1
|
Zhou J, Wu J, Wu G, Huang J, Zhang Y, Che J, Zhu K, Geng J, Fan Q. TBX18 knockdown sensitizes esophageal squamous cell carcinoma to radiotherapy by blocking the CHN1/RhoA axis. Radiother Oncol 2023; 186:109788. [PMID: 37399907 DOI: 10.1016/j.radonc.2023.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/08/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Radioresistance is a challenge in the effective treatment of esophageal squamous cell carcinoma (ESCC). Herein, this research ascertained whether TBX18 reduced the radiosensitivity of ESCC. METHODS Bioinformatics analysis was utilized to retrieve differentially expressed genes. Then, the expression of corresponding candidate genes was tested using qRT-PCR in ESCC clinical specimens, and TBX18 was selected for subsequent experiments. The binding between TBX18 and CHN1 was evaluated by dual-luciferase reporter and ChIP assays, and the relationship between CHN1 and RhoA was identified by GST pull-down. Ectopic expression or knockdown experiments and radiation treatment were performed in cells and the nude mouse xenograft model to clarify the impacts of TBX18, CHN1, and RhoA on radiosensitivity in ESCC. RESULTS Bioinformatics analysis and qRT-PCR retrieved upregulated TBX18 in ESCC for the follow-up study. Additionally, TBX18 was positively correlated with CHN1 in ESCC clinical specimens. Mechanistically, TBX18 bound to the CHN1 promoter region to transcriptionally activate CHN1, thus elevating RhoA activity. Moreover, TBX18 knockdown reduced ESCC cell proliferation and migration while augmenting their apoptosis after radiation, which was negated by further overexpressing CHN1 or RhoA. CHN1 or RhoA knockdown diminished ESCC cell proliferation and migration, as well as enhanced cell apoptosis, subsequent to radiation. Likewise, TBX18 overexpression increased ESCC cell autophagy after radiation, which was partially reversed by knockdown of RhoA. The results of in vivo xenograft experiments in nude mice were concurrent with the in vitro results. CONCLUSION TBX18 knockdown lowered CHN1 transcription and thus reduced RhoA activity, which sensitized ESCC cells to radiotherapy.
Collapse
Affiliation(s)
- Jialiang Zhou
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jia Wu
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Gang Wu
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianfeng Huang
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yunxia Zhang
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jun Che
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Koujun Zhu
- Depatement of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiqun Geng
- Depatement of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qiang Fan
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
2
|
Li R, Frangogiannis NG. Integrins in cardiac fibrosis. J Mol Cell Cardiol 2022; 172:1-13. [PMID: 35872324 DOI: 10.1016/j.yjmcc.2022.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
Cells sense mechanical stress and changes in their matrix environment through the integrins, a family of heterodimeric surface receptors that bind to extracellular matrix ligands and trigger cytoskeletal remodeling, while transducing a wide range of intracellular signals. Integrins have been extensively implicated in regulation of inflammation, repair and fibrosis in many different tissues. This review manuscript discusses the role of integrin-mediated cascades in myocardial fibrosis. In vitro studies have demonstrated that β1 and αv integrins play an important role in fibrogenic conversion of cardiac fibroblast, acting through direct stimulation of FAK/Src cascades, or via accentuation of growth factor signaling. Fibrogenic actions of αv integrins may be mediated, at least in part, through pericellular activation of latent TGF-β stores. In vivo evidence supporting the role of integrin heterodimers in fibrotic cardiac remodeling is limited to associative evidence, and to experiments using pharmacologic inhibitors, or global loss-of-function approaches. Studies documenting in vivo actions of integrins on fibroblasts using cell-specific strategies are lacking. Integrin effects on leukocytes may also contribute to the pathogenesis of fibrotic myocardial responses by mediating recruitment and activation of fibrogenic macrophages. The profile and role of integrins in cardiac fibrosis may be dependent on the underlying pathologic condition. Considering their cell surface localization and the availability of small molecule inhibitors, integrins may be attractive therapeutic targets for patients with heart failure associated with prominent fibrotic remodeling.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
3
|
Phuyal S, Djaerff E, Le Roux A, Baker MJ, Fankhauser D, Mahdizadeh SJ, Reiterer V, Parizadeh A, Felder E, Kahlhofer JC, Teis D, Kazanietz MG, Geley S, Eriksson L, Roca‐Cusachs P, Farhan H. Mechanical strain stimulates COPII-dependent secretory trafficking via Rac1. EMBO J 2022; 41:e110596. [PMID: 35938214 PMCID: PMC9475550 DOI: 10.15252/embj.2022110596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022] Open
Abstract
Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER-to-Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER-to-Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER.
Collapse
Affiliation(s)
- Santosh Phuyal
- Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Elena Djaerff
- Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Anabel‐Lise Le Roux
- Institute for Bioengineering of Catalonia (IBEC)the Barcelona Institute of Technology (BIST)BarcelonaSpain
| | - Martin J Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Daniela Fankhauser
- Institute of PathophysiologyMedical University of InnsbruckInnsbruckAustria
| | | | - Veronika Reiterer
- Institute of PathophysiologyMedical University of InnsbruckInnsbruckAustria
| | | | - Edward Felder
- Institute of General PhysiologyUniversity of UlmUlmGermany
| | | | - David Teis
- Institute of Cell BiologyMedical University of InnsbruckInnsbruckAustria
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Stephan Geley
- Institute of PathophysiologyMedical University of InnsbruckInnsbruckAustria
| | - Leif Eriksson
- Department of chemistry and molecular biologyUniversity of GothenburgGothenburgSweden
| | - Pere Roca‐Cusachs
- Institute for Bioengineering of Catalonia (IBEC)the Barcelona Institute of Technology (BIST)BarcelonaSpain
- Universitat de BarcelonaBarcelonaSpain
| | - Hesso Farhan
- Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- Institute of PathophysiologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
4
|
Fu X, Wang J, Cai H, Jiang H, Han S. C16 Peptide and Ang-1 Improve Functional Disability and Pathological Changes in an Alzheimer’s Disease Model Associated with Vascular Dysfunction. Pharmaceuticals (Basel) 2022; 15:ph15040471. [PMID: 35455468 PMCID: PMC9025163 DOI: 10.3390/ph15040471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurological disorder characterized by neuronal cell death, tau pathology, and excessive inflammatory responses. Several vascular risk factors contribute to damage of the blood–brain barrier (BBB), secondary leak-out of blood vessels, and infiltration of inflammatory cells, which aggravate the functional disability and pathological changes in AD. Growth factor angiopoietin-1 (Ang-1) can stabilize the endothelium and reduce endothelial permeability by binding to receptor tyrosine kinase 2 (Tie2). C16 peptide (KAFDITYVRLKF) selectively binds to integrin ανβ3 and competitively inhibits leukocyte transmigration into the central nervous system by interfering with leukocyte ligands. In the present study, 45 male Sprague-Dawley (SD) rats were randomly divided into three groups: vehicle group, C16 peptide + Ang1 (C + A) group, and sham control group. The vehicle and C + A groups were subjected to two-vessel occlusion (2-VO) with artery ligation followed by Aβ1-42 injection into the hippocampus. The sham control group underwent sham surgery and injection with an equal amount of phosphate-buffered saline (PBS) instead of Aβ1-42. The C + A group was administered 1 mL of drug containing 2 mg of C16 and 400 µg of Ang-1 daily for 2 weeks. The sham control and vehicle groups were administered 1 mL of PBS for 2 weeks. Our results showed that treatment with Ang-1 plus C16 improved functional disability and reduced neuronal death by inhibiting inflammatory cell infiltration, protecting vascular endothelial cells, and maintaining BBB permeability. The results suggest that these compounds may be potential therapeutic agents for AD and warrant further investigation.
Collapse
Affiliation(s)
- Xiaoxiao Fu
- Institute of Anatomy, Medical College, Zhejiang University, Hangzhou 310058, China;
| | - Jing Wang
- Department of Neurology, Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.C.); (H.J.)
| | - Huaying Cai
- Department of Neurology, Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.C.); (H.J.)
| | - Hong Jiang
- Department of Neurology, Sir Run Run Shaw Hospital, Medical College, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.C.); (H.J.)
| | - Shu Han
- Institute of Anatomy, Medical College, Zhejiang University, Hangzhou 310058, China;
- Correspondence: ; Tel.: +86-571-8820-8318
| |
Collapse
|
5
|
Regulation of collagen deposition in the trout heart during thermal acclimation. Curr Res Physiol 2022; 5:99-108. [PMID: 35243359 PMCID: PMC8857596 DOI: 10.1016/j.crphys.2022.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
The passive mechanical properties of the vertebrate heart are controlled in part by the composition of the extracellular matrix (ECM). Changes in the ECM, caused by increased blood pressure, injury or disease can affect the capacity of the heart to fill with blood during diastole. In mammalian species, cardiac fibrosis caused by an increase in collagen in the ECM, leads to a loss of heart function and these changes in composition are considered to be permanent. Recent work has demonstrated that the cardiac ventricle of some fish species have the capacity to both increase and decrease collagen content in response to thermal acclimation. It is thought that these changes in collagen content help maintain ventricle function over seasonal changes in environmental temperatures. This current work reviews the cellular mechanisms responsible for regulating collagen deposition in the mammalian heart and proposes a cellular pathway by which a change in temperature can affect the collagen content of the fish ventricle through mechanotransduction. This work specifically focuses on the role of transforming growth factor β1, MAPK signaling pathways, and biomechanical stretch in regulating collagen content in the fish ventricle. It is hoped that this work increases the appreciation of the use of comparative models to gain insight into phenomenon with biomedical relevance.
Collapse
|
6
|
Ranjan P, Kumari R, Goswami SK, Li J, Pal H, Suleiman Z, Cheng Z, Krishnamurthy P, Kishore R, Verma SK. Myofibroblast-Derived Exosome Induce Cardiac Endothelial Cell Dysfunction. Front Cardiovasc Med 2021; 8:676267. [PMID: 33969024 PMCID: PMC8102743 DOI: 10.3389/fcvm.2021.676267] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Endothelial cells (ECs) play a critical role in the maintenance of vascular homeostasis and in heart function. It was shown that activated fibroblast-derived exosomes impair cardiomyocyte function in hypertrophic heart, but their effect on ECs is not yet clear. Thus, we hypothesized that activated cardiac fibroblast-derived exosomes (FB-Exo) mediate EC dysfunction, and therefore modulation of FB-exosomal contents may improve endothelial function. Methods and Results: Exosomes were isolated from cardiac fibroblast (FB)-conditioned media and characterized by nanoparticle tracking analysis and electron microscopy. ECs were isolated from mouse heart. ECs were treated with exosomes isolated from FB-conditioned media, following FB culture with TGF-β1 (TGF-β1-FB-Exo) or PBS (control) treatment. TGF-β1 significantly activated fibroblasts as shown by increase in collagen type1 α1 (COL1α1), periostin (POSTN), and fibronectin (FN1) gene expression and increase in Smad2/3 and p38 phosphorylation. Impaired endothelial cell function (as characterized by a decrease in tube formation and cell migration along with reduced VEGF-A, Hif1α, CD31, and angiopoietin1 gene expression) was observed in TGF-β1-FB-Exo treated cells. Furthermore, TGF-β1-FB-Exo treated ECs showed reduced cell proliferation and increased apoptosis as compared to control cells. TGF-β1-FB-Exo cargo analysis revealed an alteration in fibrosis-associated miRNAs, including a significant increase in miR-200a-3p level. Interestingly, miR-200a-3p inhibition in activated FBs, alleviated TGF-β1-FB-Exo-mediated endothelial dysfunction. Conclusions: Taken together, this study demonstrates an important role of miR-200a-3p enriched within activated fibroblast-derived exosomes on endothelial cell biology and function.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rajesh Kumari
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sumanta Kumar Goswami
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Li
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harish Pal
- Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zainab Suleiman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhongjian Cheng
- Center for Translational Medicine, Temple University, Philadelphia, PA, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Raj Kishore
- Center for Translational Medicine, Temple University, Philadelphia, PA, United States
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Li X, Garcia-Elias A, Benito B, Nattel S. The effects of cardiac stretch on atrial fibroblasts: Analysis of the evidence and potential role in atrial fibrillation. Cardiovasc Res 2021; 118:440-460. [PMID: 33576384 DOI: 10.1093/cvr/cvab035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/27/2020] [Accepted: 02/09/2021] [Indexed: 01/06/2023] Open
Abstract
Atrial fibrillation (AF) is an important clinical problem. Chronic pressure/volume overload of the atria promotes AF, particularly via enhanced extracellular matrix (ECM) accumulation manifested as tissue fibrosis. Loading of cardiac cells causes cell-stretch that is generally considered to promote fibrosis by directly activating fibroblasts, the key cell-type responsible for ECM-production. The primary purpose of this article is to review the evidence regarding direct effects of stretch on cardiac fibroblasts, specifically: (i) the similarities and differences among studies in observed effects of stretch on cardiac-fibroblast function; (ii) the signaling-pathways implicated; and (iii) the factors that affect stretch-related phenotypes. Our review summarizes the most important findings and limitations in this area and gives an overview of clinical data and animal models related to cardiac stretch, with particular emphasis on the atria. We suggest that the evidence regarding direct fibroblast activation by stretch is weak and inconsistent, in part because of variability among studies in key experimental conditions that govern the results. Further work is needed to clarify whether, in fact, stretch induces direct activation of cardiac fibroblasts and if so, to elucidate the determining factors to ensure reproducible results. If mechanical load on fibroblasts proves not to be clearly profibrotic by direct actions, other mechanisms like paracrine influences, the effects of systemic mediators and/or the direct consequences of myocardial injury or death, might account for the link between cardiac stretch and fibrosis. Clarity in this area is needed to improve our understanding of AF pathophysiology and assist in therapeutic development.
Collapse
Affiliation(s)
- Xixiao Li
- Department of Medicine and Research Center, Montreal Heart Institute, Montreal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Anna Garcia-Elias
- Department of Medicine and Research Center, Montreal Heart Institute, Montreal, Canada
| | - Begoña Benito
- Vascular Biology and Metabolism Program, Vall d'Hebrón Research Institute (VHIR), Barcelona, Spain.,Cardiology Department, Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute, Montreal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,Department of Pharmacology and Physiology of the Université de Montréal Faculty of Medicine, Montreal, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
| |
Collapse
|
8
|
Krajnik A, Brazzo JA, Vaidyanathan K, Das T, Redondo-Muñoz J, Bae Y. Phosphoinositide Signaling and Mechanotransduction in Cardiovascular Biology and Disease. Front Cell Dev Biol 2020; 8:595849. [PMID: 33381504 PMCID: PMC7767973 DOI: 10.3389/fcell.2020.595849] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositides, which are membrane-bound phospholipids, are critical signaling molecules located at the interface between the extracellular matrix, cell membrane, and cytoskeleton. Phosphoinositides are essential regulators of many biological and cellular processes, including but not limited to cell migration, proliferation, survival, and differentiation, as well as cytoskeletal rearrangements and actin dynamics. Over the years, a multitude of studies have uniquely implicated phosphoinositide signaling as being crucial in cardiovascular biology and a dominant force in the development of cardiovascular disease and its progression. Independently, the cellular transduction of mechanical forces or mechanotransduction in cardiovascular cells is widely accepted to be critical to their homeostasis and can drive aberrant cellular phenotypes and resultant cardiovascular disease. Given the versatility and diversity of phosphoinositide signaling in the cardiovascular system and the dominant regulation of cardiovascular cell functions by mechanotransduction, the molecular mechanistic overlap and extent to which these two major signaling modalities converge in cardiovascular cells remain unclear. In this review, we discuss and synthesize recent findings that rightfully connect phosphoinositide signaling to cellular mechanotransduction in the context of cardiovascular biology and disease, and we specifically focus on phosphatidylinositol-4,5-phosphate, phosphatidylinositol-4-phosphate 5-kinase, phosphatidylinositol-3,4,5-phosphate, and phosphatidylinositol 3-kinase. Throughout the review, we discuss how specific phosphoinositide subspecies have been shown to mediate biomechanically sensitive cytoskeletal remodeling in cardiovascular cells. Additionally, we discuss the direct interaction of phosphoinositides with mechanically sensitive membrane-bound ion channels in response to mechanical stimuli. Furthermore, we explore the role of phosphoinositide subspecies in association with critical downstream effectors of mechanical signaling in cardiovascular biology and disease.
Collapse
Affiliation(s)
- Amanda Krajnik
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Joseph A Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Kalyanaraman Vaidyanathan
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Tuhin Das
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Javier Redondo-Muñoz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
9
|
Xu Y, Rong J, Zhang Z. The emerging role of angiotensinogen in cardiovascular diseases. J Cell Physiol 2020; 236:68-78. [PMID: 32572956 DOI: 10.1002/jcp.29889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
Angiotensinogen (AGT) is the unique precursor of all angiotensin peptides. Many of the basic understandings of AGT in cardiovascular diseases have come from research efforts to define its effects on blood pressure regulation. The development of novel techniques targeting AGT manipulation such as genetic animal models, adeno-associated viral approaches, and antisense oligonucleotides made it possible to deeply investigate the relationship between AGT and cardiovascular diseases. In this brief review, we provide contemporary insights into the emerging role of AGT in cardiovascular diseases. In light of the recent progress, we emphasize some newly recognized features and mechanisms of AGT in heart failure, hypertension, atherosclerosis, and cardiovascular risk factors.
Collapse
Affiliation(s)
- Yinchuan Xu
- Department of Cardiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiabing Rong
- Department of Cardiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
AlQudah M, Hale TM, Czubryt MP. Targeting the renin-angiotensin-aldosterone system in fibrosis. Matrix Biol 2020; 91-92:92-108. [PMID: 32422329 DOI: 10.1016/j.matbio.2020.04.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by excessive deposition of extracellular matrix components such as collagen in tissues or organs. Fibrosis can develop in the heart, kidneys, liver, skin or any other body organ in response to injury or maladaptive reparative processes, reducing overall function and leading eventually to organ failure. A variety of cellular and molecular signaling mechanisms are involved in the pathogenesis of fibrosis. The renin-angiotensin-aldosterone system (RAAS) interacts with the potent Transforming Growth Factor β (TGFβ) pro-fibrotic pathway to mediate fibrosis in many cell and tissue types. RAAS consists of both classical and alternative pathways, which act to potentiate or antagonize fibrotic signaling mechanisms, respectively. This review provides an overview of recent literature describing the roles of RAAS in the pathogenesis of fibrosis, particularly in the liver, heart, kidney and skin, and with a focus on RAAS interactions with TGFβ signaling. Targeting RAAS to combat fibrosis represents a promising therapeutic approach, particularly given the lack of strategies for treating fibrosis as its own entity, thus animal and clinical studies to examine the impact of natural and synthetic substances to alter RAAS signaling as a means to treat fibrosis are reviewed as well.
Collapse
Affiliation(s)
- Mohammad AlQudah
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada; Department of Physiology and Biochemistry, College of Medicine, Jordan University of Science and Technology, Jordan
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, United States
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada.
| |
Collapse
|
11
|
Johnston EF, Gillis TE. Short-term cyclical stretch phosphorylates p38 and ERK1/2 MAPKs in cultured fibroblasts from the hearts of rainbow trout, Oncorhynchus mykiss. Biol Open 2020; 9:bio.049296. [PMID: 31862862 PMCID: PMC6994941 DOI: 10.1242/bio.049296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The form and function of the rainbow trout heart can remodel in response to various stressors including changes in environmental temperature and anemia. Previous studies have hypothesized that changes in biomechanical forces experienced by the trout myocardium as result of such physiological stressors could play a role in triggering the remodeling response. However, there has been no work examining the influence of biomechanical forces on the trout myocardium or of the cellular signals that would translate such a stimuli into a biological response. In this study, we test the hypothesis that the application of biomechanical forces to trout cardiac fibroblasts activate the cell signaling pathways associated with cardiac remodeling. This was done by cyclically stretching cardiac fibroblasts to 10% equibiaxial deformation at 0.33 Hz and quantifying the activation of the p38-JNK-ERK mitogen activated protein kinase (MAPK) pathway. After 20 min, p38 MAPK phosphorylation was elevated by 4.2-fold compared to control cells (P<0.05) and after 24 h of stretch, p38 MAPK phosphorylation remained elevated and extracellular-regulated kinase 1/2 was phosphorylated by 2.4-fold compared to control (P<0.05). Together, these results indicate that mechanotransductive pathways are active in cardiac fibroblasts, and lead to the activation of cell signaling pathways involved in cardiac remodeling.
Collapse
Affiliation(s)
- Elizabeth F Johnston
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
12
|
Coordination between Rac1 and Rab Proteins: Functional Implications in Health and Disease. Cells 2019; 8:cells8050396. [PMID: 31035701 PMCID: PMC6562727 DOI: 10.3390/cells8050396] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
The small GTPases of the Rho family regulate many aspects of actin dynamics, but are functionally connected to many other cellular processes. Rac1, a member of this family, besides its known function in the regulation of actin cytoskeleton, plays a key role in the production of reactive oxygen species, in gene transcription, in DNA repair, and also has been proven to have specific roles in neurons. This review focuses on the cooperation between Rac1 and Rab proteins, analyzing how the coordination between these GTPases impact on cells and how alterations of their functions lead to disease.
Collapse
|
13
|
Chen X, Lin J, Hu T, Ren Z, Li L, Hameed I, Zhang X, Men C, Guo Y, Xu D, Zhan Y. Galectin-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation. J Cell Physiol 2018; 234:10990-11000. [PMID: 30536538 PMCID: PMC6590151 DOI: 10.1002/jcp.27910] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022]
Abstract
Oxidized low‐density lipoprotein (Ox‐LDL)‐induced endothelial cell injury plays a crucial role in the pathogenesis of atherosclerosis (AS). Plasma galectin‐3 (Gal‐3) is elevated inside and drives diverse systemic inflammatory disorders, including cardiovascular diseases. However, the exact role of Gal‐3 in ox‐LDL‐mediated endothelial injury remains unclear. This study explores the effects of Gal‐3 on ox‐LDL‐induced endothelial dysfunction and the underlying molecular mechanisms. In this study, Gal‐3, integrin β1, and GTP‐RhoA in the blood and plaques of AS patients were examined by ELISA and western blot respectively. Their levels were found to be obviously upregulated compared with non‐AS control group. CCK8 assay and flow cytometry analysis showed that Gal‐3 significantly decreased cell viability and promoted apoptosis in ox‐LDL‐treated human umbilical vascular endothelial cells (HUVECs). The upregulation of integrinβ1, GTP‐RhoA, p‐JNK, p‐p65, p‐IKKα, and p‐IKKβ induced by ox‐LDL was further enhanced by treatment with Gal‐3. Pretreatment with Gal‐3 increased expression of inflammatory factors (interleukin [IL]‐6, IL‐8, and IL‐1β), chemokines(CXCL‐1 and CCL‐2) and adhesion molecules (VCAM‐1 and ICAM‐1). Furthermore, the promotional effects of Gal‐3 on NF‐κB activation and inflammatory factors in ox‐LDL‐treated HUVECs were reversed by the treatments with integrinβ1‐siRNA or the JNK inhibitor. We also found that integrinβ1‐siRNA decreased the protein expression of GTP‐RhoA and p‐JNK, while RhoA inhibitor partially reduced the upregulated expression of p‐JNK induced by Gal‐3. In conclusion, our finding suggests that Gal‐3 exacerbates ox‐LDL‐mediated endothelial injury by inducing inflammation via integrin β1‐RhoA‐JNK signaling activation.
Collapse
Affiliation(s)
- Xiumei Chen
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Lin
- Department of Urology and Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Hu
- Department of Cancer Research, The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Zhiyun Ren
- Department of Urology and Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Linnan Li
- Department of Cancer Research, Academy of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Irbaz Hameed
- Department of Cardiothoracic Surgery, New York Presbyterian Hospital Weill cornell Medicine, New York, New York
| | - Xiaoyu Zhang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Men
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Guo
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Xu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiyang Zhan
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Yuan J, Liu H, Gao W, Zhang L, Ye Y, Yuan L, Ding Z, Wu J, Kang L, Zhang X, Wang X, Zhang G, Gong H, Sun A, Yang X, Chen R, Cui Z, Ge J, Zou Y. MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress. Am J Cancer Res 2018; 8:2565-2582. [PMID: 29721099 PMCID: PMC5928909 DOI: 10.7150/thno.22878] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/26/2018] [Indexed: 12/15/2022] Open
Abstract
Rationale: Excessive myocardial fibrosis is the main pathological process in the development of cardiac remodeling and heart failure; therefore, it is important to prevent excessive myocardial fibrosis. We determined that microRNA-378 (miR-378) is cardiac-enriched and highly repressed during cardiac remodeling. We therefore proposed that miR-378 has a critical role in regulation of cardiac fibrosis, and examined the effects of miR-378 on cardiac fibrosis after mechanical stress. Methods: Mechanical stress was respectively imposed on mice through a transverse aortic constriction (TAC) procedure and on cardiac fibroblasts by stretching silicon dishes. A chemically modified miR-378 mimic (Agomir) or an inhibitor (Antagomir) was administrated to mice by intravenous injection and to cells by direct addition to the culture medium. MiR-378 knockout mouse was constructed. Cardiac fibroblasts were cultured in the conditioned media from the cardiomyocytes with either miR-378 depletion or treatment with sphingomyelinase inhibitor GW4869. Quantitative real-time polymerase chain reaction analysis of gene and miRNA expression, Western blot analysis, immunochemistry and electron microscopy were performed to elucidate the mechanisms. Results: Mechanical stress induced significant increases in fibrotic responses, including myocardial fibrosis, fibroblast hyperplasia, and protein and gene expression of collagen and matrix metalloproteinases (MMPs) both in vivo and in vitro. All these fibrotic responses were attenuated by treatment with a chemically modified miR-378 mimic (Agomir) but were exaggerated by treatment with an inhibitor (Antagomir). MiR-378 knockout mouse models exhibited aggravated cardiac fibrosis after TAC. Media from the cardiomyocytes with either miR-378 depletion or treatment with sphingomyelinase inhibitor GW4869 enhanced the fibrotic responses of stimulated cardiac fibroblasts, confirming that miR-378 inhibits fibrosis in an extracellular vesicles-dependent secretory manner. Mechanistically, the miR-378-induced anti-fibrotic effects manifested partially through the suppression of p38 MAP kinase phosphorylation by targeting MKK6 in cardiac fibroblasts. Conclusions: miR-378 is secreted from cardiomyocytes following mechanical stress and acts as an inhibitor of excessive cardiac fibrosis through a paracrine mechanism.
Collapse
|
15
|
Zhang Y, Luo G, Zhang Y, Zhang M, Zhou J, Gao W, Xuan X, Yang X, Yang D, Tian Z, Ni B, Tang J. Critical effects of long non-coding RNA on fibrosis diseases. Exp Mol Med 2018; 50:e428. [PMID: 29350677 PMCID: PMC5799794 DOI: 10.1038/emm.2017.223] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023] Open
Abstract
The expression or dysfunction of long non-coding RNAs (lncRNAs) is closely related to various hereditary diseases, autoimmune diseases, metabolic diseases and tumors. LncRNAs were also recently recognized as functional regulators of fibrosis, which is a secondary process in many of these diseases and a primary pathology in fibrosis diseases. We review the latest findings on lncRNAs in fibrosis diseases of the liver, myocardium, kidney, lung and peritoneum. We also discuss the potential of disease-related lncRNAs as therapeutic targets for the clinical treatment of human fibrosis diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, 105th Hospital of PLA, Hefei, China.,Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing, China.,Graduate School, Bengbu Medical College, Bengbu, China
| | - Gang Luo
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing, China
| | - Yi Zhang
- Department of Clinical Laboratory, 150th Hospital of PLA, Luoyang, China
| | - Mengjie Zhang
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing, China
| | - Jian Zhou
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing, China
| | - Weiwu Gao
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing, China
| | - Xiuyun Xuan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Xia Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing, China
| | - Jun Tang
- Department of Dermatology, 105th Hospital of PLA, Hefei, China.,Graduate School, Bengbu Medical College, Bengbu, China
| |
Collapse
|
16
|
Verma SK, Garikipati VNS, Krishnamurthy P, Schumacher SM, Grisanti LA, Cimini M, Cheng Z, Khan M, Yue Y, Benedict C, Truongcao MM, Rabinowitz JE, Goukassian DA, Tilley D, Koch WJ, Kishore R. Interleukin-10 Inhibits Bone Marrow Fibroblast Progenitor Cell-Mediated Cardiac Fibrosis in Pressure-Overloaded Myocardium. Circulation 2017; 136:940-953. [PMID: 28667100 DOI: 10.1161/circulationaha.117.027889] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/15/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Activated fibroblasts (myofibroblasts) play a critical role in cardiac fibrosis; however, their origin in the diseased heart remains unclear, warranting further investigation. Recent studies suggest the contribution of bone marrow fibroblast progenitor cells (BM-FPCs) in pressure overload-induced cardiac fibrosis. We have previously shown that interleukin-10 (IL10) suppresses pressure overload-induced cardiac fibrosis; however, the role of IL10 in inhibition of BM-FPC-mediated cardiac fibrosis is not known. We hypothesized that IL10 inhibits pressure overload-induced homing of BM-FPCs to the heart and their transdifferentiation to myofibroblasts and thus attenuates cardiac fibrosis. METHODS Pressure overload was induced in wild-type (WT) and IL10 knockout (IL10KO) mice by transverse aortic constriction. To determine the bone marrow origin, chimeric mice were created with enhanced green fluorescent protein WT mice marrow to the IL10KO mice. For mechanistic studies, FPCs were isolated from mouse bone marrow. RESULTS Pressure overload enhanced BM-FPC mobilization and homing in IL10KO mice compared with WT mice. Furthermore, WT bone marrow (from enhanced green fluorescent protein mice) transplantation in bone marrow-depleted IL10KO mice (IL10KO chimeric mice) reduced transverse aortic constriction-induced BM-FPC mobilization compared with IL10KO mice. Green fluorescent protein costaining with α-smooth muscle actin or collagen 1α in left ventricular tissue sections of IL10KO chimeric mice suggests that myofibroblasts were derived from bone marrow after transverse aortic constriction. Finally, WT bone marrow transplantation in IL10KO mice inhibited transverse aortic constriction-induced cardiac fibrosis and improved heart function. At the molecular level, IL10 treatment significantly inhibited transforming growth factor-β-induced transdifferentiation and fibrotic signaling in WT BM-FPCs in vitro. Furthermore, fibrosis-associated microRNA (miRNA) expression was highly upregulated in IL10KO-FPCs compared with WT-FPCs. Polymerase chain reaction-based selective miRNA analysis revealed that transforming growth factor-β-induced enhanced expression of fibrosis-associated miRNAs (miRNA-21, -145, and -208) was significantly inhibited by IL10. Restoration of miRNA-21 levels suppressed the IL10 effects on transforming growth factor-β-induced fibrotic signaling in BM-FPCs. CONCLUSIONS Our findings suggest that IL10 inhibits BM-FPC homing and transdifferentiation to myofibroblasts in pressure-overloaded myocardium. Mechanistically, we show for the first time that IL10 suppresses Smad-miRNA-21-mediated activation of BM-FPCs and thus modulates cardiac fibrosis.
Collapse
Affiliation(s)
- Suresh K Verma
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - Venkata N S Garikipati
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - Prasanna Krishnamurthy
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - Sarah M Schumacher
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - Laurel A Grisanti
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - Maria Cimini
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - Zhongjian Cheng
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - Mohsin Khan
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - Yujia Yue
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - Cindy Benedict
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - May M Truongcao
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - Joseph E Rabinowitz
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - David A Goukassian
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - Douglas Tilley
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - Walter J Koch
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.)
| | - Raj Kishore
- From Center for Translational Medicine (S.K.V., V.N.S.G., S.M.S., L.A.G., M.C., Z.C., M.K., Y.Y., C.B., M.M.T., J.E.R., D.A.G., D.T., W.J.K., R.K.) and Department of Pharmacology (D.T., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; and Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham (P.K.).
| |
Collapse
|
17
|
Abstract
In this chapter, we discuss the manner through which the immune system regulates the cardiovascular system in health and disease. We define the cardiovascular system and elements of atherosclerotic disease, the main focus in this chapter. Herein we elaborate on the disease process that can result in myocardial infarction (heart attack), ischaemic stroke and peripheral arterial disease. We have discussed broadly the homeostatic mechanisms in place that help autoregulate the cardiovascular system including the vital role of cholesterol and lipid clearance as well as the role lipid homeostasis plays in cardiovascular disease in the context of atherosclerosis. We then elaborate on the role played by the immune system in this setting, namely, major players from the innate and adaptive immune system, as well as discussing in greater detail specifically the role played by monocytes and macrophages.This chapter should represent an overview of the role played by the immune system in cardiovascular homeostasis; however further reading of the references cited can expand the reader's knowledge of the detail, and we point readers to many excellent reviews which summarise individual immune systems and their role in cardiovascular disease.
Collapse
Affiliation(s)
- Mohammed Shamim Rahman
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK
| | - Kevin Woollard
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
18
|
Fernández-Solà J, Planavila Porta A. New Treatment Strategies for Alcohol-Induced Heart Damage. Int J Mol Sci 2016; 17:E1651. [PMID: 27690014 PMCID: PMC5085684 DOI: 10.3390/ijms17101651] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023] Open
Abstract
High-dose alcohol misuse induces multiple noxious cardiac effects, including myocyte hypertrophy and necrosis, interstitial fibrosis, decreased ventricular contraction and ventricle enlargement. These effects produce diastolic and systolic ventricular dysfunction leading to congestive heart failure, arrhythmias and an increased death rate. There are multiple, dose-dependent, synchronic and synergistic mechanisms of alcohol-induced cardiac damage. Ethanol alters membrane permeability and composition, interferes with receptors and intracellular transients, induces oxidative, metabolic and energy damage, decreases protein synthesis, excitation-contraction coupling and increases cell apoptosis. In addition, ethanol decreases myocyte protective and repair mechanisms and their regeneration. Although there are diverse different strategies to directly target alcohol-induced heart damage, they are partially effective, and can only be used as support medication in a multidisciplinary approach. Alcohol abstinence is the preferred goal, but control drinking is useful in alcohol-addicted subjects not able to abstain. Correction of nutrition, ionic and vitamin deficiencies and control of alcohol-related systemic organ damage are compulsory. Recently, several growth factors (myostatin, IGF-1, leptin, ghrelin, miRNA, and ROCK inhibitors) and new cardiomyokines such as FGF21 have been described to regulate cardiac plasticity and decrease cardiac damage, improving cardiac repair mechanisms, and they are promising agents in this field. New potential therapeutic targets aim to control oxidative damage, myocyte hypertrophy, interstitial fibrosis and persistent apoptosis In addition, stem-cell therapy may improve myocyte regeneration. However, these strategies are not yet approved for clinical use.
Collapse
Affiliation(s)
- Joaquim Fernández-Solà
- Alcohol Unit, Department of Internal Medicine, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain.
| | - Ana Planavila Porta
- Departament of Biochemistry and Molecular Biomedicine, Faculty of Biology, Avda Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
19
|
Noncoding RNA as regulators of cardiac fibrosis: current insight and the road ahead. Pflugers Arch 2016; 468:1103-11. [PMID: 26786602 DOI: 10.1007/s00424-016-1792-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/11/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022]
Abstract
Cardiac fibrosis is an important pathological feature of cardiac remodeling in heart diseases. The molecular mechanisms of cardiac fibrosis are unknown. Genomic analyses estimated that many noncoding DNA regions generate noncoding RNAs (ncRNAs). ncRNAs have emerged as key molecular players in the regulation of gene expression in different biological processes. Recent studies have started to reveal the importance of ncRNAs in heart development and suggest also an involvement in cardiac fibrosis. These molecules are emerging as important regulators of cellular process. Here, we review particularly focuses on the involvement of two large families of ncRNAs, namely microRNAs (miRNAs) and long noncoding RNAs (LncRNAs) in the regulation of cardiac fibrosis. Furthermore, we review the functions and role of ncRNAs in cardiac biology and discuss these reports and the therapeutic potential of ncRNAs for cardiac fibrosis associated with fibroblast activation and proliferation.
Collapse
|
20
|
Feng H, Gerilechaogetu F, Golden HB, Nizamutdinov D, Foster DM, Glaser SS, Dostal DE. p38α MAPK inhibits stretch-induced JNK activation in cardiac myocytes through MKP-1. Int J Cardiol 2016; 203:145-55. [DOI: 10.1016/j.ijcard.2015.10.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/20/2015] [Accepted: 10/12/2015] [Indexed: 01/18/2023]
|
21
|
Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2. Biochem Biophys Res Commun 2015; 469:723-30. [PMID: 26707876 DOI: 10.1016/j.bbrc.2015.12.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/14/2023]
Abstract
The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade.
Collapse
|
22
|
The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Arch Biochem Biophys 2015; 591:111-31. [PMID: 26686737 DOI: 10.1016/j.abb.2015.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022]
Abstract
Atherosclerosis is the leading cause of morbidity and mortality in the U.S., and is a multifactorial disease that preferentially occurs in regions of the arterial tree exposed to disturbed blood flow. The detailed mechanisms by which d-flow induces atherosclerosis involve changes in the expression of genes, epigenetic patterns, and metabolites of multiple vascular cells, especially endothelial cells. This review presents an overview of endothelial mechanobiology and its relation to the pathogenesis of atherosclerosis with special reference to the anatomy of the artery and the underlying fluid mechanics, followed by a discussion of a variety of experimental models to study the role of fluid mechanics and atherosclerosis. Various in vitro and in vivo models to study the role of flow in endothelial biology and pathobiology are discussed in this review. Furthermore, strategies used for the global profiling of the genome, transcriptome, miR-nome, DNA methylome, and metabolome, as they are important to define the biological and pathophysiological mechanisms of atherosclerosis. These "omics" approaches, especially those which derive data based on a single animal model, provide unprecedented opportunities to not only better understand the pathophysiology of atherosclerosis development in a holistic and integrative manner, but also to identify novel molecular and diagnostic targets.
Collapse
|
23
|
Kishore R, Krishnamurthy P, Garikipati VNS, Benedict C, Nickoloff E, Khan M, Johnson J, Gumpert AM, Koch WJ, Verma SK. Interleukin-10 inhibits chronic angiotensin II-induced pathological autophagy. J Mol Cell Cardiol 2015; 89:203-13. [PMID: 26549357 PMCID: PMC4689660 DOI: 10.1016/j.yjmcc.2015.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although autophagy is an essential cellular salvage process to maintain cellular homeostasis, pathological autophagy can lead to cardiac abnormalities and ultimately heart failure. Therefore, a tight regulation of autophagic process would be important to treat chronic heart failure. Previously, we have shown that IL-10 strongly inhibited pressure overload-induced hypertrophy and heart failure, but role of IL-10 in regulation of pathological autophagy is unknown. Here we tested the hypothesis that IL-10 inhibits angiotensin II-induced pathological autophagy and this process, in part, leads to improve cardiac function. METHODS AND RESULTS Chronic Ang II strongly induced mortality, cardiac dysfunction in IL-10 Knockout mice. IL-10 deletion exaggerated pathological autophagy in response to Ang II treatment. In isolated cardiac myocytes, IL-10 attenuated Ang II-induced pathological autophagy and activated Akt/mTORC1 signaling. Pharmacological or molecular inhibition of Akt and mTORC1 signaling attenuated IL-10 effects on Ang II-induced pathological autophagy. Furthermore, lysosomal inhibition in autophagic flux experiments further confirmed that IL-10 inhibits pathological autophagy via mTORC1 signaling. CONCLUSION Our data demonstrate a novel role of IL-10 in regulation of pathological autophagy; thus can act as a potential therapeutic molecule for treatment of chronic heart disease.
Collapse
Affiliation(s)
- Raj Kishore
- Center for Translational Medicine, Temple University, Philadelphia 19140, USA; Department of Pharmacology, Temple University, Philadelphia 19140, USA.
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Science, Houston Methodist Research Institute, Houston 77030, USA
| | | | - Cindy Benedict
- Center for Translational Medicine, Temple University, Philadelphia 19140, USA
| | - Emily Nickoloff
- Center for Translational Medicine, Temple University, Philadelphia 19140, USA
| | - Mohsin Khan
- Center for Translational Medicine, Temple University, Philadelphia 19140, USA
| | - Jennifer Johnson
- Center for Translational Medicine, Temple University, Philadelphia 19140, USA
| | - Anna M Gumpert
- Center for Translational Medicine, Temple University, Philadelphia 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Temple University, Philadelphia 19140, USA; Department of Pharmacology, Temple University, Philadelphia 19140, USA
| | - Suresh Kumar Verma
- Center for Translational Medicine, Temple University, Philadelphia 19140, USA.
| |
Collapse
|
24
|
Chen C, Li R, Ross RS, Manso AM. Integrins and integrin-related proteins in cardiac fibrosis. J Mol Cell Cardiol 2015; 93:162-74. [PMID: 26562414 DOI: 10.1016/j.yjmcc.2015.11.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/07/2015] [Accepted: 11/07/2015] [Indexed: 12/21/2022]
Abstract
Cardiac fibrosis is one of the major components of the healing mechanism following any injury of the heart and as such may contribute to both systolic and diastolic dysfunction in a range of pathophysiologic conditions. Canonically, it can occur as part of the remodeling process that occurs following myocardial infarction or that follows as a response to pressure overload. Integrins are cell surface receptors which act in both cellular adhesion and signaling. Most importantly, in the context of the continuously contracting myocardium, they are recognized as mechanotransducers. They have been implicated in the development of fibrosis in several organs, including the heart. This review will focus on the involvement of integrins and integrin-related proteins, in cardiac fibrosis, outlining the roles of these proteins in the fibrotic responses in specific cardiac pathologies, discuss some of the common end effectors (angiotensin II, transforming growth factor beta 1 and mechanical stress) through which integrins function and finally discuss how manipulation of this set of proteins may lead to new treatments which could prove useful to alter the deleterious effects of cardiac fibrosis.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ruixia Li
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Robert S Ross
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ana Maria Manso
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
25
|
Abstract
Fibrotic cardiac disease, a leading cause of death worldwide, manifests as substantial loss of function following maladaptive tissue remodeling. Fibrosis can affect both the heart valves and the myocardium and is characterized by the activation of fibroblasts and accumulation of extracellular matrix. Valvular interstitial cells and cardiac fibroblasts, the cell types responsible for maintenance of cardiac extracellular matrix, are sensitive to changing mechanical environments, and their ability to sense and respond to mechanical forces determines both normal development and the progression of disease. Recent studies have uncovered specific adhesion proteins and mechano-sensitive signaling pathways that contribute to the progression of fibrosis. Integrins form adhesions with the extracellular matrix, and respond to changes in substrate stiffness and extracellular matrix composition. Cadherins mechanically link neighboring cells and are likely to contribute to fibrotic disease propagation. Finally, transition to the active myofibroblast phenotype leads to maladaptive tissue remodeling and enhanced mechanotransductive signaling, forming a positive feedback loop that contributes to heart failure. This Commentary summarizes recent findings on the role of mechanotransduction through integrins and cadherins to perpetuate mechanically induced differentiation and fibrosis in the context of cardiac disease.
Collapse
Affiliation(s)
- Alison K Schroer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
26
|
Dostal D, Glaser S, Baudino TA. Cardiac Fibroblast Physiology and Pathology. Compr Physiol 2015; 5:887-909. [DOI: 10.1002/cphy.c140053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 2014; 15:802-12. [PMID: 25355505 PMCID: PMC4513363 DOI: 10.1038/nrm3896] [Citation(s) in RCA: 1440] [Impact Index Per Article: 130.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Soft connective tissues at steady state are dynamic; resident cells continually read environmental cues and respond to them to promote homeostasis, including maintenance of the mechanical properties of the extracellular matrix (ECM) that are fundamental to cellular and tissue health. The mechanosensing process involves assessment of the mechanics of the ECM by the cells through integrins and the actomyosin cytoskeleton, and is followed by a mechanoregulation process, which includes the deposition, rearrangement or removal of the ECM to maintain overall form and function. Progress towards understanding the molecular, cellular and tissue-level effects that promote mechanical homeostasis has helped to identify key questions for future research.
Collapse
Affiliation(s)
| | - Eric R Dufresne
- 1] Department of Mechanical Engineering, Yale University. [2] Department of Cell Biology, Yale University
| | - Martin A Schwartz
- 1] Department of Biomedical Engineering, Yale University. [2] Department of Cell Biology, Yale University. [3] Department of Medicine, Yale University, New Haven, Connecticut, 06520 USA
| |
Collapse
|
28
|
A possible mechanism for the progression of chronic renal disease and congestive heart failure. ACTA ACUST UNITED AC 2014; 9:54-63. [PMID: 25539896 DOI: 10.1016/j.jash.2014.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/11/2014] [Accepted: 09/13/2014] [Indexed: 12/15/2022]
Abstract
Chronic neurologic diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as various forms of chronic renal disease and systolic congestive heart failure, are among the most common progressive degenerative disorders encountered in medicine. Each disease follows a nearly relentless course, albeit at varying rates, driven by progressive cell dysfunction and drop-out. The neurologic diseases are characterized by the progressive spread of disease-causing proteins (prion-like proteins) from cell to cell. Recent evidence indicates that cell autonomous renin angiotensin systems operate in heart and kidney, and it is known that functional intracrine proteins can also spread between cells. This then suggests that certain progressive degenerative cardiovascular disorders such as forms of chronic renal insufficiency and systolic congestive heart failure result from dysfunctional renin angiotensin system intracrine action spreading in kidney or myocardium.
Collapse
|
29
|
Li Z, Bi X, Wang M, Zhang J, Song J, Shen X, Han J, Fu G, Ye Y. Inhibition of farnesyl pyrophosphate synthase prevents angiotensin II-induced cardiac fibrosis in vitro. Clin Exp Immunol 2014; 176:429-37. [PMID: 24527834 DOI: 10.1111/cei.12282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 12/19/2022] Open
Abstract
Farnesyl pyrophosphate synthase (FPPS)-catalysed isoprenoid intermediates are important for the activation of Ras homologue gene family, member A (RhoA) in angiotensin (Ang) II-induced cardiac fibrosis. This study was designed to investigate the specific role of FPPS in the development of cardiac fibrosis. We demonstrated that FPPS expression was elevated in both in-vivo and in-vitro models of Ang II-mediated cardiac fibrosis. FPPS inhibition by zolendronate and FPPS knock-down by a silencing lentivirus decreased the expression of cardiac fibrosis marker genes, including collagen I, collagen III and transforming growth factor (TGF)-β1. FPPS inhibition was reversed by geranylgeraniol (GGOH) and mimicked by RhoA knock-down with siRhoA. The antagonistic effect of GGOH on the zolendronate-mediated modulation of RhoA activation in Ang II-stimulated cardiac fibroblasts was demonstrated by a pull-down assay. Furthermore, FPPS knock-down also prevented RhoA activation by Ang II in vitro. In conclusion, FPPS and RhoA may be part of a signalling pathway that plays an important role in Ang II-induced cardiac fibrosis in vitro.
Collapse
Affiliation(s)
- Z Li
- Department of Cardiology, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases in mechano-transduction: mechanisms and consequences. Antioxid Redox Signal 2014; 20:887-98. [PMID: 23682993 PMCID: PMC3924808 DOI: 10.1089/ars.2013.5414] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The majority of cells in a multi-cellular organism are continuously exposed to ever-changing physical forces. Mechano-transduction links these events to appropriate reactions of the cells involving stimulation of signaling cascades, reorganization of the cytoskeleton and alteration of gene expression. RECENT ADVANCES Mechano-transduction alters the cellular redox balance and the formation of reactive oxygen species (ROS). Nicotine amide adenine dinucleotide reduced form (NADPH) oxidases of the Nox family are prominent ROS generators and thus, contribute to this stress-induced ROS formation. CRITICAL ISSUES Different types and patterns of mechano-stress lead to Nox-dependent ROS formation and Nox-mediated ROS formation contributes to cellular responses and adaptation to physical forces. Thereby, Nox enzymes can mediate vascular protection during physiological mechano-stress. Despite this, over-activation and induction of Nox enzymes and a subsequent substantial increase in ROS formation also promotes oxidative stress in pathological situations like disturbed blood flow or extensive stretch. FUTURE DIRECTIONS Individual protein targets of Nox-mediated redox-signaling will be identified to better understand the specificity of Nox-dependent ROS signaling in mechano-transduction. Nox-inhibitors will be tested to reduce cellular activation in response to mechano-stimuli.
Collapse
Affiliation(s)
- Ralf P Brandes
- 1 Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt , Frankfurt am Main, Germany
| | | | | |
Collapse
|
31
|
Dostal DE, Feng H, Nizamutdinov D, Golden HB, Afroze SH, Dostal JD, Jacob JC, Foster DM, Tong C, Glaser S, Gerilechaogetu F. Mechanosensing and Regulation of Cardiac Function. ACTA ACUST UNITED AC 2014; 5:314. [PMID: 25485172 PMCID: PMC4255974 DOI: 10.4172/2155-9880.1000314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of mechanical force as an important regulator of structure and function of mammalian cells, tissues, and organs has recently been recognized. However, mechanical overload is a pathogenesis or comorbidity existing in a variety of heart diseases, such as hypertension, aortic regurgitation and myocardial infarction. Physical stimuli sensed by cells are transmitted through intracellular signal transduction pathways resulting in altered physiological responses or pathological conditions. Emerging evidence from experimental studies indicate that β1-integrin and the angiotensin II type I (AT1) receptor play critical roles as mechanosensors in the regulation of heart contraction, growth and leading to heart failure. Integrin link the extracellular matrix and the intracellular cytoskeleton to initiate the mechanical signalling, whereas, the AT1 receptor could be activated by mechanical stress through an angiotensin-II-independent mechanism. Recent studies show that both Integrin and AT1 receptor and their downstream signalling factors including MAPKs, AKT, FAK, ILK and GTPase regulate heart function in cardiac myocytes. In this review we describe the role of mechanical sensors residing within the plasma membrane, mechanical sensor induced downstream signalling factors and its potential roles in cardiac contraction and growth.
Collapse
Affiliation(s)
- David E Dostal
- Central Texas Veterans Health Care System, Temple, Texas, USA ; Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Hao Feng
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Damir Nizamutdinov
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Honey B Golden
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Syeda H Afroze
- Scott & White Healthcare - Digestive Disease Research Centre, Temple, Texas, USA
| | - Joseph D Dostal
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - John C Jacob
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Donald M Foster
- Central Texas Veterans Health Care System, Temple, Texas, USA
| | - Carl Tong
- Systems Biology and Translational Medicine, the Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Shannon Glaser
- Central Texas Veterans Health Care System, Temple, Texas, USA ; Scott & White Healthcare - Digestive Disease Research Centre, Temple, Texas, USA
| | - Fnu Gerilechaogetu
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| |
Collapse
|
32
|
Dipaolo BC, Davidovich N, Kazanietz MG, Margulies SS. Rac1 pathway mediates stretch response in pulmonary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2013; 305:L141-53. [PMID: 23686855 DOI: 10.1152/ajplung.00298.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar epithelial cells (AECs) maintain the pulmonary blood-gas barrier integrity with gasketlike intercellular tight junctions (TJ) that are anchored internally to the actin cytoskeleton. We have previously shown that AEC monolayers stretched cyclically and equibiaxially undergo rapid magnitude- and frequency-dependent actin cytoskeletal remodeling to form perijunctional actin rings (PJARs). In this work, we show that even 10 min of stretch induced increases in the phosphorylation of Akt and LIM kinase (LIMK) and decreases in cofilin phosphorylation, suggesting that the Rac1/Akt pathway is involved in these stretch-mediated changes. We confirmed that Rac1 inhibitors wortmannin or EHT-1864 decrease stretch-stimulated Akt and LIMK phosphorylation and that Rac1 agonists PIP3 or PDGF increase phosphorylation of these proteins in unstretched cells. We also confirmed that Rac1 pathway inhibition during stretch modulated stretch-induced changes in occludin content and monolayer permeability, actin remodeling and PJAR formation, and cell death. As further validation, overexpression of Rac GTPase-activating protein β2-chimerin also preserved monolayer barrier properties in stretched monolayers. In summary, our data suggest that constitutive activity of Rac1, which is necessary for stretch-induced activation of the Rac1 downstream proteins, mediates stretch-induced increases in permeability and PJAR formation.
Collapse
Affiliation(s)
- Brian C Dipaolo
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
33
|
Kishore R, Verma SK, Mackie AR, Vaughan EE, Abramova TV, Aiko I, Krishnamurthy P. Bone marrow progenitor cell therapy-mediated paracrine regulation of cardiac miRNA-155 modulates fibrotic response in diabetic hearts. PLoS One 2013; 8:e60161. [PMID: 23560074 PMCID: PMC3613379 DOI: 10.1371/journal.pone.0060161] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/18/2013] [Indexed: 11/19/2022] Open
Abstract
Diabetes is associated with a higher incidence of myocardial infarction (MI) and increased risk for adverse vascular and fibrogenic events post-MI. Bone marrow-derived progenitor cell (BMPC) therapy has been shown to promote neovascularization, decrease infarct area and attenuate left ventricular (LV) dysfunction after MI. Unlike vascular effects, the anti-fibrosis mechanisms of BMPC, specifically under diabetic conditions, are poorly understood. We demonstrated that intramyocardial delivery of BMPCs in infarcted diabetic db/db mice significantly down-regulates profibrotic miRNA-155 in the myocardium and improves LV remodeling and function. Furthermore, inhibition of paracrine factor hepatocyte growth factor (HGF) signaling in vivo suppressed the BMPC-mediated inhibition of miR-155 expression and the associated protective effect on cardiac fibrosis and function. In vitro studies confirmed that the conditioned media of BMPC inhibited miR-155 expression and profibrotic signaling in mouse cardiac fibroblasts under diabetic conditions. However, neutralizing antibodies directed against HGF blocked these effects. Furthermore, miR-155 over-expression in mouse cardiac fibroblasts inhibited antifibrotic Sloan-Kettering Institute proto-oncogene (Ski) and Ski-related novel gene, non-Alu-containing (SnoN) signaling and abrogated antifibrogenic response of HGF. Together, our data demonstrates that paracrine regulation of cardiac miRNAs by transplanted BMPCs contributes to the antifibrotic effects of BMPC therapy. BMPCs release HGF, which inhibits miR-155-mediated profibrosis signaling, thereby preventing cardiac fibrosis. These data suggest that targeting miR-155 might serve as a potential therapy against cardiac fibrosis in the diabetic heart.
Collapse
Affiliation(s)
- Raj Kishore
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Suresh K. Verma
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Alexander R. Mackie
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Erin E. Vaughan
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tatiana V. Abramova
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ito Aiko
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Prasanna Krishnamurthy
- Feinberg Cardiovascular Research Institute, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
34
|
Lu D, Soleymani S, Madakshire R, Insel PA. ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors. FASEB J 2012; 26:2580-91. [PMID: 22415310 DOI: 10.1096/fj.12-204677] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cardiac fibroblasts (CFs) play an essential role in remodeling of the cardiac extracellular matrix. Extracellular nucleotide signaling may provoke a profibrotic response in CFs. We tested the hypothesis that physical perturbations release ATP from CFs and that ATP participates in profibrotic signaling. ATP release was abolished by the channel inhibitor carbenoxolone and inhibited by knockdown of either connexin (Cx)43 or Cx45 (47 and 35%, respectively), implying that hypotonic stimulation induces ATP release via Cx43 and Cx45 hemichannels, although pannexin 1 may also play a role. ATP released by hypotonic stimulation rapidly (<10 min) increased phosphorylated ERK by 5-8 fold, an effect largely eliminated by P2Y(2) receptor knockdown or ATP hydrolysis with apyrase. ATP stimulation of P2Y(2) receptors increased α-smooth muscle actin (α-SMA) production, and in an ERK-dependent manner, ATP increased collagen accumulation by 60% and mRNA expression of profibrotic markers: plasminogen activator inhibitor-1 and monocyte chemotactic protein-1 by 4.5- and 4.0-fold, respectively. Apyrase treatment substantially reduced the basal profibrotic phenotype, decreasing collagen and α-SMA content and increasing matrix metalloproteinase expression. Thus, ATP release activates P2Y(2) receptors to mediate profibrotic responses in CFs, implying that nucleotide release under both basal and activated states is likely an important mechanism for fibroblast homeostasis.
Collapse
Affiliation(s)
- David Lu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
35
|
Turner NA. Therapeutic regulation of cardiac fibroblast function: targeting stress-activated protein kinase pathways. Future Cardiol 2011; 7:673-91. [DOI: 10.2217/fca.11.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|