolarization of the mitochondrial matrix. Using redox-sensitive OMM-HyPer and ERroGFP_iE biosensors, we found treatment with kaempferol or CGP-37157 increased the levels of reactive oxygen species (ROS) in mitochondria and the sarcoplasmic reticulum (SR), respectively. Confocal Ca2+ imaging showed that accelerated Ca2+ accumulation reduced Ca2+ transient amplitude and promoted generation of spontaneous Ca2+ waves in VMs paced under ISO, suggestive of abnormally high activity of the SR Ca2+ release channel ryanodine receptor (RyR). Western blot analyses showed increased RyR oxidation after treatment with kaempferol or CGP-37157 vs. controls. Furthermore, in freshly isolated TAB VMs, confocal Ca2+ imaging demonstrated that enhancement of mitochondrial Ca2+ accumulation further perturbed global Ca2+ handling, increasing the number of cells exhibiting spontaneous Ca2+ waves, shortening RyR refractoriness and decreasing SR Ca2+ content. In ex vivo optically mapped TAB hearts, kaempferol exacerbated proarrhythmic phenotype. On the contrary, incubation of cells with MCU inhibitor Ru360 (2 μmol/L, 30 min) normalized RyR oxidation state, improved intracellular Ca2+ homeostasis and reduced triggered activity in ex vivo TAB hearts. These findings suggest facilitation of mitochondrial Ca2+ uptake in cardiac disease can exacerbate proarrhythmic disturbances in Ca2+ homeostasis via ROS and enhanced activity of oxidized RyRs, while strategies to reduce mitochondrial Ca2+ accumulation can be protective.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Radmila Terentyeva
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Tae Yun Kim
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Peter Bronk
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Richard T. Clements
- Department of Surgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, United States
| | - Jin O-Uchi
- Lillehei Heart Institute University of Minnesota, Cancer and Cardiovascular Research Building, Minneapolis, MN, United States
| | - György Csordás
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bum-Rak Choi
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| |
Collapse
|
15
|
Porter GA, Beutner G. Cyclophilin D, Somehow a Master Regulator of Mitochondrial Function. Biomolecules 2018; 8:E176. [PMID: 30558250 PMCID: PMC6316178 DOI: 10.3390/biom8040176] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cyclophilin D (CyPD) is an important mitochondrial chaperone protein whose mechanism of action remains a mystery. It is well known for regulating mitochondrial function and coupling of the electron transport chain and ATP synthesis by controlling the mitochondrial permeability transition pore (PTP), but more recent evidence suggests that it may regulate electron transport chain activity. Given its identification as a peptidyl-prolyl, cis-trans isomerase (PPIase), CyPD, is thought to be involved in mitochondrial protein folding, but very few reports demonstrate the presence of this activity. By contrast, CyPD may also perform a scaffolding function, as it binds to a number of important proteins in the mitochondrial matrix and inner mitochondrial membrane. From a clinical perspective, inhibiting CyPD to inhibit PTP opening protects against ischemia⁻reperfusion injury, making modulation of CyPD activity a potentially important therapeutic goal, but the lack of knowledge about the mechanisms of CyPD's actions remains problematic for such therapies. Thus, the important yet enigmatic nature of CyPD somehow makes it a master regulator, yet a troublemaker, for mitochondrial function.
Collapse
Affiliation(s)
- George A Porter
- Department of Pediatrics, Division of Cardiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Gisela Beutner
- Department of Pediatrics, Division of Cardiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| |
Collapse
|
16
|
Baburina Y, Odinokova I, Azarashvili T, Akatov V, Sotnikova L, Krestinina O. Possible Involvement of 2',3'-Cyclic Nucleotide-3'-Phosphodiesterase in the Protein Phosphorylation-Mediated Regulation of the Permeability Transition Pore. Int J Mol Sci 2018; 19:ijms19113499. [PMID: 30405014 PMCID: PMC6274948 DOI: 10.3390/ijms19113499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Calcium as a secondary messenger regulates the phosphorylation of several membrane-bound proteins in brain and liver mitochondria. Regulation of the activity of different protein kinases and phosphatases by Ca2+ occurs through its binding with calmodulin. The protein phosphorylation is strongly dependent on the Ca2+-induced mitochondrial permeability transition pore (mPTP) opening. 2′,3′-Cyclic nucleotide-3′-phosphodiesterase (CNPase) was phosphorylated by protein kinases A and C. CNPase and melatonin (MEL) might interact with calmodulin. The effects of the calmodulin antagonist calmidazolium and the inhibitor of protein kinase A H89 on mPTP opening in rat brain mitochondria of male Wistar rats were investigated. In addition, the role of CNPase, serine/threonine kinases, and MEL in the mPTP opening was examined. The anti-CNPase antibody added to rat brain mitochondria (RBM) reduced the content of CNPase in mitochondria. The threshold [Ca2+] decreased, and mitochondrial swelling was accelerated in the presence of the anti-CNPase antibody. H89 enhanced the effect of anti-CNPase antibody and accelerated the swelling of mitochondria, while CmZ abolished the effect of anti-CNPase antibody under mPTP opening. The levels of phospho-Akt and phospho-GSK3β increased, while the MEL content did not change. It can be assumed that CNPase may be involved in the regulation of these kinases, which in turn plays an important role in mPTP functioning.
Collapse
Affiliation(s)
- Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Tamara Azarashvili
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Linda Sotnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| |
Collapse
|
17
|
Jankauskas SS, Silachev DN, Andrianova NV, Pevzner IB, Zorova LD, Popkov VA, Plotnikov EY, Zorov DB. Aged kidney: can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning. Cell Cycle 2018; 17:1291-1309. [PMID: 29963970 DOI: 10.1080/15384101.2018.1482149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The anti-aging strategy is one of the main challenges of the modern biomedical science. The term "aging" covers organisms, cells, cellular organelles and their constituents. In general term, aging system admits the existence of nonfunctional structures which by some reasons have not been removed by a clearing system, e.g., through autophagy/mitophagy marking and destroying unwanted cells or mitochondria. This directly relates to the old kidney which normal functioning is critical for the viability of the organism. One of the main problems in biomedical studies is that in their majority, young organisms serve as a standard with further extrapolation on the aged system. However, some protective systems, which demonstrate their efficiency in young systems, lose their beneficial effect in aged organisms. It is true for ischemic preconditioning of the kidney, which is almost useless for an old kidney. The pharmacological intervention could correct the defects of the senile system provided that the complete understanding of all elements involved in aging will be achieved. We discuss critical elements which determine the difference between young and old phenotypes and give directions to prevent or cure lesions occurring in aged organs including kidney. ABBREVIATIONS AKI: acute kidney injury; I/R: ischemia/reperfusion; CR: caloric restriction; ROS: reactive oxygen species; RC: respiratory chain.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation
| | - Denis N Silachev
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Nadezda V Andrianova
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,c Faculty of Bioengineering and Bioinformatics , M.V. Lomonosov Moscow State University , Moscow , Russian Federation
| | - Irina B Pevzner
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Ljubava D Zorova
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Vasily A Popkov
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,c Faculty of Bioengineering and Bioinformatics , M.V. Lomonosov Moscow State University , Moscow , Russian Federation
| | - Egor Y Plotnikov
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Dmitry B Zorov
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| |
Collapse
|
18
|
Zhu P, Hu S, Jin Q, Li D, Tian F, Toan S, Li Y, Zhou H, Chen Y. Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: A mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol 2018; 16:157-168. [PMID: 29502045 PMCID: PMC5952878 DOI: 10.1016/j.redox.2018.02.019] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Receptor-interacting protein 3 (Ripk3)-mediated necroptosis contributes to cardiac ischaemia-reperfusion (IR) injury through poorly defined mechanisms. Our results demonstrated that Ripk3 was strongly upregulated in murine hearts subjected to IR injury and cardiomyocytes treated with LPS and H2O2. The higher level of Ripk3 was positively correlated to the infarction area expansion, cardiac dysfunction and augmented cardiomyocytes necroptosis. Function study further illustrated that upregulated Ripk3 evoked the endoplasmic reticulum (ER) stress, which was accompanied with an increase in intracellular Ca2+ level ([Ca2+]c) and xanthine oxidase (XO) expression. Activated XO raised cellular reactive oxygen species (ROS) that mediated the mitochondrial permeability transition pore (mPTP) opening and cardiomyocytes necroptosis. By comparison, genetic ablation of Ripk3 abrogated the ER stress and thus blocked the [Ca2+]c overload-XO-ROS-mPTP pathways, favouring a pro-survival state that ultimately resulted in the inhibition of cardiomyocytes necroptosis in the setting of cardiac IR injury. In summary, the present study helps to elucidate how necroptosis is mediated by ER stress, via the calcium overload /XO/ROS/mPTP opening axis. ER stress is activated by Ripk3 in cardiac IR injury. ER stress induces calcium overload which triggers XO-dependent ROS overproduction. ROS outburst promotes mPTP opening that accounts for the necroptosis. Inhibiting ER stress favors cardiomyocytes survival and protects cardiac function.
Collapse
Affiliation(s)
- Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qinhua Jin
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Dandan Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Feng Tian
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Sam Toan
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521 USA
| | - Yang Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA.
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
19
|
Kawai S, Yamada T, Matsuura T, Funao T, Nishikawa K. Neuropathic pain attenuates ischemia reperfusion injury through β2-adrenergic pathway. Life Sci 2017; 187:9-16. [PMID: 28827152 DOI: 10.1016/j.lfs.2017.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/23/2022]
Abstract
AIMS The relationship between neuropathic pain and myocardial infarction (MI) was uncertain because of some medication or underlying diseases. This study investigated the impact of neuropathic pain on ischemia reperfusion injury using isolated rat hearts and cardiomyocytes. MAIN METHODS Male Sprague-Dawley rats were assigned to the control and allodynia (AL) groups, with the latter subjected to the fifth lumbar spinal-nerve ligation. First, isolated hearts underwent 25-min ischemia and 90-min reperfusion to assess hemodynamic changes and MI area. Second, isolated cardiomyocytes underwent 10-min laser illumination to assess the opening of mitochondrial permeability transition pore (mPTP) and cellular hypercontraction. Lastly, expression of pro-survival kinases was measured in another cardiomyocytes using flow cytometry. AL-treated hearts were concomitantly examined regarding the involvement of β-adrenergic pathways by esmolol (ESM), β1-blocker (100μM, AL+ESM), and ICI118551 (ICI), β2-blocker (50nM, AL+ICI). KEY FINDINGS All hemodynamic variables did not change significantly in between-group comparisons except at 30min of reperfusion. MI area decreased remarkably in the AL and AL+ESM groups after 90-min reperfusion. The AL+ICI group significantly increased it as compared with the AL and AL+ESM groups. Similarly, the AL and AL+ESM groups significantly inhibited mPTP opening and cellular hypercontraction, whereas the AL+ICI group reversed these effects. Enhanced expression of pro-survival kinases was observed in the AL and AL+ESM groups, but the AL+ICI group abolished this enhancement. SIGNIFICANCE Our findings suggested that neuropathic pain possessed cardioprotective effects through inhibiting mPTP opening. The underlying mechanisms were possibly regulated by β2-adrenergic activation and pro-survival kinase expression in cardiomyocytes.
Collapse
Affiliation(s)
- Shigeaki Kawai
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Japan
| | - Tokuhiro Yamada
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Japan.
| | - Tadashi Matsuura
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Japan
| | - Tomoharu Funao
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Japan
| | - Kiyonobu Nishikawa
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Japan
| |
Collapse
|
20
|
Nederlof R, van den Elshout MAM, Koeman A, Uthman L, Koning I, Eerbeek O, Weber NC, Hollmann MW, Zuurbier CJ. Cyclophilin D ablation is associated with increased end-ischemic mitochondrial hexokinase activity. Sci Rep 2017; 7:12749. [PMID: 28986541 PMCID: PMC5630626 DOI: 10.1038/s41598-017-13096-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/11/2017] [Indexed: 02/03/2023] Open
Abstract
Both the absence of cyclophilin D (CypD) and the presence of mitochondrial bound hexokinase II (mtHKII) protect the heart against ischemia/reperfusion (I/R) injury. It is unknown whether CypD determines the amount of mtHKII in the heart. We examined whether CypD affects mtHK in normoxic, ischemic and preconditioned isolated mouse hearts. Wild type (WT) and CypD-/- mouse hearts were perfused with glucose only and subjected to 25 min ischemia and reperfusion. At baseline, cytosolic and mtHK was similar between hearts. CypD ablation protected against I/R injury and increased ischemic preconditioning (IPC) effects, without affecting end-ischemic mtHK. When hearts were perfused with glucose, glutamine, pyruvate and lactate, the preparation was more stable and CypD ablation-resulted in more protection that was associated with increased mtHK activity, leaving little room for additional protection by IPC. In conclusion, in glucose only-perfused hearts, deletion of CypD is not associated with end-ischemic mitochondrial-HK binding. In contrast, in the physiologically more relevant multiple-substrate perfusion model, deletion of CypD is associated with an increased mtHK activity, possibly explaining the increased protection against I/R injury.
Collapse
Affiliation(s)
- Rianne Nederlof
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Mark A M van den Elshout
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Anneke Koeman
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Laween Uthman
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Iris Koning
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Otto Eerbeek
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nina C Weber
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Bâ A. Alcohol and thiamine deficiency trigger differential mitochondrial transition pore opening mediating cellular death. Apoptosis 2017; 22:741-752. [DOI: 10.1007/s10495-017-1372-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG, Chiong M, Lavandero S. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 2017; 14:342-360. [PMID: 28275246 DOI: 10.1038/nrcardio.2017.23] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Cesar Vasquez-Trincado
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, Avenida El Líbano 5524, Santiago 7830490, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75235, USA
| |
Collapse
|
23
|
Laker RC, Taddeo EP, Akhtar YN, Zhang M, Hoehn KL, Yan Z. The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis. PLoS One 2016; 11:e0167910. [PMID: 28005946 PMCID: PMC5179060 DOI: 10.1371/journal.pone.0167910] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/22/2016] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial permeability transition pore (mPTP) is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD) is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously found that global CypD knockout mice (KO) are protected from diet-induced glucose intolerance; however, the tissue-specific function of CypD and mPTP, particularly in the control of glucose homeostasis, has not been ascertained. To this end, we performed calcium retention capacity (CRC) assay to compare the importance of CypD in the liver versus skeletal muscle. We found that liver mitochondria are more dependent on CypD for mPTP opening than skeletal muscle mitochondria. To ascertain the tissue-specific role of CypD in metabolic homeostasis, we generated liver-specific and muscle-specific CypD knockout mice (LKO and MKO, respectively) and fed them either a chow diet or 45% high-fat diet (HFD) for 14 weeks. MKO mice displayed similar body weight gain and glucose intolerance compared with wild type littermates (WT), whereas LKO mice developed greater visceral obesity, glucose intolerance and pyruvate intolerance compared with WT mice. These findings demonstrate that loss of muscle CypD is not sufficient to alter whole body glucose metabolism, while the loss of liver CypD exacerbates obesity and whole-body metabolic dysfunction in mice fed HFD.
Collapse
Affiliation(s)
- Rhianna C. Laker
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Evan P. Taddeo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Yasir N. Akhtar
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Mei Zhang
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Kyle L. Hoehn
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Zhen Yan
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| |
Collapse
|
24
|
Abstract
BACKGROUND Despite substantial success in the anesthetic and surgical management of cardiac surgery, patients frequently show postoperative complications and organ dysfunctions. This is highly relevant for mid- to long-term outcomes. OBJECTIVES To evaluate cardioprotective strategies that may offer effective protection in vulnerable cardiac surgery patients. METHODS To demonstrate recent cardioprotective approaches for cardiac surgery patients, aiming to modulate the body's own protective mechanisms in cardiac surgery patients. RESULTS Both cardioplegia and hypothermia belong to the well-established protective strategies during myocardial ischemia. Volatile anesthetics have been repeatedly shown to improve the left ventricular function and reduce the extent of myocardial injury compared to a control group with intravenous anesthesia. Furthermore, patients receiving volatile anesthetics showed a significantly shortened stay in the ICU and in hospital after cardiac surgery. In contrast, numerous other protective strategies failed translation into the clinical practice. Despite the published reduction of troponin release after remote ischemic preconditioning, two recent large-scale randomized multicenter trials were unable to demonstrate a clinical benefit. CONCLUSIONS Beside the use of cardioplegia and hypothermia, the use of volatile anesthetics is well-established during cardiac surgery because of its conditioning and protective properties. Regardless of the promising results derived from experimental studies and small clinical trials, the majority of other approaches failed to translate their findings into the clinic. Therefore, systematic experimental studies are needed to identify potential confounding factors that may affect the protective effects.
Collapse
|
25
|
Chen Z, Wu D, Li L, Chen L. Apelin/APJ System: A Novel Therapeutic Target for Myocardial Ischemia/Reperfusion Injury. DNA Cell Biol 2016; 35:766-775. [DOI: 10.1089/dna.2016.3391] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| | - Di Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| |
Collapse
|
26
|
Hausenloy DJ, Barrabes JA, Bøtker HE, Davidson SM, Di Lisa F, Downey J, Engstrom T, Ferdinandy P, Carbrera-Fuentes HA, Heusch G, Ibanez B, Iliodromitis EK, Inserte J, Jennings R, Kalia N, Kharbanda R, Lecour S, Marber M, Miura T, Ovize M, Perez-Pinzon MA, Piper HM, Przyklenk K, Schmidt MR, Redington A, Ruiz-Meana M, Vilahur G, Vinten-Johansen J, Yellon DM, Garcia-Dorado D. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res Cardiol 2016; 111:70. [PMID: 27766474 PMCID: PMC5073120 DOI: 10.1007/s00395-016-0588-8] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 10/11/2016] [Indexed: 01/12/2023]
Abstract
To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK. .,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK. .,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore. .,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
| | - Jose A Barrabes
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma, Barcelona, Spain
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, 8200, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padova, Padua, Italy
| | - James Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Thomas Engstrom
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Hector A Carbrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Institute for Biochemistry, Medical Faculty Justus-Liebig-University, Giessen, Germany.,Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
| | - Gerd Heusch
- Institute for Pathophysiology, West-German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Efstathios K Iliodromitis
- 2nd University Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Javier Inserte
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma, Barcelona, Spain
| | | | - Neena Kalia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Rajesh Kharbanda
- Oxford Heart Centre, The John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Faculty of Health Sciences, University of Cape Town, Chris Barnard Building, Anzio Road, Observatory, Cape Town, Western Cape, 7925, South Africa
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St. Thomas' Hospital, London, UK
| | - Tetsuji Miura
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France.,UMR 1060 (CarMeN), Université Claude Bernard, Lyon 1, France
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Hans Michael Piper
- Carl von Ossietzky Universität Oldenburg, Ökologiezentrum, Raum 2-116, Uhlhornsweg 99 b, 26129, Oldenburg, Germany
| | - Karin Przyklenk
- Department of Physiology and Emergency Medicine, Cardiovascular Research Institute, Wayne State University, Detroit, MI, USA
| | - Michael Rahbek Schmidt
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Andrew Redington
- Division of Cardiology, Department of Pediatrics, Heart Institute, Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marisol Ruiz-Meana
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma, Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Research Center, CSIC-ICCC, IIB-Hospital Sant Pau, c/Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
| | - Jakob Vinten-Johansen
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University, Atlanta, USA
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - David Garcia-Dorado
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma, Barcelona, Spain.
| |
Collapse
|
27
|
Kramer P, Jung AT, Hamann A, Osiewacz HD. Cyclophilin D Is Involved in the Regulation of Autophagy and Affects the Lifespan of P. anserina in Response to Mitochondrial Oxidative Stress. Front Genet 2016; 7:165. [PMID: 27683587 PMCID: PMC5021683 DOI: 10.3389/fgene.2016.00165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/02/2016] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial permeability transition pore plays a key role in programmed cell death and the induction of autophagy. Opening of the pore is regulated by the mitochondrial peptidyl prolyl-cis, trans-isomerase cyclophilin D (CYPD). Previously it was shown in the aging model organism Podospora anserina that PaCYPD abundance increases during aging and that PaCypD overexpressors are characterized by accelerated aging. Here, we describe a role of PaCYPD in the regulation of autophagy. We found that the accelerated aging phenotype observed in a strain overexpressing PaCypD is not metacaspase-dependent but is accompanied by an increase of general autophagy and mitophagy, the selective autophagic degradation of mitochondria. It thus is linked to what has been defined as "autophagic cell death" or "type II" programmed cell death. Moreover, we found that the previously demonstrated age-related induction of autophagy in wild-type aging depends on the presence of PaCYPD. Deletion of PaCypD leads to a decrease in autophagy in later stages of age and under paraquat-mediated oxidative stress. Finally, we report that PaCYPD is also required for mitohormesis, the beneficial effect of mild mitochondrial stress. Thus, PaCYPD plays a key role in the context-dependent regulation of pathways leading to pro-survival and pro-death effects of autophagy.
Collapse
Affiliation(s)
- Piet Kramer
- Department of Biosciences, Molecular Developmental Biology, Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, J. W. Goethe University Frankfurt, Germany
| | - Alexander T Jung
- Department of Biosciences, Molecular Developmental Biology, Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, J. W. Goethe University Frankfurt, Germany
| | - Andrea Hamann
- Department of Biosciences, Molecular Developmental Biology, Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, J. W. Goethe University Frankfurt, Germany
| | - Heinz D Osiewacz
- Department of Biosciences, Molecular Developmental Biology, Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, J. W. Goethe University Frankfurt, Germany
| |
Collapse
|
28
|
The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8254942. [PMID: 27200148 PMCID: PMC4856919 DOI: 10.1155/2016/8254942] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Ischaemia/reperfusion (I/R) injury of the heart represents a major health burden mainly associated with acute coronary syndromes. While timely coronary reperfusion has become the established routine therapy in patients with ST-elevation myocardial infarction, the restoration of blood flow into the previously ischaemic area is always accompanied by myocardial injury. The central mechanism involved in this phenomenon is represented by the excessive generation of reactive oxygen species (ROS). Besides their harmful role when highly generated during early reperfusion, minimal ROS formation during ischaemia and/or at reperfusion is critical for the redox signaling of cardioprotection. In the past decades, mitochondria have emerged as the major source of ROS as well as a critical target for cardioprotective strategies at reperfusion. Mitochondria dysfunction associated with I/R myocardial injury is further described and ultimately analyzed with respect to its role as source of both deleterious and beneficial ROS. Furthermore, the contribution of ROS in the highly investigated field of conditioning strategies is analyzed. In the end, the vascular sources of mitochondria-derived ROS are briefly reviewed.
Collapse
|
29
|
Pan H, Wang BH, Lv W, Jiang Y, He L. Esculetin induces apoptosis in human gastric cancer cells through a cyclophilin D-mediated mitochondrial permeability transition pore associated with ROS. Chem Biol Interact 2015; 242:51-60. [PMID: 26388407 DOI: 10.1016/j.cbi.2015.09.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 01/20/2023]
Abstract
Esculetin is a coumarin derivative from natural plants that has been commonly used as a folk medicine and has been reported to have beneficial pharmacological and biochemical activities; however, the mechanism by which esculetin prevents human gastric cancer cell growth is still largely unknown. In this study, we investigated the effect of esculetin on human gastric cancer cells and explored the cell death mechanism. Our data indicated that esculetin inhibited the growth of human gastric cancer cells in a dose- and time-dependent manner and apoptosis was the main cause of decreased cell viability in esculetin-treated cells. Additionally, esculetin treatment increased the activity of caspase-9 and caspase-3, and resulted in the appearance of the PARP cleavage product; and esculetin-induced cell death and apoptosis was decreased by pretreatment with CsA and NAC, but not BA; these results demonstrate that esculetin induced apoptosis via the caspase-dependent mitochondrial pathway in human gastric cancer cells in which cyclophilin D mediated the cytotoxic action by triggering the opening of the mitochondrial permeability transition pore; and the generation of ROS not only was a consequence of mitochondrial dysfunction, but also triggered esculetin-induced apoptosis. These results reveal a novel mechanism of esculetin on gastric cancer cells and suggest that esculetin could be a novel agent in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Hui Pan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, China.
| | - Bao-Hui Wang
- Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wang Lv
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, China
| | - Yan Jiang
- Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei He
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, China
| |
Collapse
|
30
|
Chen H, Liu C, Yin J, Chen Z, Xu J, Wang D, Zhu J, Zhang Z, Sun Y, Li A. Mitochondrial Cyclophilin D as a Potential Therapeutic Target for Ischemia-Induced Facial Palsy in Rats. Cell Mol Neurobiol 2015; 35:931-41. [PMID: 25820785 PMCID: PMC11486281 DOI: 10.1007/s10571-015-0188-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Many studies have demonstrated that ischemia could induce facial nerve (FN) injury. However, there is a lack of a suitable animal model for FN injury study and thus little knowledge is available about the precise mechanism for FN injury. The aims of this study were to establish a reliable FN injury model induced by blocking the petrosal artery and to investigate whether dysfunctional interaction between cyclophilin D (CypD) and mitochondrial permeability transition pore (MPTP) can mediate cell dysfunction in ischemic FN injury. The outcomes of ischemia-induced FN injury rat model were evaluated by behavioral assessment, histological observation, electrophysiology, and electron microscopy. Then the levels of CypD and protein that forms the MPTP were evaluated under the conditions with or without the treatment of Cyclosporin A (CsA), which has been found to disrupt MPTP through the binding of CypD. The blocking of petrosal artery caused significant facial palsy signs in the ischemia group but not in the sham group. Furthermore, ischemia can induce the dysfunction of facial nucleus neurons and destruction of the myelin sheath and increase the protein levels of CypD and MPTP protein compared with sham group. Interestingly, treatment with CsA significantly improved neurological function and reversed the ischemia-induced increase of CypD and MPTP proteins in ischemia group. These results demonstrated that blocking of petrosal artery in rats can induce FN injury and the mechanism may be related to the disruption of MPTP by CypD.
Collapse
Affiliation(s)
- Huizhen Chen
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Chnagtao Liu
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Jie Yin
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Zhen Chen
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Jinwang Xu
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Duanlei Wang
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Jiaqiu Zhu
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Ziyuan Zhang
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Yong Sun
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Aimin Li
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China.
| |
Collapse
|
31
|
Zhou C, Chen Z, Lu X, Wu H, Yang Q, Xu D. Icaritin activates JNK-dependent mPTP necrosis pathway in colorectal cancer cells. Tumour Biol 2015; 37:3135-44. [PMID: 26427664 DOI: 10.1007/s13277-015-4134-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022] Open
Abstract
The colorectal cancer (CRC) is one leading contributor of cancer-related mortality worldwide. The search for effective anti-CRC agents is valuable. In the current study, we showed that icaritin (ICT), an active natural ingredient from the Chinese plant Epimedium, potently inhibited proliferation and survival of established (HT-29, HCT-116, DLD-1, and SW-620) and primary (patient-derived) CRC cells. Significantly, ICT mainly induced necrosis, but not apoptosis, in CRC cells. The necrosis inhibitor necrostatin-1 attenuated ICT-mediated cytotoxicity in CRC cells. We showed that ICT treatment in CRC cells induced mitochondrial permeability transition pore (mPTP) opening, which was evidenced by mitochondrial membrane potential (MMP) decrease and mitochondrial adenine nucleotide translocator-1 (ANT-1)-cyclophilin-D (CyPD) association. On the other hand, mPTP blockers, including sanglifehrin A, cyclosporin A, and bongkrekic acid, as well as siRNA-mediated knockdown of mPTP component (CyPD or ANT-1), significantly alleviated ICT-mediated cytotoxicity against CRC cells. We suggested that Jun-N-terminal kinase (JNK) activation by ICT mediated mPTP opening and subsequent CRC cell necrosis. JNK pharmacological inhibition, dominant negative mutation, or shRNA downregulation suppressed ICT-induced MMP reduction and subsequent HT-29 cell necrosis. In vivo, oral gavage of ICT dramatically inhibited HT-29 xenograft growth in nude mice. The in vivo activity by ICT was largely attenuated by co-administration with the mPTP blocker CsA. Collectively, our results showed that ICT exerts potent inhibitory effect against CRC cells in vitro and in vivo. JNK-dependent mPTP necrosis pathway could be key mechanism responsible for ICT's actions.
Collapse
Affiliation(s)
- Chunxian Zhou
- Department of Interventional Radiology, WuJiang Hospital Affiliated to Nantong University, No. 169 Park Road, Songling Town, WuJiang, Suzhou, 215200, China
| | - Zhengrong Chen
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xingsheng Lu
- Department of Hepatobiliary Surgery of Suzhou Municipal Hospital, Suzhou, 215000, China
| | - Hao Wu
- Department of Interventional Radiology, WuJiang Hospital Affiliated to Nantong University, No. 169 Park Road, Songling Town, WuJiang, Suzhou, 215200, China
| | - Qunying Yang
- Department of Interventional Radiology, WuJiang Hospital Affiliated to Nantong University, No. 169 Park Road, Songling Town, WuJiang, Suzhou, 215200, China
| | - Dongfeng Xu
- Department of Interventional Radiology, WuJiang Hospital Affiliated to Nantong University, No. 169 Park Road, Songling Town, WuJiang, Suzhou, 215200, China.
| |
Collapse
|
32
|
Ying L, Chunxia Y, Wei L. Inhibition of ovarian cancer cell growth by a novel TAK1 inhibitor LYTAK1. Cancer Chemother Pharmacol 2015; 76:641-50. [PMID: 26228528 DOI: 10.1007/s00280-015-2822-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/07/2015] [Indexed: 01/26/2023]
Abstract
PURPOSE Transforming growth factor-β-activating kinase 1 (TAK1) has been implicated in promoting ovarian cancer progression. Here, we evaluated the anti-ovarian cancer effect of LYTAK1, a novel and specific TAK1 inhibitor. METHODS Established or primary human ovarian cancer cells were treated with LYTAK1, and its cytotoxicity and underlying mechanisms were analyzed using in vitro and in vivo assays. RESULTS We demonstrated that LYTAK1 blocked TAK1-nuclear factor kappa B activation, and potently inhibited growth of established (SKOV3, CaOV3 and A2780 lines) or primary (patient-derived) human ovarian cancer cells, where TAK1 was over-expressed and over-activated. While the normal ovarian epithelial cells (IOSE-80), with low TAK1 expression, were minimally affected by the same LYTAK1 treatment. In ovarian cancer cells, LYTAK1 mainly induced necrosis (but not apoptosis), which was associated with mitochondrial permeability transition pore (mPTP) opening, the latter was evidenced by mitochondrial membrane potential reduction. Inhibition of mPTP, either by its inhibitor sanglifehrin A or cyclosporine A, as well as by siRNA-mediated knockdown of cyclophilin-D or voltage-dependent anion channel, attenuated LYTAK1-induced necrosis and cytotoxicity in ovarian cancer cells. In vivo, LYTAK1 oral administration suppressed growth of SKOV3 xenografts in nude mice, and its activity could be further enhanced by co-treatment of paclitaxel (Taxol). CONCLUSIONS These data reveal the therapeutic potential of LYTAK1 as an agent targeting the pro-oncogenic TAK1 in ovarian cancer.
Collapse
Affiliation(s)
- Liu Ying
- Central Laboratory, Maternal and Child Health Hospital of Jilin Province, Changchun, China
| | | | | |
Collapse
|
33
|
Edaravone protects osteoblastic cells from dexamethasone through inhibiting oxidative stress and mPTP opening. Mol Cell Biochem 2015; 409:51-8. [DOI: 10.1007/s11010-015-2511-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/04/2015] [Indexed: 12/25/2022]
|
34
|
Bochaton T, Crola-Da-Silva C, Pillot B, Villedieu C, Ferreras L, Alam MR, Thibault H, Strina M, Gharib A, Ovize M, Baetz D. Inhibition of myocardial reperfusion injury by ischemic postconditioning requires sirtuin 3-mediated deacetylation of cyclophilin D. J Mol Cell Cardiol 2015; 84:61-9. [PMID: 25871830 DOI: 10.1016/j.yjmcc.2015.03.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 01/10/2023]
Abstract
RATIONALE How ischemic postconditioning can inhibit opening of the mitochondrial permeability transition pore (PTP) and subsequent cardiac myocytes death at reperfusion remains unknown. Recent studies have suggested that de-acetylation of cyclophilin D (CyPD) by sirtuin 3 (SIRT3) can modulate its binding to the PTP. OBJECTIVE The aim of the present study was to examine whether ischemic postconditioning (PostC) might activate SIRT3 and consequently prevent lethal myocardial reperfusion injury through a deacetylation of CyPD. METHODS AND RESULTS Using hypoxia-reoxygenation (H/R) in H9C2 cells, we showed that SIRT3 overexpression prevented CyPD acetylation, limited PTP opening and reduced cell death by 24%. In vitro modification of the CyPD acetylation status in MEFs by site-directed mutagenesis altered capacity of PTP opening by calcium. Calcium Retention Capacity (CRC) was significantly decreased with CyPD-KQ that mimics acetylated protein compared with CyPD WT (871 ± 266 vs 1193 ± 263 nmoles Ca(2+)/mg protein respectively). Cells expressing non-acetylable CyPD mutant (CyPD-KR) displayed 20% decrease in cell death compared to cells expressing CyPD WT after H/R. Correspondingly, in mice we showed that cardiac ischemic postconditioning could not reduce infarct size and CyPD acetylation in SIRT3 KO mice, and was unable to restore CRC in mitochondria as it is observed in WT mice. CONCLUSIONS Our study suggests that the increased acetylation of CyPD following myocardial ischemia-reperfusion facilitates PTP opening and subsequent cell death. Therefore ischemic postconditioning might prevent lethal reperfusion injury through an increased SIRT3 activity and subsequent attenuation of CyPD acetylation at reperfusion.
Collapse
Affiliation(s)
- T Bochaton
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France; Hospices Civils de Lyon, Hôpital Louis Pradel, Service d'Explorations Fonctionnelles Cardiovasculaires & CIC de Lyon, F-69394 Lyon, France
| | - C Crola-Da-Silva
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France
| | - B Pillot
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France
| | - C Villedieu
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France
| | - L Ferreras
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France
| | - M R Alam
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France
| | - H Thibault
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France; Hospices Civils de Lyon, Hôpital Louis Pradel, Service d'Explorations Fonctionnelles Cardiovasculaires & CIC de Lyon, F-69394 Lyon, France
| | - M Strina
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France
| | - A Gharib
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France
| | - M Ovize
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France; Hospices Civils de Lyon, Hôpital Louis Pradel, Service d'Explorations Fonctionnelles Cardiovasculaires & CIC de Lyon, F-69394 Lyon, France
| | - D Baetz
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France.
| |
Collapse
|
35
|
Qin LS, Jia PF, Zhang ZQ, Zhang SM. ROS-p53-cyclophilin-D signaling mediates salinomycin-induced glioma cell necrosis. J Exp Clin Cancer Res 2015; 34:57. [PMID: 26024660 PMCID: PMC4486428 DOI: 10.1186/s13046-015-0174-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/16/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The primary glioblastoma multiforme (GBM) is the most malignant form of astrocytic tumor with an average survival of approximately 12-14 months. The search for novel and more efficient chemo-agents against this disease is urgent. Salinomycin induces broad anti-cancer effects; however, its role in GBM and the underlying mechanism are not clear. RESULTS Here we found that salinomycin induced both apoptosis and necrosis in cultured glioma cells, and necrosis played a major role in contributing salinomycin's cytotoxicity. Salinomycin induced p53 translocation to mitochondria, where it formed a complex with cyclophilin-D (CyPD). This complexation was required for mitochondrial permeability transition pore (mPTP) opening and subsequent programmed necrosis. Blockade of Cyp-D by siRNA-mediated depletion or pharmacological inhibitors (cyclosporin A and sanglifehrin A) significantly suppressed salinomycin-induced glioma cell necrosis. Meanwhile, p53 stable knockdown alleviated salinomycin-induced necrosis in glioma cells. Reactive oxygen species (ROS) production was required for salinomycin-induced p53 mitochondrial translocation, mPTP opening and necrosis, and anti-oxidants n-acetylcysteine (NAC) and pyrrolidine dithiocarbamate (PDTC) inhibited p53 translocation, mPTP opening and glioma cell death. CONCLUSIONS Thus, salinomycin mainly induces programmed necrosis in cultured glioma cells.
Collapse
Affiliation(s)
- Li-sen Qin
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No. 188, Shi-zi Street, Suzhou, Jiangsu, People's Republic of China.
- Department of Neurosurgery, the Sixth People's Hospital of Yancheng, Yan-cheng, Jiangsu, People's Republic of China.
| | - Pi-feng Jia
- Department of Neurosurgery, Shanghai Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Zhi-qing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215021, China.
| | - Shi-ming Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No. 188, Shi-zi Street, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
36
|
Jivraj N, Liew F, Marber M. Ischaemic postconditioning: cardiac protection after the event. Anaesthesia 2015; 70:598-612. [DOI: 10.1111/anae.12974] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 12/11/2022]
Affiliation(s)
- N. Jivraj
- School of Medicine and BHF Centre of Excellence; Cardiovascular Division; King's College London; London UK
| | - F. Liew
- School of Medicine; University College London; London UK
| | - M. Marber
- School of Medicine and BHF Centre of Excellence; Cardiovascular Division; King's College London; London UK
- NIHR Biomedical Research Centre; Guy's and St Thomas' NHS Foundation Trust; London UK
| |
Collapse
|
37
|
Chen Y, Liu J, Zheng Y, Wang J, Wang Z, Gu S, Tan J, Jing Q, Yang H. Uncoupling protein 3 mediates H₂O₂ preconditioning-afforded cardioprotection through the inhibition of MPTP opening. Cardiovasc Res 2014; 105:192-202. [PMID: 25514931 DOI: 10.1093/cvr/cvu256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS Uncoupling protein 3 (UCP3), located in the mitochondrial inner membrane, is cardioprotective, but its mechanisms of preserving mitochondrial function during ischaemia/reperfusion (I/R) are not fully understood. This study investigated whether UCP3 mediates/mimics the cardioprotection of H₂O₂ preconditioning (H₂O₂PC) against I/R injury and the downstream pathway that mediates H₂O₂PC- and UCP3-afforded cardioprotection. METHODS AND RESULTS H₂O₂PC at 20 µM for 5 min significantly improved post-ischaemic functional recovery and reduced lactate dehydrogenase (LDH) release and infarct size with concurrently up-regulated UCP3 expressions in perfused rat hearts subjected to global no-flow I/R. These protections were blocked by UCP3 knockdown with short hairpin RNA but mimicked by UCP3 overexpression. Consistently, H₂O₂PC-attenuated I/R-induced cytosolic and mitochondrial Ca(2+) overload, Ca(2+) transient suppression, mitochondrial reactive oxygen species burst, and loss of mitochondrial inner membrane potential were reversed by UCP3 knockdown but mimicked by UCP3 overexpression. Moreover, co-immunoprecipitation assay revealed an interaction of UCP3 with the mitochondrial permeability transition pore (mPTP) component, adenine nucleotide translocator (ANT), while the cardioprotection induced by H₂O₂PC- and UCP3 overexpression in mitochondria, cardiac function, and cell survival was abolished by atractyloside, a mPTP opener binding to ANT, and partially inhibited by a PI3K/Akt inhibitor wortmannin. Furthermore, H₂O₂PC up-regulated the phosphorylation of Akt, and glycogen synthase kinase 3β was blocked by UCP3 knockdown but mimicked by UCP3 overexpression. CONCLUSION UCP3 mediates the cardioprotection of H₂O₂PC against I/R injury by preserving the mitochondrial function through inhibiting mPTP opening via the interaction with ANT and the PI3K/Akt pathway. Our findings reveal novel mechanisms of UCP3 in the cardioprotection.
Collapse
Affiliation(s)
- Yixiong Chen
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Jinlong Liu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Yanjun Zheng
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Jinxi Wang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Zhihua Wang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Shanshan Gu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Jiliang Tan
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Huangtian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| |
Collapse
|
38
|
Testai L, Rapposelli S, Martelli A, Breschi M, Calderone V. Mitochondrial Potassium Channels as Pharmacological Target for Cardioprotective Drugs. Med Res Rev 2014; 35:520-53. [DOI: 10.1002/med.21332] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- L. Testai
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - S. Rapposelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - A. Martelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - M.C. Breschi
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - V. Calderone
- Department of Pharmacy; University of Pisa; Pisa Italy
| |
Collapse
|
39
|
Zhen YF, Wang GD, Zhu LQ, Tan SP, Zhang FY, Zhou XZ, Wang XD. P53 dependent mitochondrial permeability transition pore opening is required for dexamethasone-induced death of osteoblasts. J Cell Physiol 2014; 229:1475-83. [PMID: 24615518 DOI: 10.1002/jcp.24589] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Abstract
Prolonged or overdose glucocorticoids (GCs) usage is the common cause of osteoporosis. In the present study, we studied the cellular mechanism of dexamethasone (Dex)-induce osteoblast cell death by focusing on the role of mitochondrial permeability transition pore (mPTP). In cultured osteoblastic MC3T3-E1 cells, Dex-induced mPTP opening, which was demonstrated by mitochondrial membrane potential (MPP) decrease, cyclophilin-D (CyPD)-adenine nucleotide translocator 1 (ANT-1) mitochondrial complexation and cytochrome C (cyto-C) release. The mPTP inhibitor sanglifehrin A (SfA) dramatically inhibited Dex-induced MPP loss, cyto-C release and MC3T3-E1 cell death. Dex-induced cell death requires mPTP composing protein CyPD, as CyPD inhibitor cyclosporin A (CsA) and CyPD siRNA knockdown inhibited Dex-induced MC3T3-E1 cell death, while CyPD overexpression aggravated Dex's cytotoxic effect. We found that Dex induced P53 phosphorylation and translocation to mitochondria, where it formed a complex with CyPD. Glucocorticoid receptor (GR) siRNA knockdown, or P53 inhibition (by its inhibitor pifithrin-α or shRNA silencing) suppressed Dex-induced CyPD-P53 mitochondrial association and subsequent MC3T3-E1 cell death. Finally, in primary cultured osteoblasts, Dex-induced cell death was inhibited by CsA, SfA or pifithrin-α. Together, our data suggest that Dex-induced osteoblast cell death is associated with GR-P53-regulated mPTP opening.
Collapse
Affiliation(s)
- Yun-Fang Zhen
- The Center of Diagnosis and Treatment for Children's Bone Diseases, the Children's Hospital Affiliated to Soochow University, Suzhou, Jiangsu, 215000, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Investigation into the cardiotoxic effects of doxorubicin on contractile function and the protection afforded by cyclosporin A using the work-loop assay. Toxicol In Vitro 2014; 28:722-31. [DOI: 10.1016/j.tiv.2014.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 10/04/2013] [Accepted: 01/27/2014] [Indexed: 11/23/2022]
|
41
|
Chen SH, Li DL, Yang F, Wu Z, Zhao YY, Jiang Y. Gemcitabine-induced pancreatic cancer cell death is associated with MST1/cyclophilin D mitochondrial complexation. Biochimie 2014; 103:71-9. [PMID: 24732633 DOI: 10.1016/j.biochi.2014.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/03/2014] [Indexed: 12/18/2022]
Abstract
The pancreatic adenocarcinoma remains the most aggressive human malignancy with an extremely low 5-year overall survival. Postoperative gemcitabine could significantly delay recurrence after complete resection of pancreatic cancer. However, the underlying mechanisms are not fully understood. The chemo-resistance factors against gemcitabine still need further characterizations. Here we studied the mechanism of gemcitabine-induced pancreatic cancer cell death by focusing on mammalian sterile 20-like kinase 1 (MST1) and cyclophilin D (Cyp-D). We found that MST1 and Cyp-D expressions were significantly lower in gemcitabine-resistant pancreatic cancer tissues and cell lines. In vitro, gemcitabine activated MST1 through reactive oxygen species (ROS) production, which was prevented by antioxidant n-acetyl-cysteine (NAC). We found that gemcitabine-activated MST1 translocated to mitochondria and formed a complex with the local protein Cyp-D. Gemcitabine-induced cell death was alleviated by MST1 or Cyp-D shRNA silencing, but was aggravated by MST1 or Cyp-D over-expression. Further, cyclosporin A (CsA), the Cyp-D inhibitor, prevented gemcitabine-induced MST1/Cyp-D mitochondrial complexation and cancer cell death. We suggest that gemcitabine-induced death of pancreatic cancer cells requires MST1/Cyp-D mitochondrial complexation.
Collapse
Affiliation(s)
- Shao-Hua Chen
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Dong-Liang Li
- Department of Hepatobiliary Medicine, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China.
| | - Fang Yang
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Zhe Wu
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Yong-Yang Zhao
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Yi Jiang
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| |
Collapse
|
42
|
Ong SG, Lee WH, Theodorou L, Kodo K, Lim SY, Shukla DH, Briston T, Kiriakidis S, Ashcroft M, Davidson SM, Maxwell PH, Yellon DM, Hausenloy DJ. HIF-1 reduces ischaemia–reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc Res 2014; 104:24-36. [DOI: 10.1093/cvr/cvu172] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
43
|
Zhang LY, Wu YL, Gao XH, Guo F. Mitochondrial protein cyclophilin-D-mediated programmed necrosis attributes to berberine-induced cytotoxicity in cultured prostate cancer cells. Biochem Biophys Res Commun 2014; 450:697-703. [PMID: 24946211 DOI: 10.1016/j.bbrc.2014.06.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 12/31/2022]
Abstract
The prostate cancer is one of the leading causes of men's cancer mortality. The development of alternative chemotherapeutic strategies is urgent. Berberine has displayed significant anti-prostate cancer activities. The underlying mechanisms are not fully understood. In the current study, we found that berberine induced apoptosis and programmed necrosis in cultured prostate cancer cells (LNCaP and PC-82 lines), and necrosis weighted more than apoptosis in contributing berberine's cytotoxicity. We demonstrated that mitochondrial protein cyclophilin-D (Cyp-D) is required for berberine-induced programmed necrosis. Inhibition of Cyp-D by its inhibitors cyclosporin A (CSA) or sanglifehrin A (SFA), and by Cyp-D shRNA depletion alleviated berberine-induced prostate cancer cell necrosis (but not apoptosis). Our data found that in prostate cancer cells, berberine induced reactive oxygen species (ROS) production, which dictated P53 translocation to mitochondria, where it physically interacted with Cyp-D to open mitochondrial permeability transition pore (mPTP). The anti-oxidant N-acetylcysteine (NAC), the P53 inhibitor pifithrin-α (PFTα) as well as P53 siRNA knockdown suppressed berberine-induced P53 mitochondrial translocation and Cyp-D association, thus inhibiting mitochondrial membrane potential (MMP) decrease and prostate cancer cell necrosis. In summary, the results of the present study provide mechanistic evidence that both apoptosis and programmed necrosis attribute to berberine's cytotoxicity in prostate cancer cells.
Collapse
Affiliation(s)
- Long-yang Zhang
- Department of Urology, Ji'nan Central Hospital, Ji'nan City, Shandong Province 250013, China
| | - Yan-lin Wu
- Department of Urology, Ji'nan Central Hospital, Ji'nan City, Shandong Province 250013, China
| | - Xing-hua Gao
- Department of Urology, Ji'nan Central Hospital, Ji'nan City, Shandong Province 250013, China
| | - Feng Guo
- Department of Urology, Ji'nan Central Hospital, Ji'nan City, Shandong Province 250013, China.
| |
Collapse
|
44
|
Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 2014; 144:202-25. [PMID: 24924700 DOI: 10.1016/j.pharmthera.2014.05.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and crosstalk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK crosstalk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| | - Bryan Agostini
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| |
Collapse
|
45
|
Abstract
Whether an element of routine housekeeping or in the setting of imminent disaster, it is a good idea to get one’s affairs in order. Autophagy, the process of recycling organelles and protein aggregates, is a basal homeostatic process and an evolutionarily conserved response to starvation and other forms of metabolic stress. Our understanding of the role of autophagy in the heart is changing rapidly as new information becomes available. This review examines the role of autophagy in the heart in the setting of cardioprotection, hypertrophy, and heart failure. Contradictory findings are reconciled in light of recent developments. The preponderance of evidence favors a beneficial role for autophagy in the heart under most conditions.
Collapse
Affiliation(s)
- Roberta A Gottlieb
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA, USA,
| | | |
Collapse
|
46
|
Qiu Y, Yu T, Wang W, Pan K, Shi D, Sun H. Curcumin-induced melanoma cell death is associated with mitochondrial permeability transition pore (mPTP) opening. Biochem Biophys Res Commun 2014; 448:15-21. [PMID: 24735534 DOI: 10.1016/j.bbrc.2014.04.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 01/13/2023]
Abstract
Here we studied the role of mitochondrial permeability transition pore (mPTP) opening in curcumin's cytotoxicity in melanoma cells. In cultured WM-115 melanoma cells, curcumin induced mitochondrial membrane potential (MPP) decrease, cyclophilin-D (CyPD)-adenine nucleotide translocator 1 (ANT-1) (two mPTP components) mitochondrial association and cytochrome C release, indicating mPTP opening. The mPTP blocker sanglifehrin A (SfA) and ANT-1 siRNA-depletion dramatically inhibited curcumin-induced cytochrome C release and WM-115 cell death. CyPD is required for curcumin-induced melanoma cell death. The CyPD inhibitor cyclosporin A (CsA) or CyPD siRNA-depletion inhibited curcumin-induced WM-115 cell death and apoptosis, while WM-115 cells with CyPD over-expression were hyper-sensitive to curcumin. Finally, we found that C6 ceramide enhanced curcumin-induced cytotoxicity probably through facilitating mPTP opening, while CsA and SfA as well as CyPD and ANT-1 siRNAs alleviated C6 ceramide's effect on curcumin in WM-115 cells. Together, these results suggest that curcumin-induced melanoma cell death is associated with mPTP opening.
Collapse
Affiliation(s)
- Ying Qiu
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China.
| | - Teng Yu
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China
| | - Wei Wang
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China
| | - Kun Pan
- Department of Dermatology, The Skin Disease Hospital of Ji-ning City, Ji-ning City, Shandong Province 272011, PR China
| | - Dongmei Shi
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China
| | - Hui Sun
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China
| |
Collapse
|
47
|
Huang WY, Jou MJ, Peng TI. Hypoxic preconditioning-induced mitochondrial protection is not disrupted in a cell model of mtDNA T8993G mutation-induced F1F0-ATP synthase defect: the role of mitochondrial permeability transition. Free Radic Biol Med 2014; 67:314-29. [PMID: 24291231 DOI: 10.1016/j.freeradbiomed.2013.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 10/24/2013] [Accepted: 11/21/2013] [Indexed: 10/26/2022]
Abstract
Transient opening of the mitochondrial permeability transition pore plays a crucial role in hypoxic preconditioning-induced protection. Recently, the cyclophilin-D component of the mitochondrial permeability transition pore has been shown to interact with and regulate the F1F0-ATP synthase. However, the precise role of the F1F0-ATP synthase and the interaction between cyclophilin-D and F1F0-ATP synthase in the mitochondrial permeability transition pore and hypoxic preconditioning remain uncertain. Here we found that a 1-h hypoxic preconditioning delayed apoptosis and improved cell survival after stimulation with various apoptotic inducers including H2O2, ionomycin, and arachidonic acid in mitochondrial DNA T8993G mutation (NARP) osteosarcoma 143B cybrids, an F1F0-ATP synthase defect cell model. This hypoxic preconditioning protected NARP cybrid cells against focal laser irradiation-induced oxidative stress by suppressing reactive oxygen species formation and preventing the depletion of cardiolipin. Furthermore, the protective functions of transient opening of the mitochondrial permeability transition pore in both NARP cybrids and wild-type 143B cells can be augmented by hypoxic preconditioning. Disruption of the interaction between cyclophilin-D and F1F0-ATP synthase by cyclosporin A attenuated the mitochondrial protection induced by hypoxic preconditioning in both NARP cybrids and wild-type 143B cells. Our results demonstrate that the interaction between cyclophilin-D and F1F0-ATP synthase is important in the hypoxic preconditioning-induced cell protection. This finding improves our understanding of the mechanism of mitochondrial permeability transition pore opening in cells in response to hypoxic preconditioning, and will be helpful in further developing new pharmacological agents targeting hypoxia-reoxygenation injury and mitochondria-mediated cell death.
Collapse
Affiliation(s)
- Wen-Yi Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan; Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, and Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Tsung-I Peng
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.
| |
Collapse
|
48
|
Shiomi M, Miyamae M, Takemura G, Kaneda K, Inamura Y, Onishi A, Koshinuma S, Momota Y, Minami T, Figueredo VM. Induction of autophagy restores the loss of sevoflurane cardiac preconditioning seen with prolonged ischemic insult. Eur J Pharmacol 2013; 724:58-66. [PMID: 24374197 DOI: 10.1016/j.ejphar.2013.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/30/2022]
Abstract
Sevoflurane preconditioning against myocardial ischemia-reperfusion injury is lost if the ischemic insult is too long. Emerging evidence suggests that induction of autophagy may also confer cardioprotection against ischemia-reperfusion injury. We examined whether induction of autophagy prolongs sevoflurane preconditioning protection during a longer ischemic insult. Isolated guinea pigs hearts were subjected to 30 or 45 min ischemia, followed by 120 min reperfusion (control). Anesthetic preconditioning was elicited with 2% sevoflurane for 10 min prior to ischemia (SEVO-30, SEVO-45). Chloramphenicol (autophagy upregulator, 300 µM) was administered starting 20 min before ischemia and throughout reperfusion in SEVO-45 (SEVO-45+CAP). To inhibit autophagy, 3-methyladenine (10 μM) was administered during sevoflurane administration in SEVO-45+CAP. Infarct size was determined by triphenyltetrazolium chloride stain. Tissue samples were obtained before ischemia to determine autophagy-related protein (microtubule-associated protein light chain I and II: LC3-I, II), Akt and glycogen synthase kinase 3β (GSK3β) expression using Western blot analysis. The effect of autophagy on calcium-induced mitochondrial permeability transition pore (MPTP) opening in isolated calcein-loaded mitochondria was assessed. Electron microscopy was used to detect autophagosomes. Infarct size was significantly reduced in SEVO-30, but not in SEVO-45. Chloramphenicol restored sevoflurane preconditioning lost by 45 min ischemia. There were more abundant autophagozomes and LC3-II expression was significantly increased in SEVO-45+CAP. Induction of autophagy before ischemia enhanced GSK3β phosphorylation and inhibition of calcium-induced MPTP opening. These effects were abolished by 3-methyladenine. Pre-ischemic induction of autophagy restores sevoflurane preconditioning lost by longer ischemic insult. This effect is associated with enhanced inhibition of MPTP by autophagy.
Collapse
Affiliation(s)
- Mayumi Shiomi
- Department of Anesthesiology, Osaka Medical College, Osaka, Japan
| | - Masami Miyamae
- Department of Internal Medicine, Osaka Dental University, 8-1 Kuzuha hanazono-cho Hirakata, Osaka 573-1121, Japan.
| | - Genzou Takemura
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Kaneda
- Department of Anesthesiology, Osaka Dental University, Osaka, Japan
| | | | - Anna Onishi
- Department of Anesthesiology, Osaka Dental University, Osaka, Japan
| | | | - Yoshihiro Momota
- Department of Anesthesiology, Osaka Dental University, Osaka, Japan
| | - Toshiaki Minami
- Department of Anesthesiology, Osaka Medical College, Osaka, Japan
| | - Vincent M Figueredo
- Institute for Heart and Vascular Health, Einstein Medical Center, and Jefferson Medical College, Philadelphia, USA
| |
Collapse
|
49
|
Zhao Z, Gordan R, Wen H, Fefelova N, Zang WJ, Xie LH. Modulation of intracellular calcium waves and triggered activities by mitochondrial ca flux in mouse cardiomyocytes. PLoS One 2013; 8:e80574. [PMID: 24348912 PMCID: PMC3857829 DOI: 10.1371/journal.pone.0080574] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 10/04/2013] [Indexed: 12/23/2022] Open
Abstract
Recent studies have suggested that mitochondria may play important roles in the Ca(2+) homeostasis of cardiac myocytes. However, it is still unclear if mitochondrial Ca(2+) flux can regulate the generation of Ca(2+) waves (CaWs) and triggered activities in cardiac myocytes. In the present study, intracellular/cytosolic Ca(2+) (Cai (2+)) was imaged in Fluo-4-AM loaded mouse ventricular myocytes. Spontaneous sarcoplasmic reticulum (SR) Ca(2+) release and CaWs were induced in the presence of high (4 mM) external Ca(2+) (Cao (2+)). The protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) reversibly raised basal Cai (2+) levels even after depletion of SR Ca(2+) in the absence of Cao (2+) , suggesting Ca(2+) release from mitochondria. FCCP at 0.01 - 0.1 µM partially depolarized the mitochondrial membrane potential (Δψ m ) and increased the frequency and amplitude of CaWs in a dose-dependent manner. Simultaneous recording of cell membrane potentials showed the augmentation of delayed afterdepolarization amplitudes and frequencies, and induction of triggered action potentials. The effect of FCCP on CaWs was mimicked by antimycin A (an electron transport chain inhibitor disrupting Δψ m ) or Ru360 (a mitochondrial Ca(2+) uniporter inhibitor), but not by oligomycin (an ATP synthase inhibitor) or iodoacetic acid (a glycolytic inhibitor), excluding the contribution of intracellular ATP levels. The effects of FCCP on CaWs were counteracted by the mitochondrial permeability transition pore blocker cyclosporine A, or the mitochondrial Ca(2+) uniporter activator kaempferol. Our results suggest that mitochondrial Ca(2+) release and uptake exquisitely control the local Ca(2+) level in the micro-domain near SR ryanodine receptors and play an important role in regulation of intracellular CaWs and arrhythmogenesis.
Collapse
Affiliation(s)
- Zhenghang Zhao
- Department of Pharmacology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Richard Gordan
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Hairuo Wen
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey, United States of America
- Department of Reproductive and Genetic Toxicology, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, P.R. China
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Wei-Jin Zang
- Department of Pharmacology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey, United States of America
| |
Collapse
|
50
|
Sefton EC, Qiang W, Serna V, Kurita T, Wei JJ, Chakravarti D, Kim JJ. MK-2206, an AKT inhibitor, promotes caspase-independent cell death and inhibits leiomyoma growth. Endocrinology 2013; 154:4046-57. [PMID: 24002033 PMCID: PMC3800769 DOI: 10.1210/en.2013-1389] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Uterine leiomyomas (ULs), benign tumors of the myometrium, are the number one indication for hysterectomies in the United States due to a lack of an effective alternative therapy. ULs show activation of the pro-survival AKT pathway compared with normal myometrium; however, substantial data directly linking AKT to UL cell survival are lacking. We hypothesized that AKT promotes UL cell survival and that it is a viable target for inhibiting UL growth. We used the investigational AKT inhibitor MK-2206, currently in phase II trials, on cultured primary human UL and myometrial cells, immortalized leiomyoma cells, and in leiomyoma grafts grown under the kidney capsule in mice. MK-2206 inhibited AKT and PRAS40 phosphorylation but did not regulate serum- and glucocorticoid-induced kinase and ERK1/2, demonstrating its specificity for AKT. MK-2206 reduced UL cell viability and decreased UL tumor volumes. UL cells exhibited disruption of mitochondrial structures and underwent cell death that was independent of caspases. Additionally, mammalian target of rapamycin and p70S6K phosphorylation were reduced, indicating that mammalian target of rapamycin complex 1 signaling was compromised by AKT inhibition in UL cells. MK-2206 also induced autophagy in UL cells. Pretreatment of primary UL cells with 3-methyladenine enhanced MK-2206-mediated UL cell death, whereas knockdown of ATG5 and/or ATG7 did not significantly influence UL cell viability in the presence of MK-2206. Our data provide molecular evidence for the involvement of AKT in UL cell survival and suggest that AKT inhibition by MK-2206 may be a viable option to consider for the treatment of ULs.
Collapse
Affiliation(s)
- Elizabeth C Sefton
- PhD, Department of Obstetrics and Gynecology, Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Lurie 4-117, Chicago, Illinois 60611.
| | | | | | | | | | | | | |
Collapse
|