1
|
Wang L, Yang L, Tian L, Guo B, Dai T, Lv Q, Xie J, Liu F, Bao H, Cao F, Liu Y, Gao Y, Hou Y, Ye Z, Wang S, Zhang Q, Kong L, Cai B. Exosome-capturing scaffold promotes endogenous bone regeneration through neutrophil-derived exosomes by enhancing fast vascularization. Biomaterials 2025; 319:123215. [PMID: 40023128 DOI: 10.1016/j.biomaterials.2025.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/19/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Exosomes (Exos), extracellular vesicles of endosomal origin, are a promising therapeutic platform for tissue regeneration. In the current study, an exosome-capturing scaffold (ECS) was designed to attract and anchor exosomes via electrostatic adherence followed by lipophilic interactions. Our findings demonstrate that local enrichment of exosomes in the ECS implanted into critical mandibular defects could significantly accelerate endogenous bone regeneration by enhancing vascularization at the defect site. Notably, neutrophil (PMN)-derived exosomes (PMN-Exos) were identified as the predominant exosome subtype among all captured exosomes. During endogenous bone regeneration, PMN-Exos promoted endogenous vascularization primarily by stimulating the proliferation of endothelial progenitor cells (EPCs), which play a pivotal role in the vasculogenesis of new blood vessels. Mechanistically, vascularization involved PMN-Exo-derived miR455-3p, which promotes EPC proliferation by targeting the Smad4 pathway. In conclusion, this study offers an ECS with broad application prospects for enhancing tissue regeneration by accelerating vascularization. The elucidation of underlying mechanisms paves the way for developing novel strategies to regenerate various tissues and organs.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Luying Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Lei Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Taiqiang Dai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qianxin Lv
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Jirong Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Fuwei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Han Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Feng Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Ya Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China; College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Ye Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yan Hou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R, China.
| | - Shenqiang Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Bolei Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Zheng K, Raza F, Xiao W, Zafar H, Song H, Zhang F, Ge Z. Near-infrared light triggered bio-inspired enhanced natural silk fibroin nanofiber composite scaffold for photothermal therapy of periodontitis. Colloids Surf B Biointerfaces 2025; 251:114607. [PMID: 40073626 DOI: 10.1016/j.colsurfb.2025.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Periodontitis is one of the major oral health issues worldwide, with significant impacts on oral health and patients's quality of life, but current therapies have not achieved optimal regeneration of periodontal tissue. This study developed scaffolds using natural tussah silk fibroin (TSF) cross-linked with regenerated silk fibroin (SF) nanofibers to improve mechanical properties and wet-state stability. Zinc oxide (ZnO) and polydopamine (PDA) composite nanoparticles were loaded into scaffold to impart its antibacterial and photothermal properties to construct a photo-responsive composite scaffold (ZnO/PDA/TSF-SF). After characterization, ZnO/PDA/TSF-SF demonstrated excellent antibacterial ability, biocompatibility, and photothermal stability. In vitro cell evaluations under 635 nm red light irradiation-mediated photo-biomodulation (PBM) demonstrated that ZnO/PDA/TSF-SF promoted fibroblast proliferation and enhanced expression of proteins and genes associated with tissue repair, such as collagen I (Col I), fibronectin (FN), and alpha smooth muscle actin (α-SMA). A rat model of periodontitis developed for evaluations of antibacterial and tissue repair effects showed that ZnO/PDA/TSF-SF improved alveolar bone and reversed bone loss. ZnO/PDA/TSF-SF improved inflammation significantly through reduction in tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 levels in serum and gingival tissues of modeled rats. Also, the scaffold markedly increased levels of anti-inflammatory cytokine interleukin-10 (IL-10) and elevated protein and mRNA expression levels of tissue repair-related proteins and endothelial cell markers. ZnO/PDA/TSF-SF scaffold exhibited good biocompatibility, osteogenesis, and photo-responsive antibacterial properties, thereby demonstrating therapeutic potential in treating periodontitis.
Collapse
Affiliation(s)
- Kai Zheng
- Department of stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanshu Xiao
- Department of stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyao Song
- Department of stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Feng Zhang
- College of Textile and Clothing Engineering, Soochow University, National Engineering Laboratory for Modern Silk, Suzhou, Jiangsu 215004, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China.
| | - Zili Ge
- Department of stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
3
|
Tan W, Ma L, Li Y, Zhang Y, Hu Z, Li W, Ding H, Liu X, Xie L, Deng C, Zhang W. Glycoside components promote endothelial progenitor cell-derived exosomes repairing damaged vascular endothelium via the PI3K/AKT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156694. [PMID: 40245456 DOI: 10.1016/j.phymed.2025.156694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVE This paper investigated the effects of three glycosides-astragaloside IV, amygdalin, and paeoniflorin (AAP)-derived from Buyang Huanwu Decoction combined with endothelial progenitor cell-derived exosomes (EPC-Exo), on vascular endothelial repair in rats following balloon-induced injury, with specific focus on the PI3K/AKT signaling pathway. METHODS Endothelial progenitor cells (EPC) were isolated, cultured, and identified using immunofluorescence, with EPC-Exo being validated through Western blotting (WB), transmission electron microscopy, and particle size analysis. A rat model of endothelial injury was established using a HFD and carotid artery balloon injury (CABI). The rats were subsequently treated with AAP and/or EPC-Exo. Vascular repair was evaluated using hematoxylin-eosin (H&E) staining, ELISA, immunofluorescence, and WB. In vitro, endothelial cell injury was induced, and treatment effects were analyzed using CCK-8, scratch assays, tube formation assays, immunofluorescence, and WB. The involvement of the PI3K/AKT pathway was verified using the PI3K inhibitor LY294002. RESULTS The combination of AAP and EPC-Exo significantly reduced intimal hyperplasia, improved endothelial function, and promoted angiogenesis. Network pharmacology and molecular docking analyses demonstrated strong interactions between AAP and PI3K/AKT-related proteins. By enhancing the uptake of EPC-Exo by vascular endothelial cells (VEC), AAP promoted proliferation, migration, and tube formation in vitro while reducing Cleaved-caspase 3 expression. This combination also increased activation of the PI3K/AKT signaling pathway. The PI3K inhibitor weakened these effects, verifying the pathway's involvement in vascular repair. CONCLUSION The combination of AAP and EPC-Exo synergistically promotes vascular endothelial repair and angiogenesis, partly by enhancing EPC-Exo uptake through activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wei Tan
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Lu Ma
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Yanling Li
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Yanyan Zhang
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Zhongji Hu
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Wanyu Li
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Huang Ding
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Xiaodan Liu
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Lingli Xie
- Department of Pathophysiology, College of Medicine, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Changqing Deng
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China.
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China.
| |
Collapse
|
4
|
Ito A, Ito Y, Ikeda H, Horie M, Omori Y, Goto A, Maeda D. CD31 expression in human cancers: a pan-cancer immunohistochemical study. J Clin Pathol 2025:jcp-2024-210009. [PMID: 40409781 DOI: 10.1136/jcp-2024-210009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/27/2025] [Indexed: 05/25/2025]
Abstract
AIMS CD31 (platelet endothelial cell adhesion molecule 1) is a transmembrane glycoprotein involved in cell adhesion and signal transduction that is primarily expressed in vascular endothelial cells, platelets, neutrophils, and certain tumour cells. We investigated CD31 expression in cancer cells by conducting a pan-cancer gene expression analysis using data from cancer cell lines as well as an immunohistochemical analysis of surgically resected cancer specimens. The goal was to elucidate the frequency and distribution of CD31 expression across cancer types and its diagnostic significance. METHODS Gene expression data from 1073 cancer cell lines were analysed to determine the frequency of CD31 expression across different cancer types. Immunohistochemical analysis was performed on 358 resected cancer specimens, focusing on adenocarcinomas and squamous cell carcinomas. The analysis compared the frequency of CD31 expression among specific cancer subtypes and between histological types. RESULTS In gene expression analyses, adenocarcinomas showed a higher frequency of CD31 expression than did squamous cell carcinomas. Immunohistochemically, CD31 expression was observed in breast apocrine carcinomas (40.0%), hepatocellular carcinomas (18.8%), uterine endometrioid adenocarcinomas (31.6%), ovarian high-grade serous carcinomas (20.0%), ovarian clear cell carcinomas (40.0%) and urothelial carcinomas (25.0%). No CD31 expression was detected in oesophageal, renal, prostate or cervical cancers. CONCLUSIONS CD31 expression is more frequent in adenocarcinomas than in squamous cell carcinomas, with variability among cancer subtypes. Recognising CD31-positive cancers is critical to avoid misdiagnosing them as endothelial-derived tumours. The mechanisms underlying CD31 expression in cancer remain unclear and warrant further investigation.
Collapse
Affiliation(s)
- Ayumi Ito
- Department of Diagnostic Pathology, Kanazawa University Hospital, Kanazawa, Japan
- Department of Molecular and Tumor Pathology, Akita University, Akita, Japan
| | - Yukinobu Ito
- Department of Molecular and Cellular Pathology, Kanazawa University, Kanazawa, Japan
| | - Hiroko Ikeda
- Department of Diagnostic Pathology, Kanazawa University Hospital, Kanazawa, Japan
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Kanazawa University, Kanazawa, Japan
- Division of Molecular and Genomic Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasufumi Omori
- Department of Molecular and Tumor Pathology, Akita University, Akita, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Akita University, Akita, Japan
| | - Daichi Maeda
- Department of Molecular and Cellular Pathology, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
5
|
Bossardet OL, Holden JM, Del Buono BJ, Schlumpf E, Wareham LK, Calkins DJ. Collagen mimetic peptides as novel therapeutics for vascular disease in the central nervous system. Front Neurosci 2025; 19:1569347. [PMID: 40421131 PMCID: PMC12104236 DOI: 10.3389/fnins.2025.1569347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
Background Loss of vascular integrity is a common comorbidity of neurodegenerative diseases of the central nervous system (CNS). Compromised blood flow to the brain and excessive vascular remodeling is evident in chronic systemic cardiovascular diseases such as atherosclerosis, driving neurodegeneration and subsequent cognitive decline. Vascular remodeling occurs in response to changes in the microenvironment, with the extracellular matrix (ECM) as a major component. Collagens within the ECM and vascular basement membrane are integral to endothelial cell (EC) function and maintenance of the blood-brain barrier. Disruption of the ECM and breakdown of collagen with disease may lead to vascular dysfunction and neurodegeneration. Methods We induced hyperglycemia in ApoE-deficient (ApoE-/-) mice by intraperitoneal injection of streptozocin (STZ; 50 mg/Kg) for 5 days and accelerated diabetic atherosclerotic disease through a high fat diet (HFD). Over a 12 weeks period, mice received weekly intravenous treatment of collagen mimetic peptide (CMP) or vehicle (phosphate buffered saline) to assess efficacy in promoting vascular integrity in central brain structures. Results Following the STZ/HFD regimen, diabetic atherosclerotic ApoE-/- mice treated with CMP exhibited increased vascular integrity compared to vehicle in the cortex and in the CA1 and dentate gyrus regions of the hippocampus, as assed by higher levels of the endothelial cell adhesion glycoprotein CD31 and intravascular collagen IV, increased vascular area, and diminished leakage. Interestingly, in hippocampus, astrocytes were closer in proximity to vessels despite being less numerous in the CMP group. Conclusion Collagen integrity is important for maintaining cerebrovascular architecture in disease. Application of CMP which intercalates with and repairs damaged collagen may have therapeutic use in neurodegenerative diseases by preserving vasculature structure and promoting blood-brain barrier integrity. These findings underscore the need to further explore the role of collagen repair as a novel therapeutic for diseases of the brain involving vascular degradation.
Collapse
Affiliation(s)
- Olivia L. Bossardet
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joseph M. Holden
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Eric Schlumpf
- Sailfish Therapeutics, LLC, Stuart, FL, United States
| | - Lauren K. Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Wu Y, Li CY. BSP promotes skin wound healing by regulating the expression level of SCEL. Cytotechnology 2025; 77:49. [PMID: 39867831 PMCID: PMC11759745 DOI: 10.1007/s10616-025-00712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Burn injuries are complex, life-threatening events involving intricate cellular and molecular processes, including angiogenesis, which is vital for effective wound healing. Bletilla striata polysaccharide (BSP), a bioactive compound from Bletilla striata, exhibits anti-inflammatory and wound-healing properties. However, its impact on angiogenesis modulation, particularly through the synaptopodin-2-like (SCEL) gene, remains poorly understood. The effects of BSP on HMEC-1 cells exposed to lipopolysaccharide (LPS) were assessed using cell viability, migration, apoptosis, and angiogenesis assays. SCEL's role was explored through lentiviral transfection to manipulate SCEL expression. Animal models were employed to evaluate BSP's therapeutic potential in burn wound healing, with histological analysis, immunohistochemistry (IHC), and molecular assays to assess tissue repair and angiogenesis. BSP significantly alleviated LPS-induced damage in HMEC-1 cells by promoting cell survival, reducing apoptosis, and enhancing migration and angiogenesis. BSP treatment downregulated SCEL expression, reversing LPS-induced cellular damage. In SCEL-overexpressing cells and mice, BSP's beneficial effects on wound healing were attenuated, indicating SCEL's regulatory role in angiogenesis. In vivo, BSP accelerated burn wound closure, improved tissue organization, and enhanced angiogenesis, as evidenced by increased CD31 expression. SCEL overexpression impaired these effects, highlighting the essential role of SCEL downregulation in BSP-mediated healing. BSP promotes burn wound healing by modulating angiogenesis via SCEL downregulation, facilitating cell survival, migration, and vascularization. These findings position BSP as a promising therapeutic agent for burn wound treatment, with further investigation into SCEL's molecular mechanisms offering potential for novel wound care strategies.
Collapse
Affiliation(s)
- Yan Wu
- Medical Aesthetics Teaching and Research Office, Rehabilitation and Health Department, Anhui College of Traditional Chinese Medicine, No.18 Wuxia mountain West Road, Wuhu, 241002 Anhui China
| | - Chun-yu Li
- Medical Aesthetics Teaching and Research Office, Rehabilitation and Health Department, Anhui College of Traditional Chinese Medicine, No.18 Wuxia mountain West Road, Wuhu, 241002 Anhui China
| |
Collapse
|
7
|
Kreutz L, Gaab A, Dona M, Pinto AR, Tallquist MD, Groneberg D, Friebe A. Analysis of cellular NO-GC expression in the murine heart and lineage determination in angiotensin II-induced fibrosis. iScience 2025; 28:111615. [PMID: 39829679 PMCID: PMC11742323 DOI: 10.1016/j.isci.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
NO-sensitive guanylyl cyclase (NO-GC) is involved in the (patho)physiology of the mammalian heart. However, little is known about the individual cardiac cell types that express NO-GC and the role of the enzyme in cardiac fibrosis. Here, we describe the cellular expression of NO-GC in healthy and fibrotic murine myocardium; these data were compared with scRNA-seq data. In healthy myocardium, NO-GC is strongly expressed in pericytes and smooth muscle cells but not in endothelial cells or cardiomyocytes. Angiotensin II induced cardiac hypertrophy and fibrosis; fibrotic lesions contained cells positive for NO-GC identified as activated fibroblasts. Lineage tracing indicates that NO-GC-expressing activated fibroblasts originate from PDGFRβ- and Tcf21-positive fibroblast precursors. Our data indicate NO-GC expression in cardiac pericytes and SMC in naive myocardium and in activated fibroblast in fibrotic heart tissue. NO-mediated signaling may modulate fibrotic responses underlying the action of NO-GC stimulators used in the therapy of heart failure.
Collapse
Affiliation(s)
- Lennart Kreutz
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Annika Gaab
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Malathi Dona
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Michelle D. Tallquist
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dieter Groneberg
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082 Würzburg, Germany
| | - Andreas Friebe
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Purohit S, Mandal G, Biswas S, Dalui S, Gupta A, Chowdhury SR, Bhattacharyya A. AXL/GAS6 signaling governs differentiation of tumor-associated macrophages in breast cancer. Exp Cell Res 2025; 444:114324. [PMID: 39510154 DOI: 10.1016/j.yexcr.2024.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Most epithelial cancers are infiltrated by prognostically relevant myelomonocytic cells. Immunosuppressive tumor associated macrophages (TAMs) and their precursor monocytic myeloid-derived suppressor cells (MDSCs) have previously been associated with worse outcomes in human breast cancer (BCa), yet the mechanism of immunosuppressive TAMs-polarization from myelomonocytic precursors is not completely understood. In this study, we show that persuaded AXL/GAS6 pathway alters macrophage phenotype from HLA-DRhighCD206lowCD163low classical phagocytic into HLA-DRlowCD206highCD163high immunosuppressive ones with accelerated BCa progression, and increased angiogenesis signature and invasion ability of cancer cells at tumor beds. Notably, both AXL and GAS6 expressions are upregulated in human invasive breast carcinoma, with maximum expression in triple negative histology type. Mechanistically, we demonstrate that AXL/GAS6 signaling drives immunosuppression by governing increased immunosuppressive IL10 production while dampening IL-1β expression within the tumor microenvironment (TME) of BCa. Further, AXL/GAS6 signaling promotes angiogenesis through the activation of PI3K/AKT and NF-κB signaling pathways. Our results unveil role of AXL/GAS6 axis in the differentiation of TAMs, which governs malignant growth, and suggest that therapies that uncouple AXL/GAS6 axis may exhibit therapeutic opportunity for otherwise undruggable Triple Negative Breast Cancer (TNBC) patients.
Collapse
Affiliation(s)
- Suman Purohit
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Department of Zoology, Gurudas College, 1/1, Suren Sarkar Road, Phool Bagan, Kolkata, 700054, West Bengal, India
| | - Gunjan Mandal
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Division of Cancer Biology, DBT-Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Subir Biswas
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, Maharashtra, India
| | - Shauryabrota Dalui
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Arnab Gupta
- Department of Surgical Oncology, Saroj Gupta Cancer Centre and Research Institute, Mahatma Gandhi Road, Kolkata, 700063, West Bengal, India
| | - Sougata Roy Chowdhury
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Translational Immunology Laboratory, Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
9
|
Fuchs B, Mert S, Hofmann D, Kuhlmann C, Birt A, Wiggenhauser PS, Giunta RE, Chavez MN, Nickelsen J, Schenck TL, Moellhoff N. Bioactivated scaffolds promote angiogenesis and lymphangiogenesis for dermal regeneration in vivo. J Tissue Eng 2025; 16:20417314251317542. [PMID: 40078220 PMCID: PMC11898032 DOI: 10.1177/20417314251317542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/17/2025] [Indexed: 03/14/2025] Open
Abstract
Chronic wounds represent an unresolved medical challenge with significant impact for patients' quality of life and global healthcare. Diverse in origin, ischemic-hypoxic and inflammatory conditions play central roles as pathological features that impede proper tissue regeneration. In this study, we propose an innovative approach to address this challenge. Our novel strategy utilizes photosynthetic biomaterials to restore the wound healing process firstly by promoting a normoxic, regeneration-supporting environment and secondly by mitigating inflammation through restoring lymphatic fluid transport and improving blood perfusion. We designed bioartificial scaffolds with photosynthetic cyanobacteria (Synechococcus sp. PCC 7002) and assessed their functional integration in a bilateral full-thickness skin defect on the backs of mice over a period of 7 days. Illuminated photosynthetic cyanobacteria facilitated local tissue oxygenation independent of blood perfusion. Additionally, genetic modification enabled the secretion of lymphangiogenic hyaluronic acid (HA) into the wound area. After 7 days, the scaffolds were explanted and histologically examined, assessing cell migration (HE staining) and protein expression (CD31, LYVE-1, VEGFR3, Ly6G, and F4/80). Results demonstrated successful colonization of bioartificial scaffolds with cyanobacteria. Following implantation into bilateral full-thickness skin defects, we observed an adherent vascularized basal layer beneath the bioactivated scaffolds after 7 days. Substantial increases in cell migration within bacteria-loaden scaffolds were noted, accompanied by a heightened expression of lymphatic (LYVE-1 and VEGFR3) and endothelial cell markers (CD31). Simultaneously, an augmented expression of acute (Ly6G) and late (F4/80) inflammatory proteins was observed. In summary, we developed a viable photosynthetic scaffold by integrating cyanobacteria into dermal regeneration materials (DRM), promoting the expression of lymphatic, endothelial, and inflammatory proteins under hypoxic conditions. The findings from this study represent a significant advancement in establishing autotrophic tissue engineering approaches, advocating for the use of photosynthetic cells in treating a broad spectrum of hypoxic conditions.
Collapse
Affiliation(s)
- Benedikt Fuchs
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sinan Mert
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Daniel Hofmann
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Constanze Kuhlmann
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Birt
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Paul Severin Wiggenhauser
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Riccardo E Giunta
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Myra N Chavez
- Molecular Plant Science, Department Biology I, LMU Munich, Munich, Germany
| | - Jörg Nickelsen
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Qin W, Zhou Y, Chen C, Guo X, Tian R, Chen R, Shi W, Huang L, Zhang C, Dong S, Lu G. Artemisinin alleviates arsenic-induced myocardial injury in rats by modulating oxidative stress and inflammatory responses. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39716884 DOI: 10.3724/abbs.2024225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
|
11
|
Ramasamy C, Neelamegam K, Ramachandran S, Xia H, Kapusta DR, Danesh FR, Pandey KN. Podocyte cell-specific Npr1 is required for blood pressure and renal homeostasis in male and female mice: role of sex-specific differences. Physiol Genomics 2024; 56:672-690. [PMID: 39101921 PMCID: PMC11495182 DOI: 10.1152/physiolgenomics.00137.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
Atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase A/natriuretic peptide receptor A (GC-A/NPRA), stimulating natriuresis and diuresis and reducing blood pressure (BP), but the role of ANP/NPRA signaling in podocytes (highly specialized epithelial cells covering the outer surfaces of renal glomerular capillaries) remains unclear. This study aimed to determine the effect of conditional deletion of podocyte-specific Npr1 (encoding NPRA) gene knockout (KO) in male and female mice. Tamoxifen-treated wild-type control (PD Npr1 f/f; WT), heterozygous (PD-Cre-Npr1 f/+; HT), and KO (PD-Cre-Npr1 f/-) mice were fed a normal-, low-, or high-salt diet for 4 wk. Podocytes isolated from HT and KO male and female mice showed complete absence of Npr1 mRNA and NPRA protein compared with WT mice. BP, plasma creatinine, plasma sodium, urinary protein, and albumin/creatinine ratio were significantly increased, whereas plasma total protein, albumin, creatinine clearance, and urinary sodium levels were significantly reduced in the HT and KO male and female mice compared with WT mice. These changes were significantly greater in males than in females. On a normal-salt diet, glomerular filtration rate was significantly decreased in PD Npr1 HT and KO male and female mice compared with WT mice. Immunofluorescence of podocin and synaptopodin was also significantly reduced in HT and KO mice compared with WT mice. These observations suggest that in podocytes, ANP/NPRA signaling may be crucial in the maintenance and regulation of glomerular filtration and BP and serve as a biomarker of renal function in a sex-dependent manner.NEW & NOTEWORTHY Our results demonstrate that the podocyte-specific deletion of Npr1 showed increased blood pressure (BP) and altered biomarkers of renal functions, with greater magnitudes in animals fed a high-salt diet in a sex-dependent manner. The results suggest a direct and sex-dependent effect of Npr1 ablation in podocytes on the regulation of BP and renal function and reveal that podocytes may be considered an important target for the ANP-BNP/NPRA/cGMP signaling cascade.
Collapse
Affiliation(s)
- Chandramohan Ramasamy
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States
| | - Kandasamy Neelamegam
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States
| | - Samivel Ramachandran
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States
| | - Huijing Xia
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Daniel R Kapusta
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Farhad R Danesh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Kailash N Pandey
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States
| |
Collapse
|
12
|
Wang J, Hu Y, Xue Y, Wang K, Mao D, Pan XY, Rui Y. PMMA-induced biofilm promotes Schwann cells migration and proliferation mediated by EGF/Tnc/FN1 to improve sciatic nerve defect. Heliyon 2024; 10:e37231. [PMID: 39296039 PMCID: PMC11409128 DOI: 10.1016/j.heliyon.2024.e37231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Objective The purpose of this study is to investigate the role of PMMA-induced biofilm in nerve regeneration compared with silicone-induced biofilm involved in the mechanism. Methods PMMA or silicon rods were placed next to the sciatic nerve to induce a biological membrane which was assayed by PCR, Western blot, immunohistochemistry, immunofluorescence and proteomics. A 10 mm sciatic nerve gaps were repaired with the autologous nerve wrapped in an induced biological membrane. The repair effects were observed through general observation, functional evaluation of nerve regeneration, ultrasound examination, neural electrophysiology, the wet weight ratio of bilateral pretibial muscle and histological evaluation. Cell proliferation and migration of Schwann cells co-cultured with EGF-treated fibroblasts combined with siRNA were investigated. Results The results indicated that expression of GDNF, NGF and VEGF along with neovascularization was similar in the silicone and PMMA group and as the highest at 6 weeks after operation. Nerve injury repair mediated by toluidine blue and S100β/NF200 expression, the sensory and motor function evaluation, ultrasound, target organ muscle wet-weight ratio, percentage of collagen fiber, electromyography and histochemical staining were not different between the two groups and better than blank group. EGF-treated fibroblasts promoted proliferation and migration may be Tnc expression dependently. Conclusion Our study suggested that PMMA similar to silicon induced biofilm may promote autogenous nerve transplantation to repair nerve defects through EGF/Tnc/FN1 to increase Schwann cells proliferation and migration.
Collapse
Affiliation(s)
- Jun Wang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, China
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - YuXuan Hu
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - Yuan Xue
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - Kai Wang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - Xiao-Yun Pan
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - YongJun Rui
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| |
Collapse
|
13
|
Campolo M, Scuderi SA, Filippone A, Bova V, Lombardo SP, Colarossi L, Sava S, Capra AP, De Gaetano F, Portelli M, Militi A, Esposito E, Paterniti I. EZH2 Inhibition to Counteract Oral Cancer Progression through Wnt/β-Catenin Pathway Modulation. Pharmaceuticals (Basel) 2024; 17:1102. [PMID: 39204206 PMCID: PMC11357505 DOI: 10.3390/ph17081102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common human malignancies worldwide. The molecular mechanisms of OSCC pathogenesis are still unknown; however, in recent years, several reports have focused on the role of enhancer of zeste homolog 2 (EZH2) in OSCC. Therefore, in this study we aimed to investigate the effects of GSK343, a selective EZH2 inhibitor, and its impact on the signaling pathways in OSCC, using an in vitro and in vivo orthotopic model. In the in vitro model, GSK343 (1, 10, and 25 μM) significantly decreased OSCC cell viability and cell migration through EZH2 inhibition, modulating NF-κB/IκBα pathway activation and eNOS, VEGF, and TGFβ expression, important markers of angiogenesis. In the in vivo model, GSK343 (5 mg/kg and 10 mg/kg) restored tongue tissue architecture and reduced tumor progression through EZH2 inhibition and Wnt/β-catenin signaling pathway modulation. Moreover, GSK343 reduced the expression of inflammatory mediators; eNOS and TGFβ, markers of angiogenesis; and CD31 and CD34, markers of micro vessel density, respectively. In conclusion, our data demonstrate that GSK343 counteracts oral cancer progression through EZH2/Wnt/β-catenin pathway modulation, suggesting that it could be a promising therapeutic approach for OSCC management.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Sofia Paola Lombardo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, CT, Italy; (S.P.L.); (L.C.); (S.S.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, CT, Italy; (S.P.L.); (L.C.); (S.S.)
| | - Serena Sava
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, CT, Italy; (S.P.L.); (L.C.); (S.S.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Marco Portelli
- Department of Biomedical and Dental Science, Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, ME, Italy; (M.P.); (A.M.)
| | - Angela Militi
- Department of Biomedical and Dental Science, Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, ME, Italy; (M.P.); (A.M.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| |
Collapse
|
14
|
Yang M, Cai X, Wang C, Li P, Chen S, Liu C, Wang Y, Qian K, Dong Q, Xue F, Chu C, Bai J, Liu Q, Ni X. Humidity-Responsive Amorphous Calcium-Magnesium Pyrophosphate/Cassava Starch Scaffold for Enhanced Neurovascular Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35964-35984. [PMID: 38968558 DOI: 10.1021/acsami.4c03204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Developing a neurovascular bone repair scaffold with an appropriate mechanical strength remains a challenge. Calcium phosphate (CaP) is similar to human bone, but its scaffolds are inherently brittle and inactive, which require recombination with active ions and polymers for bioactivity and suitable strength. This work discussed the synthesis of amorphous magnesium-calcium pyrophosphate (AMCP) and the subsequent development of a humidity-responsive AMCP/cassava starch (CS) scaffold. The scaffold demonstrated enhanced mechanical properties by strengthening the intermolecular hydrogen bonds and ionic bonds between AMCP and CS during the gelatinization and freeze-thawing processes. The release of active ions was rapid initially and stabilized into a long-term stable release after 3 days, which is well-matched with new bone growth. The release of pyrophosphate ions endowed the scaffold with antibacterial properties. At the cellular level, the released active ions simultaneously promoted the proliferation and mineralization of osteoblasts, the proliferation and migration of endothelial cells, and the proliferation of Schwann cells. At the animal level, the scaffold was demonstrated to promote vascular growth and peripheral nerve regeneration in a rat skull defect experiment, ultimately resulting in the significant and rapid repair of bone defects. The construction of the AMCP/CS scaffold offers practical suggestions and references for neurovascular bone repair.
Collapse
Affiliation(s)
- Mengmeng Yang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Xiang Cai
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
| | - Cheng Wang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
| | - Pengyin Li
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Shaoqing Chen
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Chun Liu
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Yao Wang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kun Qian
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
| | - Qiangsheng Dong
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, Jiangsu, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
- Jiangsu Key Laboratory for Light Metal Alloys, Nanjing 211212, China
| | - Qizhan Liu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xinye Ni
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| |
Collapse
|
15
|
Xu Y, Li S, Wang Y, Pu W, Liu Q, Zhang Y, Liu Y, Hao H. Fangji Huangqi Decoction alleviates rheumatoid arthritis through regulating HIF-1α mediated the angiogenesis and the balance between autophagy and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118061. [PMID: 38614265 DOI: 10.1016/j.jep.2024.118061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fangji Huangqi Decoction (FHD) is frequently prescribed for the clinical treatment of wind-cold and wind-dampness pathogenic superficial deficiency syndrome. It also has a notable curative effect on rheumatoid arthritis (RA). AIM OF THE STUDY The study aimed to explore the possible mechanism of FHD against RA and provided a theoretical basis for alternative therapies for RA. MATERIALS AND METHODS We used UPLC-Q-TOF-MS to analysis the ingredients and absorbed blood components of FHD. At the same time, the collagen-induced arthritis (CIA) rat model was established to estimate the therapeutic effects on FHD by considering body weight, arthritis score, paw swelling, autonomous movement ability, and synovial microvessel counts. Subsequently, immunofluorescence, immunohistochemistry, and Western blot were employed to detect the anti-angiogenic capacity of FHD in vivo, as well as the levels of apoptosis and autophagy in the synovial tissue. In addition, flow cytometry and Western blot were used to assess the effects of FHD on apoptosis and autophagy in MH7A cells. The effects of FHD on the proliferation and migration of MH7A cells were measured by CCK8 assay, cell migration and, invasion experiments. Finally, a tube formation assay was performed to evaluate the angiogenic capacity of FHD in co-cultures of MH7A cells and HUVEC cells. RESULTS Through testing of FHD's original formula, a total of 26 active ingredients have been identified, with 17 of them being absorbed into the bloodstream. FHD significantly improved the pathological symptoms and synovial hyperplasia of CIA rats. FHD could suppress the expression of HIF-1α, promote apoptosis in CIA rat synovial tissue, and suppress autophagy and angiogenesis. In vitro experiments showed that serum containing FHD inhibited the proliferation, migration, and invasion of MH7A cells, and also suppressed the expression of autophagy-related proteins while promoting apoptosis. FHD markedly repressed the expression of HIF-1α protein in TNF-α-stimulated MH7A cells and inhibited the tube formation capacity induced by MH7A cells in HUVEC cells. CONCLUSIONS The study had proven that FHD played an excellent anti-RA role, which may be attributed to its potential mechanism of regulating the balance between autophagy and apoptosis in RA FLS by suppressing the HIF-1α, thus contributing to its anti-angiogenic activities.
Collapse
Affiliation(s)
- Ye Xu
- The Basic Laboratory of Integrated Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China; School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Siyuan Li
- The Basic Laboratory of Integrated Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yuru Wang
- The Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Wei Pu
- The Basic Laboratory of Integrated Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Qi Liu
- The Basic Laboratory of Integrated Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yumeng Zhang
- The Basic Laboratory of Integrated Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China; School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yang Liu
- The Basic Laboratory of Integrated Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China; School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Huiqin Hao
- The Basic Laboratory of Integrated Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| |
Collapse
|
16
|
Qiu X, Nie L, Liu P, Xiong X, Chen F, Liu X, Bu P, Zhou B, Tan M, Zhan F, Xiao X, Feng Q, Cai K. From hemostasis to proliferation: Accelerating the infected wound healing through a comprehensive repair strategy based on GA/OKGM hydrogel loaded with MXene@TiO 2 nanosheets. Biomaterials 2024; 308:122548. [PMID: 38554642 DOI: 10.1016/j.biomaterials.2024.122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The treatment of infected wounds poses a formidable challenge in clinical practice due to the detrimental effects of uncontrolled bacterial infection and excessive oxidative stress, resulting in prolonged inflammation and impaired wound healing. In this study, we presented a MXene@TiO2 (MT) nanosheets loaded composite hydrogel named as GA/OKGM/MT hydrogel, which was formed based on the Schiff base reaction between adipic dihydrazide modified gelatin (GA)and Oxidized Konjac Glucomannan (OKGM), as the wound dressing. During the hemostasis phase, the GA/OKGM/MT hydrogel demonstrated effective adherence to the skin, facilitating rapid hemostasis. In the subsequent inflammation phase, the GA/OKGM/MT hydrogel effectively eradicated bacteria through MXene@TiO2-induced photothermal therapy (PTT) and eliminated excessive reactive oxygen species (ROS), thereby facilitating the transition from the inflammation phase to the proliferation phase. During the proliferation phase, the combined application of GA/OKGM/MT hydrogel with electrical stimulation (ES) promoted fibroblast proliferation and migration, leading to accelerated collagen deposition and angiogenesis at the wound site. Overall, the comprehensive repair strategy based on the GA/OKGM/MT hydrogel demonstrated both safety and reliability. It expedited the progression through the hemostasis, inflammation, and proliferation phases of wound healing, showcasing significant potential for the treatment of infected wounds.
Collapse
Affiliation(s)
- Xingan Qiu
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Linxia Nie
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Pei Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Xiaojiang Xiong
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Fangye Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xuezhe Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Pengzhen Bu
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Bikun Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, 404000, China; School of Medicine, Chongqing University, Chongqing, 400044, China; Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, 404000, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
17
|
Elseweidy MM, Ali SI, Shaheen MA, Abdelghafour AM, Hammad SK. Enhancement of cardiac angiogenesis in a myocardial infarction rat model using selenium alone and in combination with PTXF: the role of Akt/HIF-1α signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4677-4692. [PMID: 38112730 PMCID: PMC11166829 DOI: 10.1007/s00210-023-02904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Ischemic heart diseases such as myocardial infarction (MI) are a global health problem and a leading cause of mortality worldwide. Angiogenesis is an important approach for myocardial healing following ischemia. Thus, this study aimed to explore the potential cardiac angiogenic effects of selenium (Se), alone and in combination with the tumor necrosis factor-alpha inhibitor, pentoxifylline (PTXF), via Akt/HIF-1α signaling. MI was induced in rats using two subcutaneous doses of isoprenaline (ISP) at a 24-h interval (150 mg/kg). One week later, rats were orally given Se (150 µg/kg/day), PTXF (50 mg/kg/day), or Se/PTXF combination. ISP-induced myocardial damage was evident by increased HW/TL ratios, ST segment elevation, and increased serum levels of CK-MB, LDH, and troponin-I. ISP increased the cardiac levels of the lipid peroxidation marker MDA; the pro-inflammatory cytokines IL-6, IL-1β, and TNF-α; and the pro-apoptotic protein Bax and caspase-3. In contrast, the cardiac levels of the antioxidant markers GSH and SOD and the anti-apoptotic marker Bcl-2 were reduced. Furthermore, ISP markedly increased the cardiac levels of p-Akt and HIF-1α proteins and the cardiac gene expression of ANGPT-1, VEGF, and FGF-2. Treatment with Se both alone and in combination with PTXF ameliorated the ISP-induced myocardial damage and further increased cardiac angiogenesis via Akt/HIF-1α signaling. Se/PTXF combined therapy was more beneficial than individual treatments. Our study revealed for the first time the cardiac angiogenic effects of Se both alone and in combination with PTXF in myocardial infarction, suggesting that both may be promising candidates for clinical studies.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Sousou I Ali
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Shaheen
- Histology and Cell Biology Department, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa M Abdelghafour
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Sally K Hammad
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
18
|
Zabransky DJ, Chhabra Y, Fane ME, Kartalia E, Leatherman JM, Hüser L, Zimmerman JW, Delitto D, Han S, Armstrong TD, Charmsaz S, Guinn S, Pramod S, Thompson ED, Hughes SJ, O’Connell J, Egan JM, Jaffee EM, Weeraratna AT. Fibroblasts in the Aged Pancreas Drive Pancreatic Cancer Progression. Cancer Res 2024; 84:1221-1236. [PMID: 38330147 PMCID: PMC11835372 DOI: 10.1158/0008-5472.can-24-0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
UNLABELLED Pancreatic cancer is more prevalent in older individuals and often carries a poorer prognosis for them. The relationship between the microenvironment and pancreatic cancer is multifactorial, and age-related changes in nonmalignant cells in the tumor microenvironment may play a key role in promoting cancer aggressiveness. Because fibroblasts have profound impacts on pancreatic cancer progression, we investigated whether age-related changes in pancreatic fibroblasts influence cancer growth and metastasis. Proteomics analysis revealed that aged fibroblasts secrete different factors than young fibroblasts, including increased growth/differentiation factor 15 (GDF-15). Treating young mice with GDF-15 enhanced tumor growth, whereas aged GDF-15 knockout mice showed reduced tumor growth. GDF-15 activated AKT, rendering tumors sensitive to AKT inhibition in an aged but not young microenvironment. These data provide evidence for how aging alters pancreatic fibroblasts and promotes tumor progression, providing potential therapeutic targets and avenues for studying pancreatic cancer while accounting for the effects of aging. SIGNIFICANCE Aged pancreatic fibroblasts secrete GDF-15 and activate AKT signaling to promote pancreatic cancer growth, highlighting the critical role of aging-mediated changes in the pancreatic cancer microenvironment in driving tumor progression. See related commentary by Isaacson et al., p. 1185.
Collapse
Affiliation(s)
- Daniel J. Zabransky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Yash Chhabra
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Mitchell E. Fane
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
- Fox Chase Cancer Center, Cancer Signaling and Microenvironment Program, Philadelphia, PA 19001
| | - Emma Kartalia
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - James M. Leatherman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Laura Hüser
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jacquelyn W. Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Daniel Delitto
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305
| | - Song Han
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610
| | - Todd D. Armstrong
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Soren Charmsaz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Samantha Guinn
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Sneha Pramod
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Elizabeth D. Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Steven J. Hughes
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610
| | - Jennifer O’Connell
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Josephine M. Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Elizabeth M. Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- The Johns Hopkins Cancer Convergence Institute, Baltimore, MD, 21287
| | - Ashani T. Weeraratna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
19
|
Lemmens TP, Bröker V, Rijpkema M, Hughes CCW, Schurgers LJ, Cosemans JMEM. Fundamental considerations for designing endothelialized in vitro models of thrombosis. Thromb Res 2024; 236:179-190. [PMID: 38460307 DOI: 10.1016/j.thromres.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Endothelialized in vitro models for cardiovascular disease have contributed greatly to our current understanding of the complex molecular mechanisms underlying thrombosis. To further elucidate these mechanisms, it is important to consider which fundamental aspects to incorporate into an in vitro model. In this review, we will focus on the design of in vitro endothelialized models of thrombosis. Expanding our understanding of the relation and interplay between the different pathways involved will rely in part on complex models that incorporate endothelial cells, blood, the extracellular matrix, and flow. Importantly, the use of tissue-specific endothelial cells will help in understanding the heterogeneity in thrombotic responses between different vascular beds. The dynamic and complex responses of endothelial cells to different shear rates underlines the importance of incorporating appropriate shear in in vitro models. Alterations in vascular extracellular matrix composition, availability of bioactive molecules, and gradients in concentration and composition of these molecules can all regulate the function of both endothelial cells and perivascular cells. Factors modulating these elements in in vitro models should therefore be considered carefully depending on the research question at hand. As the complexity of in vitro models increases, so can the variability. A bottom-up approach to designing such models will remain an important tool for researchers studying thrombosis. As new techniques are continuously being developed and new pathways are brought to light, research question-dependent considerations will have to be made regarding what aspects of thrombosis to include in in vitro models.
Collapse
Affiliation(s)
- Titus P Lemmens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Vanessa Bröker
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Minke Rijpkema
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, and Department of Biomedical Engineering, University of California, Irvine, USA
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
20
|
Park DS, Oh S, Jin YJ, Na MH, Kim M, Kim JH, Hyun DY, Cho KH, Hong YJ, Kim JH, Ahn Y, Hermida-Prieto M, Vázquez-Rodríguez JM, Gutiérrez-Chico JL, Mariñas-Pardo L, Lim KS, Park JK, Byeon DH, Cho YN, Kee SJ, Sim DS, Jeong MH. Preliminary Investigation on Efficacy and Safety of Substance P-Coated Stent for Promoting Re-Endothelialization: A Porcine Coronary Artery Restenosis Model. Tissue Eng Regen Med 2024; 21:53-64. [PMID: 37973692 PMCID: PMC10764706 DOI: 10.1007/s13770-023-00608-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/10/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Current polymer-based drug-eluting stents (DESs) have fundamental issues about inflammation and delayed re-endothelializaton of the vessel wall. Substance-P (SP), which plays an important role in inflammation and endothelial cells, has not yet been applied to coronary stents. Therefore, this study compares poly lactic-co-glycolic acid (PLGA)-based everolimus-eluting stents (PLGA-EESs) versus 2-methacryloyloxyethyl phosphorylcholine (MPC)-based SP-eluting stents (MPC-SPs) in in-vitro and in-vivo models. METHODS The morphology of the stent surface and peptide/drug release kinetics from stents were evaluated. The in-vitro proliferative effect of SP released from MPC-SP is evaluated using human umbilical vein endothelial cell. Finally, the safety and efficacy of the stent are evaluated after inserting it into a pig's coronary artery. RESULTS Similar to PLGA-EES, MPC-SP had a uniform surface morphology with very thin coating layer thickness (2.074 μm). MPC-SP showed sustained drug release of SP for over 2 weeks. Endothelial cell proliferation was significantly increased in groups treated with SP (n = 3) compared with the control (n = 3) and those with everolimus (n = 3) (SP: 118.9 ± 7.61% vs. everolimus: 64.3 ± 12.37% vs. the control: 100 ± 6.64%, p < 0.05). In the animal study, the percent stenosis was higher in MPC-SP group (n = 7) compared to PLGA-EES group (n = 7) (MPC-SP: 28.6 ± 10.7% vs. PLGA-EES: 16.7 ± 6.3%, p < 0.05). MPC-SP group showed, however, lower inflammation (MPC-SP: 0.3 ± 0.26 vs. PLGA-EES: 1.2 ± 0.48, p < 0.05) and fibrin deposition (MPC-SP: 1.0 ± 0.73 vs. PLGA-EES: 1.5 ± 0.59, p < 0.05) around the stent strut. MPC-SP showed more increased expression of cluster of differentiation 31, suggesting enhanced re-endothelialization. CONCLUSION Compared to PLGA-EES, MPC-SP demonstrated more decreased inflammation of the vascular wall and enhanced re-endothelialization and stent coverage. Hence, MPC-SP has the potential therapeutic benefits for the treatment of coronary artery disease by solving limitations of currently available DESs.
Collapse
Affiliation(s)
- Dae Sung Park
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- The Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea
| | - Seok Oh
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Yu Jeong Jin
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
| | - Mi Hyang Na
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
| | - Munki Kim
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
| | - Jeong Ha Kim
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
| | - Dae Young Hyun
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Kyung Hoon Cho
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young Joon Hong
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ju Han Kim
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Youngkeun Ahn
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Manuel Hermida-Prieto
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
| | - José Manuel Vázquez-Rodríguez
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - Juan Luis Gutiérrez-Chico
- Bundeswehrzentralkrankenhaus (Federal Army Central Military Hospital), Koblenz, Germany
- Universidad Alfonso X el Sabio, Madrid, Spain
| | - Luis Mariñas-Pardo
- Facultad de Ciencias de La Salud, Universidad Internacional de Valencia (VIU), Valencia, Spain
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Korea
| | | | | | - Young-Nan Cho
- Department of Clinical Laboratory Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Seung-Jung Kee
- Department of Clinical Laboratory Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Doo Sun Sim
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea.
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea.
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea.
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Myung Ho Jeong
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea.
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea.
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea.
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
21
|
Kwak A, Thanabalasuriar A. Intravital Microscopy for Imaging and Live Cell Tracking of Alveolar Macrophages in Real Time. Methods Mol Biol 2024; 2813:189-204. [PMID: 38888779 DOI: 10.1007/978-1-0716-3890-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Classic in vitro coculture assays of pathogens with host cells have contributed significantly to our understanding of the intracellular lifestyle of several pathogens. Coculture assays with pathogens and eukaryotic cells can be analyzed through various techniques including plating for colony-forming units (CFU), confocal microscopy, and flow cytometry. However, findings from in vitro assays require validation in an in vivo model. Several physiological conditions can influence host-pathogen interactions, which cannot easily be mimicked in vitro. Intravital microscopy (IVM) is emerging as a powerful tool for studying host-pathogen interactions by enabling in vivo imaging of living organisms. As a result, IVM has significantly enhanced the understanding of infection mediated by diverse pathogens. The versatility of IVM has also allowed for the imaging of various organs as sites of local infection. This chapter specifically focuses on IVM conducted on the lung for elucidating pulmonary immune response, primarily involving alveolar macrophages, to pathogens. Additionally, in this chapter we outline the protocol for lung IVM that utilizes a thoracic suction window to stabilize the lung for acquiring stable images.
Collapse
Affiliation(s)
- Ashley Kwak
- School of Biomedical Sciences Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Ajitha Thanabalasuriar
- School of Biomedical Sciences Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Jin X, Ou Z, Zhang G, Shi R, Yang J, Liu W, Luo G, Deng J, Wang W. A CO-mediated photothermal therapy to kill drug-resistant bacteria and minimize thermal injury for infected diabetic wound healing. Biomater Sci 2023; 11:6236-6251. [PMID: 37531204 DOI: 10.1039/d3bm00774j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
With an increasing proportion of drug-resistant bacteria, photothermal therapy (PTT) is a promising alternative to antibiotic treatment for infected diabetic skin ulcers. However, the inevitable thermal damage to the tissues restricts its clinical practice. Carbon monoxide (CO), as a bioactive gas molecule, can selectively inhibit bacterial growth and promote tissue regeneration, which may be coordinated with PTT for drug-resistant bacteria killing and tissue protection. Herein, a CO-mediated PTT agent (CO@mPDA) was engineered by loading manganese carbonyl groups into mesoporous polydopamine (mPDA) nanoparticles via coordination interactions between the metal center and a catechol group. Compared to the traditional PTT, the CO-mediated PTT increases the inhibition ratio of the drug-resistant bacteria both in vitro and in diabetic wound beds by selectively inhibiting the co-chaperone of the heat shock protein 90 kDa (Hsp90), and lowers the heat resistance of the bacteria rather than the mammalian tissues. Meanwhile, the tissue-protective proteins, such as Hsp90 and vimentin (Vim), are upregulated via the WNT and PI3K-Akt pathways to reduce thermal injury, especially with a laser with a high-power density. The CO-mediated PTT unified the bacterial killing with tissue protection, which offers a promising concept to improve PTT efficiency and minimize the side-effects of PTT when treating infected skin wounds.
Collapse
Affiliation(s)
- Xin Jin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, University, Tianjin 300350, China
| | - Zelin Ou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Guowei Zhang
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Rong Shi
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jumin Yang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, University, Tianjin 300350, China
| | - Wenguang Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, University, Tianjin 300350, China
| | - Gaoxing Luo
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jun Deng
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Wei Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Breder-Bonk C, Docter D, Barz M, Strieth S, Knauer SK, Gül D, Stauber RH. The Apoptosis Inhibitor Protein Survivin Is a Critical Cytoprotective Resistor against Silica-Based Nanotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2546. [PMID: 37764575 PMCID: PMC10535920 DOI: 10.3390/nano13182546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Exposure to nanoparticles is inevitable as they become widely used in industry, cosmetics, and foods. However, knowledge of their (patho)physiological effects on biological entry routes of the human body and their underlying molecular mechanisms is still fragmented. Here, we examined the molecular effects of amorphous silica nanoparticles (aSiNPs) on cell lines mimicking the alveolar-capillary barrier of the lung. After state-of-the-art characterization of the used aSiNPs and the cell model, we performed cell viability-based assays and a protein analysis to determine the aSiNP-induced cell toxicity and underlying signaling mechanisms. We revealed that aSiNPs induce apoptosis in a dose-, time-, and size-dependent manner. aSiNP-induced toxicity involves the inhibition of pro-survival pathways, such as PI3K/AKT and ERK signaling, correlating with reduced expression of the anti-apoptotic protein Survivin on the protein and transcriptional levels. Furthermore, induced Survivin overexpression mediated resistance against aSiNP-toxicity. Thus, we present the first experimental evidence suggesting Survivin as a critical cytoprotective resistor against silica-based nanotoxicity, which may also play a role in responses to other NPs. Although Survivin's relevance as a biomarker for nanotoxicity needs to be demonstrated in vivo, our data give general impetus to investigate the pharmacological modulation of Survivin`s functions to attenuate the harmful effects of acute or chronic inhalative NP exposure.
Collapse
Affiliation(s)
- Christina Breder-Bonk
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| | - Dominic Docter
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| | - Matthias Barz
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands;
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Shirley K. Knauer
- Center for Medical Biotechnology (ZMB), Department of Molecular Biology II, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany;
| | - Désirée Gül
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| | - Roland H. Stauber
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| |
Collapse
|
24
|
Weidner L, Lorenz J, Quach S, Braun FK, Rothhammer-Hampl T, Ammer LM, Vollmann-Zwerenz A, Bartos LM, Dekorsy FJ, Holzgreve A, Kirchleitner SV, Thon N, Greve T, Ruf V, Herms J, Bader S, Milenkovic VM, von Baumgarten L, Menevse AN, Hussein A, Sax J, Wetzel CH, Rupprecht R, Proescholdt M, Schmidt NO, Beckhove P, Hau P, Tonn JC, Bartenstein P, Brendel M, Albert NL, Riemenschneider MJ. Translocator protein (18kDA) (TSPO) marks mesenchymal glioblastoma cell populations characterized by elevated numbers of tumor-associated macrophages. Acta Neuropathol Commun 2023; 11:147. [PMID: 37697350 PMCID: PMC10496331 DOI: 10.1186/s40478-023-01651-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
TSPO is a promising novel tracer target for positron-emission tomography (PET) imaging of brain tumors. However, due to the heterogeneity of cell populations that contribute to the TSPO-PET signal, imaging interpretation may be challenging. We therefore evaluated TSPO enrichment/expression in connection with its underlying histopathological and molecular features in gliomas. We analyzed TSPO expression and its regulatory mechanisms in large in silico datasets and by performing direct bisulfite sequencing of the TSPO promotor. In glioblastoma tissue samples of our TSPO-PET imaging study cohort, we dissected the association of TSPO tracer enrichment and protein labeling with the expression of cell lineage markers by immunohistochemistry and fluorescence multiplex stains. Furthermore, we identified relevant TSPO-associated signaling pathways by RNA sequencing.We found that TSPO expression is associated with prognostically unfavorable glioma phenotypes and that TSPO promotor hypermethylation is linked to IDH mutation. Careful histological analysis revealed that TSPO immunohistochemistry correlates with the TSPO-PET signal and that TSPO is expressed by diverse cell populations. While tumor core areas are the major contributor to the overall TSPO signal, TSPO signals in the tumor rim are mainly driven by CD68-positive microglia/macrophages. Molecularly, high TSPO expression marks prognostically unfavorable glioblastoma cell subpopulations characterized by an enrichment of mesenchymal gene sets and higher amounts of tumor-associated macrophages.In conclusion, our study improves the understanding of TSPO as an imaging marker in gliomas by unveiling IDH-dependent differences in TSPO expression/regulation, regional heterogeneity of the TSPO PET signal and functional implications of TSPO in terms of tumor immune cell interactions.
Collapse
Affiliation(s)
- Lorraine Weidner
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Julia Lorenz
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Frank K Braun
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Tanja Rothhammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Laura-Marie Ammer
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | | | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Franziska J Dekorsy
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Niklas Thon
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Tobias Greve
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Ayse N Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Abir Hussein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Julian Sax
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Martin Proescholdt
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Nils O Schmidt
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Philipp Beckhove
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Peter Hau
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
25
|
Wu Y, Yang Z, Liu M, Han Y. Application of fluorescence micro-optical sectioning tomography in the cerebrovasculature and applicable vascular labeling methods. Brain Struct Funct 2023; 228:1619-1627. [PMID: 37481741 DOI: 10.1007/s00429-023-02684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
Fluorescence micro-optical sectioning tomography (fMOST) is a three-dimensional (3d) imaging method at the mesoscopic level. The whole-brain of mice can be imaged at a high resolution of 0.32 × 0.32 × 1.00 μm3. It is useful for revealing the fine morphology of intact organ tissue, even for positioning the single vessel connected with a complicated vascular network across different brain regions in the whole mouse brain. Featuring its 3d visualization of whole-brain cross-scale connections, fMOST has a vast potential to decipher brain function and diseases. This article begins with the background of fMOST technology including a widespread 3D imaging methods comparison and the basic technical principal illustration, followed by the application of fMOST in cerebrovascular research and relevant vascular labeling techniques applicable to different scenarios.
Collapse
Affiliation(s)
- Yang Wu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Zidong Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 825 Zhangheng Road, Shanghai, 200127, China
| | - Mingyuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China.
| |
Collapse
|
26
|
Ding M, Heydarpour M, Gomez DH, Aljaibeji H, Parksook WW, Peng L, Pojoga LH, Romero JR, Williams GH. ERAP1 Shows Distinct Regulatory Mechanisms on Blood Pressure Modulation Between Males and Females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544152. [PMID: 37333240 PMCID: PMC10274870 DOI: 10.1101/2023.06.07.544152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The authors have withdrawn their manuscript owing to editing error. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
27
|
Xiong Y, Jiang P, Wei S, Li M, Yang Y, Xiong L, Wang J, Li C. Harnessing NK cell-based immunotherapy to prevent the high-dose radiotherapy-inducing tumor survival recurrence. Int Immunopharmacol 2023; 120:110288. [PMID: 37196560 DOI: 10.1016/j.intimp.2023.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Natural killer cells play crucial roles in tumor immunosurveillance and serve as first responders to recognize abnormal cells. Radiotherapy is the mainstay of cancer treatment. However, the effect of high-dose radiotherapy on NK cells remains elusive. Here, we used tumor-bearing mice in the murine colorectal cancer cell line, MC38. The function of NK cells in tumor-draining lymph nodes and tumors was explored after the mice were treated using radiotherapy with 20 Gy and/or blocking antibody αTIGIT at the indicated time. High-dose radiotherapy shaped an immunosuppressive tumor microenvironment to support tumor growth, showing a decreased anti-tumor immunity phenotype in which effector T cells were reduced significantly. Furthermore, the production of functional cytokines and markers in NK cells, including CD107a, granzyme B, and IFN-γ, also remarkably decreased after radiotherapy, while the inhibitory receptor TIGIT was significantly upregulated by FACS analysis. The effect of radiotherapy was significantly elevated after treatment with the combination of radiotherapy and TIGIT inhibition. Moreover, this combination significantly decreased tumor recurrence. Our findings reported that local single high-dose radiotherapy shaped the immunosuppressive microenvironment and inhibited the function of NK cells. Our study revealed compelling evidence suggesting that the enhancement of NK cell function through TIGIT targeting is an effective strategy to mitigate immune suppression caused by high-dose radiotherapy, thereby promoting the inhibition of tumor recurrence.
Collapse
Affiliation(s)
- Yan Xiong
- Institute of Medical Technology, Peking University Health Science Center; Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Ping Jiang
- Institute of Medical Technology, Peking University Health Science Center; Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Shuhua Wei
- Institute of Medical Technology, Peking University Health Science Center; Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Mengyuan Li
- Institute of Medical Technology, Peking University Health Science Center; Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Yuhan Yang
- Institute of Medical Technology, Peking University Health Science Center; Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Liting Xiong
- Institute of Medical Technology, Peking University Health Science Center; Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Junjie Wang
- Institute of Medical Technology, Peking University Health Science Center; Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China.
| | - Chunxiao Li
- Institute of Medical Technology, Peking University Health Science Center; Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
28
|
Periasamy R, Patel DD, Boye SL, Boye SE, Lipinski DM. Improving retinal vascular endothelial cell tropism through rational rAAV capsid design. PLoS One 2023; 18:e0285370. [PMID: 37167304 PMCID: PMC10174500 DOI: 10.1371/journal.pone.0285370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Vascular endothelial cells (VEC) are essential for retinal homeostasis and their dysfunction underlies pathogenesis in diabetic retinopathy (DR) and exudative age-related macular degeneration (AMD). Studies have shown that recombinant adeno-associated virus (rAAV) vectors are effective at delivering new genetic material to neural and glial cells within the retina, but targeting VECs remains challenging. To overcome this limitation, herein we developed rAAV capsid mutant vectors with improved tropism towards retinal VEC. rAAV2/2, 2/2[QuadYF-TV], and rAAV2/9 serotype vectors (n = 9, capsid mutants per serotype) expressing GFP were generated by inserting heptameric peptides (7AA) designed to increase endothelial targeting at positions 588 (2/2 and 2/2[QuadYF-TV] or 589 (2/9) of the virus protein (VP 1-3). The packaging and transduction efficiency of the vectors were assessed in HEK293T and bovine VECs using Fluorescence microscopy and flow cytometry, leading to the identification of one mutant, termed EC5, that showed improved endothelial tropism when inserted into all three capsid serotypes. Intra-ocular and intravenous administration of EC5 mutants in C57Bl/6j mice demonstrated moderately improved transduction of the retinal vasculature, particularly surrounding the optic nerve head, and evidence of sinusoidal endothelial cell transduction in the liver. Most notably, intravenous administration of the rAAV2/2[QuadYF-TV] EC5 mutant led to a dramatic and unexpected increase in cardiac muscle transduction.
Collapse
Affiliation(s)
- Ramesh Periasamy
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Dwani D. Patel
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cell Biology, Neurobiology, Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sanford L. Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States of America
| | - Shannon E. Boye
- Department of Pediatrics, Division of Cellular and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Daniel M. Lipinski
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cell Biology, Neurobiology, Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
29
|
Tang X, Ren J, Wei X, Wang T, Li H, Sun Y, Liu Y, Chi M, Zhu S, Lu L, Zhang J, Yang B. Exploiting synergistic effect of CO/NO gases for soft tissue transplantation using a hydrogel patch. Nat Commun 2023; 14:2417. [PMID: 37105981 PMCID: PMC10140290 DOI: 10.1038/s41467-023-37959-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Autologous skin flap transplantation is a common method for repairing complex soft tissue defects caused by cancer, trauma, and congenital malformations. Limited blood supply range and post-transplantation ischemia-reperfusion injury can lead to distal necrosis of the flap and long-term functional loss, which severely restricts the decision-making regarding the optimal surgical plan. To address this issue, we develop a hydrogel patch that releases carbon monoxide and nitric oxide gases on demand, to afford a timely blood supply for skin flap transplantation during surgery. Using an ischemia-reperfusion dorsal skin flap model in rats, we show that the hydrogel patch maintains the immediate opening of blood flow channels in transplanted tissue and effective blood perfusion throughout the perioperative period, activating perfusion of the hemodynamic donor site. We demonstrate that the hydrogel patch promotes distal vascularization and long-term functional reconstruction of transplanted tissues by inhibiting inflammatory damage and accelerating blood vessel formation.
Collapse
Affiliation(s)
- Xiaoduo Tang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Jingyan Ren
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Xin Wei
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Tao Wang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Haiqiu Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Yihan Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Yang Liu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Mingli Chi
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China.
| | - Laijin Lu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
| | - Junhu Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China.
| | - Bai Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| |
Collapse
|
30
|
Cardoso ELDS, Cahuê F, Miranda IEF, Sant'Anna MDL, Andrade CBV, Barbosa RAQ, Ortiga-Carvalho TM, Vaisman M, Salerno VP. Combined effects of intermittent fasting with swimming-based high intensity intermittent exercise training in Wistar rats. Tissue Cell 2023; 82:102099. [PMID: 37141748 DOI: 10.1016/j.tice.2023.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
High caloric intake and physical inactivity are known precursors to the development of several chronic metabolic diseases. For obesity and sedentarism, High Intensity Intermittent Exercise (HIIE) and Intermittent Fasting (IF) have emerged as individual strategies to attenuate their negative effects by improving metabolism. To study their combined effects, Wistar male rats (n = 74, 60 days old) were divided into four groups: Sedentary Control (C), swimming-based HIIE only (HIIE), Intermittent Fasting only (IF), and swimming-based HIIE associated with Intermittent Fasting (HIIE/IF). Over an eight-week period swimming performance, body composition, weight and feeding behavior were analyzed. The final morphology of white adipose tissue showed a significant reduction in adipocyte size consistent with a higher number of cells per area in exercised animals (vs C and IF, p < 0.05), which also displayed characteristics of browning through UCP-1 levels and CD31 staining. These results suggest that the increased performance in the HIIE/IF group is, in part, by modifications of WAT metabolism through the browning process.
Collapse
Affiliation(s)
- Everton Luis Dos Santos Cardoso
- Departamento de Biociência do Exercício, Escola de Educação Física e Desporto, Universidade Federal do Rio de Janeiro, (EEFD)/UFRJ, Brazil; Departamento de Endocrinologia Médica, Hospital Universitário Clementino Fraga Filho/(HUCFF)/UFRJ, Brazil
| | - Fábio Cahuê
- Departamento de Biociência do Exercício, Escola de Educação Física e Desporto, Universidade Federal do Rio de Janeiro, (EEFD)/UFRJ, Brazil; Instituto de Nutrição Josué de Castro, UFRJ, Brazil
| | - Iordan Emanuel Ferreira Miranda
- Departamento de Biociência do Exercício, Escola de Educação Física e Desporto, Universidade Federal do Rio de Janeiro, (EEFD)/UFRJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, (IBCCF)/UFRJ, Brazil
| | | | - Cherley Borba Vieira Andrade
- Instituto de Biofísica Carlos Chagas Filho, (IBCCF)/UFRJ, Brazil; Departamento de Histologia e Embriologia, Universidade Estadual do Rio de Janeiro, (IBRAG)/UERJ, Brazil
| | - Raiana Andrade Quintanilha Barbosa
- Instituto de Biofísica Carlos Chagas Filho, (IBCCF)/UFRJ, Brazil; Centro de Tecnologia Celular, Instituto Nacional de Cardiologia, RJ, Brazil
| | | | - Mário Vaisman
- Departamento de Endocrinologia Médica, Hospital Universitário Clementino Fraga Filho/(HUCFF)/UFRJ, Brazil
| | - Verônica Pinto Salerno
- Departamento de Biociência do Exercício, Escola de Educação Física e Desporto, Universidade Federal do Rio de Janeiro, (EEFD)/UFRJ, Brazil.
| |
Collapse
|
31
|
Jain M, Singh N, Fatima R, Nachanekar A, Pradhan M, Nityanand S, Chaturvedi CP. Amniotic Fluid Mesenchymal Stromal Cells Derived from Fetuses with Isolated Cardiac Defects Exhibit Decreased Proliferation and Cardiomyogenic Potential. BIOLOGY 2023; 12:biology12040552. [PMID: 37106752 PMCID: PMC10136182 DOI: 10.3390/biology12040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Amniotic fluid mesenchymal stromal cells (AF-MSCs) represent an autologous cell source to ameliorate congenital heart defects (CHDs) in children. The AF-MSCs, having cardiomyogenic potential and being of fetal origin, may reflect the physiological and pathological changes in the fetal heart during embryogenesis. Hence, the study of defects in the functional properties of these stem cells during fetal heart development will help obtain a better understanding of the cause of neonatal CHDs. Therefore, in the present study, we compared the proliferative and cardiomyogenic potential of AF-MSCs derived from ICHD fetuses (ICHD AF-MSCs) with AF-MSCs from structurally normal fetuses (normal AF-MSCs). Compared to normal AF-MSCs, the ICHD AF-MSCs showed comparable immunophenotypic MSC marker expression and adipogenic and chondrogenic differentiation potential, with decreased proliferation, higher senescence, increased expression of DNA-damaged genes, and osteogenic differentiation potential. Furthermore, the expression of cardiac progenitor markers (PDGFR-α, VEGFR-2, and SSEA-1), cardiac transcription factors (GATA-4, NKx 2-5, ISL-1, TBX-5, TBX-18, and MeF-2C), and cardiovascular markers (cTNT, CD31, and α-SMA) were significantly reduced in ICHD AF-MSCs. Overall, these results suggest that the AF-MSCs of ICHD fetuses have proliferation defects with significantly decreased cardiomyogenic differentiation potential. Thus, these defects in ICHD AF-MSCs highlight that the impaired heart development in ICHD fetuses may be due to defects in the stem cells associated with heart development during embryogenesis.
Collapse
Affiliation(s)
- Manali Jain
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Neeta Singh
- Department of Maternal Reproductive Health, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Raunaq Fatima
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aditya Nachanekar
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Mandakini Pradhan
- Department of Maternal Reproductive Health, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Soniya Nityanand
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
32
|
Heinrich MA, Uboldi I, Kuninty PR, Ankone MJ, van Baarlen J, Zhang YS, Jain K, Prakash J. Microarchitectural mimicking of stroma-induced vasculature compression in pancreatic tumors using a 3D engineered model. Bioact Mater 2023; 22:18-33. [PMID: 36203956 PMCID: PMC9516389 DOI: 10.1016/j.bioactmat.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 10/26/2022] Open
Abstract
Fibrotic tumors, such as pancreatic ductal adenocarcinoma (PDAC), are characterized for high desmoplastic reaction, which results in high intra-tumoral solid stress leading to the compression of blood vessels. These microarchitectural alterations cause loss of blood flow and poor intra-tumoral delivery of therapeutics. Currently, there is a lack of relevant in vitro models capable of replicating these mechanical characteristics and to test anti-desmoplastic compounds. Here, a multi-layered vascularized 3D PDAC model consisting of primary human pancreatic stellate cells (PSCs) embedded in collagen/fibrinogen (Col/Fib), mimicking tumor tissue within adjunct healthy tissue, is presented to study the fibrosis-induced compression of vasculature in PDAC. It is demonstrated how the mechanical and biological stimulation induce PSC activation, extracellular matrix production and eventually vessel compression. The clinical relevance is confirmed by correlating with patient transcriptomic data. Furthermore, the effects of gradual vessel compression on the fluid dynamics occurring within the channel is evaluated in silico. Finally, it is demonstrated how cancer-associated fibroblast (CAF)-modulatory therapeutics can inhibit the cell-mediated compression of blood vessels in PDAC in vitro, in silico and in vivo. It is envisioned that this 3D model is used to improve the understanding of mechanical characteristics in tumors and for evaluating novel anti-desmoplastic therapeutics.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Irene Uboldi
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Praneeth Reddy Kuninty
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Marc J.K. Ankone
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Joop van Baarlen
- Laboratorium Pathologie Oost-Nederland (LabPON), 7550 AM, Hengelo, the Netherlands
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA, 02139, USA
| | - Kartik Jain
- Department of Thermal and Fluid Engineering, Biofluid Dynamics Section, University of Twente, 7500 AE Enschede, the Netherlands
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| |
Collapse
|
33
|
Spitzer D, Khel MI, Pütz T, Zinke J, Jia X, Sommer K, Filipski K, Thorsen F, Freiman TM, Günther S, Plate KH, Harter PN, Liebner S, Reiss Y, Di Tacchio M, Guérit S, Devraj K. A flow cytometry-based protocol for syngenic isolation of neurovascular unit cells from mouse and human tissues. Nat Protoc 2023; 18:1510-1542. [PMID: 36859615 DOI: 10.1038/s41596-023-00805-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/16/2022] [Indexed: 03/03/2023]
Abstract
The neurovascular unit (NVU), composed of endothelial cells, pericytes, juxtaposed astrocytes and microglia together with neurons, is essential for proper central nervous system functioning. The NVU critically regulates blood-brain barrier (BBB) function, which is impaired in several neurological diseases and is therefore a key therapeutic target. To understand the extent and cellular source of BBB dysfunction, simultaneous isolation and analysis of NVU cells is needed. Here, we describe a protocol for the EPAM-ia method, which is based on flow cytometry for simultaneous isolation and analysis of endothelial cells, pericytes, astrocytes and microglia. This method is based on differential processing of NVU cell types using enzymes, mechanical homogenization and filtration specific for each cell type followed by combining them for immunostaining and fluorescence-activated cell sorting. The gating strategy encompasses cell-type-specific and exclusion markers for contaminating cells to isolate the major NVU cell types. This protocol takes ~6 h for two sets of one or two animals. The isolation part requires experience in animal handling, fresh tissue processing and immunolabeling for flow cytometry. Sorted NVU cells can be used for downstream applications including transcriptomics, proteomics and cell culture. Multiple cell-type analyses using UpSet can then be applied to obtain robust targets from single or multiple NVU cell types in neurological diseases associated with BBB dysfunction. The EPAM-ia method is also amenable to isolation of several other cell types, including cancer cells and immune cells. This protocol is applicable to healthy and pathological tissue from mouse and human sources and to several cell types compared with similar protocols.
Collapse
Affiliation(s)
- Daniel Spitzer
- Department of Neurology, Goethe University, Frankfurt, Germany.,Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Maryam I Khel
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Tim Pütz
- Department of Neurology, Goethe University, Frankfurt, Germany.,Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Jenny Zinke
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Xiaoxiong Jia
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Kathleen Sommer
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Katharina Filipski
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Frits Thorsen
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Thomas M Freiman
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Karl H Plate
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) Partner site Frankfurt/Mainz, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick N Harter
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) Partner site Frankfurt/Mainz, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Liebner
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Yvonne Reiss
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) Partner site Frankfurt/Mainz, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sylvaine Guérit
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Kavi Devraj
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany. .,Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany.
| |
Collapse
|
34
|
Activation of angiotensin II type 2 receptor attenuates lung injury of collagen-induced arthritis by alleviating endothelial cell injury and promoting Ly6C lo monocyte transition. Eur J Pharmacol 2023; 941:175466. [PMID: 36528072 DOI: 10.1016/j.ejphar.2022.175466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
As one of the most frequent extra-articular manifestations of rheumatoid arthritis (RA), interstitial lung disease (ILD) is still challenging due to unrevealed pathophysiological mechanism. To address this question, in the present study, we used the classical collagen-induced arthritis (CIA) mouse model to determine the related-immune mechanism of lung injury and possible pharmacological treatment for RA-ILD. At the peak of arthritis, we found CIA mice developed apparent lung injury, characterized by interstitial thickening, inflammatory cell infiltration, and lymphocyte follicle formation. Additionally, the endothelial injury occurred as the number of endothelial cells (ECs) and their CD31 expression decreased. Along with those, monocytes, predominantly Ly6Chi monocytes with pro-inflammatory phenotype, were also increased. While in the remission period of arthritis, ECs gradually increased with retrieved CD31 expression, leading to decreased infiltrating monocytes, but boosted Ly6Clo population. Ly6Clo monocytes were prone to locate around damaged ECs, promoted ECs proliferation and vascular tube formation, and lessened the expression of adhesion molecules. In addition, we evaluated angiotensin II type 2 receptor (Agtr2), which has been demonstrated to be protective against lung injury, could be beneficial in RA-ILD. We found elevated Agtr2 in CIA lung tissue, and activation of Agtr2, within its specific agonist C21, alleviated the pulmonary inflammation in vivo, reduced ECs injury, and promoted monocytes conversion from Ly6Chi to Ly6Clo monocytes in vitro. Our data reveal a potential pathological mechanism of RA-ILD that involves ECs damage and inflammatory monocytes infiltration and provide a potential drug target, Agtr2, for RA-ILD treatment.
Collapse
|
35
|
Chen H, Ma X, Gao T, Zhao W, Xu T, Liu Z. Robot-assisted in situ bioprinting of gelatin methacrylate hydrogels with stem cells induces hair follicle-inclusive skin regeneration. Biomed Pharmacother 2023; 158:114140. [PMID: 36535200 DOI: 10.1016/j.biopha.2022.114140] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Large skin defects caused by accidents or disease can cause fluid loss, water and electrolyte disorders, hypoproteinemia and serious infection and remain a difficult problem in clinical practice. In situ bioprinting is a promising, recently developed technology that involves timely, customized, and morphologically adapted bioprinting of bioink into tissue defects to promote the recovery of human tissues or organs. During this process, bioink is a key factor. In this study, we synthesized a biocompatible, photosensitive hydrogel material comprising gelatin methacrylate (GelMA) for robot-assisted in situ bioprinting of skin wounds. The results showed that GelMA demonstrated good printability of that supported the proliferation of skin-derived precursors (SKPs) and maintained their properties. Furthermore, in situ bioprinting of GelMA hydrogels with epidermal stem cells (Epi-SCs) and SKPs onto skin wounds showed complete wound healing and functional tissue skin regeneration. The regenerated skin contains epidermis, dermis, blood vessels, hair follicles, and sebaceous glands and resembling native skin. These results provide an effective strategy for skin repair through the combined application of GelMA hydrogels, Epi-SCs, SKPs and in situ bioprinting and its promising clinical translational potential for further applications.
Collapse
Affiliation(s)
- Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, People's Republic of China; East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.
| | - Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Tianya Gao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Wenxiang Zhao
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Tao Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China; Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, People's Republic of China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, People's Republic of China.
| |
Collapse
|
36
|
Morozova NS, Kozlitina IA, Makarov VI, Loschenov VB, Grinin VM, Ivanov SY, Kashtanova MS. Optical spectral diagnostics of the oxygenation level in periodontal tissues and photodynamic therapy using methylene blue in children with cerebral palsy. Front Public Health 2023; 11:961066. [PMID: 36794072 PMCID: PMC9922788 DOI: 10.3389/fpubh.2023.961066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Dental diseases occur in children with cerebral palsy three times higher than in healthy children. Low values of the unstimulated salivation rate (<0.3 ml per minute), pH and buffer capacity, changes in enzyme activity and sialic acid concentration, as well as increased saliva osmolarity and total protein concentration, which indicates impaired hydration, are the factors in the development of a gingiva disease in case of cerebral palsy. This leads to increased bacterial agglutination and the formation of acquired pellicle and biofilm, leading to the formation of dental plaque. There is a tendency toward an increase in the concentration of hemoglobin and a decrease in the degree of hemoglobin oxygenation, as well as an increase in the generation of reactive oxygen and nitrogen species. Photodynamic therapy (PDT) with the use of photosensitizer methylene blue improves blood circulation and the degree of oxygenation in periodontal tissues, as well as eliminates a bacterial biofilm. Analysis of back diffuse reflection spectra makes it possible to conduct non-invasive monitoring determine tissue areas with a low level of hemoglobin oxygenation for precision photodynamic exposure. Aim To improve the effectiveness of phototheranostics methods using, namely PDT with simultaneous optical-spectral control, for the treatment of gingivitis in children with complex dental and somatic status (cerebral palsy). Methods The study involved 15 children (6-18 y.o.) with various forms of cerebral palsy, in particular, spastic diplegia and atonic-astatic form and with gingivitis. The degree of hemoglobin oxygenation was measured in tissues before PDT and on the 12th day. PDT was performed using laser radiation (λ = 660 nm) with a power density of 150 mW/cm2 with a five-minute application of 0.01% MB. The total light dose was 45 ± 15 J/cm2. For statistical evaluation of the results, a paired Student's t-test was used. Results The paper presents the results of phototheranostics using methylene blue in children with cerebral palsy. An increase in the level of hemoglobin oxygenation from 50 to 67% (p < 0.001) and a decrease in blood volume in the microcirculatory bed of periodontal tissues were shown. Conclusion Photodynamic therapy methods with application of methylene blue make it possible to assess the state of the gingival mucosa tissue diseases objectively in real time, and to provide effective targeted therapy for gingivitis in children with cerebral palsy. There is a prospect that they can become widely used clinical methods.
Collapse
Affiliation(s)
- Natalia S Morozova
- Department of Pediatric Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Iuliia A Kozlitina
- Department of Pediatric Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vladimir I Makarov
- Laser Biospectroscopy Laboratory, Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.,Department of Laser Micro-, Nano- and Biotechnologies, Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - Victor B Loschenov
- Department of Laser Micro-, Nano- and Biotechnologies, Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia.,Laboratory of Laser Biospectroscopy, Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Vasiliy M Grinin
- Department of Maxillofacial Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sergey Yu Ivanov
- Department of Maxillofacial Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Maxillofacial Surgery, The Peoples' Friendship University of Russia, Moscow, Russia
| | - Maria S Kashtanova
- Department of Pediatric Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
37
|
Li J, Liu X, Tao W, Li Y, Du Y, Zhang S. Micropatterned composite membrane guides oriented cell growth and vascularization for accelerating wound healing. Regen Biomater 2022; 10:rbac108. [PMID: 36683746 PMCID: PMC9847515 DOI: 10.1093/rb/rbac108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
Skin defect is common in daily life, but repairing large skin defects remains a challenge. Using biomaterials to deliver biochemical or physical factors to promote skin tissue regeneration is of great significance for accelerating wound healing. Specific surface micropatterns on biomaterials could affect cell behavior and tissue regeneration. However, few studies have focused on the construction of wound healing biomaterials with surface micropatterns and their role in skin tissue regeneration. In the present study, gelatin-polycaprolactone/silk fibroin composite membranes with different micropatterns were fabricated by photolithography, including line, grid and plane micropatterns. In vitro cell experiments demonstrated that the line micropattern on the composite membrane could guide cell-oriented growth, and more importantly, promote the expression of angiogenesis-related markers and α-smooth muscle actin (α-SMA) at both gene level and protein level. In the rat full-thickness skin defect model, the composite membrane with line micropatterns increased α-SMA production and neovascularization in wounds, leading to accelerated wound contraction and healing. The current study not only suggests that composite membranes with specific micropatterns can be promising wound repair materials but also provides new insights into the importance of biomaterial surface topology for tissue regeneration.
Collapse
Affiliation(s)
| | | | - Weiyong Tao
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China,NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China,Institute of Biomaterials and Medical Devices, Wuhan Institute of Industrial Innovation and Development, Wuhan 430074, China,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan Li
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China,NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China,Institute of Biomaterials and Medical Devices, Wuhan Institute of Industrial Innovation and Development, Wuhan 430074, China,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingying Du
- Correspondence address. E-mail: (Y.D.); (S.Z.)
| | | |
Collapse
|
38
|
Hu L, Ge Y, Cao Z, Tian Y, Sun Q, Li Z, Ma J, Wu Y, Wang N, Tang B. Strontium-modified porous polyetheretherketone with the triple function of osteogenesis, angiogenesis, and anti-inflammatory for bone grafting. BIOMATERIALS ADVANCES 2022; 143:213160. [PMID: 36334515 DOI: 10.1016/j.bioadv.2022.213160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Polyetheretherketone (PEEK) is a potential bone repair material because of its stable chemical and good mechanical properties. However, the biological inertness of PEEK limits its clinical application. Sr2+ has multi biological functions, including promoting bone formation and blood vessel regeneration and inhibiting inflammation. In this paper, PEEK was modified with Sr2+ with the purpose to construct PEEK bone graft material with triple functions of osteogenesis, angiogenesis, and anti-inflammatory. The results showed that Sr-modified PEEK could stably release Sr2+ for a long time in the PBS solution, and indeed could promote the proliferation and differentiation of osteoblasts, promote angiogenesis, and inhibit inflammation. Therefore, it is believed that this multifunctional PEEK with Sr2+ should show great promise for clinical applications in bone repair.
Collapse
Affiliation(s)
- Liqiu Hu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yongmei Ge
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhe Cao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - QiLi Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhen Li
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
| | - Jing Ma
- Smart Biomaterial Design Lab, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Yutong Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ning Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518055, China.
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
39
|
Anthon SG, Valente KP. Vascularization Strategies in 3D Cell Culture Models: From Scaffold-Free Models to 3D Bioprinting. Int J Mol Sci 2022; 23:14582. [PMID: 36498908 PMCID: PMC9737506 DOI: 10.3390/ijms232314582] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The discrepancies between the findings in preclinical studies, and in vivo testing and clinical trials have resulted in the gradual decline in drug approval rates over the past decades. Conventional in vitro drug screening platforms employ two-dimensional (2D) cell culture models, which demonstrate inaccurate drug responses by failing to capture the three-dimensional (3D) tissue microenvironment in vivo. Recent advancements in the field of tissue engineering have made possible the creation of 3D cell culture systems that can accurately recapitulate the cell-cell and cell-extracellular matrix interactions, as well as replicate the intricate microarchitectures observed in native tissues. However, the lack of a perfusion system in 3D cell cultures hinders the establishment of the models as potential drug screening platforms. Over the years, multiple techniques have successfully demonstrated vascularization in 3D cell cultures, simulating in vivo-like drug interactions, proposing the use of 3D systems as drug screening platforms to eliminate the deviations between preclinical and in vivo testing. In this review, the basic principles of 3D cell culture systems are briefly introduced, and current research demonstrating the development of vascularization in 3D cell cultures is discussed, with a particular focus on the potential of these models as the future of drug screening platforms.
Collapse
Affiliation(s)
- Shamapto Guha Anthon
- Department of Biomedical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | | |
Collapse
|
40
|
Hassan S, Gomez-Reyes E, Enciso-Martinez E, Shi K, Campos JG, Soria OYP, Luna-Cerón E, Lee MC, Garcia-Reyes I, Steakelum J, Jeelani H, García-Rivera LE, Cho M, Cortes SS, Kamperman T, Wang H, Leijten J, Fiondella L, Shin SR. Tunable and Compartmentalized Multimaterial Bioprinting for Complex Living Tissue Constructs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51602-51618. [PMID: 36346873 PMCID: PMC10822051 DOI: 10.1021/acsami.2c12585] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recapitulating inherent heterogeneity and complex microarchitectures within confined print volumes for developing implantable constructs that could maintain their structure in vivo has remained challenging. Here, we present a combinational multimaterial and embedded bioprinting approach to fabricate complex tissue constructs that can be implanted postprinting and retain their three-dimensional (3D) shape in vivo. The microfluidics-based single nozzle printhead with computer-controlled pneumatic pressure valves enables laminar flow-based voxelation of up to seven individual bioinks with rapid switching between various bioinks that can solve alignment issues generated during switching multiple nozzles. To improve the spatial organization of various bioinks, printing fidelity with the z-direction, and printing speed, self-healing and biodegradable colloidal gels as support baths are introduced to build complex geometries. Furthermore, the colloidal gels provide suitable microenvironments like native extracellular matrices (ECMs) for achieving cell growths and fast host cell invasion via interconnected microporous networks in vitro and in vivo. Multicompartment microfibers (i.e., solid, core-shell, or donut shape), composed of two different bioink fractions with various lengths or their intravolume space filled by two, four, and six bioink fractions, are successfully printed in the ECM-like support bath. We also print various acellular complex geometries such as pyramids, spirals, and perfusable branched/linear vessels. Successful fabrication of vascularized liver and skeletal muscle tissue constructs show albumin secretion and bundled muscle mimic fibers, respectively. The interconnected microporous networks of colloidal gels result in maintaining printed complex geometries while enabling rapid cell infiltration, in vivo.
Collapse
Affiliation(s)
- Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Department of Biology, Main Campus, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Eduardo Gomez-Reyes
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Eduardo Enciso-Martinez
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Kun Shi
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, P. R. China
| | - Jorge Gonzalez Campos
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Oscar Yael Perez Soria
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Eder Luna-Cerón
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Myung Chul Lee
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| | - Isaac Garcia-Reyes
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Joshua Steakelum
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Department of Electrical and Computer Engineering, University of Massachusetts, Dartmouth, Massachusetts 02747, United States
| | - Haziq Jeelani
- Institute of Electrical and Electronics Engineers (IEEE), New York 10016, United States
| | - Luis Enrique García-Rivera
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Minsung Cho
- AltrixBio inc., Cambridge, Massachusetts 02139, United States
| | - Stephanie Sanchez Cortes
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Tom Kamperman
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Department of Developmental Bioengineering, Faculty of Science and Technology, TechMed Centre, University Twente, Enschede 7522 NB, Netherlands
| | - Haihang Wang
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| | - Jeroen Leijten
- Department of Developmental Bioengineering, Faculty of Science and Technology, TechMed Centre, University Twente, Enschede 7522 NB, Netherlands
| | - Lance Fiondella
- Department of Electrical and Computer Engineering, University of Massachusetts, Dartmouth, Massachusetts 02747, United States
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Chen H, Zhang Y, Zhou D, Ma X, Yang S, Xu T. Mechanical engineering of hair follicle regeneration by in situ bioprinting. BIOMATERIALS ADVANCES 2022; 142:213127. [PMID: 36244245 DOI: 10.1016/j.bioadv.2022.213127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/30/2022] [Accepted: 09/17/2022] [Indexed: 05/12/2023]
Abstract
Hair loss caused by various factors such as trauma, stress, and diseases hurts patient psychology and seriously affects patients' quality of life, but there is no effective method to control it. In situ bioprinting is a method for printing bioinks directly into defective sites according to the shape and characteristics of the defective tissue or organ to promote tissue or organ repair. In this study, we applied a 3D bioprinting machine in situ bioprinting of epidermal stem cells (Epi-SCs), skin-derived precursors (SKPs), and Matrigel into the wounds of nude mice to promote hair follicle regeneration based on their native microenvironment. The results showed successful regeneration of hair follicles and other skin appendages at 4 weeks after in situ bioprinting. Moreover, we confirmed that bioprinting only slightly decreased stem cell viability and maintained the stemness of the stem cells. These findings demonstrated a mechanical engineering method for hair follicle regeneration by in situ bioprinting which has potential in the clinic.
Collapse
Affiliation(s)
- Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, People's Republic of China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China; East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Yi Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China; Huaqing Zhimei Bio-tech Co., Ltd, Shenzhen 518107, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Siming Yang
- Departement of Dermatology, Fourth Medical Center, Chinese PLA General Hospital, Beijing 100048, People's Republic of China.
| | - Tao Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China; Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China.
| |
Collapse
|
42
|
Chen H, Ma X, Zhang M, Liu Z. Injectable and biofunctionalized fibrin hydrogels co-embedded with stem cells induce hair follicle genesis. Regen Biomater 2022; 10:rbac086. [PMID: 36683749 PMCID: PMC9847531 DOI: 10.1093/rb/rbac086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/25/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023] Open
Abstract
Fibrin-based hydrogels have been widely used in various tissue engineering because of their biocompatibility, biodegradability, tunable mechanical characteristics and nanofibrous structural properties. However, their ability to support stem cells for hair follicle neogenesis is unclear. In this study, we investigated the effect of fibrin hydrogels in supporting skin-derived precursors (SKPs) in hair follicle neogenesis. Our results showed that SKPs in fibrin hydrogels with high cell viability and proliferation, the stemness of SKPs could be maintained, and the expression of hair induction signature genes such as akp2 and nestin was enhanced. Moreover, hair follicle reconstruction experiments showed de novo hair genesis in mice and the hairs persisted for a long time without teratoma formation. More importantly, the blood vessels and sebaceous glands were also regenerated. Our study demonstrated that fibrin hydrogels are promising in hair follicle regeneration and have potential application in clinical settings for alopecia and wound healing.
Collapse
Affiliation(s)
- Haiyan Chen
- Correspondence address. E-mail: (H.C.); (Z.L.)
| | - Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Mengqi Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, People’s Republic of China
| | | |
Collapse
|
43
|
Pitonak M, Aceves M, Kumar PA, Dampf G, Green P, Tucker A, Dietz V, Miranda D, Letchuman S, Jonika MM, Bautista D, Blackmon H, Dulin JN. Effects of biological sex mismatch on neural progenitor cell transplantation for spinal cord injury in mice. Nat Commun 2022; 13:5380. [PMID: 36104357 PMCID: PMC9474813 DOI: 10.1038/s41467-022-33134-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Despite advancement of neural progenitor cell transplantation to spinal cord injury clinical trials, there remains a lack of understanding of how biological sex of transplanted cells influences outcomes after transplantation. To address this, we transplanted GFP-expressing sex-matched, sex-mismatched, or mixed donor cells into sites of spinal cord injury in adult male and female mice. Biological sex of the donor cells does not influence graft neuron density, glial differentiation, formation of the reactive glial cell border, or graft axon outgrowth. However, male grafts in female hosts feature extensive hypervascularization accompanied by increased vascular diameter and perivascular cell density. We show greater T-cell infiltration within male-to-female grafts than other graft types. Together, these findings indicate a biological sex-specific immune response of female mice to male donor cells. Our work suggests that biological sex should be considered in the design of future clinical trials for cell transplantation in human injury. In this study, Pitonak et al. report that transplantation of neural progenitor cells derived from male donors trigger an immune rejection response following transplantation into sites of spinal cord injury in female mice.
Collapse
|
44
|
Abuduwaili W, Wang X, Huang AT, Sun JL, Xu RC, Zhang GC, Liu ZY, Wang F, Zhu CF, Liu TT, Dong L, Zhu JM, Weng SQ, Li Y, Shen XZ. Iridium Complex-Loaded Sorafenib Nanocomposites for Synergistic Chemo-photodynamic Therapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37356-37368. [PMID: 35951459 DOI: 10.1021/acsami.2c07247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although sorafenib, a multi-kinase inhibitor, has provided noteworthy benefits in patients with hepatocellular carcinoma (HCC), the inevitable side effects, narrow therapeutic window, and low bioavailability seriously affect its clinical application. To be clinically distinctive, innovative drugs must meet the needs of reaching tumor tissues and cause limited side effects to normal organs and tissues. Recently, photodynamic therapy, utilizing a combination of a photosensitizer and light irradiation, was selectively accumulated at the tumor site and taken up effectively via inducing apoptosis or necrosis of cancer cells. In this study, a nano-chemo-phototherapy drug was fabricated to compose an iridium-based photosensitizer combined with sorafenib (IPS) via a self-assembly process. Compared to the free iridium photosensitizer or sorafenib, the IPS exhibited significantly improved therapeutic efficacy against tumor cells because of the increased cellular uptake and the subsequent simultaneous release of sorafenib and generation of reactive oxygen species production upon 532 nm laser irradiation. To evaluate the effect of synergistic treatment, cytotoxicity detection, live/dead staining, cell proliferative and apoptotic assay, and Western blot were performed. The IPS exhibited sufficient biocompatibility by hemolysis and serum biochemical tests. Also, the results suggested that IPS significantly inhibited HCC cell proliferation and promoted cell apoptosis. More importantly, marked anti-tumor growth effects via inhibiting cell proliferation and promoting tumor cell death were observed in an orthotopic xenograft HCC model. Therefore, our newly proposed nanotheranostic agent for combined chemotherapeutic and photodynamic therapy notably improves the therapeutic effect of sorafenib and has the potential to be a new alternative option for HCC treatment.
Collapse
Affiliation(s)
- Weinire Abuduwaili
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Xiang Wang
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - An-Tian Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Ru-Chen Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Zhi-Yong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Fu Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Chang-Feng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Yuhao Li
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, 138 Yixueyuan Rd., Shanghai 200032, China
| |
Collapse
|
45
|
Li B, Zhu T, Wu X, Chen S, Lu C, Zhu J, Li Q. The crosstalk between lung cancer cells and platelets promotes tumor angiogenesis in vivo and in vitro. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04259-9. [PMID: 35951091 DOI: 10.1007/s00432-022-04259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE We previously showed that the crosstalk of H1975 cells and platelets (PLTs) may promote tumor angiogenesis. This study aimed to determine whether other lung cell lines (LC) interacting with PLTs could affect tumor angiogenesis through in vivo and in vitro experiments. METHODS Cell Counting Kit-8, EdU cell proliferation, wound healing, Transwell invasion, F-actin staining, tube formation, ELISA and western blot assays were performed to investigate the properties and the expression levels of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), p-VEGFR2, PI3K, p-PI3K, Akt, p-Akt and eNOS in supernatants or HUVECs. Then, using mouse models, immunohistochemistry was applied to detect the expression levels of CD31 and VEGF. RESULTS Compared with single-cultured HUVECs (EC) or incubation with either LC supernatant (EC + LC) or activated PLT supernatant (EC + PLT), incubation with SN_LCP (supernatant derived from LC cocultured with PLT, named the EC + LC + PLT group) improved the viability, proliferation, migration, invasion, and tube formation activities of HUVECs and the expression of F-actin, VEGF, VEGFR2, p-VEGFR2, p-PI3K, p-Akt and eNOS in HUVECs. Higher expression levels of CD31 and VEGF were found in the LLC + PLT (mouse model inoculated with Lewis lung cancer (LLC) cells cocultured with PLTs) group than in the LLC (mouse model inoculated with LLC cells alone) group. However, the increased angiogenic properties of HUVECs were inhibited by apatinib, an inhibitor of VEGFR2. CONCLUSION Lung carcinoma cells interacting with PLTs may play a key role in lung carcinoma angiogenesis through the VEGF/VEGFR2 signaling pathway.
Collapse
Affiliation(s)
- Baikun Li
- Key Laboratory of Xin'an Medicine, (Anhui University of Chinese Medicine), The Ministry of Education, Hefei, 230038, China.,School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ting Zhu
- Key Laboratory of Xin'an Medicine, (Anhui University of Chinese Medicine), The Ministry of Education, Hefei, 230038, China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaohong Wu
- Key Laboratory of Xin'an Medicine, (Anhui University of Chinese Medicine), The Ministry of Education, Hefei, 230038, China.,School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shiyu Chen
- Key Laboratory of Xin'an Medicine, (Anhui University of Chinese Medicine), The Ministry of Education, Hefei, 230038, China.,School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Chen Lu
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jimin Zhu
- Key Laboratory of Xin'an Medicine, (Anhui University of Chinese Medicine), The Ministry of Education, Hefei, 230038, China. .,School of Life Sciences, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, (Anhui University of Chinese Medicine), The Ministry of Education, Hefei, 230038, China. .,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
46
|
Voigt AP, Mullin NK, Mulfaul K, Lozano LP, Wiley LA, Flamme-Wiese MJ, Boese EA, Han IC, Scheetz TE, Stone EM, Tucker BA, Mullins RF. Choroidal endothelial and macrophage gene expression in atrophic and neovascular macular degeneration. Hum Mol Genet 2022; 31:2406-2423. [PMID: 35181781 PMCID: PMC9307320 DOI: 10.1093/hmg/ddac043] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/22/2022] [Accepted: 02/06/2022] [Indexed: 11/22/2022] Open
Abstract
The human choroid is a heterogeneous, highly vascular connective tissue that dysfunctions in age-related macular degeneration (AMD). In this study, we performed single-cell RNA sequencing on 21 human choroids, 11 of which were derived from donors with early atrophic or neovascular AMD. Using this large donor cohort, we identified new gene expression signatures and immunohistochemically characterized discrete populations of resident macrophages, monocytes/inflammatory macrophages and dendritic cells. These three immune populations demonstrated unique expression patterns for AMD genetic risk factors, with dendritic cells possessing the highest expression of the neovascular AMD-associated MMP9 gene. Additionally, we performed trajectory analysis to model transcriptomic changes across the choroidal vasculature, and we identified expression signatures for endothelial cells from choroidal arterioles and venules. Finally, we performed differential expression analysis between control, early atrophic AMD, and neovascular AMD samples, and we observed that early atrophic AMD samples had high expression of SPARCL1, a gene that has been shown to increase in response to endothelial damage. Likewise, neovascular endothelial cells harbored gene expression changes consistent with endothelial cell damage and demonstrated increased expression of the sialomucins CD34 and ENCM, which were also observed at the protein level within neovascular membranes. Overall, this study characterizes the molecular features of new populations of choroidal endothelial cells and mononuclear phagocytes in a large cohort of AMD and control human donors.
Collapse
Affiliation(s)
- Andrew P Voigt
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Nathaniel K Mullin
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Kelly Mulfaul
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Lola P Lozano
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Luke A Wiley
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Miles J Flamme-Wiese
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Erin A Boese
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Ian C Han
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Todd E Scheetz
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Budd A Tucker
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Robert F Mullins
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
47
|
Wang F, Ding P, Liang X, Ding X, Brandt CB, Sjöstedt E, Zhu J, Bolund S, Zhang L, de Rooij LPMH, Luo L, Wei Y, Zhao W, Lv Z, Haskó J, Li R, Qin Q, Jia Y, Wu W, Yuan Y, Pu M, Wang H, Wu A, Xie L, Liu P, Chen F, Herold J, Kalucka J, Karlsson M, Zhang X, Helmig RB, Fagerberg L, Lindskog C, Pontén F, Uhlen M, Bolund L, Jessen N, Jiang H, Xu X, Yang H, Carmeliet P, Mulder J, Chen D, Lin L, Luo Y. Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level. Nat Commun 2022; 13:3620. [PMID: 35750885 PMCID: PMC9232580 DOI: 10.1038/s41467-022-31388-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Pigs are valuable large animal models for biomedical and genetic research, but insights into the tissue- and cell-type-specific transcriptome and heterogeneity remain limited. By leveraging single-cell RNA sequencing, we generate a multiple-organ single-cell transcriptomic map containing over 200,000 pig cells from 20 tissues/organs. We comprehensively characterize the heterogeneity of cells in tissues and identify 234 cell clusters, representing 58 major cell types. In-depth integrative analysis of endothelial cells reveals a high degree of heterogeneity. We identify several functionally distinct endothelial cell phenotypes, including an endothelial to mesenchymal transition subtype in adipose tissues. Intercellular communication analysis predicts tissue- and cell type-specific crosstalk between endothelial cells and other cell types through the VEGF, PDGF, TGF-β, and BMP pathways. Regulon analysis of single-cell transcriptome of microglia in pig and 12 other species further identifies MEF2C as an evolutionally conserved regulon in the microglia. Our work describes the landscape of single-cell transcriptomes within diverse pig organs and identifies the heterogeneity of endothelial cells and evolutionally conserved regulon in microglia.
Collapse
Affiliation(s)
- Fei Wang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - Peiwen Ding
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Liang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiangning Ding
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Camilla Blunk Brandt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Evelina Sjöstedt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jiacheng Zhu
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Saga Bolund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lijing Zhang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Lihua Luo
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Wei
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Wandong Zhao
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhiyuan Lv
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - János Haskó
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Runchu Li
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Qiuyu Qin
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Yi Jia
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Wendi Wu
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuting Yuan
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Mingyi Pu
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Haoyu Wang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Lin Xie
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Ping Liu
- MGI, BGI-Shenzhen, Shenzhen, China
| | | | | | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Aarhus University of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Max Karlsson
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Xiuqing Zhang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rikke Bek Helmig
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - Linn Fagerberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mathias Uhlen
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | | | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Peter Carmeliet
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dongsheng Chen
- BGI-Shenzhen, Shenzhen, China.
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- Suzhou Institute of Systems Medicine, Suzhou, China.
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- BGI-Shenzhen, Shenzhen, China.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
48
|
Wang Z, Zhang Y, Yin Y, Liu J, Li P, Zhao Y, Bai D, Zhao H, Han X, Chen Q. High-Strength and Injectable Supramolecular Hydrogel Self-Assembled by Monomeric Nucleoside for Tooth-Extraction Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108300. [PMID: 35066934 DOI: 10.1002/adma.202108300] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/18/2022] [Indexed: 02/05/2023]
Abstract
Hydrogels with high mechanical strength and injectability have attracted extensive attention in biomedical and tissue engineering. However, endowing a hydrogel with both properties is challenging because they are generally inversely related. In this work, by constructing a multi-hydrogen-bonding system, a high-strength and injectable supramolecular hydrogel is successfully fabricated. It is constructed by the self-assembly of a monomeric nucleoside molecular gelator (2-amino-2'-fluoro-2'-deoxyadenosine (2-FA)) with distilled water/phosphate buffered saline as solvent. Its storage modulus reaches 1 MPa at a concentration of 5.0 wt%, which is the strongest supramolecular hydrogel comprising an ultralow-molecular-weight (MW < 300) gelator. Furthermore, it exhibits excellent shear-thinning injectability, and completes the sol-gel transition in seconds after injection at 37 °C. The multi-hydrogen-bonding system is essentially based on the synergistic interactions between the double NH2 groups, water molecules, and 2'-F atoms. Furthermore, the 2-FA hydrogel exhibits excellent biocompatibility and antibacterial activity. When applied to rat molar extraction sockets, compared to natural healing and the commercial hemorrhage agent gelatin sponge, the 2-FA hydrogel exhibits faster degradation and induces less osteoclastic activity and inflammatory infiltration, resulting in more complete bone healing. In summary, this study provides ideas for proposing a multifunctional, high-strength, and injectable supramolecular hydrogel for various biomedical engineering applications.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yanan Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Jiang Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Peiran Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Ding Bai
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| |
Collapse
|
49
|
Levy BJ, McCarthy MB, Lebaschi A, Sanders MM, Cote MP, Mazzocca AD. Subacromial Bursal Tissue and Surrounding Matrix of Patients Undergoing Rotator Cuff Repair Contains Progenitor Cells. Arthroscopy 2022; 38:1115-1123. [PMID: 34767955 DOI: 10.1016/j.arthro.2021.10.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To build upon previous literature to identify a complete analysis of cellular contents of subacromial bursal tissue as well as the matrix surrounding the rotator cuff. METHODS Samples of subacromial bursal tissue and surrounding matrix milieu from above the rotator cuff tendon and above the rotator cuff muscle bellies were obtained from 10 patients undergoing arthroscopic rotator cuff repair. Samples were analyzed using fluorescent-activated cell sorting and histologic analysis with staining protocols (Oil Red O, Alcian Blue, and Picro-Sirius Red), for identification of matrix components, including fat, proteoglycans, and collagen. RESULTS Progenitor cells and fibroblast-type cells were present in significant amounts in subacromial bursal tissue in both tissues obtained from over the tendinous and muscle belly portions. Markers for neural tissue, myeloid cells, and megakaryocytes also were present to a lesser extent. There were prominent amounts of fat and proteoglycans present in the matrix, based on ImageJ analysis of stained histologic slides. CONCLUSIONS The subacromial bursal tissue and surrounding matrix of patients undergoing rotator cuff repair contains progenitor cells in significant concentrations both over the tendon and muscle belly of the rotator cuff. CLINICAL RELEVANCE This presence of progenitor cells, in particular, in the subacromial bursal tissue provides a potential basis for future applications of augmentation purposes in rotator cuff healing, and calls into question the practice of routine bursectomy. As the potential role of bursal tissue contents in growth and regeneration in the setting of rotator cuff healing is more well understood, maintaining this tissue may become more relevant. Concentration of these cellular components for use in autologous re-implantation is also an avenue of interest.
Collapse
Affiliation(s)
- Benjamin J Levy
- UBMD Department of Orthopaedics and Sports Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, U.S.A..
| | - Mary Beth McCarthy
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, U.S.A
| | - Amir Lebaschi
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, U.S.A
| | - Melinda M Sanders
- Department of Pathology, UConn Health, Farmington, Connecticut, U.S.A
| | - Mark P Cote
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, U.S.A
| | - Augustus D Mazzocca
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, U.S.A
| |
Collapse
|
50
|
Qian K, Zheng XX, Wang C, Huang WG, Liu XB, Xu SD, Liu DK, Liu MY, Lin CS. β-Sitosterol Inhibits Rheumatoid Synovial Angiogenesis Through Suppressing VEGF Signaling Pathway. Front Pharmacol 2022; 12:816477. [PMID: 35295740 PMCID: PMC8918576 DOI: 10.3389/fphar.2021.816477] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic disabling inflammatory disease that causes synovial angiogenesis in an invasive manner and leads to joint destruction. Currently available pharmacotherapy for RA has unwanted side effects and limitations. Although anti-angiogenic therapy is regarded as a new potential treatment for RA, only a few anti-angiogenic drugs are available. An increasing number of studies have shown that β-sitosterol (BSS) may exert inhibitory effects against angiogenesis. However, the mechanisms involved are still unclear.Methods: Based on the results of the gene set enrichment analysis (GSEA) of the transcriptome data of endothelial cells from RA patients, we evaluated the pharmacological effects of BSS on the tube formation, cell proliferation, and migration of human umbilical vein endothelial cells (HUVECs). Furthermore, the effects of BSS treatment on vascular endothelial growth factor receptor 2 (VEGFR2) were determined using molecular docking and Western blotting. Additionally, in the presence or absence of BSS, synovial angiogenesis and joint destruction of the ankle were investigated in collagen-induced arthritis (CIA) mice. The effect of BSS treatment on VEGFR2/p-VEGFR2 expression was verified through immunohistochemical staining.Results: The immunohistochemistry results revealed that BSS treatment inhibited angiogenesis both in vitro and in vivo. In addition, the results of 5-ethynyl-2′-deoxyuridine and cell cycle analysis showed that BSS treatment suppressed the proliferation of HUVECs, while the Transwell migration and stress fiber assays demonstrated that BSS treatment inhibited the migration of HUVECs. Notably, the inhibitory effect of BSS treatment on VEGFR2/p-VEGFR2 was similar to that of axitinib. In CIA mice, BSS also exerted therapeutic effects on the ankles by reducing the degree of swelling, ameliorating bone and cartilage damage, preventing synovial angiogenesis, and inhibiting VEGFR2 and p-VEGFR2 expression.Conclusion: Therefore, our findings demonstrate that BSS exerts an inhibitory effect on synovial angiogenesis by suppressing the proliferation and migration of endothelial cells, thereby alleviating joint swelling and bone destruction in CIA mice. Furthermore, the underlying therapeutic mechanisms may involve the inhibition of VEGF signaling pathway activation.
Collapse
Affiliation(s)
- Kai Qian
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Postdoctoral Research Station, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xue-Xia Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Xiao-Bao Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shu-Di Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan-Kai Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min-Ying Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Chang-Song Lin, ; Min-Ying Liu,
| | - Chang-Song Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Chang-Song Lin, ; Min-Ying Liu,
| |
Collapse
|