1
|
Karlsson J, Wirestam L, Duàn H, Ahmad S, Appelgren D, Enocsson H, Wetterö J, Sjöwall C. Mapping autoantibody targets of full-length C-reactive protein in systemic lupus erythematosus: importance for neutrophil function and classical complement activation. Front Immunol 2025; 16:1578372. [PMID: 40443658 PMCID: PMC12119686 DOI: 10.3389/fimmu.2025.1578372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/23/2025] [Indexed: 06/02/2025] Open
Abstract
C-reactive protein (CRP) is an important pattern recognition molecule of innate immunity. Autoantibodies targeting CRP are common in patients with systemic lupus erythematosus (SLE) and the levels correlate with disease activity. The purpose of this study was to investigate binding sites of IgG autoantibodies on the full linear sequence of CRP and identify potential associations with clinical variables in well-characterized SLE patients; a secondary aim was to investigate the effect of an epitope-based synthesized peptide motif on neutrophil functions. The levels of anti-CRP and SLE-associated antibodies were assessed, and a microarray-based linear epitope mapping was performed to detect binding sites on the full CRP monomer. We observed that anti-CRP antibodies bind to a variety of linear epitopes with a higher prevalence in SLE compared to healthy blood donors. Eleven unique epitopes were identified, of which five were found exclusively in SLE. Furthermore, we show that patients with anticardiolipin IgG and/or anti-β2GPI IgG antibodies have a higher number of positive CRP epitopes, and some CRP autoantibody-specificities associate with antiphospholipid antibodies, disease activity, and classical complement activation. In addition, one identified motif was selected, synthesized, and used for studying neutrophil function. This peptide showed modulatory capacity on neutrophil oxidative burst and chemotaxis, but not on neutrophil extracellular trap formation. Our results implicate a wide variation of anti-CRP autoantibody binding motifs of the linear structure of CRP in SLE patients. Some epitopes have the potential to modify innate host responses of relevance to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Jesper Karlsson
- Division of Inflammation & Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lina Wirestam
- Division of Inflammation & Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hanna Duàn
- Division of Inflammation & Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Suhana Ahmad
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Daniel Appelgren
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Helena Enocsson
- Division of Inflammation & Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jonas Wetterö
- Division of Inflammation & Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Division of Inflammation & Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Nabaes Jodar MS, Llorenç V, Figueras-Roca M, Sainz de-la-Maza M, Adán A, Molins B. C-reactive protein conformations and their association with the IL-1β/IL-6 pathway in ocular inflammatory conditions. Front Immunol 2025; 16:1601145. [PMID: 40421028 PMCID: PMC12104070 DOI: 10.3389/fimmu.2025.1601145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Introduction C-reactive protein (CRP) plays a critical role in the innate immune system and serves as a biomarker for various inflammatory conditions. CRP is a dynamic protein undergoing conformational changes between pentameric (pCRP) and monomeric (mCRP) conformations. pCRP is the well-established systemic marker of inflammation, while mCRP is associated with localized tissue inflammation. Methods This study aimed to evaluate systemic levels of pCRP, mCRP, interleukin-6 (IL-6), and interleukin-1β (IL-1β) in patients with a variety of intraocular inflammatory conditions, including diabetic macular edema (DME) and non-infectious uveitis such as Behçet's disease (BD), Birdshot retinochoroidopathy (BSRC), HLA-B27-associated uveitis, and undifferentiated uveitis (UU). Results A total of 77 subjects were included. mCRP levels were significantly elevated in BD, DME, and UU compared to controls (p = 0.014, p = 0.036, and p = 0.031, respectively). The mCRP/pCRP ratio was also significantly higher in DME and UU (p = 0.035 and p = 0.011, respectively). In addition, a strong positive correlation was observed between IL-6 and IL-1β (ρ = 0.638, p <0.0001). No significant differences in serum levels of pCRP, IL-6, or IL-1β were observed among the groups. Conclusions These findings suggest that mCRP, rather than pCRP, may be a more specific systemic biomarker for certain intraocular inflammatory conditions. The involvement of the CRP axis and the strong correlation between IL-6 and IL-1β underscore the interaction of these key inflammatory mediators, providing further insight into the targeting of CRP axis for therapeutic purposes.
Collapse
Affiliation(s)
- Mercedes S. Nabaes Jodar
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Víctor Llorenç
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marc Figueras-Roca
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maite Sainz de-la-Maza
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alfredo Adán
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Blanca Molins
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
3
|
Potempa M, Hart PC, Rajab IM, Potempa LA. Redefining CRP in tissue injury and repair: more than an acute pro-inflammatory mediator. Front Immunol 2025; 16:1564607. [PMID: 40093010 PMCID: PMC11906453 DOI: 10.3389/fimmu.2025.1564607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Most early studies investigating the role of C-reactive protein (CRP) in tissue damage determined it supported pro-hemostatic and pro-inflammatory activities. However, these findings were not universal, as other data suggested CRP inhibited these same processes. A potential explanation for these disparate observations finally emerged with the recognition that CRP undergoes context-dependent conformational changes in vivo, and each of its three isoforms - pentameric CRP (pCRP), modified pentameric CRP (pCRP*), and monomeric CRP (mCRP) - have different effects. In this review, we consider this new paradigm and re-evaluate the role of CRP and its isoforms in the tissue repair process. Indeed, a growing body of evidence points toward the involvement of CRP not just in hemostasis and inflammation, but also in the resolution of inflammation and in tissue regeneration. Additionally, we briefly discuss the shortcomings of the currently available diagnostic tests for CRP and highlight the need for change in how CRP is currently utilized in clinical practice.
Collapse
Affiliation(s)
| | - Peter C. Hart
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Ibraheem M. Rajab
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Lawrence A. Potempa
- Acphazin Inc., Deerfield, IL, United States
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| |
Collapse
|
4
|
Zeller J, Loseff-Silver J, Khoshmanesh K, Baratchi S, Lai A, Nero TL, Roy A, Watson A, Dayawansa N, Sharma P, Barbaro-Wahl A, Chen YC, Moon M, Vidallon MLP, Huang A, Thome J, Cheung Tung Shing KS, Harvie D, Bongiovanni MN, Braig D, Morton CJ, Htun NM, Stub D, Walton A, Horowitz J, Wang X, Pietersz G, Parker MW, Eisenhardt SU, McFadyen JD, Peter K. Shear-Sensing by C-Reactive Protein: Linking Aortic Stenosis and Inflammation. Circ Res 2024; 135:1033-1047. [PMID: 39421928 PMCID: PMC11542976 DOI: 10.1161/circresaha.124.324248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND CRP (C-reactive protein) is a prototypical acute phase reactant. Upon dissociation of the pentameric isoform (pCRP [pentameric CRP]) into its monomeric subunits (mCRP [monomeric CRP]), it exhibits prothrombotic and proinflammatory activity. Pathophysiological shear rates as observed in aortic valve stenosis (AS) can influence protein conformation and function as observed with vWF (von Willebrand factor). Given the proinflammatory function of dissociated CRP and the important role of inflammation in the pathogenesis of AS, we investigated whether shear stress can modify CRP conformation and induce inflammatory effects relevant to AS. METHODS To determine the effects of pathological shear rates on the function of human CRP, pCRP was subjected to pathophysiologically relevant shear rates and analyzed using biophysical and biochemical methods. To investigate the effect of shear on CRP conformation in vivo, we used a mouse model of arterial stenosis. Levels of mCRP and pCRP were measured in patients with severe AS pre- and post-transcatheter aortic valve implantation, and the presence of CRP was investigated on excised valves from patients undergoing aortic valve replacement surgery for severe AS. Microfluidic models of AS were then used to recapitulate the shear rates of patients with AS and to investigate this shear-dependent dissociation of pCRP and its inflammatory function. RESULTS Exposed to high shear rates, pCRP dissociates into its proinflammatory monomers (mCRP) and aggregates into large particles. Our in vitro findings were further confirmed in a mouse carotid artery stenosis model, where the administration of human pCRP led to the deposition of mCRP poststenosis. Patients undergoing transcatheter aortic valve implantation demonstrated significantly higher mCRP bound to circulating microvesicles pre-transcatheter aortic valve implantation compared with post-transcatheter aortic valve implantation. Excised human stenotic aortic valves display mCRP deposition. pCRP dissociated in a microfluidic model of AS and induces endothelial cell activation as measured by increased ICAM-1 (intercellular adhesion molecule 1) and P-selectin expression. mCRP also induces platelet activation and TGF-β (transforming growth factor beta) expression on platelets. CONCLUSIONS We identify a novel mechanism of shear-induced pCRP dissociation, which results in the activation of cells central to the development of AS. This novel mechanosensing mechanism of pCRP dissociation to mCRP is likely also relevant to other pathologies involving increased shear rates, such as in atherosclerotic and injured arteries.
Collapse
Affiliation(s)
- Johannes Zeller
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
- Department of Plastic and Hand Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Breisgau, Germany (J.Z., J.T., D.B., S.U.E.)
| | - Julia Loseff-Silver
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
| | | | - Sara Baratchi
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
- Department of Cardiometabolic Health (S.B., T.L.N., A.R., M.M., M.L.P.V., K.S.C.T.S., C.J.M., X.W., M.W.P., J.D.M., K.P.), Clayton, Victoria, Australia
| | - Austin Lai
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
| | - Tracy L. Nero
- Department of Cardiometabolic Health (S.B., T.L.N., A.R., M.M., M.L.P.V., K.S.C.T.S., C.J.M., X.W., M.W.P., J.D.M., K.P.), Clayton, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute (T.L.N., K.S.C.T.S., C.J.M., M.W.P.), Clayton, Victoria, Australia
| | - Abhishek Roy
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
- Department of Cardiometabolic Health (S.B., T.L.N., A.R., M.M., M.L.P.V., K.S.C.T.S., C.J.M., X.W., M.W.P., J.D.M., K.P.), Clayton, Victoria, Australia
| | - Anna Watson
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
| | - Nalin Dayawansa
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (N.D., N.M.H., D.S., A. Walton, K.P.)
| | - Prerna Sharma
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
| | - Anastasia Barbaro-Wahl
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
| | - Yung Chih Chen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
| | - Mitchell Moon
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
- Department of Cardiometabolic Health (S.B., T.L.N., A.R., M.M., M.L.P.V., K.S.C.T.S., C.J.M., X.W., M.W.P., J.D.M., K.P.), Clayton, Victoria, Australia
| | - Mark Louis P. Vidallon
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
- Department of Cardiometabolic Health (S.B., T.L.N., A.R., M.M., M.L.P.V., K.S.C.T.S., C.J.M., X.W., M.W.P., J.D.M., K.P.), Clayton, Victoria, Australia
| | - Angela Huang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
| | - Julia Thome
- Department of Plastic and Hand Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Breisgau, Germany (J.Z., J.T., D.B., S.U.E.)
| | - Karen S. Cheung Tung Shing
- Department of Cardiometabolic Health (S.B., T.L.N., A.R., M.M., M.L.P.V., K.S.C.T.S., C.J.M., X.W., M.W.P., J.D.M., K.P.), Clayton, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute (T.L.N., K.S.C.T.S., C.J.M., M.W.P.), Clayton, Victoria, Australia
| | - Dalton Harvie
- Department of Chemical Engineering (D.H., M.N.B.), Clayton, Victoria, Australia
| | | | - David Braig
- Department of Plastic and Hand Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Breisgau, Germany (J.Z., J.T., D.B., S.U.E.)
| | - Craig J. Morton
- Department of Cardiometabolic Health (S.B., T.L.N., A.R., M.M., M.L.P.V., K.S.C.T.S., C.J.M., X.W., M.W.P., J.D.M., K.P.), Clayton, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute (T.L.N., K.S.C.T.S., C.J.M., M.W.P.), Clayton, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia; now with CSIRO Biomedical Manufacturing, Clayton, Victoria, Australia (C.J.M.)
| | - Nay M. Htun
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (N.D., N.M.H., D.S., A. Walton, K.P.)
| | - Dion Stub
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (N.D., N.M.H., D.S., A. Walton, K.P.)
- Department of Epidemiology and Preventive Medicine (D.S.), Melbourne, Victoria, Australia
| | - Anthony Walton
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (N.D., N.M.H., D.S., A. Walton, K.P.)
| | - John Horowitz
- Department of Cardiology, Queen Elizabeth Hospital, Adelaide, South Australia, Australia (J.H.)
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
- Department of Cardiometabolic Health (S.B., T.L.N., A.R., M.M., M.L.P.V., K.S.C.T.S., C.J.M., X.W., M.W.P., J.D.M., K.P.), Clayton, Victoria, Australia
| | - Geoffrey Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
| | - Michael W. Parker
- Department of Cardiometabolic Health (S.B., T.L.N., A.R., M.M., M.L.P.V., K.S.C.T.S., C.J.M., X.W., M.W.P., J.D.M., K.P.), Clayton, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute (T.L.N., K.S.C.T.S., C.J.M., M.W.P.), Clayton, Victoria, Australia
- ACRF Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia (M.W.P.)
| | - Steffen U. Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Breisgau, Germany (J.Z., J.T., D.B., S.U.E.)
| | - James D. McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
- Department of Cardiometabolic Health (S.B., T.L.N., A.R., M.M., M.L.P.V., K.S.C.T.S., C.J.M., X.W., M.W.P., J.D.M., K.P.), Clayton, Victoria, Australia
- Department of Clinical Haematology (J.D.M), School of Translational Medicine Monash University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.Z., J.L.-S., S.B., A.L., A.R., A. Watson, N.D., P.S., A.B.-W., Y.C.C., M.M., M.L.P.V., A.H., N.M.H., X.W., G.P., J.D.M., K.P.)
- Department of Cardiometabolic Health (S.B., T.L.N., A.R., M.M., M.L.P.V., K.S.C.T.S., C.J.M., X.W., M.W.P., J.D.M., K.P.), Clayton, Victoria, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (N.D., N.M.H., D.S., A. Walton, K.P.)
| |
Collapse
|
5
|
Giralt L, Figueras-Roca M, Eguileor BDL, Romero B, Zarranz-Ventura J, Alforja S, Santiago F, Bolaños J, Lozano F, Dotti-Boada M, Sala-Puigdollers A, Dura P, Izquierdo-Serra J, Valero O, Adan A, Fonollosa A, Molins B. C-reactive protein-complement factor H axis as a biomarker of activity in early and intermediate age-related macular degeneration. Front Immunol 2024; 15:1330913. [PMID: 38633250 PMCID: PMC11021604 DOI: 10.3389/fimmu.2024.1330913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose To determine and compare the serum levels of complement Factor H (FH), monomeric C-Reactive Protein (mCRP) and pentameric C-Reactive protein (pCRP) in patients with age-related macular degeneration (AMD) and to correlate them with clinical, structural and functional parameters. Methods Cross-sectional observational study. One hundred thirty-nine individuals (88 patients and 51 healthy controls) from two referral centers were included and classified into three groups: early or intermediate AMD (n=33), advanced AMD (n=55), and age and sex matched healthy controls (n=51). Serum levels of FH, mCRP, and pCRP were determined and correlated with clinical and imaging parameters. Results Patients with intermediate AMD presented FH levels significantly lower than controls [186.5 (72.1-931.8) µg/mL vs 415.2 (106.1-1962.2) µg/mL; p=0.039] and FH levels <200 µg/mL were associated with the presence of drusen and pigmentary changes in the fundoscopy (p=0.002). While no differences were observed in pCRP and mCRP levels, and mCRP was only detected in less than 15% of the included participants, women had a significantly higher detection rate of mCRP than men (21.0% vs. 3.8%, p=0.045). In addition, the ratio mCRP/FH (log) was significantly lower in the control group compared to intermediate AMD (p=0.031). Visual acuity (p<0.001), macular volume (p<0.001), and foveal thickness (p=0.034) were significantly lower in the advanced AMD group, and choroidal thickness was significantly lower in advanced AMD compared to early/intermediate AMD (p=0.023). Conclusion Intermediate AMD was associated in our cohort with decreased serum FH levels together with increased serum mCRP/FH ratio. All these objective serum biomarkers may suggest an underlying systemic inflammatory process in early/intermediate AMD patients.
Collapse
Affiliation(s)
- Lena Giralt
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Department of Ophthalmology, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
| | - Marc Figueras-Roca
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Beatriz De Luis Eguileor
- Department of Ophthalmology, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
| | - Barbara Romero
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
| | - Javier Zarranz-Ventura
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Socorro Alforja
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Francisca Santiago
- Servei d’Immunologia, Centre de Diagnostic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain
| | - Jennifer Bolaños
- Servei d’Immunologia, Centre de Diagnostic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain
| | - Francisco Lozano
- Servei d’Immunologia, Centre de Diagnostic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain
- Group of Immunoreceptors of the Innate and Adaptive Systems, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Marina Dotti-Boada
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
| | - Anna Sala-Puigdollers
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Paula Dura
- Department of Ophthalmology, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
| | | | - Oliver Valero
- Servei d’Estadística, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alfredo Adan
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Alex Fonollosa
- Department of Ophthalmology, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
- Department of Retina, Instituto Oftalmológico Bilbao, Bilbao, Spain
| | - Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
6
|
Hornick MG, Potempa LA. Monomeric C-reactive protein as a biomarker for major depressive disorder. Front Psychiatry 2024; 14:1325220. [PMID: 38250276 PMCID: PMC10797126 DOI: 10.3389/fpsyt.2023.1325220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Neuroinflammation has been postulated to be a key factor in the pathogenesis of major depressive disorder (MDD). With this is mind, there has been a wave of research looking into pro-inflammatory mediators as potential biomarkers for MDD. One such mediator is the acute phase protein, C-reactive protein (CRP). While several studies have investigated the potential of CRP as a biomarker for MDD, the results have been inconsistent. One explanation for the lack of consistent findings may be that the high-sensitivity CRP tests utilized in these studies only measure the pentameric isoform of CRP (pCRP). Recent research, however, has indicated that the monomeric isoform of CRP (mCRP) is responsible for the pro-inflammatory function of CRP, while pCRP is weakly anti-inflammatory. The objective of this minireview is to re-examine the evidence of CRP involvement in MDD with a view of mCRP as a potential biomarker.
Collapse
Affiliation(s)
- Mary G. Hornick
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | | |
Collapse
|
7
|
Eichhorn T, Weiss R, Huber S, Ebeyer-Masotta M, Mostageer M, Emprechtinger R, Knabl L, Knabl L, Würzner R, Weber V. Expression of Tissue Factor and Platelet/Leukocyte Markers on Extracellular Vesicles Reflect Platelet-Leukocyte Interaction in Severe COVID-19. Int J Mol Sci 2023; 24:16886. [PMID: 38069209 PMCID: PMC10707108 DOI: 10.3390/ijms242316886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Severe COVID-19 is frequently associated with thromboembolic complications. Increased platelet activation and platelet-leukocyte aggregate formation can amplify thrombotic responses by inducing tissue factor (TF) expression on leukocytes. Here, we characterized TF-positive extracellular vesicles (EVs) and their cellular origin in 12 patients suffering from severe COVID-19 (time course, 134 samples overall) and 25 healthy controls. EVs exposing phosphatidylserine (PS) were characterized by flow cytometry. Their cellular origin was determined by staining with anti-CD41, anti-CD45, anti-CD235a, and anti-CD105 as platelet, leukocyte, red blood cell, and endothelial markers. We further investigated the association of EVs with TF, platelet factor 4 (PF4), C-reactive protein (CRP), and high mobility group box-1 protein (HMGB-1). COVID-19 patients showed higher levels of PS-exposing EVs compared to controls. The majority of these EVs originated from platelets. A higher amount of EVs in patient samples was associated with CRP, HMGB-1, PF4, and TF as compared to EVs from healthy donors. In COVID-19 samples, 16.5% of all CD41+ EVs displayed the leukocyte marker CD45, and 55.5% of all EV aggregates (CD41+CD45+) co-expressed TF, which reflects the interaction of platelets and leukocytes in COVID-19 on an EV level.
Collapse
Affiliation(s)
- Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - Silke Huber
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (R.W.)
| | - Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - Marwa Mostageer
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - Robert Emprechtinger
- Faculty of Health and Medicine, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Ludwig Knabl
- Department of Internal Medicine, Hospital St. Vinzenz, 6511 Zams, Austria;
| | | | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (R.W.)
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| |
Collapse
|
8
|
Pastorello Y, Carare RO, Banescu C, Potempa L, Di Napoli M, Slevin M. Monomeric C-reactive protein: A novel biomarker predicting neurodegenerative disease and vascular dysfunction. Brain Pathol 2023; 33:e13164. [PMID: 37158450 PMCID: PMC10580018 DOI: 10.1111/bpa.13164] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Circulating C-reactive protein (pCRP) concentrations rise dramatically during both acute (e.g., following stroke) or chronic infection and disease (e.g., autoimmune conditions such as lupus), providing complement fixation through C1q protein binding. It is now known, that on exposure to the membranes of activated immune cells (and microvesicles and platelets), or damaged/dysfunctional tissue, it undergoes lysophosphocholine (LPC)-phospholipase-C-dependent dissociation to the monomeric form (mCRP), concomitantly becoming biologically active. We review histological, immunohistochemical, and morphological/topological studies of post-mortem brain tissue from individuals with neuroinflammatory disease, showing that mCRP becomes stably distributed within the parenchyma, and resident in the arterial intima and lumen, being "released" from damaged, hemorrhagic vessels into the extracellular matrix. The possible de novo synthesis via neurons, endothelial cells, and glia is also considered. In vitro, in vivo, and human tissue co-localization analyses have linked mCRP to neurovascular dysfunction, vascular activation resulting in increased permeability, and leakage, compromise of blood brain barrier function, buildup of toxic proteins including tau and beta amyloid (Aβ), association with and capacity to "manufacture" Aβ-mCRP-hybrid plaques, and, greater susceptibility to neurodegeneration and dementia. Recently, several studies linked chronic CRP/mCRP systemic expression in autoimmune disease with increased risk of dementia and the mechanisms through which this occurs are investigated here. The neurovascular unit mediates correct intramural periarterial drainage, evidence is provided here that suggests a critical impact of mCRP on neurovascular elements that could suggest its participation in the earliest stages of dysfunction and conclude that further investigation is warranted. We discuss future therapeutic options aimed at inhibiting the pCRP-LPC mediated dissociation associated with brain pathology, for example, compound 1,6-bis-PC, injected intravenously, prevented mCRP deposition and associated damage, after temporary left anterior descending artery ligation and myocardial infarction in a rat model.
Collapse
Affiliation(s)
- Ylenia Pastorello
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Roxana O. Carare
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Clinical and experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Claudia Banescu
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Lawrence Potempa
- Department of Life Sciences, College of Science, Health and PharmacyRoosevelt UniversitySchaumburgIllinoisUSA
| | - Mario Di Napoli
- Department of Neurology and Stroke UnitSan Camillo de Lellis General HospitalRietiItaly
| | - Mark Slevin
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Manchester Metropolitan UniversityManchesterUK
| |
Collapse
|
9
|
Li Y, Zhang S, Liu J, Zhang Y, Zhang N, Cheng Q, Zhang H, Wu X. The pentraxin family in autoimmune disease. Clin Chim Acta 2023; 551:117592. [PMID: 37832905 DOI: 10.1016/j.cca.2023.117592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The pentraxins represent a family of multifunctional proteins composed of long and short pentamers. The latter includes serum amyloid P component (SAP) and C-reactive protein (CRP) whereas the former includes neuronal PTX1 and PTX2 (NPTX1 and NPTX2, respectively), PTX3 and PTX4. These serve as a bridge between adaptive immunity and innate immunity and a link between inflammation and immunity. Similarities and differences between long and short pentamers are examined and their roles in autoimmune disease are discussed. Increased CRP and PTX3 could indicate the activity of rheumatoid arthritis, systemic lupus erythematosus or other autoimmune diseases. Mechanistically, CRP and PTX3 may predict target organ injury, regulate bone metabolic immunity and maintain homeostasis as well as participate in vascular endothelial remodeling. Interestingly, PTX3 is pleiotropic, being involved in inflammation and tissue repair. Given the therapeutic potential of PTX3 and CRP, targeting these factors to exert a beneficial effect is the focus of research efforts. Unfortunately, studies on NPTX1, NPTX2, PTX4 and SAP are scarce and more research is clearly needed to elaborate their potential roles in autoimmune disease.
Collapse
Affiliation(s)
- Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Shouzan Zhang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, PR China
| | - Jingqi Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, PR China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
10
|
Olson ME, Hornick MG, Stefanski A, Albanna HR, Gjoni A, Hall GD, Hart PC, Rajab IM, Potempa LA. A biofunctional review of C-reactive protein (CRP) as a mediator of inflammatory and immune responses: differentiating pentameric and modified CRP isoform effects. Front Immunol 2023; 14:1264383. [PMID: 37781355 PMCID: PMC10540681 DOI: 10.3389/fimmu.2023.1264383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
C-reactive protein (CRP) is an acute phase, predominantly hepatically synthesized protein, secreted in response to cytokine signaling at sites of tissue injury or infection with the physiological function of acute pro-inflammatory response. Historically, CRP has been classified as a mediator of the innate immune system, acting as a pattern recognition receptor for phosphocholine-containing ligands. For decades, CRP was envisioned as a single, non-glycosylated, multi-subunit protein arranged non-covalently in cyclic symmetry around a central void. Over the past few years, however, CRP has been shown to exist in at least three distinct isoforms: 1.) a pentamer of five identical globular subunits (pCRP), 2.) a modified monomer (mCRP) resulting from a conformational change when subunits are dissociated from the pentamer, and 3.) a transitional isoform where the pentamer remains intact but is partially changed to express mCRP structural characteristics (referred to as pCRP* or mCRPm). The conversion of pCRP into mCRP can occur spontaneously and is observed under commonly used experimental conditions. In careful consideration of experimental design used in published reports of in vitro pro- and anti-inflammatory CRP bioactivities, we herein provide an interpretation of how distinctive CRP isoforms may have affected reported results. We argue that pro-inflammatory amplification mechanisms are consistent with the biofunction of mCRP, while weak anti-inflammatory mechanisms are consistent with pCRP. The interplay of each CRP isoform with specific immune cells (platelets, neutrophils, monocytes, endothelial cells, natural killer cells) and mechanisms of the innate immune system (complement), as well as differences in mCRP and pCRP ligand recognition and effector functions are discussed. This review will serve as a revised understanding of the structure-function relationship between CRP isoforms as related to inflammation and innate immunity mechanisms.
Collapse
Affiliation(s)
- Margaret E. Olson
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rizo-Téllez SA, Sekheri M, Filep JG. C-reactive protein: a target for therapy to reduce inflammation. Front Immunol 2023; 14:1237729. [PMID: 37564640 PMCID: PMC10410079 DOI: 10.3389/fimmu.2023.1237729] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
C-reactive protein (CRP) is well-recognized as a sensitive biomarker of inflammation. Association of elevations in plasma/serum CRP level with disease state has received considerable attention, even though CRP is not a specific indicator of a single disease state. Circulating CRP levels have been monitored with a varying degree of success to gauge disease severity or to predict disease progression and outcome. Elevations in CRP level have been implicated as a useful marker to identify patients at risk for cardiovascular disease and certain cancers, and to guide therapy in a context-dependent manner. Since even strong associations do not establish causality, the pathogenic role of CRP has often been over-interpreted. CRP functions as an important modulator of host defense against bacterial infection, tissue injury and autoimmunity. CRP exists in conformationally distinct forms, which exhibit distinct functional properties and help explaining the diverse, often contradictory effects attributed to CRP. In particular, dissociation of native pentameric CRP into its subunits, monomeric CRP, unmasks "hidden" pro-inflammatory activities in pentameric CRP. Here, we review recent advances in CRP targeting strategies, therapeutic lowering of circulating CRP level and development of CRP antagonists, and a conformation change inhibitor in particular. We will also discuss their therapeutic potential in mitigating the deleterious actions attributed to CRP under various pathologies, including cardiovascular, pulmonary and autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Salma A. Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Meriem Sekheri
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - János G. Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
12
|
Zhou L, Chen SJ, Chang Y, Liu SH, Zhou YF, Huang XP, Hua YX, An H, Zhang SH, Melnikov I, Gabbasov ZA, Wu Y, Ji SR. Monomeric C-reactive protein evokes TCR Signaling-dependent bystander activation of CD4+ T cells. Mol Immunol 2023; 157:158-166. [PMID: 37028130 DOI: 10.1016/j.molimm.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/28/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023]
Abstract
Bystander activation of T cells is defined as induction of effector responses by innate cytokines in the absence of cognate antigens and independent of T cell receptor (TCR) signaling. Here we show that C-reactive protein (CRP), a soluble pattern-recognition receptor assembled noncovalently by five identical subunits, can instead trigger bystander activation of CD4 + T cells by evoking allosteric activation and spontaneous signaling of TCR in the absence of cognate antigens. The actions of CRP depend on pattern ligand-binding induced conformational changes that result in the generation of monomeric CRP (mCRP). mCRP binds cholesterol in plasma membranes of CD4 + T cells, thereby shifting the conformational equilibrium of TCR to the cholesterol-unbound, primed state. The spontaneous signaling of primed TCR leads to productive effector responses manifested by upregulation of surface activation markers and release of IFN-γ. Our results thus identify a novel mode of bystander T cell activation triggered by allosteric TCR signaling, and reveal an interesting paradigm wherein innate immune recognition of CRP transforms it to a direct activator that evokes immediate adaptive immune responses.
Collapse
Affiliation(s)
- Liang Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Sheng-Juan Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yue Chang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Shan-Hui Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yu-Fei Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao-Ping Huang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yu-Xin Hua
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Hao An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Shu-Hao Zhang
- School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Ivan Melnikov
- National Medical Research Center of Cardiology, 15A 3rd Cherepkovskaya street, 121552 Moscow, Russia; MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Zufar A Gabbasov
- National Medical Research Center of Cardiology, 15A 3rd Cherepkovskaya street, 121552 Moscow, Russia; MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Children's Hospital, Xi'an Jiaotong University, Xi'an, PR China.
| | - Shang-Rong Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
13
|
Monomeric C-Reactive Protein in Atherosclerotic Cardiovascular Disease: Advances and Perspectives. Int J Mol Sci 2023; 24:ijms24032079. [PMID: 36768404 PMCID: PMC9917083 DOI: 10.3390/ijms24032079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
This review aimed to trace the inflammatory pathway from the NLRP3 inflammasome to monomeric C-reactive protein (mCRP) in atherosclerotic cardiovascular disease. CRP is the final product of the interleukin (IL)-1β/IL-6/CRP axis. Its monomeric form can be produced at sites of local inflammation through the dissociation of pentameric CRP and, to some extent, local synthesis. mCRP has a distinct proinflammatory profile. In vitro and animal-model studies have suggested a role for mCRP in: platelet activation, adhesion, and aggregation; endothelial activation; leukocyte recruitment and polarization; foam-cell formation; and neovascularization. mCRP has been shown to deposit in atherosclerotic plaques and damaged tissues. In recent years, the first published papers have reported the development and application of mCRP assays. Principally, these studies demonstrated the feasibility of measuring mCRP levels. With recent advances in detection techniques and the introduction of first assays, mCRP-level measurement should become more accessible and widely used. To date, anti-inflammatory therapy in atherosclerosis has targeted the NLRP3 inflammasome and upstream links of the IL-1β/IL-6/CRP axis. Large clinical trials have provided sufficient evidence to support this strategy. However, few compounds target CRP. Studies on these agents are limited to animal models or small clinical trials.
Collapse
|
14
|
Cooper J, Pastorello Y, Slevin M. A meta-analysis investigating the relationship between inflammation in autoimmune disease, elevated CRP, and the risk of dementia. Front Immunol 2023; 14:1087571. [PMID: 36776896 PMCID: PMC9912841 DOI: 10.3389/fimmu.2023.1087571] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
Alzheimer's Disease (AD) represents the most common type of dementia and is becoming a steadily increasing challenge for health systems globally. Inflammation is developing as the main focus of research into Alzheimer's disease and has been demonstrated to be a major driver of the pathologies associated with AD. This evidence introduces an interesting research question, whether chronic inflammation due to pathologies such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA) could lead to a higher risk of developing dementia. In both IBD and RA, increased levels of the inflammatory biomarker C-reactive protein (CRP) can be highlighted, the latter being directly implicated in neuroinflammation and AD. In this meta-analysis both the association between chronic inflammatory diseases and elevated levels of CRP during midlife were investigated to examine if they correlated with an augmented risk of dementia. Moreover, the association between increased CRP and modifications in the permeability of the Blood Brain Barrier (BBB) in the presence of CRP is explored. The results displayed that the odds ratio for IBD and dementia was 1.91 [1.15-3.15], for RA it was 1.90 [1.09-3.32] following sensitivity analysis and for CRP it was 1.62 [1.22-2.15]. These results demonstrate a higher risk of dementia in patients presenting chronic inflammation and that exists an independent association with high CRP in midlife. This paper builds on published research that suggest a critical role for CRP both in stroke and AD and provides an analysis on currently published research on multiple diseases (IBD and RA) in which CRP is raised as well as chronically elevated. CRP and the associated risk of dementia and further research indicated that the monomeric form of CRP can infiltrate the BBB/be released from damaged micro-vessels to access the brain. This meta-analysis provides first-time evidence that chronic elevation of CRP in autoimmune diseases is directly associated with an increased risk of later development of Alzheimer's disease. Therefore, greater priority should be provided to the effective control of inflammation in patients with chronic inflammatory or autoimmune conditions and further long-term assessment of circulating CRP might inform of an individual's relative risk of developing dementia.
Collapse
Affiliation(s)
- Joseph Cooper
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ylenia Pastorello
- George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Mark Slevin
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom.,George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| |
Collapse
|
15
|
Avdeeva AS. Inflammatory markers in rheumatic diseases. RHEUMATOLOGY SCIENCE AND PRACTICE 2022. [DOI: 10.47360/1995-4484-2022-561-569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immune-mediated rheumatic diseases (IMRDs) are a broad group of pathological conditions based on impaired immunological tolerance to one’s own tissues leading to inflammation and irreversible organ damage. Laboratory diagnosis of IMRDs includes a wide range of biomarkers (autoantibodies, acute phase proteins, cytokines, markers of endothelial damage, components of the complement system, immunoglobulins, cryoglobulins, lymphocyte subpopulations, indicators of bone metabolism, apoptosis markers, genetic markers, etc). One of the leading aspects of laboratory diagnosis of IMRDs is the study of the level of inflammation markers in the blood (erythrocyte sedimentation rate, C-reactive protein (CRP), serum amyloid protein (CAA), ferritin, procalcitonin, apolipoprotein AI, calprotectin, etc). The analysis of inflammation markers makes it possible to assess the disease activity, the nature of the progression and the prognosis of the outcomes of a chronic inflammatory process, as well as the effectiveness of the therapy. The review presents the latest data on the role of the most frequently studied inflammatory markers such as CRP, CAA and ferritin.
Collapse
|
16
|
Zeller J, Cheung Tung Shing KS, Nero TL, McFadyen JD, Krippner G, Bogner B, Kreuzaler S, Kiefer J, Horner VK, Braig D, Danish H, Baratchi S, Fricke M, Wang X, Kather MG, Kammerer B, Woollard KJ, Sharma P, Morton CJ, Pietersz G, Parker MW, Peter K, Eisenhardt SU. A novel phosphocholine-mimetic inhibits a pro-inflammatory conformational change in C-reactive protein. EMBO Mol Med 2022; 15:e16236. [PMID: 36468184 PMCID: PMC9832874 DOI: 10.15252/emmm.202216236] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 12/09/2022] Open
Abstract
C-reactive protein (CRP) is an early-stage acute phase protein and highly upregulated in response to inflammatory reactions. We recently identified a novel mechanism that leads to a conformational change from the native, functionally relatively inert, pentameric CRP (pCRP) structure to a pentameric CRP intermediate (pCRP*) and ultimately to the monomeric CRP (mCRP) form, both exhibiting highly pro-inflammatory effects. This transition in the inflammatory profile of CRP is mediated by binding of pCRP to activated/damaged cell membranes via exposed phosphocholine lipid head groups. We designed a tool compound as a low molecular weight CRP inhibitor using the structure of phosphocholine as a template. X-ray crystallography revealed specific binding to the phosphocholine binding pockets of pCRP. We provide in vitro and in vivo proof-of-concept data demonstrating that the low molecular weight tool compound inhibits CRP-driven exacerbation of local inflammatory responses, while potentially preserving pathogen-defense functions of CRP. The inhibition of the conformational change generating pro-inflammatory CRP isoforms via phosphocholine-mimicking compounds represents a promising, potentially broadly applicable anti-inflammatory therapy.
Collapse
Affiliation(s)
- Johannes Zeller
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany,Baker Heart and Diabetes InstituteMelbourneVic.Australia
| | - Karen S Cheung Tung Shing
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Tracy L Nero
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia,ACRF Rational Drug Discovery CentreSt. Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - James D McFadyen
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Guy Krippner
- Baker Heart and Diabetes InstituteMelbourneVic.Australia
| | - Balázs Bogner
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Sheena Kreuzaler
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Jurij Kiefer
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Verena K Horner
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - David Braig
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Habiba Danish
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,School of Health and Biomedical SciencesRMIT UniversityMelbourneVic.Australia
| | - Sara Baratchi
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVic.Australia
| | - Mark Fricke
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Xiaowei Wang
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Michel G Kather
- Centre for Integrative Signalling Analysis CISAUniversity of FreiburgFreiburgGermany
| | - Bernd Kammerer
- Centre for Integrative Signalling Analysis CISAUniversity of FreiburgFreiburgGermany
| | | | - Prerna Sharma
- Baker Heart and Diabetes InstituteMelbourneVic.Australia
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Geoffrey Pietersz
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia,ACRF Rational Drug Discovery CentreSt. Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| |
Collapse
|
17
|
Halaris A, Prochaska D, Stefanski A, Filip M. C-reactive protein in major depressive disorder: Promise and challenge. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
18
|
Dix C, Zeller J, Stevens H, Eisenhardt SU, Shing KSCT, Nero TL, Morton CJ, Parker MW, Peter K, McFadyen JD. C-reactive protein, immunothrombosis and venous thromboembolism. Front Immunol 2022; 13:1002652. [PMID: 36177015 PMCID: PMC9513482 DOI: 10.3389/fimmu.2022.1002652] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
C-reactive protein (CRP) is a member of the highly conserved pentraxin superfamily of proteins and is often used in clinical practice as a marker of infection and inflammation. There is now increasing evidence that CRP is not only a marker of inflammation, but also that destabilized isoforms of CRP possess pro-inflammatory and pro-thrombotic properties. CRP circulates as a functionally inert pentameric form (pCRP), which relaxes its conformation to pCRP* after binding to phosphocholine-enriched membranes and then dissociates to monomeric CRP (mCRP). with the latter two being destabilized isoforms possessing highly pro-inflammatory features. pCRP* and mCRP have significant biological effects in regulating many of the aspects central to pathogenesis of atherothrombosis and venous thromboembolism (VTE), by directly activating platelets and triggering the classical complement pathway. Importantly, it is now well appreciated that VTE is a consequence of thromboinflammation. Accordingly, acute VTE is known to be associated with classical inflammatory responses and elevations of CRP, and indeed VTE risk is elevated in conditions associated with inflammation, such as inflammatory bowel disease, COVID-19 and sepsis. Although the clinical data regarding the utility of CRP as a biomarker in predicting VTE remains modest, and in some cases conflicting, the clinical utility of CRP appears to be improved in subsets of the population such as in predicting VTE recurrence, in cancer-associated thrombosis and in those with COVID-19. Therefore, given the known biological function of CRP in amplifying inflammation and tissue damage, this raises the prospect that CRP may play a role in promoting VTE formation in the context of concurrent inflammation. However, further investigation is required to unravel whether CRP plays a direct role in the pathogenesis of VTE, the utility of which will be in developing novel prophylactic or therapeutic strategies to target thromboinflammation.
Collapse
Affiliation(s)
- Caroline Dix
- Department of Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Johannes Zeller
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Hannah Stevens
- Department of Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Steffen U. Eisenhardt
- Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Karen S. Cheung Tung Shing
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L. Nero
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
| | - Craig J. Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Biomedical Manufacturing Program, Clayton, VIC, Australia
| | - Michael W. Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
- Structural Biology Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
| | - James D. McFadyen
- Department of Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: James D. McFadyen,
| |
Collapse
|
19
|
Potempa LA, Qiu WQ, Stefanski A, Rajab IM. Relevance of lipoproteins, membranes, and extracellular vesicles in understanding C-reactive protein biochemical structure and biological activities. Front Cardiovasc Med 2022; 9:979461. [PMID: 36158829 PMCID: PMC9493015 DOI: 10.3389/fcvm.2022.979461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Early purification protocols for C-reactive protein (CRP) often involved co-isolation of lipoproteins, primarily very low-density lipoproteins (VLDLs). The interaction with lipid particles was initially attributed to CRP’s calcium-dependent binding affinity for its primary ligand—phosphocholine—the predominant hydrophilic head group expressed on phospholipids of most lipoprotein particles. Later, CRP was shown to additionally express binding affinity for apolipoprotein B (apo B), a predominant apolipoprotein of both VLDL and LDL particles. Apo B interaction with CRP was shown to be mediated by a cationic peptide sequence in apo B. Optimal apo B binding required CRP to be surface immobilized or aggregated, treatments now known to structurally change CRP from its serum soluble pentamer isoform (i.e., pCRP) into its poorly soluble, modified, monomeric isoform (i.e., mCRP). Other cationic ligands have been described for CRP which affect complement activation, histone bioactivities, and interactions with membranes. mCRP, but not pCRP, binds cholesterol and activates signaling pathways that activate pro-inflammatory bioactivities long associated with CRP as a biomarker. Hence, a key step to express CRP’s biofunctions is its conversion into its mCRP isoform. Conversion occurs when (1) pCRP binds to a membrane surface expressed ligand (often phosphocholine); (2) biochemical forces associated with binding cause relaxation/partial dissociation of secondary and tertiary structures into a swollen membrane bound intermediate (described as mCRPm or pCRP*); (3) further structural relaxation which leads to total, irreversible dissociation of the pentamer into mCRP and expression of a cholesterol/multi-ligand binding sequence that extends into the subunit core; (4) reduction of the CRP subunit intrachain disulfide bond which enhances CRP’s binding accessibility for various ligands and activates acute phase proinflammatory responses. Taken together, the biofunctions of CRP involve both lipid and protein interactions and a conformational rearrangement of higher order structure that affects its role as a mediator of inflammatory responses.
Collapse
Affiliation(s)
- Lawrence A. Potempa
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
- *Correspondence: Lawrence A. Potempa,
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, United States
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Ashley Stefanski
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| | - Ibraheem M. Rajab
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| |
Collapse
|
20
|
Ullah N, Wu Y. Regulation of Conformational Changes in C-reactive Protein Alters its Bioactivity. Cell Biochem Biophys 2022; 80:595-608. [PMID: 35997934 DOI: 10.1007/s12013-022-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/09/2022] [Indexed: 01/08/2023]
Abstract
The acute phase C-reactive protein (CRP) is mainly synthesized and secreted by the liver in a cytokine-mediated response to infection or inflammation and circulates as a pentamer (pCRP) in plasma. Recent studies indicate that CRP is not only a marker but is directly involved in inflammation. CRP has a vital role in host defense and inflammation, metabolic function and scavenging through its ability for calcium depended binding to exogenous and endogenous molecules having phosphocholine followed by activation of the classical complement pathway. Accumulating evidence indicates that pCRP dissociates into monomeric CRP (mCRP) and most proinflammatory actions of CRP are only expressed following dissociation of its native pentameric assembly into mCRP. The dissociation of CRP into mCRP altogether promotes the ligand-binding capability. mCRP emerges to be the main conformation of CRP that participates in the regulation of local inflammation, however, little is identified concerning what triggers the significantly enhanced actions of mCRP and their binding to diverse ligands. The separation of mCRP from pCRP may be a direct relationship between CRP and inflammation. Here we review the current literature on CRP dissociation and its interaction with different ligands. The possibility to avoid the generation of the proinflammatory potential of mCRP has driven therapeutic approaches by targeting the dissociation mechanism of pCRP or inhibition of mCRP itself during inflammation.
Collapse
Affiliation(s)
- Naeem Ullah
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, the Affiliated Children's Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
21
|
Melnikov I, Kozlov S, Pogorelova O, Tripoten M, Khamchieva L, Saburova O, Avtaeva Y, Zvereva M, Matroze E, Kuznetsova T, Prokofieva L, Balakhonova T, Gabbasov Z. The monomeric C-reactive protein level is associated with the increase in carotid plaque number in patients with subclinical carotid atherosclerosis. Front Cardiovasc Med 2022; 9:968267. [PMID: 35935662 PMCID: PMC9353581 DOI: 10.3389/fcvm.2022.968267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
The high-sensitivity C-reactive protein (hsCRP) assay measures the level of the pentameric form of CRP in blood. Currently, there are no available assays measuring the level of the monomeric form of CRP (mCRP), produced at sites of local inflammation. We developed an assay measuring the mCRP level in blood plasma with functional beads for flow cytometry. The assay was used to measure the mCRP level in 80 middle-aged individuals with initially moderate cardiovascular SCORE risk. By the time of the mCRP measurement, the patients have been followed up for subclinical carotid atherosclerosis progression for 7 years. Ultrasound markers of subclinical atherosclerosis, which included plaque number (PN) and total plaque height (PH), were measured at baseline and at the 7th-year follow-up survey. Inflammatory biomarkers, including mCRP, hsCRP, inteleukin-6 (IL-6) and von Willebrand factor (VWF) level, were measured at the 7th-year follow-up survey. The median level of mCRP was 5.2 (3.3; 7.1) μg/L, hsCRP 1.05 (0.7; 2.1) mg/L, IL-6 0.0 (0.0; 2.8) pg/mL, VWF 106 (77; 151) IU/dL. In the patients with the mCRP level below median vs. the patients with the median mCRP level or higher, change from baseline in PN was 0.0 (0.0; 1.0) vs. 1.0 (1.0; 2.0) and PH 0.22 (−0.24; 1.91) mm vs. 1.97 (1.14; 3.14) mm, respectively (p < 0.05). The adjusted odds ratio for the formation of new carotid atherosclerotic plaques was 4.7 (95% CI 1.7; 13.2) for the patients with the median mCRP level or higher. The higher mCRP level is associated with the more pronounced increase in PN and PH in patients with normal level of traditional inflammatory biomarkers and initially moderate cardiovascular SCORE risk.
Collapse
Affiliation(s)
- Ivan Melnikov
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Laboratory of Gas Exchange, Biomechanics and Barophysiology, State Scientific Center of the Russian Federation – The Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Ivan Melnikov
| | - Sergey Kozlov
- Laboratory of Problems of Atherosclerosis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga Pogorelova
- Department of Ultrasound Diagnostics, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria Tripoten
- Department of Ultrasound Diagnostics, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Leyla Khamchieva
- Department of Ultrasound Diagnostics, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga Saburova
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yuliya Avtaeva
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria Zvereva
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeny Matroze
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Innovative Pharmacy, Medical Devices and Biotechnology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Tatiana Kuznetsova
- Laboratory of Neurohormonal Regulation of Cardiovascular Diseases, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Lyudmila Prokofieva
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana Balakhonova
- Department of Ultrasound Diagnostics, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov University, Moscow, Russia
| | - Zufar Gabbasov
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Zufar Gabbasov
| |
Collapse
|
22
|
Zeller J, Bogner B, McFadyen JD, Kiefer J, Braig D, Pietersz G, Krippner G, Nero TL, Morton CJ, Shing KSCT, Parker MW, Peter K, Eisenhardt SU. Transitional changes in the structure of C-reactive protein create highly pro-inflammatory molecules: Therapeutic implications for cardiovascular diseases. Pharmacol Ther 2022; 235:108165. [PMID: 35247517 DOI: 10.1016/j.pharmthera.2022.108165] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 02/08/2023]
Abstract
C-reactive protein (CRP) is the prototypic acute-phase reactant that has long been recognized almost exclusively as a marker of inflammation and predictor of cardiovascular risk. However, accumulating evidence indicates that CRP is also a direct pathogenic pro-inflammatory mediator in atherosclerosis and cardiovascular diseases. The 'CRP system' consists of at least two protein conformations with distinct pathophysiological functions. The binding of the native, pentameric CRP (pCRP) to activated cell membranes leads to a conformational change resulting in two highly pro-inflammatory isoforms, pCRP* and monomeric CRP (mCRP). The deposition of these pro-inflammatory isoforms has been shown to aggravate the localized tissue injury in a broad range of pathological conditions including atherosclerosis and thrombosis, myocardial infarction, and stroke. Here, we review recent findings on how these structural changes contribute to the inflammatory response and discuss the transitional changes in the structure of CRP as a novel therapeutic target in cardiovascular diseases and overshooting inflammation.
Collapse
Affiliation(s)
- J Zeller
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany; Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - B Bogner
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - J D McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - J Kiefer
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - D Braig
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany; Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - G Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
| | - G Krippner
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - T L Nero
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - C J Morton
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - K S Cheung Tung Shing
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - M W Parker
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
| | - K Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Immunology, Monash University, Melbourne, Victoria, Australia.
| | - S U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany.
| |
Collapse
|
23
|
Fujita C, Sakurai Y, Yasuda Y, Homma R, Huang CL, Fujita M. mCRP as a Biomarker of Adult-Onset Still’s Disease: Quantification of mCRP by ELISA. Front Immunol 2022; 13:938173. [PMID: 35844576 PMCID: PMC9284222 DOI: 10.3389/fimmu.2022.938173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background C-reactive protein (CRP) is a dynamic protein that undergoes conformational changes between circulating native pentameric CRP (pCRP), pentameric symmetrical forms (pCRP*) and monomeric (or modified) CRP (mCRP) forms. mCRP exhibits strong pro-inflammatory activity and activates platelets, leukocytes, and endothelial cells. Abundant deposition of mCRP in inflamed tissues plays a role in several disease conditions, such as ischemia/reperfusion injury, Alzheimer’s disease, and cardiovascular disease. Although pCRP is typically quantified rather than mCRP for clinical purposes, mCRP may be a more appropriate disease marker of inflammatory diseases. Therefore, simple methods for quantifying mCRP are needed. Methods We developed a specific enzyme-linked immunosorbent assay (ELISA) to measure plasma levels of mCRP. Plasma mCRP concentration was measured in patients with adult-onset Still’s disease (AOSD) (n=20), polymyalgia rheumatica (PMR) (n=20), rheumatoid arthritis (RA) (n=30), infection (n=50), and in control subjects (n=30) using the developed ELISA. Results We demonstrated that mCRP is elevated in some inflammatory autoimmune diseases, particularly AOSD. The mCRP concentration was also significantly higher among AOSD patients than RA, PMR patients and controls (477 ng/ml, 77 ng/ml, 186 ng/ml, and 1.2 ng/ml, respectively). Also, the mCRP (×1,000)/pCRP ratio was significantly higher among AOSD patients than RA, PMR, and infection patients (3.5, 0.6, 1,6, and 2.0, respectively). Conclusion The plasma mCRP levels are elevated in some autoimmune diseases, particularly AOSD. The plasma mCRP levels may therefore be a potentially useful biomarker for AOSD.
Collapse
Affiliation(s)
- Chitose Fujita
- Division of Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
- The Japan-Multinational Trial Organization, Aichi, Japan
| | - Yasuo Sakurai
- The Japan-Multinational Trial Organization, Aichi, Japan
- Advanced Technology Research Department, Research and Development Center, Canon Medical Systems Corporation, Tochigi, Japan
| | - Yuki Yasuda
- Advanced Technology Research Department, Research and Development Center, Canon Medical Systems Corporation, Tochigi, Japan
| | - Rino Homma
- Advanced Technology Research Department, Research and Development Center, Canon Medical Systems Corporation, Tochigi, Japan
| | - Cheng-Long Huang
- Division of Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
- The Japan-Multinational Trial Organization, Aichi, Japan
| | - Masaaki Fujita
- Division of Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
- The Japan-Multinational Trial Organization, Aichi, Japan
- Division of Clinical Immunology and Rheumatology, Kansai Electric Power Hospital, Medical Research Institute, Osaka, Japan
- Department of Infectious Diseases, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
- *Correspondence: Masaaki Fujita,
| |
Collapse
|
24
|
Slevin M, Heidari N, Azamfirei L. Monomeric C-Reactive Protein: Current Perspectives for Utilization and Inclusion as a Prognostic Indicator and Therapeutic Target. Front Immunol 2022; 13:866379. [PMID: 35309334 PMCID: PMC8930844 DOI: 10.3389/fimmu.2022.866379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Monomeric C-reactive protein (mCRP), once thought to be a figment of the imagination and whose biological activity was ascribed to its sodium azide preservative, has now pronounced itself as a critical molecule playing a direct role in mediating many of the acute and chronic aberrant pathological responses to inflammation. In this focused mini review, we describe the currently attributed pathobiological interactions of mCRP in disease, where its tissue and cellular distribution and deposition have recently been clearly characterized and linked to inflammation and other pathway-associated progression of neurological and cardiovascular complications and deleterious outcomes. and focus upon current opinions as to the diagnostic and prognostic potential of mCRP-plasma circulating protein and define the possible future therapeutics including ongoing research attempting to block CRP dissociation with small molecule inhibitors or prevention of cell surface binding directly using antibodies or modified orphan drug targeting directed towards CRP, inhibiting its cellular interactions and signaling activation. There is no doubt that understanding the full influence of the biological power of mCRP in disease development and outcome will be considered a critical parameter in future stratified treatment.
Collapse
Affiliation(s)
- Mark Slevin
- Department of Life Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
- The Regenerative Clinic, London, United Kingdom
- The School of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- *Correspondence: Mark Slevin, ;
| | - Nima Heidari
- Department of Life Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
- The Regenerative Clinic, London, United Kingdom
| | - Leonard Azamfirei
- Department of Life Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| |
Collapse
|
25
|
Baysak E, Guden DS, Aricioglu F, Halaris A. C-reactive protein as a potential biomarker in psychiatric practice: Are we there yet? World J Biol Psychiatry 2022; 23:243-256. [PMID: 34323645 DOI: 10.1080/15622975.2021.1961502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Serum or plasma levels of C-reactive protein (CRP) and high-sensitivity CRP (hsCRP) are widely used clinical markers of inflammation in other branches of medicine, whereas its clinical use in psychiatry has been limited to research studies. We aimed to assess the possibility of using CRP/hsCRP in psychiatric practice. This is a review and evaluation of various lines of evidence supporting the concept of CRP as a biomarker for psychiatric disorders in certain conditions. METHODS We searched the literature for studies which assessed CRP/hsCRP levels in various psychiatric disorders. RESULTS The accumulating evidence from large studies and meta-analyses allows us to understand the role of CRP in major psychiatric disorders and increase our understanding of specific symptoms and subtypes of disorders. CRP may be considered a 'psychiatric biomarker' which can alert clinicians about neuroinflammation, adverse effects of medications, cardiometabolic status, co-morbidities, and may also predict clinical outcomes and guide optimal treatment.selection. CONCLUSION Although the underlying pathophysiological role of CRP and hsCRP is still elusive and the association between CRP and psychiatric disorders is inconsistent, CRP holds promise to become a psychiatric biomarker.
Collapse
Affiliation(s)
- Erensu Baysak
- Department of Psychiatry, Marmara University School of Medicine, Istanbul, Turkey
| | - Demet Sinem Guden
- Department of Basic and Clinical Pharmacology, Istinye University Faculty of Medicine, Istanbul, Turkey
| | - Feyza Aricioglu
- Department of Pharmacology and Psychopharmacology Research Unit, Marmara University School of Pharmacy, Istanbul, Turkey
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
26
|
Stratman AN, Crewe C, Stahl PD. The microenvironment‐ a general hypothesis on the homeostatic function of extracellular vesicles. FASEB Bioadv 2022; 4:284-297. [PMID: 35520390 PMCID: PMC9065581 DOI: 10.1096/fba.2021-00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs), exosomes and microvesicles, is a burgeoning field of biological and biomedical research that may change our understanding of cell communication in plants and animals while holding great promise for the diagnosis of disease and the development of therapeutics. However, the challenge remains to develop a general hypothesis about the role of EVs in physiological homeostasis and pathobiology across kingdoms. While they can act systemically, EVs are often seen to operate locally within a microenvironment. This microenvironment is built as a collection of microunits comprised of cells that interact with each other via EV exchange, EV signaling, EV seeding, and EV disposal. We propose that microunits are part of a larger matrix at the tissue level that collectively communicates with the surrounding environment, including other end‐organ systems. Herein, we offer a working model that encompasses the various facets of EV function in the context of the cell biology and physiology of multicellular organisms.
Collapse
Affiliation(s)
- Amber N Stratman
- Department of Cell Biology and Physiology Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
| | - Clair Crewe
- Department of Cell Biology and Physiology Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
- Department of Internal Medicine Division of Endocrinology, Metabolism and Lipid Research Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
| | - Philip D Stahl
- Department of Cell Biology and Physiology Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
| |
Collapse
|
27
|
The Complex Role of C-Reactive Protein in Systemic Lupus Erythematosus. J Clin Med 2021; 10:jcm10245837. [PMID: 34945133 PMCID: PMC8708507 DOI: 10.3390/jcm10245837] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
C-reactive protein (CRP) is well-known as a sensitive albeit unspecific biomarker of inflammation. In most rheumatic conditions, the level of this evolutionarily highly conserved pattern recognition molecule conveys reliable information regarding the degree of ongoing inflammation, driven mainly by interleukin-6. However, the underlying causes of increased CRP levels are numerous, including both infections and malignancies. In addition, low to moderate increases in CRP predict subsequent cardiovascular events, often occurring years later, in patients with angina and in healthy individuals. However, autoimmune diseases characterized by the Type I interferon gene signature (e.g., systemic lupus erythematosus, primary Sjögren’s syndrome and inflammatory myopathies) represent exceptions to the general rule that the concentrations of CRP correlate with the extent and severity of inflammation. In fact, adequate levels of CRP can be beneficial in autoimmune conditions, in that they contribute to efficient clearance of cell remnants and immune complexes through complement activation/modulation, opsonization and phagocytosis. Furthermore, emerging data indicate that CRP constitutes an autoantigen in systemic lupus erythematosus. At the same time, the increased risks of cardiovascular and cerebrovascular diseases in patients diagnosed with systemic lupus erythematosus and rheumatoid arthritis are well-established, with significant impacts on quality of life, accrual of organ damage, and premature mortality. This review describes CRP-mediated biological effects and the regulation of CRP release in relation to aspects of cardiovascular disease and mechanisms of autoimmunity, with particular focus on systemic lupus erythematosus.
Collapse
|
28
|
Fujita C, Sakurai Y, Yasuda Y, Takada Y, Huang CL, Fujita M. Anti-Monomeric C-Reactive Protein Antibody Ameliorates Arthritis and Nephritis in Mice. THE JOURNAL OF IMMUNOLOGY 2021; 207:1755-1762. [PMID: 34470853 DOI: 10.4049/jimmunol.2100349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Conformation-specific Ags are ideal targets for mAb-based immunotherapy. Here, we demonstrate that the monomeric form of C-reactive protein (mCRP) is a specific therapeutic target for arthritis and nephritis in a murine model. Screening of >1800 anti-mCRP mAb clones identified 3C as a clone recognizing the monomeric, but not polymeric, form of CRP. The anti-mCRP mAb suppressed leukocyte infiltration in thioglycollate-induced peritonitis, attenuated rheumatoid arthritis symptoms in collagen Ab-induced arthritis model mice, and attenuated lupus nephritis symptoms in MRL/Mp-lpr/lpr lupus-prone model mice. These data suggest that the anti-mCRP mAb 3C has therapeutic potential against rheumatoid arthritis and lupus nephritis.
Collapse
Affiliation(s)
- Chitose Fujita
- Division of Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan.,The Japan-Multinational Trial Organization, Aichi, Japan
| | - Yasuo Sakurai
- The Japan-Multinational Trial Organization, Aichi, Japan.,Canon Medical Systems Corporation, Tochigi, Japan
| | - Yuki Yasuda
- Canon Medical Systems Corporation, Tochigi, Japan
| | - Yoshikazu Takada
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA
| | - Cheng-Long Huang
- Division of Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan.,The Japan-Multinational Trial Organization, Aichi, Japan
| | - Masaaki Fujita
- Division of Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan; .,The Japan-Multinational Trial Organization, Aichi, Japan.,Division of Clinical Immunology and Rheumatology, Kansai Electric Power Hospital, Osaka, Japan; and.,Department of Infectious Diseases, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| |
Collapse
|
29
|
Persistent circulating platelet and endothelial derived microparticle signature may explain on-going pro-thrombogenicity after acute coronary syndrome. Thromb Res 2021; 206:60-65. [PMID: 34418680 DOI: 10.1016/j.thromres.2021.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 07/02/2021] [Accepted: 07/31/2021] [Indexed: 11/23/2022]
Abstract
AIMS Microparticles (MPs) are submicron vesicles, released from activated, and apoptotic cells. MPs are elevated in the circulation of patients with coronary artery disease (CAD) and have pro-thrombotic potential. However, limited data exists on MP signature over time following an acute coronary event. METHODS & RESULTS Circulating total annexin v + (Anv+) MPs of endothelial (EMP), platelet (PMP), monocyte (MMP), neutrophil (NMP) and smooth muscle cell (SMMP) origin were quantified by flow cytometry. 13 patients with acute coronary syndrome (ACS) were prospectively enrolled and 12 patients with stable angina (SA) were included as a comparator group. A panel of MP was measured at baseline, after percutaneous coronary intervention (PCI) and at days 1, 7, 30 and 6 months. Intra & inter group comparison was made between various time points. MP mediated thrombin generation was measured by recording lag phase, velocity index, peak thrombin and endogenous thrombin potential at these time points and compared with healthy controls. The total AnV+ MP levels were similar in ACS and SA groups at baseline, peaked immediately after PCI and were at their lowest on day 1. PMP & EMP levels remained significantly elevated in ACS patients at 6 months when compared to SA. No such difference was noted with NMP, MMP and SMMP. Patients with coronary artery disease showed abnormal thrombograms when compared to controls. Peak thrombin (nano moles) was significantly higher in CAD when compared to controls (254 IQR [226, 239] in ACS, 255 IQR [219, 328] in SA and 132 IQR [57, 252] in controls; p = 0.006). Differences in thrombin generation between ACS and SA were not significant (p = 1). Furthermore, thrombin parameters remained abnormal in ACS & SA patients at 6 months. CONCLUSIONS Total MP and individual MP phenotypes were significantly elevated after PCI reflecting endothelial injury. Elevated PMP and EMP levels at 6 months in ACS patients is suggestive of on-going inflammation, endothelial injury and may explain on-going pro-thrombogenicity seen up to 6 months after ACS despite dual antiplatelet therapy.
Collapse
|
30
|
Siegel PM, Schmich J, Barinov G, Bojti I, Vedecnik C, Simanjuntak NR, Bode C, Moser M, Peter K, Diehl P. Cardiomyocyte microvesicles: proinflammatory mediators after myocardial ischemia? J Thromb Thrombolysis 2021; 50:533-542. [PMID: 32537679 PMCID: PMC8443479 DOI: 10.1007/s11239-020-02156-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Myocardial infarction is a frequent complication of cardiovascular disease leading to high morbidity and mortality worldwide. Elevated C-reactive protein (CRP) levels after myocardial infarction are associated with heart failure and poor prognosis. Cardiomyocyte microvesicles (CMV) are released during hypoxic conditions and can act as mediators of intercellular communication. MicroRNA (miRNA) are short non-coding RNA which can alter cellular mRNA-translation. Microvesicles (MV) have been shown to contain distinct patterns of miRNA from their parent cells which can affect protein expression in target cells. We hypothesized that miRNA containing CMV mediate hepatic CRP expression after cardiomyocyte hypoxia. H9c2-cells were cultured and murine cardiomyocytes were isolated from whole murine hearts. H9c2- and murine cardiomyocytes were exposed to hypoxic conditions using a hypoxia chamber. Microvesicles were isolated by differential centrifugation and analysed by flow cytometry. Next-generation-sequencing was performed to determine the miRNA-expression profile in H9c2 CMV compared to their parent cells. Microvesicles were incubated with a co-culture model of the liver consisting of THP-1 macrophages and HepG2 cells. IL-6 and CRP expression in the co-culture was assessed by qPCR and ELISA. CMV contain a distinct pattern of miRNA compared to their parent cells including many inflammation-related miRNA. CMV induced IL-6 expression in THP-1 macrophages alone and CRP expression in the hepatic co-culture model. MV from hypoxic cardiomyocytes can mediate CRP expression in a hepatic co-culture model. Further studies will have to show whether these effects are reproducible in-vivo.
Collapse
Affiliation(s)
- Patrick Malcolm Siegel
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany. .,Baker Heart & Diabetes Institute, Atherothrombosis & Vascular Biology Laboratory, Melbourne, Australia.
| | - Judith Schmich
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany.,Baker Heart & Diabetes Institute, Atherothrombosis & Vascular Biology Laboratory, Melbourne, Australia
| | - Georg Barinov
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - István Bojti
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - Christopher Vedecnik
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - Novita Riani Simanjuntak
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - Christoph Bode
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - Martin Moser
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - Karlheinz Peter
- Baker Heart & Diabetes Institute, Atherothrombosis & Vascular Biology Laboratory, Melbourne, Australia.,Faculty for Medicine & Nursing, Monash University, Melbourne, Australia
| | - Philipp Diehl
- Cardiology and Angiology I, Heart Center Freiburg University, Medical Faculty, University of Freiburg, 79106, Freiburg im Breisgau, Germany.,Baker Heart & Diabetes Institute, Atherothrombosis & Vascular Biology Laboratory, Melbourne, Australia.,Faculty for Medicine & Nursing, Monash University, Melbourne, Australia
| |
Collapse
|
31
|
Gebara N, Correia Y, Wang K, Bussolati B. Angiogenic Properties of Placenta-Derived Extracellular Vesicles in Normal Pregnancy and in Preeclampsia. Int J Mol Sci 2021; 22:5402. [PMID: 34065595 PMCID: PMC8160914 DOI: 10.3390/ijms22105402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is one of the main processes that coordinate the biological events leading to a successful pregnancy, and its imbalance characterizes several pregnancy-related diseases, including preeclampsia. Intracellular interactions via extracellular vesicles (EVs) contribute to pregnancy's physiology and pathophysiology, and to the fetal-maternal interaction. The present review outlines the implications of EV-mediated crosstalk in the angiogenic process in healthy pregnancy and its dysregulation in preeclampsia. In particular, the effect of EVs derived from gestational tissues in pro and anti-angiogenic processes in the physiological and pathological setting is described. Moreover, the application of EVs from placental stem cells in the clinical setting is reported.
Collapse
Affiliation(s)
- Natalia Gebara
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| | - Yolanda Correia
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK; (Y.C.); (K.W.)
| | - Keqing Wang
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK; (Y.C.); (K.W.)
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| |
Collapse
|
32
|
Brunt VE, Minson CT. Heat therapy: mechanistic underpinnings and applications to cardiovascular health. J Appl Physiol (1985) 2021; 130:1684-1704. [PMID: 33792402 DOI: 10.1152/japplphysiol.00141.2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and novel therapies are drastically needed to prevent or delay the onset of CVD to reduce the societal and healthcare burdens associated with these chronic diseases. One such therapy is "heat therapy," or chronic, repeated use of hot baths or saunas. Although using heat exposure to improve health is not a new concept, it has received renewed attention in recent years as a growing number of studies have demonstrated robust and widespread beneficial effects of heat therapy on cardiovascular health. Here, we review the existing literature, with particular focus on the molecular mechanisms that underscore the cardiovascular benefits of this practice.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado.,Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
33
|
Extracellular vesicles are associated with C-reactive protein in sepsis. Sci Rep 2021; 11:6996. [PMID: 33772103 PMCID: PMC7997920 DOI: 10.1038/s41598-021-86489-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
There is increasing evidence that C-reactive protein (CRP) can mediate inflammatory reactions following the transformation of functionally inert pentameric CRP (pCRP) into its structural isoform pCRP* and into monomeric CRP (mCRP). This conversion can occur on the membranes of apoptotic or activated cells or on extracellular vesicles (EVs) shed from the cell surface. Here, we characterized the association of CRP with EVs in plasma from sepsis patients using flow cytometry, and found highly elevated levels of total EV counts and CRP+ EVs as compared to healthy individuals. We further assessed the ability of PentraSorb CRP, an extracorporeal device for the adsorption of CRP, to deplete free CRP and CRP+ EVs. Treatment of septic plasma with the adsorbent in vitro resulted in almost complete removal of both, free CRP and CRP+ EVs, while total EV counts remained largely unaffected, indicating the detachment of CRP from the EV surface. EVs from septic plasma elicited a release of interleukin-8 from cultured human monocytes, which was significantly reduced by adsorbent treatment prior to EV isolation. Our findings provide evidence that CRP+ EVs exhibit pro-inflammatory characteristics and can contribute to the spreading of inflammation throughout the circulation on top of their pro-coagulant activity.
Collapse
|
34
|
Abstract
Extracellular vesicles (EVs) have received considerable attention in biological and clinical research due to their ability to mediate cell-to-cell communication. Based on their size and secretory origin, EVs are categorized as exosomes, microvesicles, and apoptotic bodies. Increasing number of studies highlight the contribution of EVs in the regulation of a wide range of normal cellular physiological processes, including waste scavenging, cellular stress reduction, intercellular communication, immune regulation, and cellular homeostasis modulation. Altered circulating EV level, expression pattern, or content in plasma of patients with cardiovascular disease (CVD) may serve as diagnostic and prognostic biomarkers in diverse cardiovascular pathologies. Due to their inherent characteristics and physiological functions, EVs, in turn, have become potential candidates as therapeutic agents. In this review, we discuss the evolving understanding of the role of EVs in CVD, summarize the current knowledge of EV-mediated regulatory mechanisms, and highlight potential strategies for the diagnosis and therapy of CVD. We also attempt to look into the future that may advance our understanding of the role of EVs in the pathogenesis of CVD and provide novel insights into the field of translational medicine.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
35
|
Circulating Extracellular Vesicles As Biomarkers and Drug Delivery Vehicles in Cardiovascular Diseases. Biomolecules 2021; 11:biom11030388. [PMID: 33808038 PMCID: PMC8001426 DOI: 10.3390/biom11030388] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are composed of a lipid bilayer containing transmembrane and soluble proteins. Subtypes of EVs include ectosomes (microparticles/microvesicles), exosomes, and apoptotic bodies that can be released by various tissues into biological fluids. EV cargo can modulate physiological and pathological processes in recipient cells through near- and long-distance intercellular communication. Recent studies have shown that origin, amount, and internal cargos (nucleic acids, proteins, and lipids) of EVs are variable under different pathological conditions, including cardiovascular diseases (CVD). The early detection and management of CVD reduce premature morbidity and mortality. Circulating EVs have attracted great interest as a potential biomarker for diagnostics and follow-up of CVD. This review highlights the role of circulating EVs as biomarkers for diagnosis, prognosis, and therapeutic follow-up of CVD, and also for drug delivery. Despite the great potential of EVs as a tool to study the pathophysiology of CVD, further studies are needed to increase the spectrum of EV-associated applications.
Collapse
|
36
|
Melnikov IS, Kozlov SG, Saburova OS, Avtaeva YN, Prokofieva LV, Gabbasov ZA. Current Position on the Role of Monomeric C-reactive Protein in Vascular Pathology and Atherothrombosis. Curr Pharm Des 2020; 26:37-43. [PMID: 31840602 DOI: 10.2174/1381612825666191216144055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023]
Abstract
C-reactive Protein (CRP) is an acute phase reactant, belonging to the pentraxin family of proteins. Its level rises up to 1000-fold in response to acute inflammation. High sensitivity CRP level is utilized as an independent biomarker of inflammation and cardiovascular disease. The accumulating data suggests that CRP has two distinct forms. It is predominantly produced in the liver in a native pentameric form (nCRP). At sites of local inflammation and tissue injury it may bind to phosphocholine-rich membranes of activated and apoptotic cells and their microparticles, undergoing irreversible dissociation to five monomeric subunits, termed monomeric CRP (mCRP). Through dissociation, CRP deposits into tissues and acquires distinct proinflammatory properties. It activates both classic and alternative complement pathways, binding complement component C1q and factor H. mCRP actively participates in the development of endothelial dysfunction. It activates leukocytes, inducing cytokine release and monocyte recruitment. It may also play a role in the polarization of monocytes and T cells into proinflammatory phenotypes. It may be involved in low-density lipoproteins (LDL) opsonization and uptake by macrophages. mCRP deposits were detected in samples of atherosclerotic lesions from human aorta, carotid, coronary and femoral arteries. mCRP may also induce platelet aggregation and thrombus formation, thus contributing in multiple ways in the development of atherosclerosis and atherothrombosis. In this mini-review, we will provide an insight into the process of conformational rearrangement of nCRP, leading to dissociation, and describe known effects of mCRP. We will provide a rationalization for mCRP involvement in the development of atherosclerosis and atherothrombosis.
Collapse
Affiliation(s)
- Ivan S Melnikov
- National Medical Research Centre of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russian Federation.,State Research Centre of the Russian Federation - Institute of Biomedical Problems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Sergey G Kozlov
- National Medical Research Centre of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Olga S Saburova
- National Medical Research Centre of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Yulia N Avtaeva
- National Medical Research Centre of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Lyudmila V Prokofieva
- National Medical Research Centre of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Zufar A Gabbasov
- National Medical Research Centre of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
37
|
Fonseca F, Ballerini AP, Izar MC, Kato J, Ferreira CE, Fonzar W, do Amaral J, Rezende P, Machado-Santelli G, França C. Advanced chronic kidney disease is associated with higher serum concentration of monocyte microparticles. Life Sci 2020; 260:118295. [PMID: 32822720 DOI: 10.1016/j.lfs.2020.118295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/24/2022]
Abstract
Advanced chronic kidney disease is associated with high rates of cardiovascular disease. Considering the crucial role of capillaries in renal function, our study aimed to evaluate microparticles related to vascular physiology examining the link between stages of chronic kidney disease with circulating endothelial (EMP), platelet (PMP) and monocytic (MMP) microparticles. Cross-sectional study with blinded endpoints included subjects of both sexes, aged 40-75 years (n = 247), with established cardiovascular disease (coronary heart disease, ischemic stroke, or peripheral artery disease). They were stratified 1:1 by the presence or absence of decreased glomerular filtration rate (GFR < 60 mL/min/1.73 m2) estimated by the CKD-EPI criteria, and according to the stages of CKD. Microparticles were quantified by flow-cytometry using specific antibodies to identify endothelial, platelet, and monocytic derived microparticles. Higher percentages of circulating MMP (p = 0.036), but not for EMP or PMP, were observed in subjects with reduced GFR. Circulating MMP were also related to the stages of chronic kidney disease (trend analysis across renal stages, p = 0.038). Higher percentages of circulating MMP were found in subjects with reduced GFR, and their percentages were progressively higher according to the stage of chronic renal function.
Collapse
Affiliation(s)
| | | | | | - Juliana Kato
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Waléria Fonzar
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
38
|
CRP Is Transported by Monocytes and Monocyte-Derived Exosomes in the Blood of Patients with Coronary Artery Disease. Biomedicines 2020; 8:biomedicines8100435. [PMID: 33086769 PMCID: PMC7589628 DOI: 10.3390/biomedicines8100435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022] Open
Abstract
The objective of this work was to study the ability of blood cells and their microparticles to transport monomeric and pentameric forms of C-reactive protein (mCRP and pCRP) in the blood of patients with coronary artery disease (CAD). Blood was obtained from 14 patients with CAD 46 ± 13 years old and 8 healthy volunteers 49 ± 13.6 years old. Blood cells and microparticles with mCRP and pCRP on their surface were detected by flow cytometry. Messenger RNA (mRNA) of CRP was extracted from peripheral blood monocytes stimulated with lipopolysaccharide (LPS) and granulocyte-macrophage colony-stimulating factor (GM-CSF). mRNA of CRP in monocytes was detected with PCR. Monocytes were predominantly pCRP-positive (92.9 ± 6.8%). mCRP was present on 22.0 ± 9.6% of monocyte-derived exosomes. mCRP-positive leukocyte-derived microparticle counts were significantly higher (8764 ± 2876/µL) in the blood of patients with CAD than in healthy volunteers (1472 ± 307/µL). LPS and GM-CSF stimulated monocytes expressed CRP mRNA transcripts levels (0.79 ± 0.73-fold), slightly lower relative to unstimulated hepatocytes of the HepG2 cell line (1.0 ± 0.6-fold), but still detectable. The ability of monocytes to transport pCRP in blood flow, and monocyte-derived exosomes to transmit mCRP, may contribute to the maintenance of chronic inflammation in CAD.
Collapse
|
39
|
Rajab IM, Hart PC, Potempa LA. How C-Reactive Protein Structural Isoforms With Distinctive Bioactivities Affect Disease Progression. Front Immunol 2020; 11:2126. [PMID: 33013897 PMCID: PMC7511658 DOI: 10.3389/fimmu.2020.02126] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022] Open
Abstract
C-reactive protein (CRP) is a widely known, hepatically synthesized protein whose blood levels change rapidly and pronouncedly in response to any tissue damaging event associated with an inflammatory response. The synthesis and secretion of CRP is stimulated by interleukin-6, an early pleiotropic cytokine released by macrophages, endothelial, and other cells that are activated when localized normal tissue structures are compromised by trauma or disease. Serum CRP levels can change rapidly and robustly from 10-100-fold within 6–72 h of any tissue damaging event. Elevated blood levels correlate with the onset and extent of both activated inflammation and the acute phase biochemical response to the tissue insult. Because its functional bioactivity as the prototypic acute phase reactant has eluded clear definition for decades, diagnosticians of various conditions and diseases use CRP blood levels as a simple index for ongoing inflammation. In many pathologies, which involves many different tissues, stages of disease, treatments, and responses to treatments, its interpretive diagnostic value requires a deeper understanding of the localized tissue processes and events that contribute signals which regulate protective or pathological host defense bioactivities. This report presents concepts that describe how local tissue activation events can lead to a non-proteolytic, conformational rearrangement of CRP into a unique isoform with distinctive solubility, antigenicity, binding reactivities and bioactivities from that protein widely known and measured in serum. By describing factors that control the expression, tissue localization, half-life and pro-inflammatory amplification activity of this CRP isoform, a unifying explanation for the diagnostic significance of CRP measurement in disease is advanced.
Collapse
Affiliation(s)
- Ibraheem M Rajab
- Roosevelt University College of Pharmacy, Schaumburg, IL, United States
| | - Peter C Hart
- Roosevelt University College of Pharmacy, Schaumburg, IL, United States
| | | |
Collapse
|
40
|
Predicting the Risk of Recurrent Venous Thromboembolism: Current Challenges and Future Opportunities. J Clin Med 2020; 9:jcm9051582. [PMID: 32456008 PMCID: PMC7290951 DOI: 10.3390/jcm9051582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Acute venous thromboembolism (VTE) is a commonly diagnosed condition and requires treatment with anticoagulation to reduce the risk of embolisation as well as recurrent venous thrombotic events. In many cases, cessation of anticoagulation is associated with an unacceptably high risk of recurrent VTE, precipitating the use of indefinite anticoagulation. In contrast, however, continuing anticoagulation is associated with increased major bleeding events. As a consequence, it is essential to accurately predict the subgroup of patients who have the highest probability of experiencing recurrent VTE, so that treatment can be appropriately tailored to each individual. To this end, the development of clinical prediction models has aided in calculating the risk of recurrent thrombotic events; however, there are several limitations with regards to routine use for all patients with acute VTE. More recently, focus has shifted towards the utility of novel biomarkers in the understanding of disease pathogenesis as well as their application in predicting recurrent VTE. Below, we review the current strategies used to predict the development of recurrent VTE, with emphasis on the application of several promising novel biomarkers in this field.
Collapse
|
41
|
Labarrere CA, Dabiri AE, Kassab GS. Thrombogenic and Inflammatory Reactions to Biomaterials in Medical Devices. Front Bioeng Biotechnol 2020; 8:123. [PMID: 32226783 PMCID: PMC7080654 DOI: 10.3389/fbioe.2020.00123] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Blood-contacting medical devices of different biomaterials are often used to treat various cardiovascular diseases. Thrombus formation is a common cause of failure of cardiovascular devices. Currently, there are no clinically available biomaterials that can totally inhibit thrombosis under the more challenging environments (e.g., low flow in the venous system). Although some biomaterials reduce protein adsorption or cell adhesion, the issue of biomaterial associated with thrombosis and inflammation still exists. To better understand how to develop more thrombosis-resistant medical devices, it is essential to understand the biology and mechano-transduction of thrombus nucleation and progression. In this review, we will compare the mechanisms of thrombus development and progression in the arterial and venous systems. We will address various aspects of thrombosis, starting with biology of thrombosis, mathematical modeling to integrate the mechanism of thrombosis, and thrombus formation on medical devices. Prevention of these problems requires a multifaceted approach that involves more effective and safer thrombolytic agents but more importantly the development of novel thrombosis-resistant biomaterials mimicking the biological characteristics of the endothelium and extracellular matrix tissues that also ameliorate the development and the progression of chronic inflammation as part of the processes associated with the detrimental generation of late thrombosis and neo-atherosclerosis. Until such developments occur, engineers and clinicians must work together to develop devices that require minimal anticoagulants and thrombolytics to mitigate thrombosis and inflammation without causing serious bleeding side effects.
Collapse
Affiliation(s)
| | - Ali E Dabiri
- California Medical Innovations Institute, San Diego, CA, United States
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
42
|
Williams RD, Moran JA, Fryer AA, Littlejohn JR, Williams HM, Greenhough TJ, Shrive AK. Monomeric C-Reactive Protein in Serum With Markedly Elevated CRP Levels Shares Common Calcium-Dependent Ligand Binding Properties With an in vitro Dissociated Form of C-Reactive Protein. Front Immunol 2020; 11:115. [PMID: 32117266 PMCID: PMC7010908 DOI: 10.3389/fimmu.2020.00115] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/16/2020] [Indexed: 01/16/2023] Open
Abstract
A monomeric form of C-reactive protein (CRP) which precipitates with cell wall pneumococcal C polysaccharide (CWPS) and retains the ability to reversibly bind to its ligand phosphocholine has been produced through urea-induced dissociation at an optimized concentration of 3 M urea over a 10 weeks period. Dissociated samples were purified via size exclusion chromatography and characterized by western blot, phosphocholine affinity chromatography and CWPS precipitation. Human serum samples from patients with raised CRP levels (>100 mg/L as determined by the clinical laboratory assay) were purified by affinity and size exclusion chromatography and analyzed (n = 40) to determine whether circulating monomeric CRP could be detected ex vivo. All 40 samples tested positive for pentameric CRP via western blot and enzyme linked immunosorbent assay (ELISA) analysis. Monomeric C-reactive protein was also identified in all 40 patient samples tested, with an average level recorded of 1.03 mg/L (SE = ±0.11). Both the in vitro monomeric C-reactive protein and the human serum monomeric protein displayed a molecular weight of approximately 23 kDa, both were recognized by the same anti-CRP monoclonal antibody and both reversibly bound to phosphocholine in a calcium-dependent manner. In common with native pentameric CRP, the in vitro mCRP precipitated with CWPS. These overlapping characteristics suggest that a physiologically relevant, near-native monomeric CRP, which retains the structure and binding properties of native CRP subunits, has been produced through in vitro dissociation of pentameric CRP and also isolated from serum with markedly elevated CRP levels. This provides a clear route toward the in-depth study of the structure and function of physiological monomeric CRP.
Collapse
Affiliation(s)
- Robert D Williams
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | - Jennifer A Moran
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | - Anthony A Fryer
- Department of Clinical Biochemistry, Institute for Applied Clinical Sciences, University Hospitals of North Midlands, Keele University, Staffordshire, United Kingdom
| | - Jamie R Littlejohn
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | - Harry M Williams
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | | | - Annette K Shrive
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| |
Collapse
|
43
|
Čolić J, Matucci Cerinic M, Guiducci S, Damjanov N. Microparticles in systemic sclerosis, targets or tools to control fibrosis: This is the question! JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:6-20. [PMID: 35382401 PMCID: PMC8922594 DOI: 10.1177/2397198319857356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/20/2019] [Indexed: 07/25/2023]
Abstract
Systemic sclerosis is the main systemic fibrotic disease with unknown etiology characterized by peripheral microvascular injury, activation of immune system, and wide-spread progressive fibrosis. Microparticles can be derived from any cell type during normal cellular differentiation, senescence, and apoptosis, and also upon cellular activation. Carrying along a broad range of surface cytoplasmic and nuclear molecules of originating cells, microparticles are closely implicated in inflammation, thrombosis, angiogenesis, and immunopathogenesis. Recently, microparticles have been proposed as biomarkers of endothelial injury, which is the primary event in the genesis of tissue fibrosis. Microparticles may have a role in fostering endothelial to mesenchymal transition, thus giving a significant contribution to the development of myofibroblasts, the most important final effectors responsible for tissue fibrosis and fibroproliferative vasculopathy. Thanks to potent profibrotic mediators, such as transforming growth factor beta, platelet-derived growth factor, high mobility group box 1 protein, nicotinamide adenine dinucleotide phosphate oxidase 4, and antifibrotic agents, such as matrix metalloproteinases, microparticles may play an opposite role in fibrosis.
Collapse
Affiliation(s)
- Jelena Čolić
- Department of Rheumatology, Institute of
Rheumatology, Belgrade, Serbia
| | - Marco Matucci Cerinic
- Division of Rheumatology, Department of
Experimental and Clinical Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC)
and Denothe Centre, University of Florence, Florence, Italy
| | - Serena Guiducci
- Division of Rheumatology, Department of
Experimental and Clinical Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC)
and Denothe Centre, University of Florence, Florence, Italy
| | - Nemanja Damjanov
- Department of Rheumatology, Institute of
Rheumatology, Belgrade, Serbia
- School of Medicine, University of
Belgrade, Belgrade, Serbia
| |
Collapse
|
44
|
McFadyen JD, Zeller J, Potempa LA, Pietersz GA, Eisenhardt SU, Peter K. C-Reactive Protein and Its Structural Isoforms: An Evolutionary Conserved Marker and Central Player in Inflammatory Diseases and Beyond. Subcell Biochem 2020; 94:499-520. [PMID: 32189313 DOI: 10.1007/978-3-030-41769-7_20] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
C-reactive protein (CRP) is an evolutionary highly conserved member of the pentraxin superfamily of proteins. CRP is widely used as a marker of inflammation, infection and for risk stratification of cardiovascular events. However, there is now a large body of evidence, that continues to evolve, detailing that CRP directly mediates inflammatory reactions and the innate immune response in the context of localised tissue injury. These data support the concept that the pentameric conformation of CRP dissociates into pro-inflammatory CRP isoforms termed pCRP* and monomeric CRP. These pro-inflammatory CRP isoforms undergo conformational changes that facilitate complement binding and immune cell activation and therefore demonstrate the ability to trigger complement activation, activate platelets, monocytes and endothelial cells. The dissociation of pCRP occurs on the surface of necrotic, apoptotic, and ischaemic cells, regular β-sheet structures such as β-amyloid, the membranes of activated cells (e.g., platelets, monocytes, and endothelial cells), and/or the surface of microparticles, the latter by binding to phosphocholine. Therefore, the deposition and localisation of these pro-inflammatory isoforms of CRP have been demonstrated to amplify inflammation and tissue damage in a broad range of clinical conditions including ischaemia/reperfusion injury, Alzheimer's disease, age-related macular degeneration and immune thrombocytopaenia. Given the potentially broad relevance of CRP to disease pathology, the development of inhibitors of CRP remains an area of active investigation, which may pave the way for novel therapeutics for a diverse range of inflammatory diseases.
Collapse
Affiliation(s)
- James D McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Medicine, Monash University, Melbourne, VIC, Australia.
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia.
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia.
| | - Johannes Zeller
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre, Freiburg, Germany
| | | | - Geoffrey A Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
- Burnet Institute, Melbourne, VIC, Australia
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre, Freiburg, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Medicine, Monash University, Melbourne, VIC, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, Australia.
- Heart Centre, The Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
45
|
Zacharia E, Zacharias K, Papamikroulis GA, Bertsias D, Miliou A, Pallantza Z, Papageorgiou N, Tousoulis D. Cell-Derived Microparticles and Acute Coronary Syndromes: Is there a Predictive Role for Microparticles? Curr Med Chem 2020; 27:4440-4468. [PMID: 31838988 DOI: 10.2174/0929867327666191213104841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 09/09/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Despite the recent advances in the treatment of Acute Coronary Syndromes (ACS), patients with ACS are still exposed to an increased risk for adverse cardiovascular events, while their prognosis is difficult to determine. Experimental and clinical studies have shown that cell-derived Microparticles (MPs) are associated with the underlying pathophysiological processes that are responsible for atherogenesis and may be causally implicated in the induction of atherothrombosis. OBJECTIVE In the present article, we aimed to review the available evidence regarding the predictive role of MPs in patients with ACS. RESULTS Evidence suggests that endothelial MPs are associated with future adverse cardiovascular events in patients with ACS. Platelet-derived MPs have been excessively studied, since they have been found to trigger the coagulation cascade; however, their role as predictors of future cardiovascular events remains debatable. The role of red blood cell-derived MPs is more intriguing; they have been proposed as markers of ongoing thrombosis in patients with ACS, while previous studies have shown that they have anti-coagulant properties in healthy individuals. Leukocyte-derived MPs may also have a predictive role, although the studies regarding these are still limited. Last but not least, it was an interesting discovery that circulating MPs can provide information regarding the angiographic lesions in patients with ACS. CONCLUSION The concept of MPs as potential circulating biomarkers in patients with ACS holds much promise. However, large-scale clinical studies are required to evaluate whether the measurement of plasma MPs could be of clinical significance and, thus, dictate a more aggressive treatment strategy in patients with high levels of circulating MPs.
Collapse
Affiliation(s)
- Effimia Zacharia
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | | | | | | | - Antigoni Miliou
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Zoi Pallantza
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | | | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| |
Collapse
|
46
|
Zhang CM, Tan YB, Zhou HH, Ge ZB, Feng JR, Lv GB, Sun ZY, Fu Y, Wang MY. Intra-subunit Disulfide Determines the Conversion and Structural Stability of CRP Isoforms. Inflammation 2019; 43:466-477. [PMID: 31760526 DOI: 10.1007/s10753-019-01130-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C-reactive protein (CRP) is a major human acute-phase reactant that is composed of five identical subunits. CRP dissociates into subunits at inflammatory loci forming monomeric CRP (mCRP) with substantially enhanced activities, which can be further activated by reducing the intra-subunit disulfide bond. However, conformational changes underlying the activation process of CRP are less well understood. Conformational changes accompanying the conversion of CRP to mCRP with or without reduction were examined with circular dichroism spectroscopy, fluorescence spectroscopy, electron microscopy, size-exclusion chromatography, and neoepitope expression. The conversion of CRP to mCRP follows a two-stage process. In the first stage, CRP dissociates into molten globular subunits characterized by intact secondary structure elements with greatly impaired tertiary packing. In the second stage, these intermediates completely lose their native subunit conformation and assemble into high-order aggregates. The inclusion of reductant accelerates the formation of molten globular subunits in the first step and promotes the formation of more compact aggregates in the second stage. We further show a significant contribution of electrostatic interactions to the stabilization of native CRP. The conformational features of dissociated subunits and the aggregation of mCRP may have a key impact on their activities.
Collapse
Affiliation(s)
- Chun-Miao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yu-Bo Tan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hai-Hong Zhou
- Gansu Provincial Cancer Hospital, Lanzhou, 730050, People's Republic of China
| | - Zhong-Bo Ge
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jun-Rui Feng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Guang-Bo Lv
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhi-Yuan Sun
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yu Fu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ming-Yu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
47
|
Chiva-Blanch G, Badimon L. Cross-Talk between Lipoproteins and Inflammation: The Role of Microvesicles. J Clin Med 2019; 8:E2059. [PMID: 31771128 PMCID: PMC6947387 DOI: 10.3390/jcm8122059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Atherothrombosis is the principal underlying cause of cardiovascular disease (CVD). Microvesicles (MV) are small blebs originated by an outward budding at the cell plasma membranes, which are released in normal conditions. However, MV release is increased in pathophysiologic conditions such as CVD. Low density lipoprotein (LDL) and MV contribute to atherothrombosis onset and progression by promoting inflammation and leukocyte recruitment to injured endothelium, as well as by increasing thrombosis and plaque vulnerability. Moreover, (oxidized)LDL induces MV release and vice-versa, perpetuating endothelium injury leading to CVD progression. Therefore, MV and lipoproteins exhibit common features, which should be considered in the interpretation of their respective roles in the pathophysiology of CVD. Understanding the pathways implicated in this process will aid in developing novel therapeutic approaches against atherothrombosis.
Collapse
Affiliation(s)
- Gemma Chiva-Blanch
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau—IIB Sant Pau, Sant Antoni Maria Claret, 167, 08025 Barcelona, Spain;
| | - Lina Badimon
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau—IIB Sant Pau, Sant Antoni Maria Claret, 167, 08025 Barcelona, Spain;
- CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
48
|
Lv Y, Tan J, Miao Y, Zhang Q. The role of microvesicles and its active molecules in regulating cellular biology. J Cell Mol Med 2019; 23:7894-7904. [PMID: 31559684 PMCID: PMC6850934 DOI: 10.1111/jcmm.14667] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Cell‐derived microvesicles are membrane vesicles produced by the outward budding of the plasma membrane and released by almost all types of cells. These have been considered as another mechanism of intercellular communication, because they carry active molecules, such as proteins, lipids and nucleic acids. Furthermore, these are present in circulating fluids, such as blood and urine, and are closely correlated to the progression of pathophysiological conditions in many diseases. Recent studies have revealed that microvesicles have a dual effect of damage and protection of receptor cells. However, the nature of the active molecules involved in this effect remains unclear. The present study mainly emphasized the mechanism of microvesicles and the active molecules mediating the different biological effects of receptor cells by affecting autophagy, apoptosis and inflammation pathways. The effective ways of blocking microvesicles and its active molecules in mediating cell damage when microvesicles exert harmful effects were also discussed.
Collapse
Affiliation(s)
- YingMei Lv
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Qiang Zhang
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
49
|
Yao Z, Zhang Y, Wu H. Regulation of C-reactive protein conformation in inflammation. Inflamm Res 2019; 68:815-823. [PMID: 31312858 DOI: 10.1007/s00011-019-01269-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
C-reactive protein (CRP) is a non-specific diagnostic marker of inflammation and an evolutionarily conserved protein with roles in innate immune signaling. Natural CRP is composed of five identical globular subunits that form a pentamer, but the role of pentameric CRP (pCRP) during inflammatory pathogenesis remains controversial. Emerging evidence suggests that pCRP can be dissociated into monomeric CRP (mCRP) that has major roles in host defenses and inflammation. Here, we discuss our current knowledge of the dissociation mechanisms of pCRP and summarize the stepwise conformational transition model to mCRP to elucidate how CRP dissociation contributes to proinflammatory activity. These discussions will evoke new understanding of this ancient protein.
Collapse
Affiliation(s)
- ZhenYu Yao
- Children's Research Institute, Xi'an Key Laboratory of Children's Health and Diseases, Affiliated Children Hospital, Xi'an Jiaotong University, 69# Xijuyuan Lane, Lianhu District, Xi'an, 710003, Shaanxi, China
| | - Yanmin Zhang
- Children's Research Institute, Xi'an Key Laboratory of Children's Health and Diseases, Affiliated Children Hospital, Xi'an Jiaotong University, 69# Xijuyuan Lane, Lianhu District, Xi'an, 710003, Shaanxi, China
| | - HaiBin Wu
- Children's Research Institute, Xi'an Key Laboratory of Children's Health and Diseases, Affiliated Children Hospital, Xi'an Jiaotong University, 69# Xijuyuan Lane, Lianhu District, Xi'an, 710003, Shaanxi, China.
| |
Collapse
|
50
|
Boncler M, Wu Y, Watala C. The Multiple Faces of C-Reactive Protein-Physiological and Pathophysiological Implications in Cardiovascular Disease. Molecules 2019; 24:E2062. [PMID: 31151201 PMCID: PMC6600390 DOI: 10.3390/molecules24112062] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
C-reactive protein (CRP) is an intriguing protein which plays a variety of roles in either physiological or pathophysiological states. For years it has been regarded merely as a useful biomarker of infection, tissue injury and inflammation, and it was only in the early 80s that the modified isoforms (mCRP) of native CRP (nCRP) appeared. It soon became clear that the roles of native CRP should be clearly discriminated from those of the modified form and so the impacts of both isoforms were divided to a certain degree between physiological and pathophysiological states. For decades, CRP has been regarded only as a hallmark of inflammation; however, it has since been recognised as a significant predictor of future episodes of cardiovascular disease, independent of other risk factors. The existence of modified CRP isoforms and their possible relevance to various pathophysiological conditions, suggested over thirty years ago, has prompted the search for structural and functional dissimilarities between the pentameric nCRP and monomeric mCRP isoforms. New attempts to identify the possible relevance between the diversity of structures and their opposing functions have initiated a new era of research on C-reactive protein. This review discusses the biochemical aspects of CRP physiology, emphasizing the supposed relevance between the structural biology of CRP isoforms and their differentiated physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Magdalena Boncler
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, West Yanta Road, Xi'an 710061, China.
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, 92-215 Lodz, Poland.
| |
Collapse
|