1
|
He B, Wood KH, Li ZJ, Ermer JA, Li J, Bastow ER, Sakaram S, Darcy PK, Spalding LJ, Redfern CT, Canes J, Oliveira M, Prat A, Cortes J, Thompson EW, Littlefield BA, Redfern A, Ganss R. Selective tubulin-binding drugs induce pericyte phenotype switching and anti-cancer immunity. EMBO Mol Med 2025; 17:1071-1100. [PMID: 40140727 DOI: 10.1038/s44321-025-00222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
The intratumoral immune milieu is crucial for the success of anti-cancer immunotherapy. We show here that stromal modulation by the tubulin-binding anti-cancer drugs combretastatin A4 (CA-4) and eribulin improved tumor perfusion and anti-tumor immunity. This was achieved by reverting highly proliferative, angiogenic pericytes into a quiescent, contractile state which durably normalized the vascular bed and reduced hypoxia in mouse models of pancreatic neuroendocrine cancer, breast cancer and melanoma. The crucial event in pericyte phenotype switching was RhoA kinase activation, which distinguished CA-4 and eribulin effects from other anti-mitotic drugs such as paclitaxel and vinorelbine. Importantly, eribulin pre-treatment sensitized tumors for adoptive T cell therapy or checkpoint inhibition resulting in effector cell infiltration and better survival outcomes in mice. In breast cancer patients, eribulin neoadjuvant treatment induced pericyte maturity and RhoA kinase activity indicating similar vessel remodeling effects as seen in mice. Moreover, a contractile pericyte signature was associated with overall better survival outcome in two independent breast cancer cohorts. This underscores the potential of re-purposing specific anti-cancer drugs to enable synergistic complementation with emerging immunotherapies.
Collapse
Affiliation(s)
- Bo He
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Kira H Wood
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Zhi-Jie Li
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Guangdong, P. R. China
| | - Judith A Ermer
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Ji Li
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Edward R Bastow
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | | | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa J Spalding
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Cameron T Redfern
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Jordi Canes
- SOLTI Cancer Research Group, Barcelona, Spain
| | - Mafalda Oliveira
- SOLTI Cancer Research Group, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Breast Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Aleix Prat
- SOLTI Cancer Research Group, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Javier Cortes
- SOLTI Cancer Research Group, Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR)-Oncoclínicas&Co, Jersey City, NJ, USA
- Medica Scientia Innovation Research (MEDSIR)-Oncoclínicas&Co, Sao Paulo, Brazil
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
- IOB Madrid, Institute of Oncology, Hospital Beata María Ana, Madrid, Spain
| | - Erik W Thompson
- School of Biomedical Sciences and Centre for Genomics and Personalised Health, Faculty of Health, Queensland University of Technology (QUT) and Translational Research Institute, Brisbane, Australia
| | | | - Andrew Redfern
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Fiona Stanley Hospital, Perth, WA, Australia
| | - Ruth Ganss
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
2
|
Patel N, Avery E, Huang Y, Chung EJ. Developing Therapeutically Enhanced Extracellular Vesicles for Atherosclerosis Therapy. Adv Healthc Mater 2025; 14:e2404398. [PMID: 40192440 DOI: 10.1002/adhm.202404398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/19/2025] [Indexed: 05/17/2025]
Abstract
Atherosclerosis is a chronic condition and the leading cause of death worldwide. While statin therapy is the clinical standard, many patients still experience acute cardiovascular events. To develop better therapies, the group previously delivered microRNA-145 (miR-145) via micellar nanoparticles to vascular smooth muscle cells (VSMCs) to inhibit atherosclerosis. However, for chronic diseases requiring repeat dosing, synthetic nanoparticles have drawbacks such as immunogenic response and low delivery efficiency. To meet this challenge, therapeutically enhanced extracellular vesicles (EVs) are engineered as a biologically-derived nanoparticle modality to mitigate atherosclerosis. A novel strategy is employed to load miR-145 into EVs using ExoMotifs-short miRNA sequences that facilitate miR cargo loading. EVs are further functionalized with a monocyte chemoattractant 1 (MCP-1) peptide, which binds to C-C chemokine receptor 2 upregulated in pathogenic VSMCs. Mouse aortic smooth muscle cell MCP-1-miR-145 EVs restored VSMC gene expression and function in vitro. Moreover, compared to miR-145-loaded synthetic nanoparticles, MCP-1-miR-145 EVs exerted similar therapeutic effects but with 25,000x less miR-145 cargo. Lastly, MCP-1-miR-145 EVs inhibited plaque growth in mid-stage ApoE-/- atherosclerotic mice at a miR-145 dose 5000x less than synthetic nanoparticles. Collectively, it is demonstrated that genetic engineering of VSMCs with miR-145 produces therapeutically boosted EVs that reduce atherosclerosis plaque burden.
Collapse
Affiliation(s)
- Neil Patel
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Elijah Avery
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Bridge Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Kawano H, Kawamura K, Maemura K, Okano S. Ultrastructure of the small vessels in the myocardium in a patient with fatal systemic capillary leak syndrome. Med Mol Morphol 2025:10.1007/s00795-025-00439-x. [PMID: 40295313 DOI: 10.1007/s00795-025-00439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
A 29-year-old Japanese woman was admitted to our hospital with fever, cardiogenic shock, and cardiac arrest and died 18 h after admission. The patient was diagnosed with systemic capillary leak syndrome associated with coronavirus disease 2019. Electron microscopy of the biopsied right-ventricular myocardium revealed extensive interstitial leakage of blood cells and plasma, damaged capillaries, and reticular vessel drainage into the Thebesian vein. These findings indicate that severe capillary leak and lumen occlusion due to damaged capillaries are the main features of systemic capillary leak syndrome.
Collapse
Affiliation(s)
- Hiroaki Kawano
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Koichi Kawamura
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shinji Okano
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Zhan X, Wang S, Bèchet N, Gouras G, Wen G. Perivascular macrophages in the central nervous system: insights into their roles in health and disease. Cell Death Dis 2025; 16:350. [PMID: 40295513 PMCID: PMC12037809 DOI: 10.1038/s41419-025-07592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Perivascular macrophages (PVMs) are a specialized subset of macrophages situated near blood vessels in the brain. Their strategic positioning around these vessels enables them to perform key functions in immune surveillance and response to inflammation and injury. These cells are crucial for modulating the immune response within the brain, contributing to normal central nervous system (CNS) processes. In pathological conditions, the role of PVMs becomes more complex. Depending on the specific disease or injury, they may contribute to inflammation, blood-brain barrier (BBB) dysfunction, and the clearance of abnormal materials. PVMs are implicated in degenerative diseases, cerebrovascular impairment, and microhemorrhages associated with amyloid-β immunotherapy. Despite their important roles in the CNS, research on PVMs remains limited, and the mechanisms underlying their involvement in both physiological and pathological processes within the brain are not yet fully elucidated. Therefore, this review will focus on the current advancements in PVM research, including their origin, classification, roles in neuroinflammation and neuroprotection, and their potential roles as therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoni Zhan
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, China
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Shuying Wang
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Nicholas Bèchet
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Gunnar Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, China.
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Liang N, Liu S, Wang Y, Ying L, Zhang K, Li H, Xiao L, Hu Y, Luo G. Nicotinamide Mononucleotide (NMN) Improves the Senescence of Mouse Vascular Smooth Muscle Cells Induced by Ang II Through Activating p-AMPK/KLF4 Pathway. Pharmaceuticals (Basel) 2025; 18:553. [PMID: 40283988 PMCID: PMC12030317 DOI: 10.3390/ph18040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Vascular smooth muscle cells (VSMCs) senescence exacerbates vascular diseases like atherosclerosis and hypertension. Angiotensin II (Ang II) is a strong inducer of VSMCs senescence, causing vascular damage, though its exact mechanism is unclear. Nicotinamide mononucleotide (NMN), a NAD+ precursor, has gained attention for its anti-senescence potential, yet its role in inhibiting VSMCs senescence is not fully understood. Methods: This study assessed senescence markers, including β-galactosidase activity (SA-β-gal) and the senescence-associated secretory phenotype (SASP), in mouse VSMCs treated with Ang II alone or with NMN and relevant activators/inhibitors. Results: Compared to controls, SA-β-gal levels and SASP secretion significantly increased in Ang II-exposed cells. In contrast, NMN reduced the expression of both markers. NMN also reversed Ang II-induced VSMCs senescence by downregulating KLF4 and p16 through AMPK activation, which Ang II inhibited, while decreasing mRNA levels of key SASP components. The effects of the AMPK activator AICAR were similar to those of NMN, whereas the AMPK inhibitor Compound C negated NMN's effects. Conclusions: In summary, NMN mitigates Ang II-induced mouse VSMCs senescence via the AMPK/KLF4/p16 pathway. This study underscores the anti-senescence effects of NMN on mouse VSMCs, supporting further exploration of its potential as a food supplement for preventing and treating vascular senescence.
Collapse
Affiliation(s)
- Na Liang
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (N.L.); (S.L.); (Y.W.); (L.Y.); (K.Z.); (H.L.); (L.X.)
| | - Si Liu
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (N.L.); (S.L.); (Y.W.); (L.Y.); (K.Z.); (H.L.); (L.X.)
| | - Yan Wang
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (N.L.); (S.L.); (Y.W.); (L.Y.); (K.Z.); (H.L.); (L.X.)
| | - Linyao Ying
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (N.L.); (S.L.); (Y.W.); (L.Y.); (K.Z.); (H.L.); (L.X.)
| | - Keyi Zhang
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (N.L.); (S.L.); (Y.W.); (L.Y.); (K.Z.); (H.L.); (L.X.)
| | - Hao Li
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (N.L.); (S.L.); (Y.W.); (L.Y.); (K.Z.); (H.L.); (L.X.)
| | - Lin Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (N.L.); (S.L.); (Y.W.); (L.Y.); (K.Z.); (H.L.); (L.X.)
| | - Yuming Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha 410078, China
- Hunan Academy of Preventive Medicine, Changsha 410078, China
| | - Gang Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (N.L.); (S.L.); (Y.W.); (L.Y.); (K.Z.); (H.L.); (L.X.)
| |
Collapse
|
6
|
Kraus L, Fredericks S, Scheeler K. The epigenetic regulation of crosstalk between cardiac fibroblasts and other cardiac cell types during stress. Front Cardiovasc Med 2025; 12:1539826. [PMID: 40264508 PMCID: PMC12011845 DOI: 10.3389/fcvm.2025.1539826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
With the global impact of cardiovascular disease, there is a dire need to understand the mechanisms in the heart during injury and stress. It has been shown that the regulation of the extracellular matrix via cardiac fibroblasts plays a major role in the progression of heart failure and worsening function of the heart. Importantly, it has been suggested that crosstalk between other cardiac cells like cardiomyocytes, immune cells, and endothelial cells are influenced by the pathological function of the fibroblasts. This decline in function across all cardiac cells is seemingly irreversible. However, epigenetic mechanisms have been shown to regulate functionality across cardiac cells and improve outcomes during stress or injury. This epigenetic regulation has also been shown to control communication between different cell types and influence the role of multiple cardiac cell types during injury. The goal of this review is to summarize and discuss the current research of epigenetic regulation of cardiac fibroblasts and the subsequent crosstalk with other cardiac cell types in cardiovascular disease states.
Collapse
Affiliation(s)
- Lindsay Kraus
- Department of Biology, College of Science, Technology, Engineering, Arts, and Mathematics, Alvernia University, Reading, PA, United States
| | | | | |
Collapse
|
7
|
Roy K, Chandran DS, Deepak KK. Regional Variation in Pulse Transit Time in the Upper Limb Arteries During Hypotensive and Non-hypotensive Lower Body Negative Pressure. Cureus 2025; 17:e82752. [PMID: 40406757 PMCID: PMC12095889 DOI: 10.7759/cureus.82752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2025] [Indexed: 05/26/2025] Open
Abstract
PURPOSE Pulse transit time (PTT) is crucial in developing non-invasive cuffless blood pressure (BP) measurement devices. Sympathetic activation, due to its effect on PTT, can lead to erroneous estimation of BP. Sympathetic activation might affect the PTT differentially depending on the site where PTT is measured in the upper limb. This study aimed to decipher regional variation in PTT in response to sympathetic activation in three segments of the upper limb arteries. Exposure to graded lower body negative pressure (LBNP) at hypotensive (-30 mmHg and -40 mmHg) and non-hypotensive (-10 mmHg and -20 mmHg) levels has been used to produce sympathetic activation. METHODS This was a pilot study. Ten healthy subjects were recruited for the study, and recordings were done. Carotid, brachial, and radial pulse waveforms were recorded simultaneously by tonometry, and the finger pulse waveform was recorded by photoplethysmography (PPG). LBNP was applied at -10 mmHg, -20 mmHg, -30 mmHg, and -40 mmHg for two minutes. Carotid-brachial PTT (cbPTT), brachial-radial PTT (brPTT), and radial-finger PTT (rfPTT) were calculated. RESULTS cbPTT did not show any significant change, whereas both brPTT (0.02679±0.00635 sec at baseline vs. 0.02027±0.00662 sec at hypotensive LBNP; p=0.0386) and rfPTT (0.00908±0.00350 sec at baseline vs. 0.00585±0.00211 sec at hypotensive LBNP; p=0.003) showed a significant decrease in response to hypotensive LBNP. rfPTT (0.00908±0.00350 at baseline vs. 0.00534±0.00249s at non-hypotensive LBNP; p=0.0257) also showed a significant decline in response to non-hypotensive LBNP as well. CONCLUSION The current study reveals that in upper limb arteries, PTT response to LBNP shows regional variation with an accentuation of response from proximal to distal segments.
Collapse
Affiliation(s)
- Koushik Roy
- Department of Physiology, All India Institute of Medical Sciences - Central Armed Police Forces Institute of Medical Sciences Center, New Delhi, IND
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, IND
| | - Dinu S Chandran
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, IND
| | - Kishore K Deepak
- Department of Biomedical Engineering, Indian Institute of Technology, New Delhi, IND
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, IND
| |
Collapse
|
8
|
Han JH, Heo JB, Lee HW, Park MH, Choi J, Yun EJ, Lee S, Song GY, Myung CS. Novel carbazole attenuates vascular remodeling through STAT3/CIAPIN1 signaling in vascular smooth muscle cells. Acta Pharm Sin B 2025; 15:1463-1479. [PMID: 40370537 PMCID: PMC12069901 DOI: 10.1016/j.apsb.2024.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 05/16/2025] Open
Abstract
This study investigated the molecular mechanism of phenotypic switching of vascular smooth muscle cells (VSMCs), which play a crucial role in vascular remodeling using 9H-Carbazol-3-yl 4-aminobenzoate (CAB). CAB significantly attenuated platelet-derived growth factor (PDGF)-induced VSMC proliferation and migration. CAB suppressed PDGF-induced STAT3 activation by directly binding to the SH2 domain of STAT3. Downregulation of STAT3 phosphorylation by CAB attenuated CIAPIN1/JAK2/STAT3 axis through a decrease in CIAPIN1 transcription. Furthermore, abrogated CIAPIN1 decreased KLF4-mediated VSMC dedifferentiation and increased CDKN1B-induced cell cycle arrest and MMP9 suppression. CAB inhibited intimal hyperplasia in injury-induced neointima animal models by inhibition of the CIAPIN1/JAK2/STAT3 axis. However, CIAPIN1 overexpression attenuated CAB-mediated suppression of VSMC proliferation, migration, phenotypic switching, and intimal hyperplasia. Our study clarified the molecular mechanism underlying STAT3 inhibition of VSMC phenotypic switching and vascular remodeling and identified novel active CAB. These findings demonstrated that STAT3 can be a major regulator to control CIAPIN1/JAK2/STAT3 axis that may be a therapeutic target for treating vascular proliferative diseases.
Collapse
Affiliation(s)
- Joo-Hui Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea
| | - Jong-Beom Heo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyung-Won Lee
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Min-Ho Park
- Institute of Drug Research and Development, College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jangmi Choi
- Institute of Drug Research and Development, College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Joo Yun
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongpyo Lee
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
9
|
Kang DH, Kim J, Lee J, Kang SW. The small molecule peroxiredoxin mimetics restore growth factor signalings and reverse vascular remodeling. Free Radic Biol Med 2025; 229:300-311. [PMID: 39848342 DOI: 10.1016/j.freeradbiomed.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Epidithio-diketopiperazine (ETP) compound is the family of natural fungal metabolites that are known to exert diverse biological effects, such as immunosuppression and anti-cancer activity, in higher animals. However, an enzyme-like catalytic activity or function of the ETP derivatives has not been reported. Here, we report the generation of novel thiol peroxidase mimetics that possess peroxide-reducing activity through strategic derivatization of the core ETP ring structure. The ETP derivatives with small side chains are the bona fide 2-Cys peroxiredoxin (PRX) mimetics that catalyze the H2O2-reducing reaction specifically coupled to the thioredoxin/thioredoxin reductase system. In contrast, the ETP derivatives with linear chains or a heterocyclic group show H2O2-reducing activity in coupling with both thioredoxin and glutathione systems. Moreover, the ETP derivatives with bulky heterocyclic groups almost lose catalytic activity. The 2-Cys PRX mimetics regulate intracellular H2O2 levels, thereby restoring the receptor Tyr kinase signaling and cellular functions disrupted by the absence of 2-Cys PRX in vascular cells. In a rodent model, the 2-Cys PRX mimetics reverse vascular occlusion in the injured carotid arteries by inhibiting smooth muscle hyperplasia and promoting reendothelialization. Thus, this study reveals a novel chemical platform for complementing defective 2-Cys PRX enzymes in biological systems.
Collapse
Affiliation(s)
- Dong Hoon Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jiran Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jiyoung Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
10
|
Li X, Zhao W, Wang Z, Moura AK, Roudbari K, Zuo R, Hu JZ, Wang YT, Li PL, Zhang Y. Acid Sphingomyelinase Regulates AdipoRon-Induced Differentiation of Arterial Smooth Muscle Cells via TFEB Activation. Int J Mol Sci 2025; 26:2147. [PMID: 40076784 PMCID: PMC11899876 DOI: 10.3390/ijms26052147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
AdipoRon is a selective adiponectin receptor agonist that inhibits vascular remodeling by promoting the differentiation of arterial smooth muscle cells (SMCs). Our recent studies have demonstrated that activation of TFEB and its downstream autophagy-lysosomal signaling contribute to adipoRon-induced differentiation of SMCs. The present study was designed to examine whether acid sphingomyelinase (ASM; gene symbol Smpd1) is involved in mediating adipoRon-induced activation of TFEB-autophagy signaling and inhibition of proliferation/migration in arterial SMCs. Our results showed that adipoRon induced ASM expression and ceramide production in Smpd1+/+ SMCs, which were abolished in Smpd1-/- SMCs. Compared to Smpd1+/+ SMCs, Smpd1-/- SMCs exhibited less TFEB nuclear translocation and activation of autophagy signaling induced by adipoRon stimulation. SMC differentiation was further characterized by retarded wound healing, reduced proliferation, F-actin reorganization, and MMP downregulation. The results showed that Smpd1-/- SMCs were less responsive to adipoRon-induced differentiation than Smpd1+/+ SMCs. Mechanistically, adipoRon increased the expression of protein phosphatases such as calcineurin and PP2A in Smpd1+/+ SMCs. The calcineurin inhibitor FK506/cyclosporin A or PP2A inhibitor okadaic acid significantly attenuated adipoRon-induced activation of TFEB-autophagy signaling. In addition, adipoRon-induced expressions of calcineurin and PP2A were not observed in Smpd1-/- SMCs. However, activation of calcineurin by lysosomal TRPML1-Ca2+ channel agonist ML-SA1 rescued the activation of TFEB-autophagy signaling and the effects of adipoRon on cell differentiation in Smpd1-/- SMCs. Taken together, these data suggested that ASM regulates adipoRon-induced SMC differentiation through TFEB activation. This study provided novel mechanistic insights into the therapeutic effects of adipoRon on TFEB signaling and pathological vascular remodeling.
Collapse
MESH Headings
- Sphingomyelin Phosphodiesterase/metabolism
- Sphingomyelin Phosphodiesterase/genetics
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Cell Differentiation/drug effects
- Animals
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Piperidines/pharmacology
- Signal Transduction/drug effects
- Autophagy/drug effects
- Mice
- Cells, Cultured
- Cell Proliferation/drug effects
- Cell Movement/drug effects
- Ceramides/metabolism
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Wei Zhao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Zhengchao Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Alexandra K. Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Kiana Roudbari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Rui Zuo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Jenny Z. Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Yang Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
11
|
Earnhardt-San AL, Baker EC, Cilkiz KZ, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Riley DG, Welsh TH. Evaluation of Prenatal Transportation Stress on DNA Methylation (DNAm) and Gene Expression in the Hypothalamic-Pituitary-Adrenal (HPA) Axis Tissues of Mature Brahman Cows. Genes (Basel) 2025; 16:191. [PMID: 40004522 PMCID: PMC11855312 DOI: 10.3390/genes16020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The experience of prenatal stress results in various physiological disorders due to an alteration of an offspring's methylome and transcriptome. The objective of this study was to determine whether PNS affects DNA methylation (DNAm) and gene expression in the stress axis tissues of mature Brahman cows. Methods: Samples were collected from the paraventricular nucleus (PVN), anterior pituitary (PIT), and adrenal cortex (AC) of 5-year-old Brahman cows that were prenatally exposed to either transportation stress (PNS, n = 6) or were not transported (Control, n = 8). The isolated DNA and RNA samples were, respectively, used for methylation and RNA-Seq analyses. A gene ontology and KEGG pathway enrichment analysis of each data set within each sample tissue was conducted with the DAVID Functional Annotation Tool. Results: The DNAm analysis revealed 3, 64, and 99 hypomethylated and 2, 93, and 90 hypermethylated CpG sites (FDR < 0.15) within the PVN, PIT, and AC, respectively. The RNA-Seq analysis revealed 6, 25, and 5 differentially expressed genes (FDR < 0.15) in the PVN, PIT, and AC, respectively, that were up-regulated in the PNS group relative to the Control group, as well as 24 genes in the PIT that were down-regulated. Based on the enrichment analysis, several developmental and cellular processes, such as maintenance of the actin cytoskeleton, cell motility, signal transduction, neurodevelopment, and synaptic function, were potentially modulated. Conclusions: The methylome and transcriptome were altered in the stress axis tissues of mature cows that had been exposed to prenatal transportation stress. These findings are relevant to understanding how prenatal experiences may affect postnatal neurological functions.
Collapse
Affiliation(s)
- Audrey L. Earnhardt-San
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA
| | - Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| |
Collapse
|
12
|
Xu S, Wen S, Zong X, Wen S, Zhu J, Zheng W, Wang Z, Cao P, Liang Z, Ding C, Zhang Y, Ruan G. Identification of Circulating Proteins Associated With Blood Pressure. Hypertension 2025; 82:333-346. [PMID: 39624895 DOI: 10.1161/hypertensionaha.124.24151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Circulating proteins in blood are involved in various physiological processes, but their contributions to blood pressure regulation remain partially understood. In traditional observational studies, identifying circulating proteins causally associated with blood pressure is challenging because of potentially unmeasured confounding and possible reverse causality. METHODS Two-sample Mendelian randomization analyses were conducted to estimate the causal effects of 2270 circulating proteins (data sourced from 8 genome-wide association studies) on diastolic blood pressure, systolic blood pressure, and pulse pressure. Colocalization analyses were then used to investigate whether the circulating proteins and blood pressure traits shared causal genetic variants. To further verify the findings, we subsequently performed Steiger filtering analyses, annotation of protein-altering variants, assessment of overlap between protein quantitative trait loci and expression quantitative trait loci, protein-protein interaction and functional enrichment analyses, and drug target evaluation. To provide more potential biomarkers, we further evaluated the epidemiological associations of 2923 circulating proteins with blood pressure and hypertension by cross-sectional and longitudinal analyses using individual data in the UK Biobank. RESULTS Mendelian randomization and colocalization analyses identified 121 circulating proteins with putative causal effects on at least 1 blood pressure trait. Many of the identified proteins are enriched in the pathways relevant to blood pressure regulation, and a majority of these proteins are either known drug targets or druggable candidates. CONCLUSIONS This study has uncovered numerous circulating proteins potentially causally associated with blood pressure, providing insights into the regulatory mechanisms of blood pressure and potential therapeutic targets to facilitate blood pressure management.
Collapse
Affiliation(s)
- Siqi Xu
- Department of Rheumatology (S.X., Simin Wen, X.Z., Shifeng Wen, C.D., G.R.), Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
- Clinical Research Centre, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China (S.X., Simin Wen, X.Z., Shifeng Wen, C.D., G.R.)
| | - Simin Wen
- Department of Rheumatology (S.X., Simin Wen, X.Z., Shifeng Wen, C.D., G.R.), Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
- Clinical Research Centre, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China (S.X., Simin Wen, X.Z., Shifeng Wen, C.D., G.R.)
| | - Xizeng Zong
- Department of Rheumatology (S.X., Simin Wen, X.Z., Shifeng Wen, C.D., G.R.), Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
- Clinical Research Centre, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China (S.X., Simin Wen, X.Z., Shifeng Wen, C.D., G.R.)
| | - Shifeng Wen
- Department of Rheumatology (S.X., Simin Wen, X.Z., Shifeng Wen, C.D., G.R.), Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
- Clinical Research Centre, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China (S.X., Simin Wen, X.Z., Shifeng Wen, C.D., G.R.)
| | - Jianwei Zhu
- Department of Orthopedics (J.Z., W.Z.), Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weipeng Zheng
- Department of Orthopedics (J.Z., W.Z.), Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhiqiang Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China (Z.W., P.C., C.D., Y.Z.)
| | - Peihua Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China (Z.W., P.C., C.D., Y.Z.)
| | - Zhijiang Liang
- Department of Public Health, Guangdong Women and Children Hospital, Guangzhou, China (Z.L.)
| | - Changhai Ding
- Department of Rheumatology (S.X., Simin Wen, X.Z., Shifeng Wen, C.D., G.R.), Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
- Clinical Research Centre, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China (S.X., Simin Wen, X.Z., Shifeng Wen, C.D., G.R.)
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China (Z.W., P.C., C.D., Y.Z.)
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (C.D.)
| | - Yan Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China (Z.W., P.C., C.D., Y.Z.)
| | - Guangfeng Ruan
- Department of Rheumatology (S.X., Simin Wen, X.Z., Shifeng Wen, C.D., G.R.), Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
- Clinical Research Centre, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China (S.X., Simin Wen, X.Z., Shifeng Wen, C.D., G.R.)
| |
Collapse
|
13
|
Aviram R, Zaffryar‐Eilot S, Kaganovsky A, Odeh A, Melamed S, Militsin R, Coren L, Pinnock CB, Shemesh A, Palty R, Ganesh SK, Hasson P. Coordination among cytoskeletal organization, cell contraction, and extracellular matrix development is dependent on LOX for aneurysm prevention. FEBS J 2025; 292:776-795. [PMID: 39632420 PMCID: PMC11839385 DOI: 10.1111/febs.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/04/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Distinct and seemingly independent cellular pathways affecting intracellular machinery or extracellular matrix (ECM) deposition and organization have been implicated in aneurysm formation. One of the key genes associated with this pathology in both humans and mice is lysyl oxidase (LOX), a secreted ECM-modifying enzyme, highly expressed in medial vascular smooth muscle cells. To dissect the mechanisms leading to aneurysm development, we conditionally deleted Lox in smooth muscle cells. We find that cytoskeletal organization is lost following Lox deletion. Cell culture assays and in vivo analyses demonstrate a cell-autonomous role for LOX affecting myosin light-chain phosphorylation and cytoskeletal assembly resulting in irregular smooth muscle contraction. These results not only highlight new intracellular roles for LOX, but notably, they provide a link between multiple processes leading to aneurysm formation, suggesting LOX coordinates ECM development, cytoskeletal organization, and cell contraction required for media development and function.
Collapse
Affiliation(s)
- Rohtem Aviram
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Shelly Zaffryar‐Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Anna Kaganovsky
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Anas Odeh
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Shay Melamed
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Ruslana Militsin
- Department of Biochemistry, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Lavi Coren
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Cameron B. Pinnock
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Ariel Shemesh
- Biomedical core facilities, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Raz Palty
- Department of Biochemistry, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Santhi K. Ganesh
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
14
|
Rager C, Klöpper T, Tasch S, Whittaker MR, Exintaris B, Mietens A, Middendorff R. The Influence of Cell Isolation and Culturing on Natriuretic Peptide Receptors in Aortic Vascular Smooth Muscle Cells. Cells 2025; 14:51. [PMID: 39791752 PMCID: PMC11720613 DOI: 10.3390/cells14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing. Previously, we showed that even popular reference genes changed dramatically after SMC isolation from aorta. Regarding NP receptors, a substantial amount of data relies on cell culture. We hypothesize that the NP/cGMP system in intact aortic tunica media differs from isolated and cultured aortic SMCs. Therefore, we studied isolation and culturing effects on the expression of NP receptors GC-A, GC-B, and NP clearance receptor (NPRC) compared to sGC. We investigated intact tunica media and primary SMCs from the longitudinal halves of the same rat aorta. GC activity was monitored by cyclic guanosine monophosphate (cGMP). In addition, we hypothesize that there are sex-dependent differences in the NP/cGMP cascade in both intact tissue and cultured cells. We, therefore, analyzed a male and female cohort. Expression was quantified by RT-qPCR comparing aortic media and SMCs with our recently validated reference gene (RG) small nuclear ribonucleoprotein 2 (U2). Only GC-A was stably expressed. In intact media, GC-A exceeded GC-B and NPRC. However, GC-B, NPRC, and sGC were dramatically upregulated in cultured SMCs of the same aortae different from the stable GC-A. The expression was mirrored by NP-induced GC activity. In cultured cells, changes in GC activity were delayed compared to receptor expression. Minor differences between both sexes could also be revealed. Thus, isolation and culture fundamentally alter the cGMP system in vascular SMCs with potential impact on drug testing and scRNAseq. Especially, the dramatic increase in the clearance receptor NPRC in culture might distort all physiological ANP, BNP, and CNP effects.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Receptors, Atrial Natriuretic Factor/metabolism
- Receptors, Atrial Natriuretic Factor/genetics
- Male
- Rats
- Female
- Aorta/cytology
- Aorta/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/cytology
- Cells, Cultured
- Cyclic GMP/metabolism
- Cell Separation
- Rats, Wistar
- Cell Culture Techniques/methods
Collapse
Affiliation(s)
- Christine Rager
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
- Drug Delivery, Disposition, and Dynamics (D4), Monash Institute of Pharmacy & Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
| | - Tobias Klöpper
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
| | - Sabine Tasch
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
| | - Michael Raymond Whittaker
- Drug Delivery, Disposition, and Dynamics (D4), Monash Institute of Pharmacy & Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
| | - Betty Exintaris
- Pharmacy and Pharmaceutical Sciences Education, Monash Institute of Pharmacy & Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Andrea Mietens
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
| | - Ralf Middendorff
- Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany; (C.R.)
| |
Collapse
|
15
|
Mahmoud EO, Elsabagh YA, Abd El Ghaffar N, Fawzy MW, Hussein MA. Atherosclerosis Associated With COVID-19: Acute, Tends to Severely Involve Peripheral Arteries, and May be Reversible. Angiology 2025; 76:77-84. [PMID: 37611951 DOI: 10.1177/00033197231198253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Arterial stiffness was reported with corona virus disease 2019 (COVID-19). We studied atherosclerosis in COVID-19 directly through duplex ultrasound measurements and their relation to co-morbidities, clinical and laboratory severity markers, and serum interleukin (IL) 6 and 17. Serum IL 6 and 17, average carotid intima-media thickness (cIMT), diameter and peak systolic velocities (PSV) of tibial, ulnar, radial arteries, and ankle brachial index (ABI) were measured in 44 COVID-19 patients and 44 healthy controls. Serum IL6, IL17, PSV, and cIMT were higher while diameter was lower (P ≤ .01) in cases. Clinical severity index correlated positively with age, co-morbidities, ferritin, IL6, IL17, cIMT, and PSV (P ≤ .04) and negatively with diameter and ABI (P = .04). Patients with severe lymphopenia had higher PSV, IL6, and IL17 and lower diameter (P < .00001). Ferritin positively correlated with PSV and negatively with diameter and ABI (P ≤ .01). Those who received an IL6 inhibitor (tocilizumab) showed lower PSV and higher diameter (P ≤ .01). In multiple regression analysis, IL17 and (age, co-morbidities) were related to (PSV, diameter) and cIMT (P ≤ .001, ≤0.02), respectively. COVID-19 may be associated with subclinical acute and may be reversible atherosclerosis severely involving peripheral arteries.
Collapse
Affiliation(s)
- Eman O Mahmoud
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| | - Yumn A Elsabagh
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| | | | - Mary Wadie Fawzy
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| | - Mohamed A Hussein
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Cui X, Wang Y, Lu H, Wang L, Xie X, Zhang S, Kovarik P, Li S, Liu S, Zhang Q, Yang J, Zhang C, Tian J, Liu Y, Zhang W. ZFP36 Regulates Vascular Smooth Muscle Contraction and Maintains Blood Pressure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408811. [PMID: 39589932 PMCID: PMC11744710 DOI: 10.1002/advs.202408811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Hypertension remains a major risk factor for cardiovascular diseases, but the underlying mechanisms are not well understood. Zinc finger protein 36 (ZFP36) is an RNA-binding protein that regulates mRNA stability by binding to adenylate-uridylate-rich elements in the mRNA 3'-untranslated region. This study reveals that ZFP36 expression is highly elevated in the arteries of hypertensive patients and rodents. In cultured vascular smooth muscle cell (VSMC), angiotensin II (AngII) activates poly (ADP-ribose) polymerases1 (PARP1) to stimulate Zfp36 expression at the transcriptional level. VSMC-specific ZFP36 deletion reduces vessel contractility and blood pressure levels in mice. Mechanistically, ZFP36 regulates G protein-coupled receptors (GPCRs)-mediated increases in intracellular calcium levels through impairing the mRNA stability of regulator of G protein signaling 2 (RGS2). Moreover, the VSMC-specific ZFP36 deficiency attenuates AngII-induced hypertension and vascular remodeling in mice. AAV-mediated ZFP36 knockdown ameliorates spontaneous hypertension in rats. These findings elucidate that ZFP36 plays an important role in the regulation of smooth muscle contraction and blood pressure through modulating RGS2 expression. ZFP36 inhibition may represent a new therapeutic strategy for the treatment of hypertension.
Collapse
Affiliation(s)
- Xiuru Cui
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityHeilongjiang Provincial Key Laboratory of Panvascular DiseaseThe Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150086China
| | - Yawei Wang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Hanlin Lu
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Lei Wang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Xianwei Xie
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityHeilongjiang Provincial Key Laboratory of Panvascular DiseaseThe Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150086China
| | - Shenghao Zhang
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityHeilongjiang Provincial Key Laboratory of Panvascular DiseaseThe Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150086China
| | - Pavel Kovarik
- Max Perutz LabsUniversity of ViennaVienna Biocenter (VBC), Dr. Bohr‐Gasse 9ViennaA‐1030Austria
| | - Shuijie Li
- Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical UniversityHarbin150081China
| | - Shanshan Liu
- State Key Laboratory of Transvascular Implantation DevicesHeart Regeneration and Repair Key Laboratory of Zhejiang ProvinceDepartment of CardiologyThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310009China
| | - Qunye Zhang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Jianmin Yang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Cheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Jinwei Tian
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityHeilongjiang Provincial Key Laboratory of Panvascular DiseaseThe Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150086China
| | - Yan Liu
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Wencheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| |
Collapse
|
17
|
Zou J, Liu Y, Tian C, Wang L, Li S, Ran J, Yang X, Nie G, Peng W. Understanding the Complexity of Hypertension with Sarcopenia by Scientometric Analysis. J Multidiscip Healthc 2024; 17:6211-6228. [PMID: 39759086 PMCID: PMC11697656 DOI: 10.2147/jmdh.s498799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Objective The scientometric analysis was aim to focus on recent studies and clarify new research directions on hypertension with sarcopenia. We hope to provide comprehensive insights or actionable recommendations for clinicians or policymakers. Methods The Web of Science Core Collection database (WoSCC) from 2004 to 2023 for analysis was used. And VOSviewer, CiteSpace, and Origin software were utilized for scientometric analyses. Results The United States was the primary contributor to 1,994 studies on hypertension with sarcopenia. The University of São Paulo emerged as the most prolific institution, with Morrell Nicholas W. being the most influential scholar and Cruz-Jentoft A.J. being the most co-cited author. PLoS One was the most prolific journal, whereas Circulation was the most relevant journal. Research has focused not only on physiological, biochemical, and cell biological mechanisms but also on sarcopenia associated with other diseases and involved in various fields, highlighting the complexity of the area and the need for integrative treatment. Keyword analysis revealed that, in addition to hypertension and sarcopenia, other topics such as obesity, pulmonary hypertension, old age, metabolic syndrome, inflammation, hypoxia, exercise, insulin resistance, and revascularization attracted attention. In recent years, COVID-19, mitochondria, handgrip strength, etc. have been hot topics, but aging, skeletal muscle, weight loss, diabetes, obesity, metabolic syndrome, insulin resistance, heart failure, mitochondria, mortality, exercise, and physical activity seems to bridge hypertension and sarcopenia research. Conclusion This study highlights the distribution of fields, the structure of knowledge and the evolution of major research topics related to hypertension in patients with sarcopenia. Identifying keyword hotspots enhanced the comprehension of occurrence, development, and future research trends related to the topic.
Collapse
Affiliation(s)
- Jingfeng Zou
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Yiting Liu
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Chunhui Tian
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Liping Wang
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Shaotian Li
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Jiajia Ran
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Xin Yang
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Guqiao Nie
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| | - Wen Peng
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, People’s Republic of China
| |
Collapse
|
18
|
Ben Hassine A, Petit C, Thomas M, Mundweiler S, Guignandon A, Avril S. Gene expression modulation in human aortic smooth muscle cells under induced physiological mechanical stretch. Sci Rep 2024; 14:31147. [PMID: 39732782 DOI: 10.1038/s41598-024-82495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
In this study, we investigated gene expression in vitro of human primary Aortic smooth muscle cells (AoSMCs) in response to 9% physiological dynamic stretch over a 4 to 72-h timeframe using RT-qPCR. AoSMC were derived from primary culture and were exposed to continuous cycles of stretch and relaxation at 1 Hz by a computer-controlled Flex Jr.™ Tension System. Unstretched control AoSMCs were simultaneously cultured in the same dishes. Our results revealed a rapid and significant upregulation of specific genes (COL1A1, FBN1, LAMA5, TGFBR1 and TGFBR2) within the initial 4 h for AoSMCs subjected to dynamic stretching, whilst control cells did not respond within the same 4 h. The upregulated genes were the ones associated with extracellular matrix (ECM) fibrillogenesis and regulation of traction forces. Interestingly, stretched cells maintained stable gene expression between 4 and 72 h, whilst control cells exhibited variations over time in the absence of mechanical cues. These findings shed light on the essential role played by pulsatile stretches in the regulation of gene expressions by AoSMCs and the intricate processes governing their mechanobiological function, paving the way for further investigations in cardiovascular health.
Collapse
Affiliation(s)
- Amira Ben Hassine
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France
| | - Claudie Petit
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France
| | - Mireille Thomas
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France
| | - Stéphanie Mundweiler
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France
| | - Alain Guignandon
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France
| | - Stéphane Avril
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France.
| |
Collapse
|
19
|
Choe N, Shin S, Kim YK, Kook H, Kwon DH. CCAAT/Enhancer-Binding Protein β (C/EBPβ) Regulates Calcium Deposition in Smooth Muscle Cells. Int J Mol Sci 2024; 25:13667. [PMID: 39769429 PMCID: PMC11728292 DOI: 10.3390/ijms252413667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Calcium deposition in vascular smooth muscle cells (VSMCs), a form of ectopic ossification in blood vessels, can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) potentiates calcium deposition in VSMCs and mouse aorta induced by inorganic phosphate (Pi) or vitamin D3. Based on cDNA microarray and RNA sequencing data of Pi-treated rat VSMCs, C/EBPβ was found to be upregulated and thus selected for further evaluation. Quantitative RT-PCR and Western blot analysis confirmed that C/EBPβ was upregulated in Pi-treated A10 cells, a rat VSMC line, as well as vitamin D3-treated mouse aorta. The overexpression of C/EBPβ in A10 cells increased bone runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteopontin (OPN) mRNA in the presence of Pi, as well as potentiating the Pi-induced increase in calcium contents. The Runx2 expression was increased by C/EBPβ through Runx2 P2 promotor. Our results suggest that a Pi-induced increase in C/EBPβ is a critical step in vascular calcification.
Collapse
Affiliation(s)
- Nakwon Choe
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Sera Shin
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BK21 Plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BK21 Plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Duk-Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BK21 Plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
20
|
Shen L, Tian Q, Ran Q, Gan Q, Hu Y, Du D, Qin Z, Duan X, Zhu X, Huang W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules 2024; 14:1623. [PMID: 39766330 PMCID: PMC11726876 DOI: 10.3390/biom14121623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis (AS) is one of the major catalysts of ischemic cerebrovascular disease, and the death and disease burden from AS and its cerebrovascular complications are increasing. Z-ligustilide (Z-LIG) is a key active ingredient in Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort. In this paper, we first introduced LIG's physicochemical properties and pharmacokinetics. Then, we reviewed Z-LIG's intervention and therapeutic mechanisms on AS and its cerebrovascular complications. The mechanisms of Z-LIG intervention in AS include improving lipid metabolism, antioxidant and anti-inflammatory effects, protecting vascular endothelium, and inhibiting vascular endothelial fibrosis, pathological thickening, and plaque calcification. In ischemic cerebrovascular diseases complicated by AS, Z-LIG exerts practical neuroprotective effects in ischemic stroke (IS), transient ischemic attack (TIA), and vascular dementia (VaD) through anti-neuroinflammatory, anti-oxidation, anti-neuronal apoptosis, protection of the blood-brain barrier, promotion of mitochondrial division and angiogenesis, improvement of cholinergic activity, inhibition of astrocyte proliferation, and endoplasmic reticulum stress. This paper aims to provide a basis for subsequent studies of Z-LIG in the prevention and treatment of AS and its cerebrovascular complications and, thus, to promote the development of interventional drugs for AS.
Collapse
Affiliation(s)
- Longyu Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Qiqi Ran
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianrong Gan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Donglian Du
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Zehua Qin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyi Duan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyun Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| |
Collapse
|
21
|
Yan X, Li H. The impact of sleep problems on cerebral aneurysm risk is mediated by hypertension: a mediated Mendelian randomization study. Front Genet 2024; 15:1434189. [PMID: 39464793 PMCID: PMC11502348 DOI: 10.3389/fgene.2024.1434189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Cerebral aneurysm (CA) is a common vascular disease. The risk factors of CA include hypertension, smoking, and a family history of genetic predisposition. Although sleep-related problems have been found to have a strong association with cardiovascular disease, there is a lack of research regarding the causal relationship with cerebral aneurysms. Methods In this study, we investigated the causal relationship between four sleep-related problems, including snoring, insomnia, narcolepsy, and napping during the day, and CA using a two-sample Mendelian randomization (MR) analysis. Moreover, the potential confounders before sleep problems and CA were further analyzed by multivariate MR (MVMR). Results The causal relationship between insomnia and CA was obtained analytically by means of six MR analyses. There was a strong causal effect relationship between insomnia and CA, which suggests this as a potential risk factor [odds ratio (OR) = 8.35, 95% confidence interval (CI) = 2.422-28.791, p = 7.772e-04]. On this basis, hypertension was identified as a mediator between insomnia and CA by MVMR, with a mediating effect of 52.538% (OR = 3.05, 95% CI = 1.549-4.55, p = 0.015). Conclusion The causal relationship between insomnia and CA was predicted using genetic variance data, and insomnia was found to be a potential risk factor. Furthermore, hypertension is a mediator between insomnia and CA. Therefore, focusing on sleep problems and improving sleep quality may be an active and effective strategy to prevent CA.
Collapse
Affiliation(s)
- Xiaofei Yan
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - Hongwu Li
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| |
Collapse
|
22
|
Naseem S, Sun L, Qiu J. Stress granules in atherosclerosis: Insights and therapeutic opportunities. Curr Probl Cardiol 2024; 49:102760. [PMID: 39059785 DOI: 10.1016/j.cpcardiol.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Atherosclerosis, a complex inflammatory and metabolic disorder, is the underlying cause of several life-threatening cardiovascular diseases. Stress granules (SG) are biomolecular condensates composed of proteins and mRNA that form in response to stress. Recent studies suggest a potential link between SG and atherosclerosis development. However, there remain gaps in understanding SG role in atherosclerosis development. Here we provide a thorough analysis of the role of SG in atherosclerosis, covering cellular stresses stimulation, core components, and regulatory genes in SG formation. Furthermore, we explore atherosclerosis induced factors such as inflammation, low or oscillatory shear stress (OSS), and oxidative stress (OS) may impact SG formation and then the development of atherosclerotic lesions. We have assessed how changes in SG dynamics impact pro-atherogenic processes like endothelial dysfunction, lipid metabolism, and immune cell recruitment in atherosclerosis. In summary, this review emphasizes the complex interplay between SG and atherosclerosis that could open innovative directions for targeted therapeutic strategies in preventing or treating atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lijuan Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
23
|
Zhao J, Qiu C, Wan R, Wang Q, Zhang Y, Yang D, Yang Y, Sun X. Inhibition of CIRBP represses the proliferation and migration of vascular smooth muscle cells via inhibiting Rheb/mTORC1 axis. Biochem Biophys Res Commun 2024; 725:150248. [PMID: 38870847 DOI: 10.1016/j.bbrc.2024.150248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
The excessive migration and proliferation of vascular smooth muscle cells (VSMCs) plays a vital role in vascular intimal hyperplasia. CIRBP is involved in the proliferation of various cancer cells. This study was aimed to explore the role of CIRBP in the proliferation and migration of VSMCs. Adenovirus was used to interfere with cold-inducible RNA-binding protein (CIRBP) expression, while lentivirus was used to overexpress Ras homolog enriched in brain (Rheb). Western blotting and qRT-PCR were used to evaluate the expression of CIRBP, Rheb, and mechanistic target of rapamycin complex 1 (mTORC1) activity. The cell proliferation was determined by Ki67 immunofluorescence staining and CCK-8 assay. The wound healing assay was performed to assess cell migration. Additionally, immunohistochemistry was conducted to explore the role of CIRBP in intimal hyperplasia after vascular injury. We found that silencing CIRBP inhibited the proliferation and migration of VSMCs, decreased the expression of Rheb and mTORC1 activity. Restoration of mTORC1 activity via insulin or overexpression of Rheb via lentiviral transfection both attenuated the inhibitory effects of silencing CIRBP on the proliferation and migration of VSMCs. Moreover, Rheb overexpression abolished the inhibitory effect of silencing CIRBP on mTORC1 activity in VSMCs. CIRBP was upregulated in the injured carotid artery. Silencing CIRBP ameliorated intimal hyperplasia after vascular injury. In the summary, silencing CIRBP attenuates mTORC1 activity via reducing Rheb expression, thereby supressing the proliferation and migration of VSMCs and intimal hyperplasia after vascular injury.
Collapse
MESH Headings
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Ras Homolog Enriched in Brain Protein/metabolism
- Ras Homolog Enriched in Brain Protein/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/pathology
- Cell Proliferation
- Cell Movement
- Animals
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/cytology
- Cells, Cultured
- Signal Transduction
- Male
- Rats
- Rats, Sprague-Dawley
- Humans
Collapse
Affiliation(s)
- Jiaqi Zhao
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Chenming Qiu
- Department of Burn, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Rong Wan
- Department of Burn, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Qiang Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Yan Zhang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Dachun Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Xiongshan Sun
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| |
Collapse
|
24
|
Guo F, Zhao C, Shou Q, Jin N, Jann K, Shao X, Wang DJJ. Assessing Cerebral Microvascular Volumetric Pulsatility with High-Resolution 4D CBV MRI at 7T. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.04.24313077. [PMID: 39281763 PMCID: PMC11398588 DOI: 10.1101/2024.09.04.24313077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Arterial pulsation is crucial for promoting fluid circulation and for influencing neuronal activity. Previous studies assessed the pulsatility index based on blood flow velocity pulsatility in relatively large cerebral arteries of human. Here, we introduce a novel method to quantify the volumetric pulsatility of cerebral microvasculature across cortical layers and in white matter (WM), using high-resolution 4D vascular space occupancy (VASO) MRI with simultaneous recording of pulse signals at 7T. Microvascular volumetric pulsatility index (mvPI) and cerebral blood volume (CBV) changes across cardiac cycles are assessed through retrospective sorting of VASO signals into cardiac phases and estimating mean CBV in resting state (CBV0) by arterial spin labeling (ASL) MRI at 7T. Using data from 11 young (28.4±5.8 years) and 7 older (61.3±6.2 years) healthy participants, we investigated the aging effect on mvPI and compared microvascular pulsatility with large arterial pulsatility assessed by 4D-flow MRI. We observed the highest mvPI in the cerebrospinal fluid (CSF) on the cortical surface (0.19±0.06), which decreased towards the cortical layers as well as in larger arteries. In the deep WM, a significantly increased mvPI (p = 0.029) was observed in the older participants compared to younger ones. Additionally, mvPI in deep WM is significantly associated with the velocity pulsatility index (vePI) of large arteries (r = 0.5997, p = 0.0181). We further performed test-retest scans, non-parametric reliability test and simulations to demonstrate the reproducibility and accuracy of our method. To the best of our knowledge, our method offers the first in vivo measurement of microvascular volumetric pulsatility in human brain which has implications for cerebral microvascular health and its relationship research with glymphatic system, aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fanhua Guo
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | | | - Kay Jann
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| |
Collapse
|
25
|
Kim JW, Kim JY, Bae HE, Kim CD. Biophysically stressed vascular smooth muscle cells express MCP-1 via a PDGFR-β-HMGB1 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:449-456. [PMID: 39198225 PMCID: PMC11361998 DOI: 10.4196/kjpp.2024.28.5.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 09/01/2024]
Abstract
Vascular smooth muscle cells (VSMCs) under biophysical stress play an active role in the progression of vascular inflammation, but the precise mechanisms are unclear. This study examined the cellular expression of monocyte chemoattractant protein 1 (MCP-1) and its related mechanisms using cultured rat aortic VSMCs stimulated with mechanical stretch (MS, equibiaxial cyclic stretch, 60 cycles/ min). When the cells were stimulated with 10% MS, MCP-1 expression was markedly increased compared to those in the cells stimulated with low MS intensity (3% or 5%). An enzyme-linked immunosorbent assay revealed an increase in HMGB1 released into culture media from the cells stimulated with 10% MS compared to those stimulated with 3% MS. A pretreatment with glycyrrhizin, a HMGB1 inhibitor, resulted in the marked attenuation of MCP-1 expression in the cells stimulated with 10% MS, suggesting a key role of HMGB1 on MCP-1 expression. Western blot analysis revealed higher PDGFR-α and PDGFR-β expression in the cells stimulated with 10% MS than 3% MS-stimulated cells. In the cells deficient of PDGFR-β using siRNA, but not PDGFR-α, HMGB1 released into culture media was significantly attenuated in the 10% MS-stimulated cells. Similarly, MCP-1 expression induced in 10% MS-stimulated cells was also attenuated in cells deficient of PDGFR-β. Overall, the PDGFR-β signaling plays a pivotal role in the increased expression of MCP-1 in VSMCs stressed with 10% MS. Therefore, targeting PDGFR-β signaling in VSMCs might be a promising therapeutic strategy for vascular complications in the vasculatures under excessive biophysical stress.
Collapse
Affiliation(s)
- Ji Won Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ju Yeon Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Hee Eun Bae
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| |
Collapse
|
26
|
He W, Zheng Q, Zou T, Yan W, Gao X, Wang C, Xiong Y. Angiopoietin-like 4 facilitates human aortic smooth muscle cell phenotype switch and dysfunctions through the PI3K/Akt signaling in aortic dissection. Adv Med Sci 2024; 69:474-483. [PMID: 39326736 DOI: 10.1016/j.advms.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE Vascular smooth muscle cell (VSMC) phenotype switch and dysfunctions have been reported to participate in aortic dissection (AD) progression. This study was aimed to investigate the role of angiopoietin-like 4 (ANGPTL4) in regulating VSMCs phenotype switch. MATERIALS AND METHODS Key genes were analyzed in AD using public datasets, and it was found that the central differential gene ANGPTL4 was up-regulated in AD. The KEGG signaling pathway annotation was performed to validate the associated pathways, and the expression of ANGPTL4 was verified using multiple datasets and clinical samples. Furthermore, the specific functions of ANGPTL4 on platelet-derived growth factor-BB (PDGF-BB)-treated human aortic smooth muscle cell (HASMC) phenotypes were investigated. The dynamic effects of ANGPTL4 and core signaling antagonists on HASMC phenotypes were examined. RESULTS Hub gene ANGPTL4 was significantly up-regulated in AD. ANGPTL4 was linked to the PI3K/Akt signaling, angiogenesis, and neovascularization and remodeling. ANGPTL4 overexpression further enhanced PDGF-BB effects on HASMC phenotypes, including promoted cell viability and migration, decreased contractile VSMC markers α-SMA and SM22α, elevated ECM degradation markers MMP-2 and MMP-9, and promoted phosphorylation of PI3K and Akt. ANGPTL4 knockdown partially abolished PDGF-BB-induced contractile/synthetic VSMCs imbalance and HASMC dysfunctions. Furthermore, in ANGPTL4-overexpressing HASMCs pre-treated with PDGF-BB, the PI3K/Akt signaling inhibitor LY294002 also partially eliminated the effects caused by the PDGF-BB treatment and ANGPTL4 overexpression. CONCLUSIONS ANGPTL4 is significantly up-regulated in AD. ANGPTL4 overexpression further enhanced PDGF-BB effects on HASMC phenotype switch and dysfunctions, which might be involved in the PI3K/Akt signaling.
Collapse
Affiliation(s)
- Wei He
- Department of Extracorporeal Life Support Center of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Zheng
- Department of Extracorporeal Life Support Center of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingfang Zou
- Department of Extracorporeal Life Support Center of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Yan
- Department of Extracorporeal Life Support Center of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xue Gao
- Department of Extracorporeal Life Support Center of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunle Wang
- Department of Extracorporeal Life Support Center of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaoyao Xiong
- Department of Extracorporeal Life Support Center of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
27
|
Petzinna SM, Bauer CJ, Schäfer VS. Vascular-adhesion protein 1 in giant cell arteritis and polymyalgia rheumatica. Front Med (Lausanne) 2024; 11:1448157. [PMID: 39206172 PMCID: PMC11349539 DOI: 10.3389/fmed.2024.1448157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Vascular adhesion protein-1 (VAP-1) is a type 2 transmembrane sialoglycoprotein with oxidative deamination functionality, encoded by the amine oxidase copper-containing 3 (AOC3) gene. VAP-1 is widely expressed across various tissues, particularly in highly vascularized tissues and organs essential for lymphocyte circulation. In the vascular system, VAP-1 is predominantly found in vascular smooth muscle cells and endothelial cells, with higher expression levels in vascular smooth muscle cells. Under inflammatory conditions, VAP-1 rapidly translocates to the endothelial cell surface, facilitating leukocyte adhesion and migration through interactions with specific ligands, such as sialic acid-binding immunoglobulin-type lectins (Siglec)-9 on neutrophils and monocytes, and Siglec-10 on B cells, monocytes, and eosinophils. This interaction is crucial for leukocyte transmigration into inflamed tissues. Furthermore, VAP-1's enzymatic activity generates hydrogen peroxide and advanced glycation end-products, contributing to cytotoxic damage and vascular inflammation. In this context, the soluble form of VAP-1 (sVAP-1), produced by matrix metalloproteinase cleavage from its membrane-bound counterpart, also significantly influences leukocyte migration. This review aims to elucidate the multifaceted pathophysiological roles of VAP-1 in vascular inflammation, particularly in giant cell arteritis (GCA) and associated polymyalgia rheumatica (PMR). By exploring its involvement in immune cell adhesion, migration, and its enzymatic contributions to oxidative stress and tissue damage, we investigate the importance of VAP-1 in GCA. Additionally, we discuss recent advancements in imaging techniques targeting VAP-1, such as [68Ga]Ga-DOTA-Siglec-9 PET/CT, which have provided new insights into VAP-1's role in GCA and PMR. Overall, understanding VAP-1's comprehensive roles could pave the way for improved strategies in managing these conditions.
Collapse
|
28
|
Wesley CD, Neutel CHG, De Meyer GRY, Martinet W, Guns PJ. Unravelling the impact of active and passive contributors to arterial stiffness in male mice and their role in vascular aging. Sci Rep 2024; 14:18337. [PMID: 39112507 PMCID: PMC11306354 DOI: 10.1038/s41598-024-68725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Arterial stiffness, a key indicator of vascular health, encompassing active (vascular tone) and passive (extracellular matrix) components. This study aims to address how these different components affect arterial stiffness along the aorta and the influence of aging. Aortic segments of 12 week and 24 month old (both n = 6) male C57BL/6J mice were mounted in a Rodent Oscillatory Set-up to study Arterial Compliance, in order to measure arterial stiffness and vascular reactivity. Regional variations in arterial stiffness were evident, with abdominal infrarenal aorta (AIA) exhibiting highest stiffness and smallest diameters. AIA displayed both the highest amount of collagen and collagen:elastin ratio. Regional ex vivo vascular reactivity revealed heightened AIA contractions and lowered NO availability. Aging is a significant factor contributing towards vessel remodelling and arterial stiffness. Aging increased arterial stiffness, aortic diameters, collagen content, and reduced VSMC contraction. The results of this study could identify specific regions or mechanisms to target in the development of innovative therapeutic interventions aimed at enhancing overall vascular health.
Collapse
Affiliation(s)
- Callan D Wesley
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences and Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium.
| | - Cedric H G Neutel
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences and Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences and Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences and Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences and Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| |
Collapse
|
29
|
Zhang J, Liu S, Ding W, Wan J, Qin JJ, Wang M. Resolution of inflammation, an active process to restore the immune microenvironment balance: A novel drug target for treating arterial hypertension. Ageing Res Rev 2024; 99:102352. [PMID: 38857706 DOI: 10.1016/j.arr.2024.102352] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China; Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
30
|
Zheng J, He J, Li H. FAM19A5 in vascular aging and osteoporosis: Mechanisms and the "calcification paradox". Ageing Res Rev 2024; 99:102361. [PMID: 38821416 DOI: 10.1016/j.arr.2024.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/05/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Aging induces a progressive decline in the vasculature's structure and function. Vascular aging is a determinant factor for vascular ailments in the elderly. FAM19A5, a recently identified adipokine, has demonstrated involvement in multiple vascular aging-related pathologies, including atherosclerosis, cardio-cerebral vascular diseases and cognitive deficits. This review summarizes the current understanding of FAM19A5' role and explores its putative regulatory mechanisms in various aging-related disorders, including cardiovascular diseases (CVDs), metabolic diseases, neurodegenerative diseases and malignancies. Importantly, we provide novel insights into the underlying therapeutic value of FAM19A5 in osteoporosis. Finally, we outline future perspectives on the diagnostic and therapeutic potential of FAM19A5 in vascular aging-related diseases.
Collapse
Affiliation(s)
- Jin Zheng
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huahua Li
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
31
|
Zheng S, Tsao PS, Pan C. Abdominal aortic aneurysm and cardiometabolic traits share strong genetic susceptibility to lipid metabolism and inflammation. Nat Commun 2024; 15:5652. [PMID: 38969659 PMCID: PMC11226445 DOI: 10.1038/s41467-024-49921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Abdominal aortic aneurysm has a high heritability and often co-occurs with other cardiometabolic disorders, suggesting shared genetic susceptibility. We investigate this commonality leveraging recent GWAS studies of abdominal aortic aneurysm and 32 cardiometabolic traits. We find significant genetic correlations between abdominal aortic aneurysm and 21 of the cardiometabolic traits investigated, including causal relationships with coronary artery disease, hypertension, lipid traits, and blood pressure. For each trait pair, we identify shared causal variants, genes, and pathways, revealing that cholesterol metabolism and inflammation are shared most prominently. Additionally, we show the tissue and cell type specificity in the shared signals, with strong enrichment across traits in the liver, arteries, adipose tissues, macrophages, adipocytes, and fibroblasts. Finally, we leverage drug-gene databases to identify several lipid-lowering drugs and antioxidants with high potential to treat abdominal aortic aneurysm with comorbidities. Our study provides insight into the shared genetic mechanism between abdominal aortic aneurysm and cardiometabolic traits, and identifies potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Shufen Zheng
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, China
- Center for Evolutionary Biology, Intelligent Medicine Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA.
- Stanford Cardiovascular Institute, Stanford University, California, USA.
- VA Palo Alto Health Care System, Palo Alto, California, USA.
| | - Cuiping Pan
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, China.
- Center for Evolutionary Biology, Intelligent Medicine Institute, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Martinez AN, Tortelote GG, Pascale CL, Ekanem UOI, Leite APDO, McCormack IG, Dumont AS. Dimethyl Fumarate Mediates Sustained Vascular Smooth Muscle Cell Remodeling in a Mouse Model of Cerebral Aneurysm. Antioxidants (Basel) 2024; 13:773. [PMID: 39061841 PMCID: PMC11274241 DOI: 10.3390/antiox13070773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Cerebral aneurysms (CA) are a type of vascular disease that causes significant morbidity and mortality with rupture. Dysfunction of the vascular smooth muscle cells (VSMCs) from circle of Willis (CoW) vessels mediates CA formation, as they are the major cell type of the arterial wall and play a role in maintaining vessel integrity. Dimethyl fumarate (DMF), a first-line oral treatment for relapsing-remitting multiple sclerosis, has been shown to inhibit VSMC proliferation and reduce CA formation in a mouse model. Potential unwanted side effects of DMF on VSMC function have not been investigated yet. The present study characterizes the impact of DMF on VSMC using single-cell RNA-sequencing (scRNA-seq) in CoW vessels following CA induction and further explores its role in mitochondrial function using in vitro VSMC cultures. Two weeks of DMF treatment following CA induction impaired the transcription of the glutathione redox system and downregulated mitochondrial respiration genes in VSMCs. In vitro, DMF treatment increased lactate formation and enhanced the mitochondrial production of reactive oxygen species (ROS). These effects rendered VSMCs vulnerable to oxidative stress and led to mitochondrial dysfunction and enhancement of apoptosis. Taken together, our data support the concept that the DMF-mediated antiproliferative effect on VSMCs is linked to disturbed antioxidative functions resulting in altered mitochondrial metabolism. This negative impact of DMF treatment on VSMCs may be linked to preexisting alterations of cerebrovascular function due to renal hypertension. Therefore, before severe adverse effects emerge, it would be clinically relevant to develop indices or biomarkers linked to this disturbed antioxidative function to monitor patients undergoing DMF treatment.
Collapse
Affiliation(s)
- Alejandra N. Martinez
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Giovane G. Tortelote
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Crissey L. Pascale
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Uduak-Obong I. Ekanem
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Ana Paula de O. Leite
- Department of Pharmacology, The Tulane Center for Sex-Based Biology and Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Isabella G. McCormack
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Aaron S. Dumont
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| |
Collapse
|
33
|
Zhang R, Wang H, Cheng X, Fan K, Gao T, Qi X, Gao S, Zheng G, Dong H. High estrogen induces trans-differentiation of vascular smooth muscle cells to a macrophage-like phenotype resulting in aortic inflammation via inhibiting VHL/HIF1a/KLF4 axis. Aging (Albany NY) 2024; 16:9876-9898. [PMID: 38843385 PMCID: PMC11210252 DOI: 10.18632/aging.205904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/22/2024] [Indexed: 06/22/2024]
Abstract
Estrogen is thought to have a role in slowing down aging and protecting cardiovascular and cognitive function. However, high doses of estrogen are still positively associated with autoimmune diseases and tumors with systemic inflammation. First, we administered exogenous estrogen to female mice for three consecutive months and found that the aorta of mice on estrogen develops inflammatory manifestations similar to Takayasu arteritis (TAK). Then, in vitro estrogen intervention was performed on mouse aortic vascular smooth muscle cells (MOVAS cells). Stimulated by high concentrations of estradiol, MOVAS cells showed decreased expression of contractile phenotypic markers and increased expression of macrophage-like phenotypic markers. This shift was blocked by tamoxifen and Krüppel-like factor 4 (KLF4) inhibitors and enhanced by Von Hippel-Lindau (VHL)/hypoxia-inducible factor-1α (HIF-1α) interaction inhibitors. It suggests that estrogen-targeted regulation of the VHL/HIF-1α/KLF4 axis induces phenotypic transformation of vascular smooth muscle cells (VSMC). In addition, estrogen-regulated phenotypic conversion of VSMC to macrophages is a key mechanism of estrogen-induced vascular inflammation, which justifies the risk of clinical use of estrogen replacement therapy.
Collapse
MESH Headings
- Kruppel-Like Factor 4
- Animals
- Kruppel-Like Transcription Factors/metabolism
- Kruppel-Like Transcription Factors/genetics
- Macrophages/metabolism
- Macrophages/drug effects
- Mice
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Female
- Estrogens/pharmacology
- Von Hippel-Lindau Tumor Suppressor Protein/metabolism
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Cell Transdifferentiation/drug effects
- Phenotype
- Aorta/pathology
- Aorta/drug effects
- Inflammation/metabolism
Collapse
Affiliation(s)
- Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Heng Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xing Cheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Keyi Fan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tingting Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaotong Qi
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Siqi Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoping Zheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
34
|
Chandra Sekar N, Khoshmanesh K, Baratchi S. Bioengineered models of cardiovascular diseases. Atherosclerosis 2024; 393:117565. [PMID: 38714426 DOI: 10.1016/j.atherosclerosis.2024.117565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
Age-associated cardiovascular diseases (CVDs), predominantly resulting from artery-related disorders such as atherosclerosis, stand as a leading cause of morbidity and mortality among the elderly population. Consequently, there is a growing interest in the development of clinically relevant bioengineered models of CVDs. Recent developments in bioengineering and material sciences have paved the way for the creation of intricate models that closely mimic the structure and surroundings of native cardiac tissues and blood vessels. These models can be utilized for basic research purposes and for identifying pharmaceutical interventions and facilitating drug discovery. The advancement of vessel-on-a-chip technologies and the development of bioengineered and humanized in vitro models of the cardiovascular system have the potential to revolutionize CVD disease modelling. These technologies offer pathophysiologically relevant models at a fraction of the cost and time required for traditional experimentation required in vivo. This progress signifies a significant advancement in the field, transitioning from conventional 2D cell culture models to advanced 3D organoid and vessel-on-a-chip models. These innovative models are specifically designed to explore the complexities of vascular aging and stiffening, crucial factors in the development of cardiovascular diseases. This review summarizes the recent progress of various bioengineered in vitro platforms developed for investigating the pathophysiology of human cardiovascular system with more focus on advanced 3D vascular platforms.
Collapse
Affiliation(s)
- Nadia Chandra Sekar
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, 3082, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Khashayar Khoshmanesh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Sara Baratchi
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, 3082, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
35
|
Wu Y, Li B, Yu X, Liu Y, Chui R, Sun K, Geng D, Ma L. Histone deacetylase 6 as a novel promising target to treat cardiovascular disease. CANCER INNOVATION 2024; 3:e114. [PMID: 38947757 PMCID: PMC11212282 DOI: 10.1002/cai2.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 07/02/2024]
Abstract
Histone deacetylase 6 (HDAC6) belongs to a class of epigenetic targets that have been found to be a key protein in the association between tumors and cardiovascular disease. Recent studies have focused on the crucial role of HDAC6 in regulating cardiovascular diseases such as atherosclerosis, myocardial infarction, myocardial hypertrophy, myocardial fibrosis, hypertension, pulmonary hypertension, and arrhythmia. Here, we review the association between HDAC6 and cardiovascular disease, the research progress of HDAC6 inhibitors in the treatment of cardiovascular disease, and discuss the feasibility of combining HDAC6 inhibitors with other therapeutic agents to treat cardiovascular disease.
Collapse
Affiliation(s)
- Ya‐Xi Wu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Bing‐Qian Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Xiao‐Qian Yu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Yu‐Lin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Rui‐Hao Chui
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Kai Sun
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Dian‐Guang Geng
- Key Laboratory of Cardio‐Cerebrovascular Drugs'China Meheco Topfond Pharmaceutical Co.ZhumadianHenanChina
| | - Li‐Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardio‐Cerebrovascular Drugs'China Meheco Topfond Pharmaceutical Co.ZhumadianHenanChina
| |
Collapse
|
36
|
Paterson C, Stone K, Turner L, Moinuddin A, Stoner L, Fryer S. The effect of cardiorespiratory fitness and habitual physical activity on cardiovascular responses to 2 h of uninterrupted sitting. J Appl Physiol (1985) 2024; 136:1087-1096. [PMID: 38482575 PMCID: PMC11365548 DOI: 10.1152/japplphysiol.00361.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/30/2024] Open
Abstract
Prolonged uninterrupted sitting of >3 h has been shown to acutely cause central and peripheral cardiovascular dysfunction. However, individuals rarely sit uninterrupted for >2 h, and the cardiovascular response to this time is currently unknown. In addition, while increased cardiorespiratory fitness (CRF) and habitual physical activity (HPA) are independently associated with improvements in central and peripheral cardiovascular function, it remains unclear whether they influence the response to uninterrupted sitting. This study sought to 1) determine whether 2 h of uninterrupted sitting acutely impairs carotid-femoral pulse wave velocity (cfPWV), femoral ankle PWV (faPWV), and central and peripheral blood pressure and 2) investigate the associations between CRF and HPA versus PWV changes during uninterrupted sitting. Following 2 h of uninterrupted sitting, faPWV significantly increased [mean difference (MD) = 0.26 m·s-1, standard error (SE) = 0.10, P = 0.013] as did diastolic blood pressure (MD = 2.83 mmHg, SE = 1.08, P = 0.014), however, cfPWV did not significantly change. Although our study shows 2 h of uninterrupted sitting significantly impairs faPWV, neither CRF (r = 0.105, P = 0.595) nor HPA (r = -0.228, P = 0.253) was associated with the increases.NEW & NOTEWORTHY We demonstrate that neither cardiorespiratory fitness nor habitual physical activity influence central and peripheral cardiovascular responses to a 2-h bout of uninterrupted sitting in healthy young adults.
Collapse
Affiliation(s)
- Craig Paterson
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Keeron Stone
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Louise Turner
- School of Natural, Social and Sport Sciences, University of Gloucestershire, Gloucester, United Kingdom
| | - Arsalan Moinuddin
- School of Natural, Social and Sport Sciences, University of Gloucestershire, Gloucester, United Kingdom
| | - Lee Stoner
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Center for Health Promotion and Disease Prevention, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Simon Fryer
- School of Natural, Social and Sport Sciences, University of Gloucestershire, Gloucester, United Kingdom
| |
Collapse
|
37
|
Chien HC, Wang YL, Tu YC, Tsui PF, Tsai MC. Activation of heme oxygenase-1 by laminar shear stress ameliorates high glucose-induced endothelial cell and smooth muscle cell dysfunction. J Cell Biochem 2024; 125:e30563. [PMID: 38591551 DOI: 10.1002/jcb.30563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024]
Abstract
High glucose (HG)-induced endothelial cell (EC) and smooth muscle cell (SMC) dysfunction is critical in diabetes-associated atherosclerosis. However, the roles of heme oxygenase-1 (HO-1), a stress-response protein, in hemodynamic force-generated shear stress and HG-induced metabolic stress remain unclear. This investigation examined the cellular effects and mechanisms of HO-1 under physiologically high shear stress (HSS) in HG-treated ECs and adjacent SMCs. We found that exposure of human aortic ECs to HSS significantly increased HO-1 expression; however, this upregulation appeared to be independent of adenosine monophosphate-activated protein kinase, a regulator of HO-1. Furthermore, HSS inhibited the expression of HG-induced intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and reactive oxygen species (ROS) production in ECs. In an EC/SMC co-culture, compared with static conditions, subjecting ECs close to SMCs to HSS and HG significantly suppressed SMC proliferation while increasing the expression of physiological contractile phenotype markers, such as α-smooth muscle actin and serum response factor. Moreover, HSS and HG decreased the expression of vimentin, an atherogenic synthetic phenotypic marker, in SMCs. Transfecting ECs with HO-1-specific small interfering (si)RNA reversed HSS inhibition on HG-induced inflammation and ROS production in ECs. Similarly, reversed HSS inhibition on HG-induced proliferation and synthetic phenotype formation were observed in co-cultured SMCs. Our findings provide insights into the mechanisms underlying EC-SMC interplay during HG-induced metabolic stress. Strategies to promote HSS in the vessel wall, such as continuous exercise, or the development of HO-1 analogs and mimics of the HSS effect, could provide an effective approach for preventing and treating diabetes-related atherosclerotic vascular complications.
Collapse
Affiliation(s)
- Hung-Che Chien
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Lin Wang
- Center of General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physical Medicine and Rehabilitation, Chi Mei Medical Center, Tainan, Taiwan
| | - Yun-Chin Tu
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Pi-Fen Tsui
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
38
|
Liu YJ, Li R, Xiao D, Yang C, Li YL, Chen JL, Wang Z, Zhao XG, Shan ZG. Incorporating machine learning and PPI networks to identify mitochondrial fission-related immune markers in abdominal aortic aneurysms. Heliyon 2024; 10:e27989. [PMID: 38590878 PMCID: PMC10999885 DOI: 10.1016/j.heliyon.2024.e27989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024] Open
Abstract
Purpose The aim of this study is to investigate abdominal aortic aneurysm (AAA), a disease characterised by inflammation and progressive vasodilatation, for novel gene-targeted therapeutic loci. Methods To do this, we used weighted co-expression network analysis (WGCNA) and differential gene analysis on samples from the GEO database. Additionally, we carried out enrichment analysis and determined that the blue module was of interest. Additionally, we performed an investigation of immune infiltration and discovered genes linked to immune evasion and mitochondrial fission. In order to screen for feature genes, we used two PPI network gene selection methods and five machine learning methods. This allowed us to identify the most featrue genes (MFGs). The expression of the MFGs in various cell subgroups was then evaluated by analysis of single cell samples from AAA. Additionally, we looked at the expression levels of the MFGs as well as the levels of inflammatory immune-related markers in cellular and animal models of AAA. Finally, we predicted potential drugs that could be targeted for the treatment of AAA. Results Our research identified 1249 up-regulated differential genes and 3653 down-regulated differential genes. Through WGCNA, we also discovered 44 genes in the blue module. By taking the point where several strategies for gene selection overlap, the MFG (ITGAL and SELL) was produced. We discovered through single cell research that the MFG were specifically expressed in T regulatory cells, NK cells, B lineage, and lymphocytes. In both animal and cellular models of AAA, the MFGs' mRNA levels rose. Conclusion We searched for the AAA novel targeted gene (ITGAL and SELL), which most likely function through lymphocytes of the B lineage, NK cells, T regulatory cells, and B lineage. This analysis gave AAA a brand-new goal to treat or prevent the disease.
Collapse
Affiliation(s)
- Yi-jiang Liu
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Rui Li
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Di Xiao
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Cui Yang
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Yan-lin Li
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Jia-lin Chen
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China
| | - Zhan Wang
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Xin-guo Zhao
- Yinan County People's Hospital, Linyi, 276300, China
| | - Zhong-gui Shan
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| |
Collapse
|
39
|
Mensah EA, Daneshtalab N, Tabrizchi R. Effects of vasoactive substances on biomechanics of small resistance arteries of male and female Dahl salt-sensitive rats. Pharmacol Res Perspect 2024; 12:e1180. [PMID: 38421097 PMCID: PMC10902908 DOI: 10.1002/prp2.1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Changes in vascular biomechanics leading to increase in arterial stiffness play a pivotal role in circulatory dysfunction. Our objectives were to examine sex-specific pharmacological changes related to the biomechanics and any structural modifications in small resistance arteries of Dahl salt-sensitive male and female rats. The composite Young modulus (CYM) was determined using pressure myograph recordings, and immunohistochemistry was used for the evaluation of any structural changes in the third-order mesenteric arteries (n = 6). Animals on high-salt diet developed hypertension with significant elevation in central and peripheral blood pressures and pulse wave velocity compared to those on regular diet. There were no significant differences observed in the CYM between any of the groups (i.e., males and females) in vehicle-treated time-control studies. The presence of verapamil (0.3 μM) significantly reduced CYM in hypertensive males without changes within females compared to vehicle. This effect was abolished by phenylephrine (0.3 μM). BaCl2 (100 μM), ouabain (100 μM), and L-NAME (0.3 μM) combined significantly increased CYM in vessels from in normotensive males and females but not in hypertensive males compared to vehicle. The increase in CYM was abolished in the presence of phenylephrine. Sodium nitroprusside (0.3 μM), in the presence of phenylephrine, significantly reduced CYM in male normotensive versus hypertensive, with no differences within females. Significant differences were observed in immunohistochemical assessment of biomechanical markers of arterial stiffness between males and females. Our findings suggest sex possibly due to pressure differences to be responsible for adaptive changes in biomechanics, and varied pharmacological responses in hypertensive state.
Collapse
Affiliation(s)
- Eric A. Mensah
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Noriko Daneshtalab
- School of PharmacyMemorial University NewfoundlandSt. John'sNewfoundlandCanada
| | - Reza Tabrizchi
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| |
Collapse
|
40
|
Gibson Hughes TA, Dona MSI, Sobey CG, Pinto AR, Drummond GR, Vinh A, Jelinic M. Aortic Cellular Heterogeneity in Health and Disease: Novel Insights Into Aortic Diseases From Single-Cell RNA Transcriptomic Data Sets. Hypertension 2024; 81:738-751. [PMID: 38318714 DOI: 10.1161/hypertensionaha.123.20597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Aortic diseases such as atherosclerosis, aortic aneurysms, and aortic stiffening are significant complications that can have significant impact on end-stage cardiovascular disease. With limited pharmacological therapeutic strategies that target the structural changes in the aorta, surgical intervention remains the only option for some patients with these diseases. Although there have been significant contributions to our understanding of the cellular architecture of the diseased aorta, particularly in the context of atherosclerosis, furthering our insight into the cellular drivers of disease is required. The major cell types of the aorta are well defined; however, the advent of single-cell RNA sequencing provides unrivaled insights into the cellular heterogeneity of each aortic cell type and the inferred biological processes associated with each cell in health and disease. This review discusses previous concepts that have now been enhanced with recent advances made by single-cell RNA sequencing with a focus on aortic cellular heterogeneity.
Collapse
Affiliation(s)
- Tayla A Gibson Hughes
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Malathi S I Dona
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Alexander R Pinto
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| |
Collapse
|
41
|
Olatoye FJ, Akindele A, Awodele O. The role of Kolaviron, a bioflavonoid from Garcinia kola, in the management of cardiovascular diseases: A systematic review. Heliyon 2024; 10:e27333. [PMID: 38449600 PMCID: PMC10915569 DOI: 10.1016/j.heliyon.2024.e27333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
While the cardiovascular effects of Kolaviron (KV) and Garcinia kola (GK) are documented in the literature, a thorough search through literature revealed a fragmentation of information on the effect of KV and GK on cardiovascular diseases (CVDs). This systematic review aims to evaluate and summarize preclinical or clinical evidence on the effect of KV and GK on CVDs. Using the PRISMA guidelines, a systematic literature search was conducted in five medical databases (PubMed, Cochrane, EMBASE, CINAHL, and Web of Science). Inclusion criteria included both in vivo and in vitro studies related to CVDs. Eligible studies included those in which specific clinical parameters, CVD biomarkers, or voltage-gated channel effects were reported. The quality of the included studies was assessed using a modified Collaborative Approach to Meta-Analysis and Review of Animal Data from the Experimental Studies (CAMARADE) checklist. A total of 22 studies were included in this systematic review. The median and mean values of the included studies' quality scores were 6 and 5.864 ± 0.296, respectively. The results from the quality assessment of included studies validate their suitability, usefulness, and fit. Based on this systematic review, the effect of KV and GK on CVDs can be divided into eight emerging trends: (1) Anti-hypertensive/Blood pressure lowering effect; (2) Lipid profile improvement effect (3) Anti-atherosclerotic effect; (4) Anti-thrombotic effect; (5) Cardioprotection; (6) Vasodilatory effect; (7) Antioxidant effects; and (8) Genetic expression and therapeutic target for cardiovascular dysfunction. From this systematic review, it can be concluded that KV is helpful in managing CVD risk factors such as hypertension and high lipids/cholesterol. Several included studies in this review demonstrated the antihypertensive, lipid improvement, antioxidant, and signaling pathway modulation effects of KV. This potentially makes KV a good therapeutic target for the management of CVDs.
Collapse
Affiliation(s)
- Francis J. Olatoye
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, P.M.B. 12003, Lagos, Nigeria
| | - Abidemi.J. Akindele
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, P.M.B. 12003, Lagos, Nigeria
| | - Olufunsho Awodele
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, P.M.B. 12003, Lagos, Nigeria
| |
Collapse
|
42
|
Oliveira-Paula GH, Liu S, Maira A, Ressa G, Ferreira GC, Quintar A, Jayakumar S, Almonte V, Parikh D, Valenta T, Basler K, Hla T, Riascos-Bernal DF, Sibinga NES. The β-catenin C terminus links Wnt and sphingosine-1-phosphate signaling pathways to promote vascular remodeling and atherosclerosis. SCIENCE ADVANCES 2024; 10:eadg9278. [PMID: 38478616 PMCID: PMC10936954 DOI: 10.1126/sciadv.adg9278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Canonical Wnt and sphingosine-1-phosphate (S1P) signaling pathways are highly conserved systems that contribute to normal vertebrate development, with key consequences for immune, nervous, and cardiovascular system function; despite these functional overlaps, little is known about Wnt/β-catenin-S1P cross-talk. In the vascular system, both Wnt/β-catenin and S1P signals affect vessel maturation, stability, and barrier function, but information regarding their potential coordination is scant. We report an instance of functional interaction between the two pathways, including evidence that S1P receptor 1 (S1PR1) is a transcriptional target of β-catenin. By studying vascular smooth muscle cells and arterial injury response, we find a specific requirement for the β-catenin carboxyl terminus, which acts to induce S1PR1, and show that this interaction is essential for vascular remodeling. We also report that pharmacological inhibition of the β-catenin carboxyl terminus reduces S1PR1 expression, neointima formation, and atherosclerosis. These findings provide mechanistic understanding of how Wnt/β-catenin and S1P systems collaborate during vascular remodeling and inform strategies for therapeutic manipulation.
Collapse
Affiliation(s)
- Gustavo H. Oliveira-Paula
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophia Liu
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alishba Maira
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gaia Ressa
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Graziele C. Ferreira
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Amado Quintar
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Smitha Jayakumar
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vanessa Almonte
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dippal Parikh
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Dario F. Riascos-Bernal
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicholas E. S. Sibinga
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
43
|
Sarkar A, Pawar SV, Chopra K, Jain M. Gamut of glycolytic enzymes in vascular smooth muscle cell proliferation: Implications for vascular proliferative diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167021. [PMID: 38216067 DOI: 10.1016/j.bbadis.2024.167021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the media of the blood vessels and are responsible for maintaining vascular tone. Emerging evidence confirms that VSMCs possess high plasticity. During vascular injury, VSMCs switch from a "contractile" phenotype to an extremely proliferative "synthetic" phenotype. The balance between both strongly affects the progression of vascular remodeling in many cardiovascular pathologies such as restenosis, atherosclerosis and aortic aneurism. Proliferating cells demand high energy requirements and to meet this necessity, alteration in cellular bioenergetics seems to be essential. Glycolysis, fatty acid metabolism, and amino acid metabolism act as a fuel for VSMC proliferation. Metabolic reprogramming of VSMCs is dynamically variable that involves multiple mechanisms and encompasses the coordination of various signaling molecules, proteins, and enzymes. Here, we systemically reviewed the metabolic changes together with the possible treatments that are still under investigation underlying VSMC plasticity which provides a promising direction for the treatment of diseases associated with VSMC proliferation. A better understanding of the interaction between metabolism with associated signaling may uncover additional targets for better therapeutic strategies in vascular disorders.
Collapse
Affiliation(s)
- Ankan Sarkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Manish Jain
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
44
|
Aviram R, Zaffryar-Eilot S, Kaganovsky A, Odeh A, Melamed S, Militsin R, Pinnock CB, Shemesh A, Palty R, Ganesh SK, Hasson P. Coordination between cytoskeletal organization, cell contraction and extracellular matrix development, is depended on LOX for aneurysm prevention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581837. [PMID: 38464309 PMCID: PMC10925230 DOI: 10.1101/2024.02.23.581837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Distinct, seemingly independent, cellular pathways affecting intracellular machineries or extracellular matrix (ECM) deposition and organization, have been implicated in aneurysm formation. One of the key genes associated with the pathology in both humans and mice is Lysyl oxidase (LOX), a secreted ECM-modifying enzyme, highly expressed in medial vascular smooth muscle cells. To dissect the mechanisms leading to aneurysm development, we conditionally deleted Lox in smooth muscle cells. We find that cytoskeletal organization is lost following Lox deletion. Cell culture assays and in vivo analyses demonstrate a cell-autonomous role for LOX affecting myosin light chain phosphorylation and cytoskeletal assembly resulting in irregular smooth muscle contraction. These results not only highlight new intracellular roles for LOX, but notably they link between multiple processes leading to aneurysm formation suggesting LOX coordinates ECM development, cytoskeletal organization and cell contraction required for media development and function.
Collapse
|
45
|
Miteva K. On target inhibition of vascular smooth muscle cell phenotypic transition underpins TNF-OXPHOS-AP-1 as a promising avenue for anti-remodelling interventions in aortic dissection and rupture. Eur Heart J 2024; 45:306-308. [PMID: 37997934 DOI: 10.1093/eurheartj/ehad679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Affiliation(s)
- Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland
| |
Collapse
|
46
|
Luo Y, Luo J, An P, Zhao Y, Zhao W, Fang Z, Xia Y, Zhu L, Xu T, Zhang X, Zhou S, Yang M, Li J, Zhu J, Liu Y, Li H, Gong M, Liu Y, Han J, Guo H, Zhang H, Jiang W, Ren F. The activator protein-1 complex governs a vascular degenerative transcriptional programme in smooth muscle cells to trigger aortic dissection and rupture. Eur Heart J 2024; 45:287-305. [PMID: 37992083 DOI: 10.1093/eurheartj/ehad534] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND AND AIMS Stanford type A aortic dissection (AD) is a degenerative aortic remodelling disease marked by an exceedingly high mortality without effective pharmacologic therapies. Smooth muscle cells (SMCs) lining tunica media adopt a range of states, and their transformation from contractile to synthetic phenotypes fundamentally triggers AD. However, the underlying pathomechanisms governing this population shift and subsequent AD, particularly at distinct disease temporal stages, remain elusive. METHODS Ascending aortas from nine patients undergoing ascending aorta replacement and five individuals undergoing heart transplantation were subjected to single-cell RNA sequencing. The pathogenic targets governing the phenotypic switch of SMCs were identified by trajectory inference, functional scoring, single-cell regulatory network inference and clustering, regulon, and interactome analyses and confirmed using human ascending aortas, primary SMCs, and a β-aminopropionitrile monofumarate-induced AD model. RESULTS The transcriptional profiles of 93 397 cells revealed a dynamic temporal-specific phenotypic transition and marked elevation of the activator protein-1 (AP-1) complex, actively enabling synthetic SMC expansion. Mechanistically, tumour necrosis factor signalling enhanced AP-1 transcriptional activity by dampening mitochondrial oxidative phosphorylation (OXPHOS). Targeting this axis with the OXPHOS enhancer coenzyme Q10 or AP-1-specific inhibitor T-5224 impedes phenotypic transition and aortic degeneration while improving survival by 42.88% (58.3%-83.3% for coenzyme Q10 treatment), 150.15% (33.3%-83.3% for 2-week T-5224), and 175.38% (33.3%-91.7% for 3-week T-5224) in the β-aminopropionitrile monofumarate-induced AD model. CONCLUSIONS This cross-sectional compendium of cellular atlas of human ascending aortas during AD progression provides previously unappreciated insights into a transcriptional programme permitting aortic degeneration, highlighting a translational proof of concept for an anti-remodelling intervention as an attractive strategy to manage temporal-specific AD by modulating the tumour necrosis factor-OXPHOS-AP-1 axis.
Collapse
Affiliation(s)
- Yongting Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, No. 10 Tianxiu Road, Haidian District, China Agricultural University, Beijing 100193, China
| | - Junjie Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, No. 10 Tianxiu Road, Haidian District, China Agricultural University, Beijing 100193, China
| | - Peng An
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, No. 10 Tianxiu Road, Haidian District, China Agricultural University, Beijing 100193, China
| | - Yuanfei Zhao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
- Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
| | - Wenting Zhao
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, No. 10 Tianxiu Road, Haidian District, China Agricultural University, Beijing 100193, China
| | - Zhou Fang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
- Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
| | - Yi Xia
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, No. 10 Tianxiu Road, Haidian District, China Agricultural University, Beijing 100193, China
| | - Lin Zhu
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, No. 10 Tianxiu Road, Haidian District, China Agricultural University, Beijing 100193, China
| | - Teng Xu
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, No. 10 Tianxiu Road, Haidian District, China Agricultural University, Beijing 100193, China
| | - Xu Zhang
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, No. 10 Tianxiu Road, Haidian District, China Agricultural University, Beijing 100193, China
| | - Shuaishuai Zhou
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, No. 10 Tianxiu Road, Haidian District, China Agricultural University, Beijing 100193, China
| | - Mingyan Yang
- Analytical Biosciences Limited, Beijing 100084, China
| | - Jiayao Li
- Analytical Biosciences Limited, Beijing 100084, China
| | - Junming Zhu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
- Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
| | - Yongmin Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
- Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
| | - Haiyang Li
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
- Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
| | - Ming Gong
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
- Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
| | - Yuyong Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
- Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
| | - Jie Han
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
- Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
| | - Huiyuan Guo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, No. 10 Tianxiu Road, Haidian District, China Agricultural University, Beijing 100193, China
| | - Hongjia Zhang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
- Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
| | - Wenjian Jiang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
- Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100069, China
| | - Fazheng Ren
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, No. 10 Tianxiu Road, Haidian District, China Agricultural University, Beijing 100193, China
| |
Collapse
|
47
|
Ramos-Medina MJ, Echeverría-Garcés G, Kyriakidis NC, León Cáceres Á, Ortiz-Prado E, Bautista J, Pérez-Meza ÁA, Abad-Sojos A, Nieto-Jaramillo K, Espinoza-Ferrao S, Ocaña-Paredes B, López-Cortés A. CardiOmics signatures reveal therapeutically actionable targets and drugs for cardiovascular diseases. Heliyon 2024; 10:e23682. [PMID: 38187312 PMCID: PMC10770621 DOI: 10.1016/j.heliyon.2023.e23682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, with heart failure being a complex condition that affects millions of individuals. Single-nucleus RNA sequencing has recently emerged as a powerful tool for unraveling the molecular mechanisms behind cardiovascular diseases. This cutting-edge technology enables the identification of molecular signatures, intracellular networks, and spatial relationships among cardiac cells, including cardiomyocytes, mast cells, lymphocytes, macrophages, lymphatic endothelial cells, endocardial cells, endothelial cells, epicardial cells, adipocytes, fibroblasts, neuronal cells, pericytes, and vascular smooth muscle cells. Despite these advancements, the discovery of essential therapeutic targets and drugs for precision cardiology remains a challenge. To bridge this gap, we conducted comprehensive in silico analyses of single-nucleus RNA sequencing data, functional enrichment, protein interactome network, and identification of the shortest pathways to physiological phenotypes. This integrated multi-omics analysis generated CardiOmics signatures, which allowed us to pinpoint three therapeutically actionable targets (ADRA1A1, PPARG, and ROCK2) and 15 effective drugs, including adrenergic receptor agonists, adrenergic receptor antagonists, norepinephrine precursors, PPAR receptor agonists, and Rho-associated kinase inhibitors, involved in late-stage cardiovascular disease clinical trials.
Collapse
Affiliation(s)
- María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - Nikolaos C. Kyriakidis
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Ángela León Cáceres
- Heidelberg Institute of Global Health, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
- Instituto de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Esteban Ortiz-Prado
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Jhommara Bautista
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Álvaro A. Pérez-Meza
- Escuela de Medicina, Colegio de Ciencias de La Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | | | - Karol Nieto-Jaramillo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuqui, Ecuador
| | | | - Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
48
|
Bickel MA, Sherry DM, Bullen EC, Vance ML, Jones KL, Howard EW, Conley SM. Microvascular smooth muscle cells exhibit divergent phenotypic switching responses to platelet-derived growth factor and insulin-like growth factor 1. Microvasc Res 2024; 151:104609. [PMID: 37716411 PMCID: PMC10842624 DOI: 10.1016/j.mvr.2023.104609] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Vascular smooth muscle cell (VSMC) phenotypic switching is critical for normal vessel formation, vascular stability, and healthy brain aging. Phenotypic switching is regulated by mediators including platelet derived growth factor (PDGF)-BB, insulin-like growth factor (IGF-1), as well as transforming growth factor-β (TGF-β) and endothelin-1 (ET-1), but much about the role of these factors in microvascular VSMCs remains unclear. METHODS We used primary rat microvascular VSMCs to explore PDGF-BB- and IGF-1-induced phenotypic switching. RESULTS PDGF-BB induced an early proliferative response, followed by formation of polarized leader cells and rapid, directionally coordinated migration. In contrast, IGF-1 induced cell hypertrophy, and only a small degree of migration by unpolarized cells. TGF-β and ET-1 selectively inhibit PDGF-BB-induced VSMC migration primarily by repressing migratory polarization and formation of leader cells. Contractile genes were downregulated by both growth factors, while other genes were differentially regulated by PDGF-BB and IGF-1. CONCLUSIONS These studies indicate that PDGF-BB and IGF-1 stimulate different types of microvascular VSMC phenotypic switching characterized by different modes of cell migration. Our studies are consistent with a chronic vasoprotective role for IGF-1 in VSMCs in the microvasculature while PDGF is more involved in VSMC proliferation and migration in response to acute activities such as neovascularization. Better understanding of the nuances of the phenotypic switching induced by these growth factors is important for our understanding of a variety of microvascular diseases.
Collapse
Affiliation(s)
- Marisa A Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - David M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America; Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America; Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Elizabeth C Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Michaela L Vance
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Ken L Jones
- Bioinformatic Solutions, LLC, Sheridan, WY 82801, United States of America
| | - Eric W Howard
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America.
| |
Collapse
|
49
|
Ludtka C, Allen JB. The Effects of Simulated and Real Microgravity on Vascular Smooth Muscle Cells. GRAVITATIONAL AND SPACE RESEARCH : PUBLICATION OF THE AMERICAN SOCIETY FOR GRAVITATIONAL AND SPACE RESEARCH 2024; 12:46-59. [PMID: 38846256 PMCID: PMC11156189 DOI: 10.2478/gsr-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
As considerations are being made for the limitations and safety of long-term human spaceflight, the vasculature is important given its connection to and impact on numerous organ systems. As a major constituent of blood vessels, vascular smooth muscle cells are of interest due to their influence over vascular tone and function. Additionally, vascular smooth muscle cells are responsive to pressure and flow changes. Therefore, alterations in these parameters under conditions of microgravity can be functionally disruptive. As such, here we review and discuss the existing literature that assesses the effects of microgravity, both actual and simulated, on smooth muscle cells. This includes the various methods for achieving or simulating microgravity, the animal models or cells used, and the various durations of microgravity assessed. We also discuss the various reported findings in the field, which include changes to cell proliferation, gene expression and phenotypic shifts, and renin-angiotensin-aldosterone system (RAAS), nitric oxide synthase (NOS), and Ca2+ signaling. Additionally, we briefly summarize the literature on smooth muscle tissue engineering in microgravity as well as considerations of radiation as another key component of spaceflight to contextualize spaceflight experiments, which by their nature include radiation exposure. Finally, we provide general recommendations based on the existing literature's focus and limitations.
Collapse
Affiliation(s)
- Christopher Ludtka
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Josephine B. Allen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
50
|
Hu D, Ge Y, Ye L, Xi Y, Chen J, Zhu W, Wang Z, Sun Z, Su Y, Wang D, Xiao S, Qiu J. d-Galactose induces the senescence and phenotype switch of corpus cavernosum smooth muscle cells. J Cell Physiol 2024; 239:124-134. [PMID: 37942832 DOI: 10.1002/jcp.31150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Studies regarding age-related erectile dysfunction (ED) based on naturally aging models are limited by their high costs, especially for the acquisition of primary cells from the corpus cavernosum. Herein, d-galactose ( d-gal) was employed to accelerate cell senescence, and the underlying mechanism was explored. As predominant functional cells involved in the erectile response, corpus cavernosum smooth muscle cells (CCSMCs) were isolated from 2-month-old rats. Following this, d-gal was introduced to induce cell senescence, which was verified via β-galactosidase staining. The effects of d-gal on CCSMCs were evaluated by terminal deoxynucleoitidyl transferase dUTP nick-end labeling (TUNEL), immunofluorescence staining, flow cytometry, western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, RNA interference (RNAi) was carried out for rescue experiments. Subsequently, the influence of senescence on the corpus cavernosum was determined via scanning electron microscopy, qRT-PCR, immunohistochemistry, TUNEL, and Masson stainings. The results revealed that the accelerated senescence of CCSMCs was promoted by d-gal. Simultaneously, smooth muscle alpha-actin (alpha-SMA) expression was inhibited, while that of osteopontin (OPN) and Krüppel-like factor 4 (KLF4), as well as fibrotic and apoptotic levels, were elevated. After knocking down KLF4 expression in d-gal-induced CCSMCs by RNAi, the expression level of cellular alpha-SMA increased. Contrastingly, the OPN expression, apoptotic and fibrotic levels declined. In addition, cellular senescence acquired partial remission. Accordingly, in the aged corpus cavernosum, the fibrotic and apoptotic rates were increased, followed by downregulation in the expression of alpha-SMA and the concurrent upregulation in the expression of OPN and KLF4. Overall, our results signaled that d-gal-induced accelerated senescence of CCSMCs could trigger fibrosis, apoptosis and phenotypic switch to the synthetic state, potentially attributed to the upregulation of KLF4 expression, which may be a multipotential therapeutic target of age-related ED.
Collapse
Affiliation(s)
- Daoyuan Hu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunlong Ge
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lei Ye
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuhang Xi
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jialiang Chen
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenliang Zhu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenqing Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhuolun Sun
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany
| | - Ying Su
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dejuan Wang
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shiwei Xiao
- Department of Urology, Guizhou Province People's Hospital, Guiyang, China
| | - Jianguang Qiu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|