1
|
Batista C, Cruz JVR, Siqueira M, Pesquero JB, Stipursky J, Mendes FDA. Kinin B 1 Receptor Agonist Enhances Blood-Brain Barrier Permeability in Healthy and Glioblastoma Environments. Pharmaceuticals (Basel) 2025; 18:591. [PMID: 40284027 PMCID: PMC12030169 DOI: 10.3390/ph18040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The low permeability of the blood-brain barrier (BBB) represents a significant challenge to effective systemic chemotherapy for primary and metastatic brain cancers. Kinin receptors play a crucial role in modulating BBB permeability, and their agonist analogs have been explored in preclinical animal models to enhance drug delivery to the brain. In this study, we investigated whether des-Arg9-bradykinin (DBK), a physiological agonist of kinin B1 receptor (B1R), acts as a brain drug delivery adjuvant by promoting the transient opening of the BBB. Methods: Human brain microvascular endothelial cells (HBMECs) were treated with DBK in the culture medium and in conditioned media from glioblastoma cell lines, namely T98G (CMT98G) and U87MG (CMU87). Immunofluorescence, RT-qPCR, in-cell Western assay, and proximity ligation assay (PLA) were performed to analyze BBB components, kinin receptors and TLR4, a receptor associated with the kinin pathway and inflammation. The effect of DBK on enhancing paracellular molecule transport was evaluated using Evans blue dye (EB) quantification in a cell culture insert assay and in an in vivo model, where mice with and without brain tumors were treated with DBK. To assess the functional impact of the transient BBB opening induced by DBK, the chemotherapeutic drug doxorubicin (DOX) was administered. Results: Treatment with DBK facilitates the presence of EB in the brain parenchyma by transiently disrupting the BBB, as further evidenced by the increased paracellular passage of the dye in an in vitro assay. B1R activation by DBK induces transient BBB opening lasting less than 48 h, enhancing the bioavailability of the DOX within the brain parenchyma and glioma tumor mass. The interaction between B1R and TLR4 is disrupted by the secreted factors released by glioblastoma cells, as conditioned media from T98G and U87 reduce TLR4 staining in endothelial cells without affecting B1R expression. Conclusions: These results further support the potential of B1R activation as a strategy to enhance targeted drug delivery to the brain.
Collapse
Affiliation(s)
- Carolina Batista
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| | - João Victor Roza Cruz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| | - Michele Siqueira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| | - João Bosco Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil;
| | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| |
Collapse
|
2
|
Wang B, Li T, Zhang F, Miao S, Chen S, Li Y, Zhao Y, Han X, Li X, Zhao M. The efficacy and mechanisms of Maiguanfukang Tablets, a patented herbal-based TCM formula, for the treatment of atherosclerosis: An in vivo experiment based on the network pharmacology. Fitoterapia 2025; 182:106458. [PMID: 40057244 DOI: 10.1016/j.fitote.2025.106458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE To investigate the efficacy and potential mechanisms of MGFKP on rabbit atherosclerotic models. METHODS The left carotid balloon injury surgery were used to establish the rabbit atherosclerotic model, followed by the administration of MGFKP from the second postoperative for 6 weeks. Left carotid ultrasound and histological analysis were determined to evaluate the anti-atherosclerotic efficacy of MGFKP. Additionally, LC-MS and network pharmacology were conducted to identify the active ingredients of MGFKP and their targets, respectively. Lastly, core targets were selected to validate using immunohistochemical staining, western blot or ELISA. RESULTS The results revealed that the vascular diameters difference, plaque area, plaque thickness, and ratio of vessel lumen to vessel cross-section radius were significantly improved following treatment with MGFKP (P<0.05). 539 ingredients of MGFKP were identified by LC-MS, and 23 ingredients were screened using SwissADME for network pharmacology. After combining the results of PPI and KEGG analyses with published literature, TLR4, NF-κB, IL-1β, and TNF-α were selected for the ensuing analyses. Molecular docking of most compounds showed satisfactory docking energy between TLR4, NF-κB, IL-1β, and TNF-α with their matched compounds. Finally, immunohistochemical analysis of TLR4 and western blot results of NF-κB, TNF-α, and IL-1β demonstrated that these proteins levels were obviously increased in the model group and significantly decreased in MGFKP group (P<0.05). The levels of TNF-α, IL-6, IL-1β were also significantly reduced following MGFKP treatment. CONCLUSIONS MGFKP is a potential drug for the treatment of atherosclerosis, and might suppress the TLR4/NF-κB inflammatory pathway to alleviate atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Baofu Wang
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100700, China; Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tong Li
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fachang Zhang
- Tianjin Tongrentang Group CO., LTD, Tianjin 300000, China
| | - Shujie Miao
- Tianjin Tongrentang Group CO., LTD, Tianjin 300000, China
| | - Shiqi Chen
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yang Li
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yizhou Zhao
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaowan Han
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xianlun Li
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100700, China.
| | - Mingjing Zhao
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
3
|
Wang Y, Zhang X, Li X, Cheng M, Cui X. The vascular microenvironment and its stem cells regulate vascular homeostasis. Front Cell Dev Biol 2025; 13:1544129. [PMID: 40114970 PMCID: PMC11922910 DOI: 10.3389/fcell.2025.1544129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
The vascular microenvironment comprises of anatomical structures, extracellular matrix components, and various cell populations, which play a crucial role in regulating vascular homeostasis and influencing vascular structure and function. Under physiological conditions, intrinsic regulation of the vascular microenvironment is required to sustain vascular homeostasis. In contrast, under pathological conditions, alterations to this microenvironment lead to vascular injury and pathological remodeling. According to the anatomy, the vascular microenvironment can be subdivided into three sections from the inside out. The vascular endothelial microenvironment, centered on vascular endothelial cells (VECs), includes the extracellular matrix and various vascular physicochemical factors. The VECs interact with vascular physicochemical factors to regulate the function of various parenchymal cells, including hepatocytes, neurons and tumor cells. The vascular wall microenvironment, comprising the vasa vasorum and their unique stem/progenitor cell niches, plays a pivotal role in vascular inflammation and pathological remodeling. Additionally, the perivascular microenvironment, which includes perivascular adipose tissue, consists of adipocytes and stem cells, which contribute to the pathological processes of atherosclerosis. It is anticipated that targeted regulation of the vascular microenvironment will emerge as a novel approach for the treatment of various diseases. Accordingly, this review will examine the structure of the vascular microenvironment, the regulation of vascular function by vascular cells and stem/progenitor cells, and the role of the vascular microenvironment in regulating cardiovascular diseases.
Collapse
Affiliation(s)
- Yanhui Wang
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiaoyun Zhang
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xin Li
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Min Cheng
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiaodong Cui
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| |
Collapse
|
4
|
Fan L, Tang K, Li J, Tan Y, Liu X, Bai Z, Tao A, Tan N. Mailuoning oral liquid ameliorates vasculitis in thromboangiitis obliterans rats via inactivating cGAS-STING-IRF3 and TLR4-MAPKs/NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118707. [PMID: 39181282 DOI: 10.1016/j.jep.2024.118707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mailuoning oral liquid (MLN O), one traditional Chinese patent medicine, has a good therapeutic effect on thromboangiitis obliterans (TAO) in clinical practice. However, the underlying mechanism remains unclear. AIM OF THE STUDY This study aimed to explore the effects and potential mechanisms of MLN O against TAO based on network pharmacology and experimental verification. MATERIALS AND METHODS Network pharmacology was used to identify the intersectional targets and signaling pathways of MLN O and TAO. In vivo, the TAO model was established by injecting sodium laurate and dihydrotestosterone (DHT) into the femoral arteries of Wistar rats. Rats were given the indicated drugs by intragastric administration (i.g.), intravenous injection (i.v.), or subcutaneous injection (s.c.) per day for 21 days since a week before surgery. In vitro, HUVECs, RAW264.7, and THP-1 cells were stimulated by LPS and DHT to simulate the pathological changes of TAO. The anti-inflammatory, anticoagulant, and immunomodulatory effects of MLN O were evaluated by histological observation, blood biochemical indexes detection, H&E staining, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), qRT-PCR, western blotting and immunofluorescence assays. Furthermore, the vascular ring test was applied to explore the vasodilatory activity of MLN O. RESULTS MLN O significantly improved the pathological signs in TAO rats through its excellent anti-inflammatory, anticoagulant, immunomodulatory, and vasodilatory effects. Specifically, MLN O alleviated the gangrene and reduced the thrombosis in TAO rats, meanwhile, suppressed the expressions of inflammatory factors and clotting factors, which is related to the inactivations of cGAS-STING-IRF3 and TLR4-MAPKs/NF-κB signaling pathways. However, the superphysiological dose of DHT deteriorated the pathological development of TAO in vitro and in vivo. Moreover, the results of network pharmacology are consistent with the experimental verification. CONCLUSION Collectively, this study indicates for the first time that MLN O could alleviate TAO by inhibiting cGAS-STING-IRF3 and TLR4-MAPKs/NF-κB signaling pathways, which sheds light on a novel clinical therapeutic strategy for TAO.
Collapse
Affiliation(s)
- Lingling Fan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Tang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jian Li
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Jinling Pharmaceutical Co., Ltd., Nanjing, 210009, China
| | - Yajie Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqiong Liu
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ziyu Bai
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Anhua Tao
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
5
|
Hou Z, Deng L, Fang F, Zhao T, Zhang Y, Li G, Miao MZ, Zhang Y, Yu H, Liu X. Endothelial cells under disturbed flow release extracellular vesicles to promote inflammatory polarization of macrophages and accelerate atherosclerosis. BMC Biol 2025; 23:20. [PMID: 39838385 PMCID: PMC11753076 DOI: 10.1186/s12915-025-02125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) derived from endothelial cells (ECs) are increasingly recognized for their role in the initiation and progression of atherosclerosis. ECs experience varying degrees and types of blood flow depending on their specific arterial locations. In regions of disturbed flow, which are predominant sites for atherosclerotic plaque formation, the impact of disturbed flow on the secretion and function of ECs-derived EVs remains unclear. This study aims to assess the role of disturbed flow in the secretion of EVs from ECs and to evaluate their proatherogenic function. RESULTS Our comprehensive experiments revealed that disturbed flow facilitated the secretion of ECs-derived EVs both in vivo and in vitro. Mechanistically, the MAPK pathway transduces mechanical cues from disturbed flow in ECs, leading to increased secretion of EVs. Pharmacological inhibition of the MAPK pathway reduced the secretion of EVs even under disturbed flow conditions. Interestingly, under disturbed flow stimulation, ECs-derived EVs promoted monocyte accumulation and enhanced their invasion of the endothelium. More important, these EVs initiated the inflammatory polarization of macrophages from the M2 to the M1 phenotype. However, the phenotypic switching of vascular smooth muscle cells was not affected by exposure to these EVs. CONCLUSIONS Taken together, targeting the MAPK signaling pathway holds potential as a novel therapeutic strategy for inhibiting the secretion of EC-derived EVs and mitigating the inflammatory polarization of macrophages, ultimately ameliorating the progression of atherosclerosis.
Collapse
Affiliation(s)
- Zhe Hou
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Li Deng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ting Zhao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yaojia Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Gang Li
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15 Ave NE, Seattle, 98195, USA
| | - Michael Z Miao
- Division of Oral & Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, 27599, USA
| | | | - Hongchi Yu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Pan J, Wang J, Lei Z, Wang H, Zeng N, Zou J, Zhang X, Sun J, Guo D, Luan F, Shi Y. Therapeutic Potential of Chinese Herbal Medicine and Underlying Mechanism for the Treatment of Myocardial Infarction. Phytother Res 2025; 39:189-232. [PMID: 39523856 DOI: 10.1002/ptr.8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024]
Abstract
Myocardial infarction (MI) is a prevalent disease with high mortality rates worldwide. The course of MI is intricate and variable, necessitating personalized treatment strategies based on different mechanisms. However, variety of postoperative complications and rejections, such as heart failure, arrhythmias, cardiac rupture, and left ventricular thrombus, contribute to a poor prognosis. Despite the inclusion of antiplatelet agents and statins in the conventional treatment regimen, their clinical applicability is constrained by potential adverse effects and limited efficacy. Additionally, the mechanisms leading to MI are complex and diverse. Therefore, the development of novel compounds for MI treatment. The use of traditional Chinese medicine (TCM) in the prevention and treatment of cardiovascular diseases, including MI, is grounded in its profound historical background, comprehensive theoretical system, and accumulated knowledge. An increasing number of contemporary evidence-based medical studies have demonstrated that TCM plays a significant role in alleviating symptoms and improving the quality of life for MI patients. Chinese herbal formulations and active ingredients can intervene in the pathological process of MI through key factors such as inflammation, oxidative stress, apoptosis, ferroptosis, pyroptosis, myocardial fibrosis, angiogenesis, and autophagy. This article critically reviews existing herbal formulations from an evidence-based medicine perspective, evaluating their research status and potential clinical applications. Additionally, it explores recent advancements in the use of herbal medicines and their components for the prevention and treatment of MI, offering detailed insights into their mechanisms of action.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jinhui Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Ziwen Lei
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - He Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
7
|
Hu M, Guan XH, Wang LF, Xu HM, Ke SF, Yuan QY, Tan HL, Wu J, Yu GH, Huang QM, Liu Y, Hu L, Deng KY, Xin HB. Endothelial CD38-induced endothelial-to-mesenchymal transition is a pivotal driver in pulmonary fibrosis. Cell Mol Life Sci 2024; 82:30. [PMID: 39725783 DOI: 10.1007/s00018-024-05548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a prevalent interstitial lung disease with high mortality. CD38 is a main enzyme for intracellular nicotinamide adenine dinucleotide (NAD+) degradation in mammals. It has been reported that CD38 participated in pulmonary fibrosis through promoting alveolar epithelial cells senescence. However, the roles of endothelial CD38 in pulmonary fibrosis remain unknown. In the present study, we observed that the elevated expression of CD38 was related to endothelial-to-mesenchymal transition (EndMT) of lung tissues in IPF patients and bleomycin (BLM)-induced pulmonary fibrosis mice and also in human umbilical vein endothelial cells (HUVECs) treated with BLM. Micro-computed tomography (MCT) and histopathological staining showed that endothelial cell-specific CD38 knockout (CD38EndKO) remarkably attenuated BLM-induced pulmonary fibrosis. In addition, CD38EndKO significantly inhibited TGFβ-Smad3 pathway-mediated excessive extracellular matrix (ECM), reduced Toll-like receptor4-Myeloid differentiation factor88-Mitogen-activated protein kinases (TLR4-MyD88-MAPK) pathway-mediated endothelial inflammation and suppressed nicotinamide adenine dinucleotide phosphate oxidases1 (NOX1)-mediated oxidative stress. Furthermore, we demonstrated that 3-TYP, a SIRT3-specific inhibitor, markedly reversed the protective effect of HUVECsCD38KD cells and 78 C, a CD38-specific inhibitor, on BLM-induced EndMT in HUVECs. Therefore, we concluded that CD38EndKO significantly ameliorated BLM-induced pulmonary fibrosis through inhibiting ECM, endothelial inflammation and oxidative stress, further alleviating EndMT in mice. Our findings suggest that endothelial CD38 may be a new therapeutic target for the prevention and treatment of pulmonary fibrosis clinically.
Collapse
Affiliation(s)
- Min Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hao-Min Xu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Shu-Fen Ke
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qing-Yun Yuan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hui-Lan Tan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Jie Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Guan-Hui Yu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qi-Ming Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yu Liu
- Department of Respiratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Long Hu
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
8
|
Guarner-Lans V, Soria-Castro E, Cano-Martínez A, Rubio-Ruiz ME, Zarco G, Carreón-Torres E, Grimaldo O, Castrejón-Téllez V, Pérez-Torres I. Rats Exposed to Excess Sucrose During a Critical Period Develop Inflammation and Express a Secretory Phenotype of Vascular Smooth Muscle Cells. Metabolites 2024; 14:555. [PMID: 39452936 PMCID: PMC11509398 DOI: 10.3390/metabo14100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Neonatal rats that receive sucrose during a critical postnatal period (CP, days 12 to 28) develop hypertension by the time they reach adulthood. Inflammation might contribute to changes during this period and could be associated with variations in the vascular smooth muscle (VSMC) phenotype. OBJECTIVE We studied changes in inflammatory pathways that could underlie the expression of the secretory phenotype in the VSMC in the thoracic aorta of rats that received sucrose during CP. METHODS We analyzed histological changes in the aorta and the expression of the COX-2, TLR4, iNOS, eNOS, MMP-2 and -9, and β- and α-actin, the quantities of TNF-α, IL-6, and IL-1β using ELISA, and the levels of fatty acids using gas chromatography. RESULTS The aortic wall presented disorganization, decellularization, and wavy elastic fibers and an increase in the lumen area. The α- and β-actin expressions were decreased, while COX-2, TLR4, TNF-α, and the activity of IL-6 were increased. Oleic acid was increased in CP in comparison to the control group. CONCLUSIONS There is transient hypertension at the end of the CP that is accompanied by inflammation and a change in the phenotype of VSMC to the secretory phenotype. The inflammatory changes could act as epigenetic signals to determine the development of hypertension when animals reach adulthood.
Collapse
Affiliation(s)
- Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.); (A.C.-M.); (M.E.R.-R.)
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.); (A.C.-M.); (M.E.R.-R.)
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.); (A.C.-M.); (M.E.R.-R.)
| | - Gabriela Zarco
- Department of Pharmacology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Oscar Grimaldo
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.); (A.C.-M.); (M.E.R.-R.)
| | - Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.); (A.C.-M.); (M.E.R.-R.)
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
9
|
Ding H, Jiang M, Chan AM, Xia Y, Ma RCW, Yao X, Wang L, Huang Y. Targeting the tyrosine kinase Src in endothelium attenuates inflammation and atherogenesis induced by disturbed flow. Br J Pharmacol 2024. [PMID: 39117589 DOI: 10.1111/bph.17307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have shown that Src can regulate inflammation and tumour progression. However, the mechanisms by which Src regulates the inflammatory response of vascular endothelium and atherogenesis are currently poorly understood. This study aimed to investigate the role of Src in endothelial inflammation and atherogenesis, as well as the underlying mechanisms. EXPERIMENTAL APPROACH Real-time quantitative PCR was used to measure the mRNA levels of inflammatory genes. The phosphorylation and localization of proteins were examined using western blotting and immunofluorescence, respectively. The level of p-Src Y416 in mouse endothelium was directly determined using en face staining. Endothelial-specific knockdown of Src was achieved by tail vein injection of AAV-sgSrc in ApoE-/-; Cas9LSL/LSL; Cdh5-cre mice. Atherosclerosis was induced by partial ligation of the carotid artery. KEY RESULTS Oscillatory shear stress (OSS) promotes the phosphorylation of Src at Y416 in endothelial cells, and Piezo1 is required for this regulatory process. Overexpression of constitutively active Src promotes endothelial inflammation, as well as phosphorylation of Stat3 (at Y705) and its nuclear translocation. Endothelial inflammation induced by OSS was abolished by the Src inhibitor dasatinib or si-Src. Dasatinib, when administered orally, reduced endothelial inflammation and plaque formation in ApoE-/- mice induced by partial carotid artery ligation. Additionally, plaque formation was decreased in the ligated left carotid artery of mice with endothelial-specific Src knockdown. CONCLUSION AND IMPLICATIONS Disturbed flow promotes endothelial inflammation and atherogenesis through the Piezo1-Src-Stat3 pathway. Therefore, inhibiting Src in endothelial cells could be a promising therapeutic strategy to treat atherogenesis.
Collapse
Affiliation(s)
- Huanyu Ding
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Minchun Jiang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Andrew M Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Ciarambino T, Crispino P, Minervini G, Giordano M. Role of Helicobacter pylori Infection in Pathogenesis, Evolution, and Complication of Atherosclerotic Plaque. Biomedicines 2024; 12:400. [PMID: 38398002 PMCID: PMC10886498 DOI: 10.3390/biomedicines12020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The therapeutic management of atherosclerosis focuses almost exclusively on the reduction of plasma cholesterol levels. An important role in the genesis and evolution of atherosclerosis is played by chronic inflammation in promoting thrombosis phenomena after atheroma rupture. This review aims to take stock of the knowledge so far accumulated on the role of endemic HP infection in atherosclerosis. The studies produced so far have demonstrated a causal relationship between Helicobacter pylori (HP) and CVD. In a previous study, we demonstrated in HP-positive patients that thrombin and plasma fragment 1 + 2 production was proportionally related to tumor necrosis factor-alpha levels and that eradication of the infection resulted in a reduction of inflammation. At the end of our review, we can state that HP slightly affects the risk of CVD, particularly if the infection is associated with cytotoxic damage, and HP screening could have a clinically significant role in patients with a high risk of CVD. Considering the high prevalence of HP infection, an infection screening could be of great clinical utility in patients at high risk of CVD.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Internal Medicine Department, Hospital of Marcianise, ASL Caserta, 81037 Caserta, Italy
| | - Pietro Crispino
- Internal Medicine Department, Hospital of Latina, ASL Latina, 04100 Latina, Italy;
| | - Giovanni Minervini
- Internal Medicine Department, Hospital of Lagonegro, AOR San Carlo, 85042 Lagonegro, Italy;
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 81100 Naples, Italy;
| |
Collapse
|
11
|
Otunla AA, Shanmugarajah K, Davies AH, Lucia Madariaga M, Shalhoub J. The Biological Parallels Between Atherosclerosis and Cardiac Allograft Vasculopathy: Implications for Solid Organ Chronic Rejection. Cardiol Rev 2024; 32:2-11. [PMID: 38051983 DOI: 10.1097/crd.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Atherosclerosis and solid organ chronic rejection are pervasive chronic disease states that account for significant morbidity and mortality in developed countries. Recently, a series of shared molecular pathways have emerged, revealing biological parallels from early stages of development up to the advanced forms of pathology. These shared mechanistic processes are inflammatory in nature, reflecting the importance of inflammation in both disorders. Vascular inflammation triggers endothelial dysfunction and disease initiation through aberrant vasomotor control and shared patterns of endothelial activation. Endothelial dysfunction leads to the recruitment of immune cells and the perpetuation of the inflammatory response. This drives lesion formation through the release of key cytokines such as IFN-y, TNF-alpha, and IL-2. Continued interplay between the adaptive and innate immune response (represented by T lymphocytes and macrophages, respectively) promotes lesion instability and thrombotic complications; hallmarks of advanced disease in both atherosclerosis and solid organ chronic rejection. The aim of this study is to identify areas of overlap between atherosclerosis and chronic rejection. We then discuss new approaches to improve current understanding of the pathophysiology of both disorders, and eventually design novel therapeutics.
Collapse
Affiliation(s)
- Afolarin A Otunla
- From the Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | | | - Alun H Davies
- Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Joseph Shalhoub
- Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
12
|
Pu Y, Cheng CK, Zhang H, Luo JY, Wang L, Tomlinson B, Huang Y. Molecular mechanisms and therapeutic perspectives of peroxisome proliferator-activated receptor α agonists in cardiovascular health and disease. Med Res Rev 2023; 43:2086-2114. [PMID: 37119045 DOI: 10.1002/med.21970] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
The prevalence of cardiovascular disease (CVD) has been rising due to sedentary lifestyles and unhealthy dietary patterns. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor regulating multiple biological processes, such as lipid metabolism and inflammatory response critical to cardiovascular homeostasis. Healthy endothelial cells (ECs) lining the lumen of blood vessels maintains vascular homeostasis, where endothelial dysfunction associated with increased oxidative stress and inflammation triggers the pathogenesis of CVD. PPARα activation decreases endothelial inflammation and senescence, contributing to improved vascular function and reduced risk of atherosclerosis. Phenotypic switch and inflammation of vascular smooth muscle cells (VSMCs) exacerbate vascular dysfunction and atherogenesis, in which PPARα activation improves VSMC homeostasis. Different immune cells participate in the progression of vascular inflammation and atherosclerosis. PPARα in immune cells plays a critical role in immunological events, such as monocyte/macrophage adhesion and infiltration, macrophage polarization, dendritic cell (DC) embedment, T cell activation, and B cell differentiation. Cardiomyocyte dysfunction, a major risk factor for heart failure, can also be alleviated by PPARα activation through maintaining cardiac mitochondrial stability and inhibiting cardiac lipid accumulation, oxidative stress, inflammation, and fibrosis. This review discusses the current understanding and future perspectives on the role of PPARα in the regulation of the cardiovascular system as well as the clinical application of PPARα ligands.
Collapse
Affiliation(s)
- Yujie Pu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiang-Yun Luo
- Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Li Y, Srinath A, Alcazar-Felix RJ, Hage S, Bindal A, Lightle R, Shenkar R, Shi C, Girard R, Awad IA. Inflammatory Mechanisms in a Neurovascular Disease: Cerebral Cavernous Malformation. Brain Sci 2023; 13:1336. [PMID: 37759937 PMCID: PMC10526329 DOI: 10.3390/brainsci13091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a common cerebrovascular malformation causing intracranial hemorrhage, seizures, and focal neurologic deficits. A unique CCM lesional inflammatory microenvironment has been shown to influence the clinical course of the disease. This review addresses the inflammatory cell infiltrate in the CCM lesion and the role of a defined antigen-driven immune response in pathogenicity. We summarize immune mechanisms associated with the loss of the CCM gene and disease progression, including the potential role of immunothrombosis. We also review evidence of circulating inflammatory biomarkers associated with CCM disease and its clinical activity. We articulate future directions for this research, including the role of individual cell type contributions to the immune response in CCM, single cell transcriptomics of inflammatory cells, biomarker development, and therapeutic implications. The concepts are applicable for developing diagnostic and treatment strategies for CCM and for studying other neurovascular diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (Y.L.); (C.S.)
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Roberto J. Alcazar-Felix
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Stephanie Hage
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Akash Bindal
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (Y.L.); (C.S.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
- Department of Neurological Surgery, University of Chicago Medicine, 5841 S Maryland, MC3026/Neurosurgery J341, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Juste-Lanas Y, Hervas-Raluy S, García-Aznar JM, González-Loyola A. Fluid flow to mimic organ function in 3D in vitro models. APL Bioeng 2023; 7:031501. [PMID: 37547671 PMCID: PMC10404142 DOI: 10.1063/5.0146000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
Many different strategies can be found in the literature to model organ physiology, tissue functionality, and disease in vitro; however, most of these models lack the physiological fluid dynamics present in vivo. Here, we highlight the importance of fluid flow for tissue homeostasis, specifically in vessels, other lumen structures, and interstitium, to point out the need of perfusion in current 3D in vitro models. Importantly, the advantages and limitations of the different current experimental fluid-flow setups are discussed. Finally, we shed light on current challenges and future focus of fluid flow models applied to the newest bioengineering state-of-the-art platforms, such as organoids and organ-on-a-chip, as the most sophisticated and physiological preclinical platforms.
Collapse
Affiliation(s)
| | - Silvia Hervas-Raluy
- Department of Mechanical Engineering, Engineering Research Institute of Aragón (I3A), University of Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
15
|
Xue J, Zhang Z, Sun Y, Jin D, Guo L, Li X, Zhao D, Feng X, Qi W, Zhu H. Research Progress and Molecular Mechanisms of Endothelial Cells Inflammation in Vascular-Related Diseases. J Inflamm Res 2023; 16:3593-3617. [PMID: 37641702 PMCID: PMC10460614 DOI: 10.2147/jir.s418166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Endothelial cells (ECs) are widely distributed inside the vascular network, forming a vital barrier between the bloodstream and the walls of blood vessels. These versatile cells serve myriad functions, including the regulation of vascular tension and the management of hemostasis and thrombosis. Inflammation constitutes a cascade of biological responses incited by biological, chemical, or physical stimuli. While inflammation is inherently a protective mechanism, dysregulated inflammation can precipitate a host of vascular pathologies. ECs play a critical role in the genesis and progression of vascular inflammation, which has been implicated in the etiology of numerous vascular disorders, such as atherosclerosis, cardiovascular diseases, respiratory diseases, diabetes mellitus, and sepsis. Upon activation, ECs secrete potent inflammatory mediators that elicit both innate and adaptive immune reactions, culminating in inflammation. To date, no comprehensive and nuanced account of the research progress concerning ECs and inflammation in vascular-related maladies exists. Consequently, this review endeavors to synthesize the contributions of ECs to inflammatory processes, delineate the molecular signaling pathways involved in regulation, and categorize and consolidate the various models and treatment strategies for vascular-related diseases. It is our aspiration that this review furnishes cogent experimental evidence supporting the established link between endothelial inflammation and vascular-related pathologies, offers a theoretical foundation for clinical investigations, and imparts valuable insights for the development of therapeutic agents targeting these diseases.
Collapse
Affiliation(s)
- Jiaojiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Yuting Sun
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Di Jin
- Department of Nephrology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Liming Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiaochun Feng
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Haoyu Zhu
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| |
Collapse
|
16
|
Jiang D, Liu H, Zhu G, Li X, Fan L, Zhao F, Xu C, Wang S, Rose Y, Rhen J, Yu Z, Yin Y, Gu Y, Xu X, Fisher EA, Ge J, Xu Y, Pang J. Endothelial PHACTR1 Promotes Endothelial Activation and Atherosclerosis by Repressing PPARγ Activity Under Disturbed Flow in Mice. Arterioscler Thromb Vasc Biol 2023; 43:e303-e322. [PMID: 37199156 PMCID: PMC10524336 DOI: 10.1161/atvbaha.122.318173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Numerous genome-wide association studies revealed that SNPs (single nucleotide polymorphisms) at the PHACTR1 (phosphatase and actin regulator 1) locus strongly correlate with coronary artery disease. However, the biological function of PHACTR1 remains poorly understood. Here, we identified the proatherosclerotic effect of endothelial PHACTR1, contrary to macrophage PHACTR1. METHODS We generated global (Phactr1-/-) and endothelial cell (EC)-specific (Phactr1ECKO) Phactr1 KO (knockout) mice and crossed these mice with apolipoprotein E-deficient (Apoe-/-) mice. Atherosclerosis was induced by feeding the high-fat/high-cholesterol diet for 12 weeks or partially ligating carotid arteries combined with a 2-week high-fat/high-cholesterol diet. PHACTR1 localization was identified by immunostaining of overexpressed PHACTR1 in human umbilical vein ECs exposed to different types of flow. The molecular function of endothelial PHACTR1 was explored by RNA sequencing using EC-enriched mRNA from global or EC-specific Phactr1 KO mice. Endothelial activation was evaluated in human umbilical vein ECs transfected with siRNA targeting PHACTR1 and in Phactr1ECKO mice after partial carotid ligation. RESULTS Global or EC-specific Phactr1 deficiency significantly inhibited atherosclerosis in regions of disturbed flow. PHACTR1 was enriched in ECs and located in the nucleus of disturbed flow areas but shuttled to cytoplasm under laminar flow in vitro. RNA sequencing showed that endothelial Phactr1 depletion affected vascular function, and PPARγ (peroxisome proliferator-activated receptor gamma) was the top transcription factor regulating differentially expressed genes. PHACTR1 functioned as a PPARγ transcriptional corepressor by binding to PPARγ through the corepressor motifs. PPARγ activation protects against atherosclerosis by inhibiting endothelial activation. Consistently, PHACTR1 deficiency remarkably reduced endothelial activation induced by disturbed flow in vivo and in vitro. PPARγ antagonist GW9662 abolished the protective effects of Phactr1 KO on EC activation and atherosclerosis in vivo. CONCLUSIONS Our results identified endothelial PHACTR1 as a novel PPARγ corepressor to promote atherosclerosis in disturbed flow regions. Endothelial PHACTR1 is a potential therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Dongyang Jiang
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Hao Liu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Guofu Zhu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Xiankai Li
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Linlin Fan
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Faxue Zhao
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Chong Xu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Shumin Wang
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| | - Yara Rose
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| | - Jordan Rhen
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| | - Ze Yu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Yiheng Yin
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Yuling Gu
- Shanghai Naturethink Life Science&Technology Co., Itd, Shanghai 201809, China (Y. G.)
| | - Xiangbin Xu
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| | - Edward A. Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA (E. A. F.)
| | - Junbo Ge
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Yawei Xu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| |
Collapse
|
17
|
Wang X, Shen Y, Shang M, Liu X, Munn LL. Endothelial mechanobiology in atherosclerosis. Cardiovasc Res 2023; 119:1656-1675. [PMID: 37163659 PMCID: PMC10325702 DOI: 10.1093/cvr/cvad076] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 05/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a serious health challenge, causing more deaths worldwide than cancer. The vascular endothelium, which forms the inner lining of blood vessels, plays a central role in maintaining vascular integrity and homeostasis and is in direct contact with the blood flow. Research over the past century has shown that mechanical perturbations of the vascular wall contribute to the formation and progression of atherosclerosis. While the straight part of the artery is exposed to sustained laminar flow and physiological high shear stress, flow near branch points or in curved vessels can exhibit 'disturbed' flow. Clinical studies as well as carefully controlled in vitro analyses have confirmed that these regions of disturbed flow, which can include low shear stress, recirculation, oscillation, or lateral flow, are preferential sites of atherosclerotic lesion formation. Because of their critical role in blood flow homeostasis, vascular endothelial cells (ECs) have mechanosensory mechanisms that allow them to react rapidly to changes in mechanical forces, and to execute context-specific adaptive responses to modulate EC functions. This review summarizes the current understanding of endothelial mechanobiology, which can guide the identification of new therapeutic targets to slow or reverse the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
18
|
Zhang S, Zhang Y, Zhang P, Wei Z, Ma M, Wang W, Tong W, Tian F, Hui H, Tian J, Chen Y. Plexin D1 mediates disturbed flow-induced M1 macrophage polarization in atherosclerosis. Heliyon 2023; 9:e17314. [PMID: 37389065 PMCID: PMC10300222 DOI: 10.1016/j.heliyon.2023.e17314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Atherosclerosis preferentially develops at bifurcations exposed to disturbed flow. Plexin D1 (PLXND1) responds to mechanical forces and drives macrophage accumulation in atherosclerosis. Here, multiple strategies were used to identify the role of PLXND1 in site-specific atherosclerosis. Using computational fluid dynamics and three-dimensional light-sheet fluorescence-microscopy, the elevated PLXND1 in M1 macrophages was mainly distributed in disturbed flow area of ApoE-/- carotid bifurcation lesions, and visualization of atherosclerosis in vivo was achieved by targeting PLXND1. Subsequently, to simulate the microenvironment of bifurcation lesions in vitro, we co-cultured oxidized low-density lipoprotein (oxLDL)-treated THP-1-derived macrophages with shear-treated human umbilical vein endothelial cells (HUVECs). We found that oscillatory shear induced the increase of PLXND1 in M1 macrophages, and knocking down PLXND1 inhibited M1 polarization. Semaphorin 3E, the ligand of PLXND1 which was highly expressed in plaques, strongly enhanced M1 macrophage polarization via PLXND1 in vitro. Our findings provide insights into pathogenesis in site-specific atherosclerosis that PLXND1 mediates disturbed flow-induced M1 macrophage polarization.
Collapse
Affiliation(s)
- Suhui Zhang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yingqian Zhang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Peng Zhang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Zechen Wei
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Mingrui Ma
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Wei Wang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Wei Tong
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Feng Tian
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Affiliated with Jinan University, Zhuhai, 519000, China
| | - Yundai Chen
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| |
Collapse
|
19
|
Ding H, Jiang M, Lau CW, Luo J, Chan AM, Wang L, Huang Y. Curaxin CBL0137 inhibits endothelial inflammation and atherogenesis via suppression of the Src-YAP signalling axis. Br J Pharmacol 2023; 180:1168-1185. [PMID: 36495259 DOI: 10.1111/bph.16007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/10/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerotic vascular disease is the leading cause of mortality and morbidity worldwide. Our previous study uncovered that endothelium-specific knockdown of YAP suppresses atherogenesis, suggesting that YAP is a promising therapeutic target against atherosclerotic vascular disease. We established a drug screening platform, which aimed to identify new YAP inhibitors for anti-atherosclerotic treatment. EXPERIMENTAL APPROACH Drug screening was performed by a luciferase reporter gene assay. RNA sequencing was performed to acquire the transcriptomic profile of CBL0137-treated endothelial cells. We assessed and validated the inhibitory effect of CBL0137 on YAP activity and inflammatory response in HUVECs and HAECs. We evaluated the vasoprotective effect of CBL0137 in vivo against plaque formation in ApoE-/- mice, using both disturbed flow-induced and chronic western diet-induced atherosclerotic models. KEY RESULTS We identified CBL0137 as a novel YAP inhibitor from an FDA drug library. CBL0137 inhibited YAP activity by restraining its phosphorylation at Y357. CBL0137 inhibited YAP activity to repress endothelial inflammation. Mechanistically, CBL0137 suppressed YAP phosphorylation at Y357 via the tyrosine-protein kinase Src. Furthermore, administration of CBL0137 ameliorated endothelial inflammation and the atherogenesis induced by disturbed flow and consumption of an atherogenic diet in ApoE-/- mice. CONCLUSION AND IMPLICATIONS To our knowledge, this is the first study to identify CBL0137 as a novel YAP inhibitor. We have demonstrated that pharmacologically targeting YAP by CBL0137 inhibits atherogenesis. The present results suggest that CBL0137 holds promise as a new drug for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Huanyu Ding
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Minchun Jiang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianfang Luo
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Andrew M Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Lv J, Zhu J, Wang P, Liu T, Yuan J, Yin H, Lan Y, Sun Q, Zhang Z, Ding G, Zhou C, Wang H, Wang Z, Wang Y. Artemisinin exerts a protective effect in the MPTP mouse model of Parkinson's disease by inhibiting microglial activation via the TLR4/Myd88/NF-KB pathway. CNS Neurosci Ther 2023; 29:1012-1023. [PMID: 36691817 PMCID: PMC10018080 DOI: 10.1111/cns.14063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS We performed cell and animal experiments to explore the therapeutic effect of artemisinin on Parkinson's disease (PD) and the TLR4/Myd88 signaling pathway. METHODS C57 mice were randomly divided into the blank, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced and artemisinin-treated groups. Clinical symptoms, the number of dopaminergic (DAergic) neurons in the substantia nigra, and microglial cell activation were compared among the three groups. Subsequently, BV-2 cell activation and TLR4/Myd88 pathway component expression were compared among the blank, MPP+ -treated, artemisinin-treated, and TLR4 activator-treated groups. RESULTS Behavioral symptoms were improved, the number of DAergic neurons in the substantia nigra of the midbrain was increased, and microglial cell activation was decreased in artemisinin-treated MPTP-induced PD model mice compared with control-treated MPTP-induced PD model mice (p < 0.05). The cell experiments revealed that artemisinin treatment reduced MPP+ -induced BV-2 cell activation and inhibited the TLR4/Myd88 signaling pathway. Moreover, the effect of artemisinin on the BV-2 cell model was inhibited by the TLR4 activator LPS (p < 0.05). CONCLUSION Artemisinin may reduce damage to DAergic neurons in a PD mouse model by decreasing microglial activation through the TLR4-mediated MyD88-dependent signaling pathway. However, this finding cannot explain the relationship between microglia and DAergic neurons.
Collapse
Affiliation(s)
- Jing Lv
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China.,Institute of Neuroscience, Hubei University of Medicine, Shiyan, China
| | - Jing Zhu
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China
| | - Peihan Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Tongyu Liu
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Jiang Yuan
- Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Huan Yin
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Yiran Lan
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Qiang Sun
- Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Zhifeng Zhang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China
| | - Guoda Ding
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China
| | - Chenxi Zhou
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China
| | - Huajie Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Zihan Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Yunfu Wang
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China.,Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| |
Collapse
|
21
|
Zhou W, Wang F, Qian X, Luo S, Wang Z, Gao X, Kong X, Zhang J, Chen S. Quercetin protects endothelial function from inflammation induced by localized disturbed flow by inhibiting NRP2 -VEGFC complex. Int Immunopharmacol 2023; 116:109842. [PMID: 36764279 DOI: 10.1016/j.intimp.2023.109842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/07/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Atherosclerosis is a focal chronic inflammatory disease, the initial pathogenic event of which is endothelial dysfunction, and disturbed flow (DF) is the primary and vital factor underlying endothelial dysfunction. The present research aims to elucidate the mechanism underlying the regulation of Neuropilin (NRP)2 under DF in endothelial cells (ECs) in an inflammatory state. We observed that NRP2 expression was significantly upregulated in DF-stimulated human umbilical vein endothelial cells (HUVECs). Knockdown of NRP2 in HUVECs significantly ameliorated cell inflammation induced by DF. In addition, quercetin inhibited NRP2 expression as well as endothelial inflammation. Animal experiments suggested that NRP2 knockdown or intraperitoneal injection of quercetin affected the expression of inflammation-related genes. Moreover, the upstream transcription factor GATA2 was found to regulate NRP2 transcription by binding to the -1100 to +100 bp region of the NRP2 promoter. Further studies showed that quercetin inhibited NRP2-VEGFC complex formation induced by disturbed flow, although did not inhibit GATA2 expression. These findings suggest that NRP2 plays an important role in promoting inflammation. Quercetin antagonizes atherosclerosis by inhibiting NRP2 and the formation of NRP2-VEGFC complex by inhibiting the inflammatory effects induced by disordered flow.
Collapse
Affiliation(s)
- Wenying Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China
| | - Xuesong Qian
- Department of Cardiology, The First People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Shuai Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China
| | - Zhimei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China
| | - Xiaofei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China; Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Xiangquan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China; Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China; Department of Cardiology, Nanjing Heart Centre, Nanjing, China.
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China; Department of Cardiology, Nanjing Heart Centre, Nanjing, China.
| |
Collapse
|
22
|
Buckler AJ, Marlevi D, Skenteris NT, Lengquist M, Kronqvist M, Matic L, Hedin U. In silico model of atherosclerosis with individual patient calibration to enable precision medicine for cardiovascular disease. Comput Biol Med 2023; 152:106364. [PMID: 36525832 DOI: 10.1016/j.compbiomed.2022.106364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Guidance for preventing myocardial infarction and ischemic stroke by tailoring treatment for individual patients with atherosclerosis is an unmet need. Such development may be possible with computational modeling. Given the multifactorial biology of atherosclerosis, modeling must be based on complete biological networks that capture protein-protein interactions estimated to drive disease progression. Here, we aimed to develop a clinically relevant scale model of atherosclerosis, calibrate it with individual patient data, and use it to simulate optimized pharmacotherapy for individual patients. APPROACH AND RESULTS The study used a uniquely constituted plaque proteomic dataset to create a comprehensive systems biology disease model for simulating individualized responses to pharmacotherapy. Plaque tissue was collected from 18 patients with 6735 proteins at two locations per patient. 113 pathways were identified and included in the systems biology model of endothelial cells, vascular smooth muscle cells, macrophages, lymphocytes, and the integrated intima, altogether spanning 4411 proteins, demonstrating a range of 39-96% plaque instability. After calibrating the systems biology models for individual patients, we simulated intensive lipid-lowering, anti-inflammatory, and anti-diabetic drugs. We also simulated a combination therapy. Drug response was evaluated as the degree of change in plaque stability, where an improvement was defined as a reduction of plaque instability. In patients with initially unstable lesions, simulated responses varied from high (20%, on combination therapy) to marginal improvement, whereas patients with initially stable plaques showed generally less improvement. CONCLUSION In this pilot study, proteomics-based system biology modeling was shown to simulate drug response based on atherosclerotic plaque instability with a power of 90%, providing a potential strategy for improved personalized management of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Andrew J Buckler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Elucid Bioimaging Inc., Boston, MA, USA
| | - David Marlevi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nikolaos T Skenteris
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Xia Y, Lu YW, Hao RJ, Yu GR. Catalpol relieved angiotensin II-induced blood-brain barrier destruction via inhibiting the TLR4 pathway in brain endothelial cells. PHARMACEUTICAL BIOLOGY 2022; 60:2210-2218. [PMID: 36369944 PMCID: PMC9665075 DOI: 10.1080/13880209.2022.2142801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Catalpol is a major bioactive constituent of Rehmannia glutinosa Libosch (Scrophulariaceae), a traditional Chinese medicine, which is widely used in multiple diseases, including hypertension. OBJECTIVES To explore whether catalpol protects against angiotensin II (Ang II)-triggered blood-brain barrier (BBB) leakage. MATERIALS AND METHODS The bEnd.3 cells and BBB models were pre-treated with or without catalpol (50, 200 and 500 μM) or TAK-242 (1 μM) for 2 h and then with Ang II (0.1 μM) or LPS (1 μg/mL) for 24 h. Cell viability was determined by the MTT assay. The levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), inducible nitric oxide synthase (iNOS), tumour necrosis factor-α (TNF-α), caveolin-1 (Cav-1) and p-eNOS/eNOS were tested by western blot. The BBB permeability was evaluated by the flux of bovine serum albumin-fluorescein isothiocyanate (BSA-FITC) across monolayers. nuclear factor kappa-B (NF-κB) p65 nuclear translocation was explored by immunofluorescence staining. RESULTS Ang II (0.1 μM) decreased the cell viability to 86.52 ± 1.79%, elevated the levels of TLR4, MyD88, iNOS, TNF-α and Cav-1 respectively to 3.7-, 1.5-, 2.3-, 2.2- and 2.7-fold, reduced the level of p-eNOS/eNOS to 1.6-fold in bEnd.3 cells, and eventually increased BBB permeability. Catalpol dose-dependently reversed these changes at 50-500 μM. Meanwhile, catalpol (500 μM) inhibited the upregulated levels of TLR4 pathway-related proteins and NF-κB p65 nuclear translocation, decreased the enhanced transcytosis, and relieved the BBB disruption caused by both LPS (the TLR4 activator) and Ang II. The effects are same as TAK-242 (the TLR4 inhibitor). CONCLUSIONS Catalpol relieved the Ang II-induced BBB damage, which indicated catalpol has high potential for the treatment of hypertension-induced cerebral small vessel disease (cSVD).
Collapse
Affiliation(s)
- Yu Xia
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Wei Lu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ren Juan Hao
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Gu Ran Yu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
Jo B, Morimoto Y, Takeuchi S. 3D-Printed Centrifugal Pump Driven by Magnetic Force in Applications for Microfluidics in Biological Analysis. Adv Healthc Mater 2022; 11:e2200593. [PMID: 35608243 DOI: 10.1002/adhm.202200593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/17/2022] [Indexed: 01/28/2023]
Abstract
In recent years, microfluidic systems have been extensively utilized for biological analysis. The integration of pumps in microfluidic systems requires precise control of liquids and effort-intensive set-ups for multiplexed experiments. In this study, a 3D-printed centrifugal pump driven by magnetic force is presented for microfluidics and biological analysis. The permanent magnets implemented in the centrifugal pump synchronized the rotation of the driving and operating parts. Precise control of the flow rate and a wide range and variety of flow profiles are achieved by controlling the rotational speed of the motor in the driving part. The compact size and contactless driving part allow simple set-ups within commercially available culture dishes and tubes. It is demonstrated that the fabricated 3D-printed centrifugal pump can induce laminar flow in a microfluidic device, perfusion culture of in vitro tissues, and alignment of cells under shear stress. This device has a high potential for applications in microfluidic devices and perfusion culture of cells.
Collapse
Affiliation(s)
- Byeongwook Jo
- Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuya Morimoto
- Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shoji Takeuchi
- Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,International Research for Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
25
|
Bianconi A, Salvati LF, Perrelli A, Ferraris C, Massara A, Minardi M, Aruta G, Rosso M, Massa Micon B, Garbossa D, Retta SF. Distant Recurrence of a Cerebral Cavernous Malformation in the Vicinity of a Developmental Venous Anomaly: Case Report of Local Oxy-Inflammatory Events. Int J Mol Sci 2022; 23:ijms232314643. [PMID: 36498972 PMCID: PMC9736411 DOI: 10.3390/ijms232314643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are a major type of cerebrovascular lesions of proven genetic origin that occur in either sporadic (sCCM) or familial (fCCM) forms, the latter being inherited as an autosomal dominant condition linked to loss-of-function mutations in three known CCM genes. In contrast to fCCMs, sCCMs are rarely linked to mutations in CCM genes and are instead commonly and peculiarly associated with developmental venous anomalies (DVAs), suggesting distinct origins and common pathogenic mechanisms. CASE REPORT A hemorrhagic sCCM in the right frontal lobe of the brain was surgically excised from a symptomatic 3 year old patient, preserving intact and pervious the associated DVA. MRI follow-up examination performed periodically up to 15 years after neurosurgery intervention demonstrated complete removal of the CCM lesion and no residual or relapse signs. However, 18 years after surgery, the patient experienced acute episodes of paresthesia due to a distant recurrence of a new hemorrhagic CCM lesion located within the same area as the previous one. A new surgical intervention was, therefore, necessary, which was again limited to the CCM without affecting the pre-existing DVA. Subsequent follow-up examination by contrast-enhanced MRI evidenced a persistent pattern of signal-intensity abnormalities in the bed of the DVA, including hyperintense gliotic areas, suggesting chronic inflammatory conditions. CONCLUSIONS This case report highlights the possibility of long-term distant recurrence of hemorrhagic sCCMs associated with a DVA, suggesting that such recurrence is secondary to focal sterile inflammatory conditions generated by the DVA.
Collapse
Affiliation(s)
- Andrea Bianconi
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
- Correspondence: (A.B.); (S.F.R.)
| | | | - Andrea Perrelli
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Turin, Regione Gonzole 10, 10124 Orbassano, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14602, USA
| | - Chiara Ferraris
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Turin, Regione Gonzole 10, 10124 Orbassano, Italy
| | - Armando Massara
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Massimiliano Minardi
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Gelsomina Aruta
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Miriam Rosso
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Barbara Massa Micon
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Diego Garbossa
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
| | - Saverio Francesco Retta
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Turin, Regione Gonzole 10, 10124 Orbassano, Italy
- Correspondence: (A.B.); (S.F.R.)
| |
Collapse
|
26
|
Coutinho-Wolino KS, Almeida PP, Mafra D, Stockler-Pinto MB. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: pathways involved and future perspectives. Nutr Res 2022; 107:96-116. [PMID: 36209684 DOI: 10.1016/j.nutres.2022.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 12/27/2022]
Abstract
Chronic inflammation is associated with the development and progression of several noncommunicable diseases, such as diabetes, cardiovascular disease, chronic kidney disease, cancer, and nonalcoholic fatty liver disease. Evidence suggests that pattern recognition receptors that identify pathogen-associated molecular patterns and danger-associated molecular patterns are crucial in chronic inflammation. Among the pattern recognition receptors, Toll-like receptor 4 (TLR4) stimulates several inflammatory pathway agonists, such as nuclear factor-κB, interferon regulator factor 3, and nod-like receptor pyrin domain containing 3 pathways, which consequently trigger the expression of pro-inflammatory biomarkers, increasing the risk of noncommunicable disease development and progression. Studies have focused on the antagonistic potential of bioactive compounds, following the concept of food as a medicine, in which nutritional strategies may mitigate inflammation via TLR4 modulation. Thus, this review discusses preclinical evidence concerning bioactive compounds from fruit, vegetable, spice, and herb extracts (curcumin, resveratrol, catechin, cinnamaldehyde, emodin, ginsenosides, quercetin, allicin, and caffeine) that may regulate the TLR4 pathway and reduce the inflammatory response. Bioactive compounds can inhibit TLR4-mediated inflammation through gut microbiota modulation, improvement of intestinal permeability, inhibition of lipopolysaccharide-TLR4 binding, and decreasing TLR4 expression by modulation of microRNAs and antioxidant pathways. The responses directly mitigated inflammation, especially nuclear factor-κB activation and inflammatory cytokines release. These findings should be considered for further clinical studies on inflammation-mediated diseases.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Patricia P Almeida
- Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil; Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
27
|
Jiang M, Ding H, Huang Y, Wang L. Shear Stress and Metabolic Disorders-Two Sides of the Same Plaque. Antioxid Redox Signal 2022; 37:820-841. [PMID: 34148374 DOI: 10.1089/ars.2021.0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Shear stress and metabolic disorder are the two sides of the same atherosclerotic coin. Atherosclerotic lesions are prone to develop at branches and curvatures of arteries, which are exposed to oscillatory and low shear stress exerted by blood flow. Meanwhile, metabolic disorders are pivotal contributors to the formation and advancement of atherosclerotic plaques. Recent Advances: Accumulated evidence has provided insight into the impact and mechanisms of biomechanical forces and metabolic disorder on atherogenesis, in association with mechanotransduction, epigenetic regulation, and so on. Moreover, recent studies have shed light on the cross talk between the two drivers of atherosclerosis. Critical Issues: There are extensive cross talk and interactions between shear stress and metabolic disorder during the pathogenesis of atherosclerosis. The communications may amplify the proatherogenic effects through increasing oxidative stress and inflammation. Nonetheless, the precise mechanisms underlying such interactions remain to be fully elucidated as the cross talk network is considerably complex. Future Directions: A better understanding of the cross talk network may confer benefits for a more comprehensive clinical management of atherosclerosis. Critical mediators of the cross talk may serve as promising therapeutic targets for atherosclerotic vascular diseases, as they can inhibit effects from both sides of the plaque. Hence, further in-depth investigations with advanced omics approaches are required to develop novel and effective therapeutic strategies against atherosclerosis. Antioxid. Redox Signal. 37, 820-841.
Collapse
Affiliation(s)
- Minchun Jiang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huanyu Ding
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Wang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
28
|
Regulation of Atherosclerosis by Toll-Like Receptor 4 Induced by Serum Amyloid 1: A Systematic In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4887593. [PMID: 36158875 PMCID: PMC9499805 DOI: 10.1155/2022/4887593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
The objective of this study was to investigate the effects of serum amyloid 1 (SAA1) on activation of endothelial cells, formation of foam cells, platelet aggregation, and monocyte/platelet adhesion to endothelial cells. The effect of SAA1 on the inflammatory activation of endothelial cells was investigated by detecting the expression of inflammatory factors and adhesion molecules. The role of SAA1 in formation of foam cells was verified by detecting lipid deposition and expression of molecules related to the formation of foam cells. After platelets were stimulated by SAA1, the aggregation rate was evaluated to determine the effect of SAA1 on platelet aggregation. Monocytes/platelets were cocultured with human umbilical vein endothelial cells (HUVECs) pretreated with or without SAA1 to determine whether SAA1 affected monocyte/platelet adhesion to endothelial cells. By inhibiting toll-like receptor 4 (TLR4) function, we further identified the role of TLR4 signaling in SAA1-mediated endothelial inflammatory activation, foam-cell formation, and monocyte/platelet adhesion to HUVECs. SAA1 significantly increased the expression of adhesion molecules and inflammatory factors in HUVECs. Moreover, SAA1 also promoted lipid deposition and the expression of inflammatory factors and low-density lipoprotein receptor-1 (LOX-1) in THP-1-derived macrophages. In addition, SAA1 induced platelet aggregation and enhanced monocyte/platelet adhesion to HUVECs. However, the TLR4 antagonist significantly inhibited SAA1-induced endothelial cell activation, foam-cell formation, and monocyte/platelet adhesion to HUVECs and downregulated the expression of myeloid differentiation factor 88 (MyD88), phosphor-inhibitor of nuclear factor κB kinase subunit α/β (P-IKKα/β), phospho-inhibitor of nuclear factor κB subunit α (P-IKBα), and phosphorylation of nuclear transcription factor-κB p65 (P-p65) in SAA1-induced HUVECs and THP-1 cells. Conclusively, it is speculated that SAA1 promotes atherosclerosis through enhancing endothelial cell activation, platelet aggregation, foam-cell formation, and monocyte/platelet adhesion to endothelial cells. These biological functions of SAA1 may depend on the activation of TLR4-related nuclear factor-kappa B (NF-κB) signaling pathway.
Collapse
|
29
|
Kotlyarov S. Immune Function of Endothelial Cells: Evolutionary Aspects, Molecular Biology and Role in Atherogenesis. Int J Mol Sci 2022; 23:9770. [PMID: 36077168 PMCID: PMC9456046 DOI: 10.3390/ijms23179770] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is one of the key problems of modern medicine, which is due to the high prevalence of atherosclerotic cardiovascular diseases and their significant share in the structure of morbidity and mortality in many countries. Atherogenesis is a complex chain of events that proceeds over many years in the vascular wall with the participation of various cells. Endothelial cells are key participants in vascular function. They demonstrate involvement in the regulation of vascular hemodynamics, metabolism, and innate immunity, which act as leading links in the pathogenesis of atherosclerosis. These endothelial functions have close connections and deep evolutionary roots, a better understanding of which will improve the prospects of early diagnosis and effective treatment.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
30
|
The Yin and Yang of toll-like receptors in endothelial dysfunction. Int Immunopharmacol 2022; 108:108768. [DOI: 10.1016/j.intimp.2022.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
31
|
He L, Zhang CL, Chen Q, Wang L, Huang Y. Endothelial shear stress signal transduction and atherogenesis: From mechanisms to therapeutics. Pharmacol Ther 2022; 235:108152. [PMID: 35122834 DOI: 10.1016/j.pharmthera.2022.108152] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Atherosclerotic vascular disease and its complications are among the top causes of mortality worldwide. In the vascular lumen, atherosclerotic plaques are not randomly distributed. Instead, they are preferentially localized at the curvature and bifurcations along the arterial tree, where shear stress is low or disturbed. Numerous studies demonstrate that endothelial cell phenotypic change (e.g., inflammation, oxidative stress, endoplasmic reticulum stress, apoptosis, autophagy, endothelial-mesenchymal transition, endothelial permeability, epigenetic regulation, and endothelial metabolic adaptation) induced by oscillatory shear force play a fundamental role in the initiation and progression of atherosclerosis. Mechano-sensors, adaptor proteins, kinases, and transcriptional factors work closely at different layers to transduce the shear stress force from the plasma membrane to the nucleus in endothelial cells, thereby controlling the expression of genes that determine cell fate and phenotype. An in-depth understanding of these mechano-sensitive signaling cascades shall provide new translational strategies for therapeutic intervention of atherosclerotic vascular disease. This review updates the recent advances in endothelial mechano-transduction and its role in the pathogenesis of atherosclerosis, and highlights the perspective of new anti-atherosclerosis therapies through targeting these mechano-regulated signaling molecules.
Collapse
Affiliation(s)
- Lei He
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
32
|
Stolarz AJ, Mu S, Zhang H, Fouda AY, Rusch NJ, Ding Z. Opinion: Endothelial Cells - Macrophage-Like Gatekeepers? Front Immunol 2022; 13:902945. [PMID: 35619719 PMCID: PMC9127206 DOI: 10.3389/fimmu.2022.902945] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 01/08/2023] Open
Affiliation(s)
- Amanda J Stolarz
- Department of Pharmaceutical Sciences, College of Pharmacy, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Huiliang Zhang
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Abdelrahman Y Fouda
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Zufeng Ding
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
33
|
Wang L, Cheng CK, Yi M, Lui KO, Huang Y. Targeting endothelial dysfunction and inflammation. J Mol Cell Cardiol 2022; 168:58-67. [PMID: 35460762 DOI: 10.1016/j.yjmcc.2022.04.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
Abstract
Vascular endothelium maintains vascular homeostasis through liberating a spectrum of vasoactive molecules, both protective and harmful regulators of vascular tone, structural remodeling, inflammation and atherogenesis. An intricate balance between endothelium-derived relaxing factors (nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor) and endothelium-derived contracting factors (superoxide anion, endothelin-1 and constrictive prostaglandins) tightly regulates vascular function. Disruption of such balance signifies endothelial dysfunction, a critical contributor in aging and chronic cardiometabolic disorders, such as obesity, diabetes, hypertension, dyslipidemia and atherosclerotic vascular diseases. Among many proposed cellular and molecular mechanisms causing endothelial dysfunction, oxidative stress and inflammation are often the pivotal players and they are naturally considered as useful targets for intervention in patients with cardiovascular and metabolic diseases. In this article, we provide a recent update on the therapeutic values of pharmacological agents, such as cyclooxygenase-2 inhibitors, renin-angiotensin-system inhibitors, bone morphogenic protein 4 inhibitors, peroxisome proliferator-activated receptor δ agonists, and glucagon-like peptide 1-elevating drugs, and the physiological factors, particularly hemodynamic forces, that improve endothelial function by targeting endothelial oxidative stress and inflammation.
Collapse
Affiliation(s)
- Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Min Yi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
34
|
Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7:78. [PMID: 35273164 PMCID: PMC8913803 DOI: 10.1038/s41392-022-00925-z] [Citation(s) in RCA: 394] [Impact Index Per Article: 131.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Although the treatment of myocardial infarction (MI) has improved considerably, it is still a worldwide disease with high morbidity and high mortality. Whilst there is still a long way to go for discovering ideal treatments, therapeutic strategies committed to cardioprotection and cardiac repair following cardiac ischemia are emerging. Evidence of pathological characteristics in MI illustrates cell signaling pathways that participate in the survival, proliferation, apoptosis, autophagy of cardiomyocytes, endothelial cells, fibroblasts, monocytes, and stem cells. These signaling pathways include the key players in inflammation response, e.g., NLRP3/caspase-1 and TLR4/MyD88/NF-κB; the crucial mediators in oxidative stress and apoptosis, for instance, Notch, Hippo/YAP, RhoA/ROCK, Nrf2/HO-1, and Sonic hedgehog; the controller of myocardial fibrosis such as TGF-β/SMADs and Wnt/β-catenin; and the main regulator of angiogenesis, PI3K/Akt, MAPK, JAK/STAT, Sonic hedgehog, etc. Since signaling pathways play an important role in administering the process of MI, aiming at targeting these aberrant signaling pathways and improving the pathological manifestations in MI is indispensable and promising. Hence, drug therapy, gene therapy, protein therapy, cell therapy, and exosome therapy have been emerging and are known as novel therapies. In this review, we summarize the therapeutic strategies for MI by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc. so as to repair and re-functionalize damaged hearts.
Collapse
|
35
|
Botts SR, Fish JE, Howe KL. Dysfunctional Vascular Endothelium as a Driver of Atherosclerosis: Emerging Insights Into Pathogenesis and Treatment. Front Pharmacol 2021; 12:787541. [PMID: 35002720 PMCID: PMC8727904 DOI: 10.3389/fphar.2021.787541] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis, the chronic accumulation of cholesterol-rich plaque within arteries, is associated with a broad spectrum of cardiovascular diseases including myocardial infarction, aortic aneurysm, peripheral vascular disease, and stroke. Atherosclerotic cardiovascular disease remains a leading cause of mortality in high-income countries and recent years have witnessed a notable increase in prevalence within low- and middle-income regions of the world. Considering this prominent and evolving global burden, there is a need to identify the cellular mechanisms that underlie the pathogenesis of atherosclerosis to discover novel therapeutic targets for preventing or mitigating its clinical sequelae. Despite decades of research, we still do not fully understand the complex cell-cell interactions that drive atherosclerosis, but new investigative approaches are rapidly shedding light on these essential mechanisms. The vascular endothelium resides at the interface of systemic circulation and the underlying vessel wall and plays an essential role in governing pathophysiological processes during atherogenesis. In this review, we present emerging evidence that implicates the activated endothelium as a driver of atherosclerosis by directing site-specificity of plaque formation and by promoting plaque development through intracellular processes, which regulate endothelial cell proliferation and turnover, metabolism, permeability, and plasticity. Moreover, we highlight novel mechanisms of intercellular communication by which endothelial cells modulate the activity of key vascular cell populations involved in atherogenesis, and discuss how endothelial cells contribute to resolution biology - a process that is dysregulated in advanced plaques. Finally, we describe important future directions for preclinical atherosclerosis research, including epigenetic and targeted therapies, to limit the progression of atherosclerosis in at-risk or affected patients.
Collapse
Affiliation(s)
- Steven R. Botts
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Arshad R, Tabish TA, Kiani MH, Ibrahim IM, Shahnaz G, Rahdar A, Kang M, Pandey S. A Hyaluronic Acid Functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for Enhancement in Ciprofloxacin Targeted Delivery against Intracellular Infection. NANOMATERIALS 2021; 11:nano11051086. [PMID: 33922241 PMCID: PMC8146397 DOI: 10.3390/nano11051086] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Ciprofloxacin (CIP), a potent anti-bacterial agent of the fluroquinolone family, shows poor solubility and permeability, thus leading to the development of intracellular pathogens induced multi-drug resistance and biofilms formation. To synergistically improve the biopharmaceutical parameters of CIP, a hyaluronic acid (FDA approved biocompatible polymer) functionalized self-nano emulsifying drug delivery system (HA-CIP-SNEDDS) was designed in the present study. SNEDDS formulations were tested via solubility, droplet size, zeta potential, a polydispersity index, thermodynamic stability, surface morphology, solid-state characterization, drug loading/release, cellular uptake, and biocompatibility. The final (HA-CIP-SNEDDS) formulation exhibited a mean droplet size of 50 nm with the 0.3 poly dispersity index and negative zeta potential (-11.4 mV). HA-based SNEDDS containing CIP showed an improved ability to permeate goat intestinal mucus. After 4 h, CIP-SNEDDS showed a 2-fold and HA-CIP-SNEDDS showed a 4-fold permeation enhancement as compared to the free CIP. Moreover, 80% drug release of HA-CIP-SNEDDS was demonstrated to be superior and sustained for 72 h in comparison to free CIP. However, anti-biofilm activity of HA-CIP-SNEDDS against Salmonella typhi was higher than CIP-SNEDDS and free CIP. HA-CIP-SNEDDS exhibited increased biocompatibility and improved oral pharmacokinetics as compared to free CIP. Taken together, HA-CIP-SNEDDS formulation seems to be a promising agent against Salmonella typhi with a strong targeting potential.
Collapse
Affiliation(s)
- Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (R.A.); (M.H.K.)
| | - Tanveer A. Tabish
- UCL Cancer Institute, University College London, London WC1E6DD, UK;
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (R.A.); (M.H.K.)
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Gul Shahnaz
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (R.A.); (M.H.K.)
- Correspondence: (G.S.); (A.R.); (M.K.); or (S.P.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
- Correspondence: (G.S.); (A.R.); (M.K.); or (S.P.)
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea
- Correspondence: (G.S.); (A.R.); (M.K.); or (S.P.)
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea
- Correspondence: (G.S.); (A.R.); (M.K.); or (S.P.)
| |
Collapse
|
37
|
Arshad R, Pal K, Sabir F, Rahdar A, Bilal M, Shahnaz G, Kyzas GZ. A review of the nanomaterials use for the diagnosis and therapy of salmonella typhi. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Bilal M, Nunes LV, Duarte MTS, Ferreira LFR, Soriano RN, Iqbal HMN. Exploitation of Marine-Derived Robust Biological Molecules to Manage Inflammatory Bowel Disease. Mar Drugs 2021; 19:196. [PMID: 33808253 PMCID: PMC8067156 DOI: 10.3390/md19040196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
Naturally occurring biological entities with extractable and tunable structural and functional characteristics, along with therapeutic attributes, are of supreme interest for strengthening the twenty-first-century biomedical settings. Irrespective of ongoing technological and clinical advancement, traditional medicinal practices to address and manage inflammatory bowel disease (IBD) are inefficient and the effect of the administered therapeutic cues is limited. The reasonable immune response or invasion should also be circumvented for successful clinical translation of engineered cues as highly efficient and robust bioactive entities. In this context, research is underway worldwide, and researchers have redirected or regained their interests in valorizing the naturally occurring biological entities/resources, for example, algal biome so-called "treasure of untouched or underexploited sources". Algal biome from the marine environment is an immense source of excellence that has also been demonstrated as a source of bioactive compounds with unique chemical, structural, and functional features. Moreover, the molecular modeling and synthesis of new drugs based on marine-derived therapeutic and biological cues can show greater efficacy and specificity for the therapeutics. Herein, an effort has been made to cover the existing literature gap on the exploitation of naturally occurring biological entities/resources to address and efficiently manage IBD. Following a brief background study, a focus was given to design characteristics, performance evaluation of engineered cues, and point-of-care IBD therapeutics of diverse bioactive compounds from the algal biome. Noteworthy potentialities of marine-derived biologically active compounds have also been spotlighted to underlying the impact role of bio-active elements with the related pathways. The current review is also focused on the applied standpoint and clinical translation of marine-derived bioactive compounds. Furthermore, a detailed overview of clinical applications and future perspectives are also given in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Leonardo Vieira Nunes
- Department of Medicine, Federal University of Juiz de Fora, Juiz de Fora-MG 36036-900, Brazil;
| | | | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil;
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares-MG 35010-180, Brazil;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
39
|
Wang ZM, Gao XF, Zhang JJ, Chen SL. Primary Cilia and Atherosclerosis. Front Physiol 2021; 12:640774. [PMID: 33633590 PMCID: PMC7901939 DOI: 10.3389/fphys.2021.640774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
In artery tree, endothelial function correlates with the distribution of shear stress, a dragging force generated by flowing blood. In laminar shear stress areas, endothelial cells (ECs) are available to prevent atherosclerosis, however, ECs in disturbed shear stress sites are featured with proinflammation and atherogenesis. Basic studies in the shear stress field that focused on the mechanosensors of ECs have attracted the interest of researchers. Among all the known mechanosensors, the primary cilium is distinctive because it is enriched in disturbed shear stress regions and sparse in laminar shear stress areas. The primary cilium, a rod liked micro-organelle, can transmit extracellular mechanical and chemical stimuli into intracellular space. In the cardiovascular system, primary cilia are enriched in disturbed shear stress regions, where blood flow is slow and oscillatory, such as the atrium, downstream of the aortic valve, branches, bifurcations, and inner curves of the artery. However, in the atrioventricular canal and straight vessels, blood flow is laminar, and primary cilia can barely be detected. Primary cilia in the heart cavity prevent ECs from mesenchymal transition and calcification by suppressing transforming growth factor (TGF) signaling. Besides, primary cilia in the vascular endothelium protected ECs against disturbed shear stress-induced cellular damage by triggering Ca2+ influx as well as nitric oxide (NO) release. Moreover, primary cilia inhibit the process of atherosclerosis. In the current review, we discussed ciliogenesis, ciliary structure, as well as ciliary distribution, function and the coordinate signal transduction with shear stress in the cardiovascular system.
Collapse
Affiliation(s)
- Zhi-Mei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Alfaidi M, Acosta CH, Wang D, Traylor JG, Orr AW. Selective role of Nck1 in atherogenic inflammation and plaque formation. J Clin Invest 2021; 130:4331-4347. [PMID: 32427580 DOI: 10.1172/jci135552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Although the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS) established the role of treating inflammation in atherosclerosis, our understanding of endothelial activation at atherosclerosis-prone sites remains limited. Disturbed flow at atheroprone regions primes plaque inflammation by enhancing endothelial NF-κB signaling. Herein, we demonstrate a role for the Nck adaptor proteins in disturbed flow-induced endothelial activation. Although highly similar, only Nck1 deletion, but not Nck2 deletion, limited flow-induced NF-κB activation and proinflammatory gene expression. Nck1-knockout mice showed reduced endothelial activation and inflammation in both models, disturbed flow- and high fat diet-induced atherosclerosis, whereas Nck2 deletion did not. Bone marrow chimeras confirmed that vascular Nck1, but not hematopoietic Nck1, mediated this effect. Domain-swap experiments and point mutations identified the Nck1 SH2 domain and the first SH3 domain as critical for flow-induced endothelial activation. We further characterized Nck1's proinflammatory role by identifying interleukin 1 type I receptor kinase-1 (IRAK-1) as a Nck1-selective binding partner, demonstrating that IRAK-1 activation by disturbed flow required Nck1 in vitro and in vivo, showing endothelial Nck1 and IRAK-1 staining in early human atherosclerosis, and demonstrating that disturbed flow-induced endothelial activation required IRAK-1. Taken together, our data reveal a hitherto unknown link between Nck1 and IRAK-1 in atherogenic inflammation.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology.,Center for Cardiovascular Diseases and Sciences
| | | | - Dongdong Wang
- Department of Pathology and Translational Pathobiology.,Center for Cardiovascular Diseases and Sciences
| | - James G Traylor
- Department of Pathology and Translational Pathobiology.,Center for Cardiovascular Diseases and Sciences
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology.,Center for Cardiovascular Diseases and Sciences.,Department of Cell Biology and Anatomy, and.,Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
41
|
Beckman JD, Abdullah F, Chen C, Kirchner R, Rivera-Rodriguez D, Kiser ZM, Nguyen A, Zhang P, Nguyen J, Hebbel RP, Belcher JD, Vercellotti GM. Endothelial TLR4 Expression Mediates Vaso-Occlusive Crisis in Sickle Cell Disease. Front Immunol 2021; 11:613278. [PMID: 33542720 PMCID: PMC7851052 DOI: 10.3389/fimmu.2020.613278] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 01/22/2023] Open
Abstract
Heme, released from red blood cells in sickle cell disease (SCD), interacts with toll-like receptor 4 (TLR4) to activate NF-κB leading to the production of cytokines and adhesion molecules which promote inflammation, pain, and vaso-occlusion. In SCD, TLR4 inhibition has been shown to modulate heme-induced microvascular stasis and lung injury. We sought to delineate the role of endothelial verses hematopoietic TLR4 in SCD by developing a TLR4 null transgenic sickle mouse. We bred a global Tlr4-/- deficiency state into Townes-AA mice expressing normal human adult hemoglobin A and Townes-SS mice expressing sickle hemoglobin S. SS-Tlr4-/- had similar complete blood counts and serum chemistries as SS-Tlr4 +/+ mice. However, SS-Tlr4-/- mice developed significantly less microvascular stasis in dorsal skin fold chambers than SS-Tlr4 +/+ mice in response to challenges with heme, lipopolysaccharide (LPS), and hypoxia/reoxygenation (H/R). To define a potential mechanism for decreased microvascular stasis in SS-Tlr4-/- mice, we measured pro-inflammatory NF-κB and adhesion molecules in livers post-heme challenge. Compared to heme-challenged SS-Tlr4 +/+ livers, SS-Tlr4 -/- livers had lower adhesion molecule and cytokine mRNAs, NF-κB phospho-p65, and adhesion molecule protein expression. Furthermore, lung P-selectin and von Willebrand factor immunostaining was reduced. Next, to establish if endothelial or hematopoietic cell TLR4 signaling is critical to vaso-occlusive physiology, we created chimeric mice by transplanting SS-Tlr4 -/- or SS-Tlr4 +/+ bone marrow into AA-Tlr4 -/- or AA-Tlr4 +/+ recipients. Hemin-stimulated microvascular stasis was significantly decreased when the recipient was AA-Tlr4-/- . These data demonstrate that endothelial, but not hematopoietic, TLR4 expression is necessary to initiate vaso-occlusive physiology in SS mice.
Collapse
Affiliation(s)
- Joan D Beckman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Fuad Abdullah
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Chunsheng Chen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Rachel Kirchner
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Dormarie Rivera-Rodriguez
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Zachary M Kiser
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Aithanh Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Ping Zhang
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Julia Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Robert P Hebbel
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - John D Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Gregory M Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
42
|
Grégory Franck. Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion. Atherosclerosis 2020; 318:60-69. [PMID: 33190807 DOI: 10.1016/j.atherosclerosis.2020.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023]
Abstract
Mechanical stress is a well-recognized driver of plaque rupture. Likewise, investigating the role of mechanical forces in plaque erosion has recently begun to provide some important insights, yet the knowledge is by far less advanced. The most significant example is that of shear stress, which has early been proposed as a possible driver for focal endothelial death and denudation. Recent findings using optical coherence tomography, computational sciences and mechanical models show that plaque erosion occurs most likely around atheromatous plaque throats with specific stress pattern. In parallel, we have recently shown that neutrophil-dependent inflammation promotes plaque erosion, possibly through a noxious action on ECs. Most importantly, spontaneous thrombosis - associated or not with EC denudation - can be impacted by hemodynamics, and it is now established that neutrophils promote thrombosis and platelet activation, highlighting a potential relationship between, mechanical stress, inflammation, and EC loss in the setting of coronary plaque erosion. Here, we review our current knowledge regarding the implication of both mechanical stress and neutrophils, and we discuss their implication in the promotion of plaque erosion via EC loss and thrombosis.
Collapse
Affiliation(s)
- Grégory Franck
- Inserm LVTS U1148. CHU Bichat, 46 Rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
43
|
Qaradakhi T, Gadanec LK, McSweeney KR, Abraham JR, Apostolopoulos V, Zulli A. The Anti-Inflammatory Effect of Taurine on Cardiovascular Disease. Nutrients 2020; 12:E2847. [PMID: 32957558 PMCID: PMC7551180 DOI: 10.3390/nu12092847] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/02/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Taurine is a non-protein amino acid that is expressed in the majority of animal tissues. With its unique sulfonic acid makeup, taurine influences cellular functions, including osmoregulation, antioxidation, ion movement modulation, and conjugation of bile acids. Taurine exerts anti-inflammatory effects that improve diabetes and has shown benefits to the cardiovascular system, possibly by inhibition of the renin angiotensin system. The beneficial effects of taurine are reviewed.
Collapse
Affiliation(s)
- Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (L.K.G.); (K.R.M.); (J.R.A.); (V.A.); (A.Z.)
| | | | | | | | | | | |
Collapse
|
44
|
Doddapattar P, Dev R, Jain M, Dhanesha N, Chauhan AK. Differential Roles of Endothelial Cell-Derived and Smooth Muscle Cell-Derived Fibronectin Containing Extra Domain A in Early and Late Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:1738-1747. [PMID: 32434411 PMCID: PMC7337357 DOI: 10.1161/atvbaha.120.314459] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The extracellular matrix of atherosclerotic arteries contains abundant deposits of cellular Fn-EDA (fibronectin containing extra domain A), suggesting a functional role in the pathophysiology of atherosclerosis. Fn-EDA is synthesized by several cell types, including endothelial cells (ECs) and smooth muscle cells (SMCs), which are known to contribute to different stages of atherosclerosis. Although previous studies using global Fn-EDA-deficient mice have demonstrated that Fn-EDA is proatherogenic, the cell-specific role of EC versus SMC-derived-Fn-EDA in atherosclerosis has not been investigated yet. Approach and Results: To determine the relative contribution of different pools of Fn-EDA in atherosclerosis, we generated mutant strains lacking Fn-EDA in the ECs (Fn-EDAEC-KO) or smooth muscle cells (Fn-EDASMC-KO) on apolipoprotein E-deficient (Apoe-/-) background. The extent of atherosclerotic lesion progression was evaluated in whole aortae, and cross-sections of the aortic sinus in male and female mice fed a high-fat Western diet for either 4 weeks (early atherosclerosis) or 14 weeks (late atherosclerosis). Irrespective of sex, Fn-EDAEC-KO, but not Fn-EDASMC-KO mice, exhibited significantly reduced early atherogenesis concomitant with decrease in inflammatory cells (neutrophil and macrophage) and VCAM-1 (vascular cell adhesion molecule-1) expression levels within the plaques. In late atherosclerosis model, irrespective of sex, Fn-EDASMC-KO mice exhibited significantly reduced atherogenesis, but not Fn-EDAEC-KO mice, that was concomitant with decreased macrophage content within plaques. Lesional SMCs, collagen content, and plasma inflammatory cytokines (TNF-α [tumor necrosis factor-α] and IL-1β [interleukin-1β]), total cholesterol, and triglyceride levels were comparable among groups. CONCLUSIONS EC-derived Fn-EDA contributes to early atherosclerosis, whereas SMC-derived Fn-EDA contributes to late atherosclerosis.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cytokines/blood
- Diet, High-Fat
- Disease Models, Animal
- Disease Progression
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Female
- Fibronectins/deficiency
- Fibronectins/genetics
- Fibronectins/metabolism
- Inflammation Mediators/blood
- Lipids/blood
- Macrophages/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neutrophils/metabolism
- Plaque, Atherosclerotic
- Signal Transduction
- Time Factors
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- Prakash Doddapattar
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA
| | - Rishabh Dev
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA
| | - Manish Jain
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA
| | - Nirav Dhanesha
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA
| | - Anil K. Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA
| |
Collapse
|
45
|
|
46
|
Xu S. Therapeutic potential of blood flow mimetic compounds in preventing endothelial dysfunction and atherosclerosis. Pharmacol Res 2020; 155:104737. [DOI: 10.1016/j.phrs.2020.104737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 01/08/2023]
|
47
|
Chen T, Huang W, Qian J, Luo W, Shan P, Cai Y, Lin K, Wu G, Liang G. Macrophage-derived myeloid differentiation protein 2 plays an essential role in ox-LDL-induced inflammation and atherosclerosis. EBioMedicine 2020; 53:102706. [PMID: 32151799 PMCID: PMC7063167 DOI: 10.1016/j.ebiom.2020.102706] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022] Open
Abstract
Background Atherosclerosis is a chronic inflammatory disease. Although Toll-like receptor 4 (TLR4) has been involved in inflammatory atherosclerosis, the exact mechanisms by which oxidized-low-density lipoproteins (ox-LDL) activates TLR4 and elicits inflammatory genesis are not fully known. Myeloid differentiation factor 2 (MD2) is an extracellular molecule indispensable for lipopolysaccharide recognition of TLR4. Method Apoe−/−Md2−/− mice and pharmacological inhibitor of MD2 were used in this study. We also reconstituted Apoe−/− mice with either Apoe−/− or Apoe−/−Md2−/− marrow-derived cells. Mechanistic studies were performed in primary macrophages, HEK-293T cells, and cell-free system. Finding MD2 levels are elevated in atherosclerotic lesion macrophages, and MD2 deficiency or pharmacological inhibition in mice reduces the inflammation and stunts the development of atherosclerotic lesions in Apoe−/− mice fed with high-fat diet. Transfer of marrow-derived cells from Apoe-Md2 double knockout mice to Apoe knockout mice confirmed the critical role of bone marrow-derived MD2 in inflammatory factor induction and atherosclerosis development. Mechanistically, we show that MD2 does not alter ox-LDL uptake by macrophages but is required for TLR4 activation and inflammation via directly binding to ox-LDL, which triggers MD2/TLR4 complex formation and TLR4-MyD88-NFκB pro-inflammatory cascade. Interpretation We provide a mechanistic basis of ox-LDL-induced macrophage inflammation, illustrate the role of macrophage-derived MD2 in atherosclerosis, and support the therapeutic potential of MD2 targeting in atherosclerosis-driven cardiovascular diseases. Funding This work was supported by the National Key Research Project of China (2017YFA0506000), National Natural Science Foundation of China (21961142009, 81930108, 81670244, and 81700402), and Natural Science Foundation of Zhejiang Province (LY19H020004).
Collapse
Affiliation(s)
- Taiwei Chen
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijian Huang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinfu Qian
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peiren Shan
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Cai
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke Lin
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guang Liang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhuji Biomedicine Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, Zhejiang, China.
| |
Collapse
|
48
|
Zhu L, Wang F, Yang H, Zhang J, Chen S. Low shear stress damages endothelial function through STAT1 in endothelial cells (ECs). J Physiol Biochem 2020; 76:147-157. [PMID: 32037480 DOI: 10.1007/s13105-020-00729-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 01/04/2023]
Abstract
Low shear stress (LSS) occurs in areas where atherosclerosis is prevalent. Many studies have revealed that signal transducer and activator of transcription 1 (STAT1) plays a significant role in cardiovascular disease. Nonetheless, the mechanism underlying the connection between STAT1 and LSS is not fully understood. The purpose of this study was to investigate the link between LSS and STAT1 in endothelial cells (ECs). Monolayer endothelial cells were stimulated or not stimulated by LSS. Protein expression and phosphorylation levels were determined by western blotting. Immunofluorescence was used to compare the protein expression differences in bifurcated and non-bifurcated human coronary arteries. Endothelial function was assessed by using a dihydroethidium assay, real-time PCR, western blotting and nitric oxide (NO)-sensitive fluorophore. Results showed that STAT1 played a key role in LSS-induced endothelium damage. Firstly, LSS activated STAT1, as evidenced by LSS-induced STAT1 (Tyr701) phosphorylation in ECs in vitro and the increased intimal STAT1 expression at bifurcation of human coronary arteries. Secondly, LSS-induced STAT1 phosphorylation was positively regulated by inhibitor of nuclear factor kappa-B kinase ε (IKKε). Additionally, LSS-promoted inflammatory factor expression was markedly reversed by silencing STAT1 (siSTAT1). LSS also increased reactive oxygen species (ROS) level and decreased endogenous NO release: however, siSTAT1 reversed these adverse effects through upregulating the antioxidant gene heme oxygenase-1(HO-1) and downregulating endothelial nitric oxide synthase (eNOS) Thr495 phosphorylation. According to our results, LSS-mediated EC injury may be associated with the activation of STAT1. Strategies designed to reduce STAT1 expression or inhibit STAT1 activation may be effective approaches for reducing the incidence of atherosclerosis.
Collapse
Affiliation(s)
- Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongfeng Yang
- Department of intensive Care Unit, Affiliated People' Hospital of Jiangsu University, Zhenjiang, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
49
|
Immune-Mediated Inflammation in Vulnerable Atherosclerotic Plaques. Molecules 2019; 24:molecules24173072. [PMID: 31450823 PMCID: PMC6749340 DOI: 10.3390/molecules24173072] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023] Open
Abstract
Atherosclerosis is a chronic long-lasting vascular disease leading to myocardial infarction and stroke. Vulnerable atherosclerotic (AS) plaques are responsible for these life-threatening clinical endpoints. To more successfully work against atherosclerosis, improvements in early diagnosis and treatment of AS plaque lesions are required. Vulnerable AS plaques are frequently undetectable by conventional imaging because they are non-stenotic. Although blood biomarkers like lipids, C-reactive protein, interleukin-6, troponins, and natriuretic peptides are in pathological ranges, these markers are insufficient in detecting the critical perpetuation of AS anteceding endpoints. Thus, chances to treat the patient in a preventive way are wasted. It is now time to solve this dilemma because clear results indicate a benefit of anti-inflammatory therapy per se without modification of blood lipids (CANTOS Trial, NCT01327846). This fact identifies modulation of immune-mediated inflammation as a new promising point of action for the eradication of fatal atherosclerotic endpoints.
Collapse
|
50
|
Yun S, Hu R, Schwaemmle ME, Scherer AN, Zhuang Z, Koleske AJ, Pallas DC, Schwartz MA. Integrin α5β1 regulates PP2A complex assembly through PDE4D in atherosclerosis. J Clin Invest 2019; 129:4863-4874. [PMID: 31408443 PMCID: PMC6819111 DOI: 10.1172/jci127692] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Fibronectin in the vascular wall promotes inflammatory activation of the endothelium during vascular remodeling and atherosclerosis. These effects are mediated in part by fibronectin binding to integrin α5, which recruits and activates phosphodiesterase 4D5 (PDE4D5) by inducing its dephosphorylation on an inhibitory site Ser651. Active PDE then hydrolyzes anti-inflammatory cAMP to facilitate inflammatory signaling. To test this model in vivo, we mutated the integrin binding site in PDE4D5 in mice. This mutation reduced endothelial inflammatory activation in athero-prone regions of arteries, and, in a hyperlipidemia model, reduced atherosclerotic plaque size while increasing markers of plaque stability. We then investigated the mechanism of PDE4D5 activation. Proteomics identified the PP2A regulatory subunit B55α as the factor recruiting PP2A to PDE4D5. The B55α-PP2A complex localized to adhesions and directly dephosphorylated PDE4D5. This interaction also unexpectedly stabilized the PP2A-B55α complex. The integrin-regulated, pro-atherosclerotic transcription factor Yap is also dephosphorylated and activated through this pathway. PDE4D5 therefore mediates matrix-specific regulation of EC phenotype via an unconventional adapter role, assembling and anchoring a multifunctional PP2A complex with other targets. These results are likely to have widespread consequences for control of cell function by integrins.
Collapse
Affiliation(s)
- Sanguk Yun
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | - Rui Hu
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | | | - Alexander N. Scherer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Zhenwu Zhuang
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - David C. Pallas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Martin A. Schwartz
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
- Department of Biomedical Engineering, and
- Department of Cell Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|