1
|
Yeo H, Jung E, Kim TY, Shin SY. Therapeutic potential of a systemically applied humanized monoclonal antibody targeting Toll‑like receptor 2 in atopic‑dermatitis‑like skin lesions in a mouse model. Biomed Rep 2025; 22:41. [PMID: 39781040 PMCID: PMC11707563 DOI: 10.3892/br.2024.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD) is a prevalent, persistent inflammatory skin disorder distinguished by pruritic and irritated skin. Toll-like receptors (TLRs) are specialized receptors that recognize specific patterns associated with pathogens and tissue damage, triggering an innate immune response that protects the host from invading pathogens. Previously, it was demonstrated that intradermal injection of the humanized anti-TLR2 monoclonal antibody (Ab) Tomaralimab effectively relieved AD-like skin inflammation in BALB/c mouse models exposed to house dust mite extracts. However, it remains unclear whether allergenic hapten-induced AD can be effectively treated with systemically administered TLR2-targeting Abs. In the present study, it was observed that administrating Tomaralimab through intravenous injection alleviated AD-like skin lesions in BALB/c mice challenged with topical application of 2,4-dinitrochlorobenzene by reducing the infiltration of inflammatory cells into skin lesions and preventing the creation of various inflammatory cytokines, including thymic stromal lymphopoietin, interleukin (IL)-4, IL-13, IL-17 and IL-31, which are associated with the pathogenesis of AD. These findings support the feasibility of using a humanized anti-TLR2 monoclonal Ab as systemic therapy for AD.
Collapse
Affiliation(s)
- Hyunjin Yeo
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae Yoon Kim
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea
- Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Jia T, Zhang X, Li L, Jiang X, Wang M. Relationship Between Serum HMGB1 and RAGE Levels and Restenosis in Type 2 Diabetes Mellitus Patients Complicated With Lower Extremity Vascular Disease: A Retrospective Study. Diabetes Metab Syndr Obes 2025; 18:315-325. [PMID: 39925465 PMCID: PMC11803418 DOI: 10.2147/dmso.s496360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
Purpose To investigate the potential association between the serum concentrations of high mobility group protein B1 (HMGB1) and the receptor for advanced glycation end-products (RAGE) in relation to the occurrence of restenosis following interventional therapy for lower extremity vascular disease in patients diagnosed with type 2 diabetes mellitus (T2DM). Patients and Methods From March 2023 to January 2024, 96 T2DM patients with lower extremity vascular disease who underwent interventional therapy and 6-month follow-up in our hospital were studied. Patients were divided into in-stent restenosis (ISR) (n=38) and none-in-stent restenosis (NISR) (n=58) groups based on the occurrence of ISR. Pre-surgery demographics and serum levels of HMGB1, RAGE, glycated hemoglobin (HbA1c), and high-sensitivity C-reactive protein (hs-CRP) were analyzed. A Pearson correlation and multivariate Logistic regression were used to identify factors influencing restenosis. A predictive nomogram was built based on the identified factors. The receiver operating characteristic (ROC) curve analysis evaluated the predictive value of serum RAGE and HMGB1 for restenosis post-intervention. Results The ISR group exhibited statistically significant elevations in HbA1c, hs-CRP, HMGB1, and RAGE levels compared to the NISR group (P<0.05). Multivariate logistic regression analysis revealed that HMGB1 and RAGE were independent risk factors for restenosis in T2DM patients with lower extremity vascular disease undergoing interventional therapy. The predictive nomogram model developed specifically for this patient population demonstrated high accuracy. ROC curve analysis further emphasized the superior combined predictive value of HMGB1 and RAGE over individual biomarkers for restenosis after interventional therapy in this cohort. Conclusion Elevated preoperative serum levels of HMGB1 and RAGE in T2DM patients with lower extremity vascular disease are linked to restenosis following interventional therapy.
Collapse
Affiliation(s)
- Ting Jia
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xuyan Zhang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Li Li
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xiaowan Jiang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Mengjie Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
3
|
Jung E, Kim TY, Han J, Lee KY, Shin SY. TLR2-EGR1 signaling axis modulates TGFβ1-induced differentiation of fibroblasts into myofibroblasts in pulmonary fibrosis. Biochem Biophys Res Commun 2024; 736:150836. [PMID: 39467355 DOI: 10.1016/j.bbrc.2024.150836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Pulmonary fibrosis is a progressive lung condition characterized by the excessive activation of myofibroblasts. Transforming growth factor beta 1 (TGFβ1) plays a crucial role in the differentiation of fibroblasts into myofibroblasts. In addition, toll-like receptor 2 (TLR2), known for its role in immune responses, contributes to pulmonary fibrosis by promoting myofibroblast differentiation. However, the interplay between TGFβ1 and TLR2 signaling pathways in myofibroblast differentiation has remained elusive. In the present study, we investigated the involvement of TLR2 in TGFβ1-induced fibroblast differentiation into myofibroblasts using IMR-90 human pulmonary fibroblasts as a model cell line. We found that TLR2 activation induced myofibroblast differentiation by enhancing the expression of early growth response 1 (EGR1) via the mitogen-activated protein kinase (MAPK) signaling pathway. Elevated EGR1 levels were detected in the lung tissues of a bleomycin (BLM)-induced mouse model of pulmonary fibrosis. Moreover, the administration of tomaralimab, an antagonistic anti-TLR2 antibody, reduced the EGR1 expression and collagen deposition. Altogether, targeting the TLR2-EGR1 pathway could be a promising therapeutic approach for pulmonary fibrosis by blocking TGFβ1-induced myofibroblast differentiation.
Collapse
Affiliation(s)
- Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae Yoon Kim
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Junekyu Han
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Kye Young Lee
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul 05030, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Ma Q, Ye S, Liu H, Zhao Y, Mao Y, Zhang W. HMGA2 promotes cancer metastasis by regulating epithelial-mesenchymal transition. Front Oncol 2024; 14:1320887. [PMID: 38361784 PMCID: PMC10867147 DOI: 10.3389/fonc.2024.1320887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex physiological process that transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction of EMT promotes the invasion and metastasis of cancer. The architectural transcription factor high mobility group AT-hook 2 (HMGA2) is highly overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer, breast cancer, uterine leiomyomas) and significantly correlated with poor survival rates. Evidence indicated that HMGA2 overexpression markedly decreased the expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin (VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1 (ZEB1) by targeting the transforming growth factor beta/SMAD (TGFβ/SMAD), mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/β-catenin) signaling pathways. Furthermore, a new class of non-coding RNAs (miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. In this review, we discuss alterations in the expression of HMGA2 in various types of cancer. Furthermore, we highlight the role of HMGA2-induced EMT in promoting tumor growth, migration, and invasion. More importantly, we discuss extensively the mechanism through which HMGA2 regulates the EMT process and invasion in most cancers, including signaling pathways and the interacting RNA signaling axis. Thus, the elucidation of molecular mechanisms that underlie the effects of HMGA2 on cancer invasion and patient survival by mediating EMT may offer new therapeutic methods for preventing cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yan Mao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Goyal A, Agrawal A, Dubey N, Verma A. High Mobility Group Box 1 Protein: A Plausible Therapeutic Molecular Target in Parkinson's Disease. Curr Pharm Biotechnol 2024; 25:937-943. [PMID: 37670710 DOI: 10.2174/1389201025666230905092218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder that exerts a broad variety of detrimental effects on people's health. Accumulating evidence suggests that mitochondrial dysfunction, neuroinflammation, α-synuclein aggregation and autophagy dysfunction may all play a role in the development of PD. However, the molecular mechanisms behind these pathophysiological processes remain unknown. Currently, research in PD has focussed on high mobility group box 1 (HMGB1), and different laboratory approaches have shown promising outcomes to some level for blocking HMGB1. Given that HMGB1 regulates mitochondrial dysfunction, participates in neuroinflammation, and modulates autophagy and apoptosis, it is hypothesised that HMGB1 has significance in the onset of PD. In the current review, research targeting multiple roles of HMGB1 in PD pathology was integrated, and the issues that need future attention for targeted therapeutic approaches are mentioned.
Collapse
Affiliation(s)
- Ahsas Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
6
|
Li Y, Chen ST, He YY, Li B, Yang C, Yang ZS, Yang ZM. The regulation and function of acetylated high-mobility group box 1 during implantation and decidualization. Front Immunol 2023; 14:1024706. [PMID: 36761729 PMCID: PMC9905834 DOI: 10.3389/fimmu.2023.1024706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction High-mobility group box 1 (HMGB1) is a non-histone nuclear protein and can be extracellularly secreted to induce sterile inflammation. Although uterine deletion of HMGB1 causes implantation and decidualization defects, how secreted HMGB1 is involved in mouse early pregnancy is still unknown. Methods Mouse models, mouse primary endometrial cells and human endometrial cell lines were used in this study. Both immunofluorescence and Western blot were performed to show the localization and relative level of HMGB1 and acetylated HMGB1, respectively. Relative mRNA levels were analyzed by real time RT-PCR. Results The secreted HMGB1 was detected in uterine lumen fluid in mouse periimplantation uterus. There is an obvious difference for secreted HMGB1 levels in uterine fluid between day 4 of pregnancy and day 4 of pseudopregnancy, suggesting the involvement of blastocysts during HMGB1 secretion. Trypsin is clearly detected in mouse blastocyst cavity and in the supernatant of cultured blastocysts. Trypsin significantly stimulates HB-EGF production through activating PAR2 and ADAM17. Uterine injection of PAR2 inhibitor into day 4 pregnant mice significantly reduces the number of implantation sites. HB-EGF released from luminal epithelium can induce mouse in vitro decidualization. The conditioned medium collected from trypsin-treated luminal epithelium is able to induce in vitro decidualization, which is suppressed by EGFR inhibitor. Intrauterine injection of glycyrrhizin (HMGB1 inhibitor) can significantly inhibit mouse embryo implantation. We also showed that exogenous HMGB1 released from human epithelial cells are able to induce human in vitro decidualization. Conclusion Trypsin can induce decidualization of stromal cells via PAR2-HMGB1-ADAM17-HB-EGF from luminal epithelium.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chen Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen-Shan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,*Correspondence: Zeng-Ming Yang,
| |
Collapse
|
7
|
Wu Z, Huang Y, Yuan W, Wu X, Shi H, Lu M, Xu A. Expression, tumor immune infiltration, and prognostic impact of HMGs in gastric cancer. Front Oncol 2022; 12:1056917. [PMID: 36568211 PMCID: PMC9780705 DOI: 10.3389/fonc.2022.1056917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Background In the past decade, considerable research efforts on gastric cancer (GC) have been expended, however, little advancement has been made owing to the lack of effective biomarkers and treatment options. Herein, we aimed to examine the levels of expression, mutations, and clinical relevance of HMGs in GC to provide sufficient scientific evidence for clinical decision-making and risk management. Methods GC samples were obtained from The Cancer Genome Atlas (TCGA). University of California Santa Cruz (UCSC) XENA, Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier Plotter, cBioPortal, GeneMANIA, STRING, LinkedOmics, and DAVID databases were employed. The "ggplot2" package in the R software (×64 3.6.3) was used to thoroughly analyze the effects of HMGs. qRT-PCR was performed to assess HMG levels in GC cell lines. Results A total of 375 GC tissues and 32 paraneoplastic tissues were analyzed. The levels of HMGA1, HMGA2, HMGB1, HMGB2, HMGB3, HMGN1, HMGN2, and HMGN4 expression were increased in GC tissues relative to normal gastric tissues. HMGA1, HMGA2, HMGB1, HMGB2, and HMGB3 were highly expressed in GC cell lines. The OS was significantly different in the group showing low expressions of HMGA1, HMGA2, HMGB1, HMGB2, HMGB3, HMGN2, HMGN3, and HMGN5. There was a significant difference in RFS between the groups with low HMGA2, HMGB3, and high HMGN2 expression. The levels of HMGA2, HMGB3, and HMGN1 had a higher accuracy for prediction to distinguish GC from normal tissues (AUC value > 0.9). HMGs were tightly associated with immune infiltration and tumor immune escape and antitumor immunity most likely participates in HMG-mediated oncogenesis in GC. GO and KEGG enrichment analyses showed that HMGs played a vital role in the cell cycle pathway. Conclusions Our results strongly suggest a vital role of HMGs in GC. HMGA2 and HMGB3 could be potential markers for prognostic prediction and treatment targets for GC by interrupting the cell cycle pathway. Our findings might provide renewed perspectives for the selection of prognostic biomarkers among HMGs in GC and may contribute to the determination of the optimal strategy for the treatment of these patients.
Collapse
Affiliation(s)
- Zhiheng Wu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Yang Huang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Weiwei Yuan
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Xiong Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China, State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Hui Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Aman Xu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
8
|
Singh H, Agrawal DK. Therapeutic Potential of Targeting the HMGB1/RAGE Axis in Inflammatory Diseases. Molecules 2022; 27:7311. [PMID: 36364135 PMCID: PMC9658169 DOI: 10.3390/molecules27217311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 10/18/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear protein that can interact with a receptor for advanced glycation end-products (RAGE; a multi-ligand immunoglobulin receptor) and mediates the inflammatory pathways that lead to various pathological conditions, such as cancer, diabetes, neurodegenerative disorders, and cardiovascular diseases. Blocking the HMGB1/RAGE axis could be an effective therapeutic approach to treat these inflammatory conditions, which has been successfully employed by various research groups recently. In this article, we critically review the structural insights and functional mechanism of HMGB1 and RAGE to mediate inflammatory processes. More importantly, current perspectives of recent therapeutic approaches utilized to inhibit the communication between HMGB1 and RAGE using small molecules are also summarized along with their clinical progression to treat various inflammatory disorders. Encouraging results are reported by investigators focusing on HMGB1/RAGE signaling leading to the identification of compounds that could be useful in further clinical studies. We highlight the current gaps in our knowledge and future directions for the therapeutic potential of targeting key molecules in HMGB1/RAGE signaling in the pathophysiology of inflammatory diseases.
Collapse
Affiliation(s)
| | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
9
|
Tao Z, Helms MN, Leach BCB, Wu X. Molecular insights into the multifaceted functions and therapeutic targeting of high mobility group box 1 in metabolic diseases. J Cell Mol Med 2022; 26:3809-3815. [PMID: 35706377 PMCID: PMC9279590 DOI: 10.1111/jcmm.17448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 10/27/2022] Open
Abstract
HMGB1 is a ubiquitously expressed protein localized in nucleus, cytoplasm, as well as secreted into extracellular space. Nuclear HMGB1 binds to DNAs and RNAs, regulating genomic stability and transcription. Cytoplasmic HMGB1 regulates autophagy through binding to core autophagy regulators. Secreted extracellular HMGB1 functions as a ligand to various receptors (RAGE and TLRs, etc.), regulating multiple signalling pathways, such as MAPK, PI3K and NF-κB signallings. Trafficking and localization of HMGB1 across cellular compartments could be regulated by its posttranslational modifications, which fine-tune its functions in metabolic diseases, inflammation and cancers. The current review examines the up-to-date findings pertaining to the biological functions of HMGB1, with focus on its posttranslational modifications and roles in downstream signalling pathways involved in metabolic diseases. This review also discusses the feasibility of targeting HMGB1 as a potential pharmacological intervention for metabolic diseases.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - My N Helms
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Benjamin C B Leach
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Tanuma SI, Oyama T, Okazawa M, Yamazaki H, Takao K, Sugita Y, Amano S, Abe T, Sakagami H. A Dual Anti-Inflammatory and Anti-Proliferative 3-Styrylchromone Derivative Synergistically Enhances the Anti-Cancer Effects of DNA-Damaging Agents on Colon Cancer Cells by Targeting HMGB1-RAGE-ERK1/2 Signaling. Int J Mol Sci 2022; 23:ijms23073426. [PMID: 35408786 PMCID: PMC8998738 DOI: 10.3390/ijms23073426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
The current anti-cancer treatments are not enough to eradicate tumors, and therefore, new modalities and strategies are still needed. Most tumors generate an inflammatory tumor microenvironment (TME) and maintain the niche for their development. Because of the critical role of inflammation via high-mobility group box 1 (HMGB1)–receptor for advanced glycation end-products (RAGE) signaling pathway in the TME, a novel compound possessing both anti-cancer and anti-inflammatory activities by suppressing the HMGB1-RAGE axis provides an effective strategy for cancer treatment. A recent work of our group found that some anti-cancer 3-styrylchromones have weak anti-inflammatory activities via the suppression of this axis. In this direction, we searched such anti-cancer molecules possessing potent anti-inflammatory activities and discovered 7-methoxy-3-hydroxy-styrylchromone (C6) having dual suppressive activities. Mechanism-of-action studies revealed that C6 inhibited the increased phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) under the stimulation of HMGB1-RAGE signaling and thereby suppressed cytokine production in macrophage-like RAW264.7 cells. On the other hand, in colorectal cancer HCT116 cells, C6 inhibited the activation of ERK1/2, cyclin-dependent kinase 1, and AKT, down-regulated the protein level of XIAP, and up-regulated pro-apoptotic Bax and caspase-3/7 expression. These alterations are suggested to be involved in the C6-induced suppression of cell cycle/proliferation and initiation of apoptosis in the cancer cells. More importantly, in cancer cells, the treatment of C6 potentiates the anti-cancer effects of DNA-damaging agents. Thus, C6 may be a promising lead for the generation of a novel class of cancer therapeutics.
Collapse
Affiliation(s)
- Sei-ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda 278-8510, Chiba, Japan; (T.O.); (M.O.); (H.Y.)
- Research Institute of Odontology (M-RIO), School of Dentistry, Meikai University, Sakado 350-0283, Saitama, Japan; (S.A.); (H.S.)
- Correspondence:
| | - Takahiro Oyama
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda 278-8510, Chiba, Japan; (T.O.); (M.O.); (H.Y.)
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku 102-0084, Tokyo, Japan;
| | - Miwa Okazawa
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda 278-8510, Chiba, Japan; (T.O.); (M.O.); (H.Y.)
| | - Hiroaki Yamazaki
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda 278-8510, Chiba, Japan; (T.O.); (M.O.); (H.Y.)
| | - Koichi Takao
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado 350-0295, Saitama, Japan; (K.T.); (Y.S.)
| | - Yoshiaki Sugita
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado 350-0295, Saitama, Japan; (K.T.); (Y.S.)
| | - Shigeru Amano
- Research Institute of Odontology (M-RIO), School of Dentistry, Meikai University, Sakado 350-0283, Saitama, Japan; (S.A.); (H.S.)
| | - Takehiko Abe
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku 102-0084, Tokyo, Japan;
| | - Hiroshi Sakagami
- Research Institute of Odontology (M-RIO), School of Dentistry, Meikai University, Sakado 350-0283, Saitama, Japan; (S.A.); (H.S.)
| |
Collapse
|
11
|
Ogawa N, Nakajima S, Tamada K, Yokoue N, Tachibana H, Okazawa M, Oyama T, Abe H, Yamazaki H, Yoshimori A, Sato A, Kamiya T, Yokomizo T, Uchiumi F, Abe T, Tanuma SI. Trimebutine suppresses Toll-like receptor 2/4/7/8/9 signaling pathways in macrophages. Arch Biochem Biophys 2021; 711:109029. [PMID: 34517011 DOI: 10.1016/j.abb.2021.109029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Because of the critical roles of Toll-like receptors (TLRs) and receptor for advanced glycation end-products (RAGE) in the pathophysiology of various acute and chronic inflammatory diseases, continuous efforts have been made to discover novel therapeutic inhibitors of TLRs and RAGE to treat inflammatory disorders. A recent study by our group has demonstrated that trimebutine, a spasmolytic drug, suppresses the high mobility group box 1‒RAGE signaling that is associated with triggering proinflammatory signaling pathways in macrophages. Our present work showed that trimebutine suppresses interleukin-6 (IL-6) production in lipopolysaccharide (LPS, a stimulant of TLR4)-stimulated macrophages of RAGE-knockout mice. In addition, trimebutine suppresses the LPS-induced production of various proinflammatory cytokines and chemokines in mouse macrophage-like RAW264.7 cells. Importantly, trimebutine suppresses IL-6 production induced by TLR2-and TLR7/8/9 stimulants. Furthermore, trimebutine greatly reduces mortality in a mouse model of LPS-induced sepsis. Studies exploring the action mechanism of trimebutine revealed that it inhibits the LPS-induced activation of IL-1 receptor-associated kinase 1 (IRAK1), and the subsequent activations of extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and nuclear factor-κB (NF-κB). These findings suggest that trimebutine exerts anti-inflammatory effects on TLR signaling by downregulating IRAK1‒ERK1/2‒JNK pathway and NF-κB activity, thereby indicating the therapeutic potential of trimebutine in inflammatory diseases. Therefore, trimebutine can be a novel anti-inflammatory drug-repositioning candidate and may provide an important scaffold for designing more effective dual anti-inflammatory drugs that target TLR/RAGE signaling.
Collapse
Affiliation(s)
- Natsumi Ogawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Shingo Nakajima
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Kenya Tamada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Natsuki Yokoue
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Haruki Tachibana
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Miwa Okazawa
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Takahiro Oyama
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba, 278-8510, Japan; Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo, 102-0084, Japan
| | - Hideaki Abe
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba, 278-8510, Japan; Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo, 102-0084, Japan
| | - Hiroaki Yamazaki
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba, 278-8510, Japan; Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo, 102-0084, Japan
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine, Inc., Fujisawa, Kanagawa, 251-0012, Japan
| | - Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Takanori Kamiya
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo, 102-0084, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Takehiko Abe
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo, 102-0084, Japan
| | - Sei-Ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan; Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
12
|
Zhang ZB, Liu N. Long non-coding RNA KTN1-AS1 promotes progression in pancreatic cancer through regulating microRNA-23b-3p/high-mobility group box 2 axis. Aging (Albany NY) 2021; 13:20820-20835. [PMID: 34461605 PMCID: PMC8436926 DOI: 10.18632/aging.203481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
To explore the inhibitory effect of long non-coding RNA (LncRNA) antisense of KTN1 (KTN1-AS1) on the growth of pancreatic cancer (PC) cells by regulating the microRNA-23b-3p (miR-23b-3p)/high-mobility group box 2 (HMGB2) axis. The expression of KTN1-AS1 in tissues and cells was detected by qRT-PCR, and the relationship between KTN1-AS1 and clinicopathological data of patients with PC was analyzed. In addition, stable and transient overexpression and inhibition vectors were established and transfected into PC cells PANC-1, BxPC-3. CCK-8, transwell, and flow cytometry were responsible for the detection of proliferation, invasion, and apoptosis of transfected cells, respectively. The correlation of miR-23b-3p between KTN1-AS1 and HMGB2 was determined by dual luciferase reports, and the relationship between KTN1-AS1 and miR-23b-3p was further verified by RNA immunoprecipitation (RIP). The highly expressed KTN1-AS1 in PC patients was indicative of its high diagnostic value in this disease. Besides, it was found that KTN1-AS1 was linked with the pathological stage, differentiation degree and lymph node metastasis (LNM) of PC patients. Underexpressed KTN1-AS1 led to decreased proliferation and invasion ability of cells and increased apoptosis rate, while the effect of further overexpression of KTN1-AS1 on cells was the opposite. Dual luciferase reporter (DLR) assay confirmed that KTN1-AS1 could target miR-23b-3p, while miR-23b-3p could target HMGB2. Functional analysis showed that the overexpression of miR-23b-3p inhibited the expression of HMGB2 in PC cells and affected cell proliferation, invasion and apoptosis. Co-transfection of Sh-KTN1-AS1 and miR-23b-3p-mimics exhibited that up-regulation of KTN1-AS1 expression could reverse the effect of miR-23b-3p-mimics on PC cells.
Collapse
Affiliation(s)
- Zhong-Bo Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ning Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
13
|
Su L, Bryan N, Battista S, Freitas J, Garabedian A, D'Alessio F, Romano M, Falanga F, Fusco A, Kos L, Chambers J, Fernandez-Lima F, Chapagain PP, Vasile S, Smith L, Leng F. Identification of HMGA2 inhibitors by AlphaScreen-based ultra-high-throughput screening assays. Sci Rep 2020; 10:18850. [PMID: 33139812 PMCID: PMC7606612 DOI: 10.1038/s41598-020-75890-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) is a multi-functional DNA-binding protein that plays important roles in tumorigenesis and adipogenesis. Previous results showed that HMGA2 is a potential therapeutic target of anticancer and anti-obesity drugs by inhibiting its DNA-binding activities. Here we report the development of a miniaturized, automated AlphaScreen ultra-high-throughput screening assay to identify inhibitors targeting HMGA2-DNA interactions. After screening the LOPAC1280 compound library, we identified several compounds that strongly inhibit HMGA2-DNA interactions including suramin, a century-old, negatively charged antiparasitic drug. Our results show that the inhibition is likely through suramin binding to the "AT-hook" DNA-binding motifs and therefore preventing HMGA2 from binding to the minor groove of AT-rich DNA sequences. Since HMGA1 proteins also carry multiple "AT-hook" DNA-binding motifs, suramin is expected to inhibit HMGA1-DNA interactions as well. Biochemical and biophysical studies show that charge-charge interactions and hydrogen bonding between the suramin sulfonated groups and Arg/Lys residues play critical roles in the binding of suramin to the "AT-hook" DNA-binding motifs. Furthermore, our results suggest that HMGA2 may be one of suramin's cellular targets.
Collapse
Affiliation(s)
- Linjia Su
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Nadezda Bryan
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, 32827, USA
| | - Sabrina Battista
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via Pansini 5, 80131, Naples, Italy
| | - Juliano Freitas
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Alyssa Garabedian
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Federica D'Alessio
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Miriam Romano
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Fabiana Falanga
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Alfredo Fusco
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Lidia Kos
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Jeremy Chambers
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Francisco Fernandez-Lima
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Prem P Chapagain
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Physics, Florida International University, Miami, FL, 33199, USA
| | - Stefan Vasile
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, 32827, USA
| | - Layton Smith
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, 32827, USA
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
14
|
The Mammalian High Mobility Group Protein AT-Hook 2 (HMGA2): Biochemical and Biophysical Properties, and Its Association with Adipogenesis. Int J Mol Sci 2020; 21:ijms21103710. [PMID: 32466162 PMCID: PMC7279267 DOI: 10.3390/ijms21103710] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian high-mobility-group protein AT-hook 2 (HMGA2) is a small DNA-binding protein and consists of three “AT-hook” DNA-binding motifs and a negatively charged C-terminal motif. It is a multifunctional nuclear protein directly linked to obesity, human height, stem cell youth, human intelligence, and tumorigenesis. Biochemical and biophysical studies showed that HMGA2 is an intrinsically disordered protein (IDP) and could form homodimers in aqueous buffer solution. The “AT-hook” DNA-binding motifs specifically bind to the minor groove of AT-rich DNA sequences and induce DNA-bending. HMGA2 plays an important role in adipogenesis most likely through stimulating the proliferative expansion of preadipocytes and also through regulating the expression of transcriptional factor Peroxisome proliferator-activated receptor γ (PPARγ) at the clonal expansion step from preadipocytes to adipocytes. Current evidence suggests that a main function of HMGA2 is to maintain stemness and renewal capacity of stem cells by which HMGA2 binds to chromosome and lock chromosome into a specific state, to allow the human embryonic stem cells to maintain their stem cell potency. Due to the importance of HMGA2 in adipogenesis and tumorigenesis, HMGA2 is considered a potential therapeutic target for anticancer and anti-obesity drugs. Efforts are taken to identify inhibitors targeting HMGA2.
Collapse
|
15
|
Hirakawa Y, Tsuchishima M, Fukumura A, Kinoshita K, Hayashi N, Saito T, George J, Toshikuni N, Ueda Y, Tsutsumi M. Recombinant thrombomodulin prevented hepatic ischemia-reperfusion injury by inhibiting high-mobility group box 1 in rats. Eur J Pharmacol 2019; 863:172681. [PMID: 31542482 DOI: 10.1016/j.ejphar.2019.172681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023]
Abstract
Recombinant thrombomodulin (rTM) is a novel anticoagulant and anti-inflammatory agent that inhibits secretion of high-mobility group box 1 (HMGB1) from liver. We evaluated the protective effects of rTM on hepatic ischemia-reperfusion injury in rats. Ischemia was induced by clamping the portal vein and hepatic artery of left lateral and median lobes of the liver. At 30 min before ischemia and at 6 h after reperfusion, 0.3 ml of saline (IR group) or 0.3 ml of saline containing 6 mg/kg body weight of rTM (IR-rTM group) was injected into the liver through inferior vena cava or caudate vein. Blood flow was restored at 60 min of ischemia. Blood was collected 30 min prior to induction of ischemia and before restoration of blood flow, and at 6, 12, and 24 h after reperfusion. All the animals were euthanized at 24 h after reperfusion and the livers were harvested and subjected to biochemical and pathological evaluations. Serum levels of ALT, AST, and HMGB1 were significantly lower after reperfusion in the IR-rTM group compared to IR group. Marked hepatic necrosis was present in the IR group, while necrosis was almost absent in IR-rTM group. Treatment with rTM significantly reduced the expression of TNF-α and formation of 4-hydroxynonenal in the IR-rTM group compared to IR group. The results of the present study indicate that rTM could be used as a potent therapeutic agent to prevent IR-induced hepatic injury and the related adverse events.
Collapse
Affiliation(s)
- Yuki Hirakawa
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Atsushi Fukumura
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Kaori Kinoshita
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Nobuhiko Hayashi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Takashi Saito
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Nobuyuki Toshikuni
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Yoshimichi Ueda
- Department of Pathology II, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
16
|
Satoh M, Taira K, Hara T, Siba J, Takeuchi M. High mobility group box 1 can be used to monitor perioperative course in patients with liver cancer. Surg Oncol 2019; 33:216-221. [PMID: 31443921 DOI: 10.1016/j.suronc.2019.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/09/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE High mobility group box 1 (HMGB1) is produced by inflammation. Regarding liver injuries, HMGB1 is reportedly involved in liver regeneration. The present study investigated the use of HMGB1 as a postoperative marker of surgical course in patients with liver cancer. METHODS Patients were enrolled if they had liver cancer, had undergone liver surgery, and did not develop postsurgical complications. Patients who received emergency surgery or patients with unresectable cancerous lesions were excluded. Blood samples were preoperatively obtained as well as at 1 day, 1 week, and 4 weeks following surgery; white blood cell count, serum C-reactive protein, serum albumin, and serum HMGB1 levels were measured. RESULTS A total of 36 patients were included in this study. HMGB1 levels significantly changed over time, increasing from a median of 7.1 ng/ml (preoperatively) to 13.9 ng/ml at 1 week postoperatively, and then decreased to 6.3 ng/ml at 4 weeks postoperatively. Peak HMGB1 levels were delayed, and elevated HMGB1 levels persisted as compared with the changes in conventional markers. CONCLUSIONS HMGB1 indicates a unique perioperative inflammatory state in patients with liver cancer. Serum HMGB1 may serve as a marker for monitoring surgical course in patients undergoing surgery for liver cancer.
Collapse
Affiliation(s)
- Masaaki Satoh
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, Tochigi, 329-0498, Japan.
| | - Koki Taira
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, Tochigi, 329-0498, Japan.
| | - Tetsuhito Hara
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, Tochigi, 329-0498, Japan.
| | - Juntaro Siba
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, Tochigi, 329-0498, Japan.
| | - Mamoru Takeuchi
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, Tochigi, 329-0498, Japan.
| |
Collapse
|
17
|
Wang Y, Yang W, Liu T, Bai G, Liu M, Wang W. Over-expression of SOX8 predicts poor prognosis in colorectal cancer: A retrospective study. Medicine (Baltimore) 2019; 98:e16237. [PMID: 31277140 PMCID: PMC6635174 DOI: 10.1097/md.0000000000016237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aberrant expression of SRY-box 8 (SOX8) is closely correlated with the development and progression of many types of cancers in human. Limited studies report the relationship between SOX8 expression and overall survival in colorectal cancer (CRC). This study aimed to collect the pathological tissues and clinical data in order to analyze the relationship between SOX8 expression and clinicopathological parameters and prognosis of CRC patients. Tissue microarrays were constructed from 424 primary CRC patients with clinicopathological information and follow-up data. Immunohistochemistry (IHC) was performed on tissue microarrays to explore the relationship between SOX8 expression and clinicopathological information and patient's prognosis. The expression of SOX8 was higher in CRC tissues than that in non-tumor adjacent tissues (NATs, P <.001). High expression of SOX8 was associated with tumor stage (P = .04) and shorter overall survival (OS) after operation of patients (P = .004). Subsequently, univariate COX analysis identified that high expression of SOX8 (P = .004), differentiation (P = .006), distant metastasis (P <.001), tumor stage (P = .003), and higher rate of lymph node metastasis (P <.001), all significantly predicted decrease in OS. Multivariate analysis demonstrated that distant metastasis (P <.001), high SOX8 expression, (P = .013) and lymph node metastasis (P <.001) were independent poor prognostic factors in CRC patients. This study showed that SOX8 is over-expressed in patients with high T stage, which affects the outcome of prognosis in CRC patients. High expression of SOX8 usually has a poor independent prognostic factor for CRC.
Collapse
|
18
|
Erdal M, Altunkaynak BZ, Kocaman A, Alkan I, Öztas E. The role of HMGB1 in liver inflammation in obese rats. Biotech Histochem 2019; 94:449-458. [PMID: 30916587 DOI: 10.1080/10520295.2019.1589573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity is a chronic disease that is characterized by increased body fat owing to imbalance between consumed and expended energy. Inflammation generally is accompanied by accumulation of excess lipid in adipose tissue and liver. High mobility group box-1 (HMGB1) participates in the pathogenesis of inflammatory diseases. We investigated the relation of the number of HMGB1 positive cells to body mass index (BMI), liver inflammation and the number of Kupffer cells. We divided 18 female Wistar albino rats into two groups: group 1, untreated control fed normal commercial rat diet and group 2, obese rats fed a special diet containing 40% fat. The plasma concentrations of cholesterol, glucose, superoxide dismutase enzyme (SOD) and catalase activities were measured for all animals. The numbers of hepatocytes, Kupffer cells and HMGB1 positive cells were counted using stereological methods. The mean numbers of Kupffer cells and HMGB1 positive cells were higher for group 2 than for group 1. The concentrations of plasma cholesterol and glucose levels also were higher in group 2. Plasma levels of SOD and catalase were significantly lower in group 2 compared to group 1. The number of HMGB1 cells was related directly to BMI and inflammation. The role of HMGB1 was demonstrated for the liver of the obese group. We demonstrated the relations among HMGB1, BMI, obesity and inflammation.
Collapse
Affiliation(s)
- M Erdal
- Department of Histology and Embryology, Gulhane Medical School, Ankara, Turkey
| | - B Z Altunkaynak
- Department of Histology and Embryology, Medical School, Istanbul Okan University , Istanbul , Turkey
| | - A Kocaman
- Department of Histology and Embryology, Medical School, Ondokuz Mayis University , Samsun , Turkey
| | - I Alkan
- Department of Histology and Embryology, Medical School, Ondokuz Mayis University , Samsun , Turkey
| | - E Öztas
- Department of Histology and Embryology, Gulhane Medical School, Ankara, Turkey
| |
Collapse
|
19
|
Pan X, Song X, Wang C, Cheng T, Luan D, Xu K, Tang B. H 2Se Induces Reductive Stress in HepG2 Cells and Activates Cell Autophagy by Regulating the Redox of HMGB1 Protein under Hypoxia. Am J Cancer Res 2019; 9:1794-1808. [PMID: 31037139 PMCID: PMC6485193 DOI: 10.7150/thno.31841] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: Selenium has been shown to have chemotherapeutic effects against cancer. However, the anti-cancer mechanism of selenium is not fully understood, and the role of hydrogen selenide (H2Se), which is a common metabolite of dietary selenium compounds, has not been elucidated due to the lack of detection methods. In this study, we revealed a new anti-cancer mechanism of selenite with the help of a H2Se fluorescent probe. Methods: HepG2 cells were cultured under a simulated tumor hypoxic microenvironment. The H2Se and H2O2 levels were detected by fluorescent probes in living cells and in mice. Autophagic and apoptotic proteins were detected by Western blotting. The redox of HMGB1 protein were analyzed by non-reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis. Results: After pharmacological doses of Na2SeO3 treatment of HepG2 cells under hypoxic conditions, high levels of H2Se were produced before cell death. The H2Se accumulation resulted in reductive stress instead of oxidative stress, which was induced by Na2SeO3 treatment under normoxic conditions. Furthermore, H2Se targeted the HMGB1 protein and induced cell autophagy. H2Se could interrupt the disulfide bond in HMGB1 and promote its secretion. The reduced HMGB1 outside the cells stimulated cell autophagy by inhibiting the Akt/mTOR axis. Here, autophagy played a dual role, i.e., mild autophagy inhibited apoptosis, while excessive autophagy led to autophagy-associated cell death. Conclusions: These results show that H2Se plays a key role during HepG2 cell death induced by selenite. Our findings reveal a new anti-cancer mechanism of selenite and provide a new research area for selenium studies.
Collapse
|
20
|
Pang Y, Liang MT, Gong Y, Yang Y, Bu PL, Zhang M, Yao HC. HGF Reduces Disease Severity and Inflammation by Attenuating the NF-κB Signaling in a Rat Model of Pulmonary Artery Hypertension. Inflammation 2018; 41:924-931. [PMID: 29442198 DOI: 10.1007/s10753-018-0747-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of the present study was to investigate the anti-inflammatory effect of hepatocyte growth factor (HGF) on pulmonary artery hypertension (PAH) in a rat model and underlying mechanisms. Wistar rats were treated with monocrotaline intravenously to induce PAH and then treated with vehicle or HGF for 2 weeks, respectively. The mean pulmonary artery pressure (mPAP), the index of right heart ventricular hypertrophy (RHVI), pathological changes, and inflammation in the lungs of individual rats were measured. The levels of serum inflammatory interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and high mobility group protein B1 (HMGB1) and the relative levels of IκBα and NF-κB p65 expression in the lungs of individual rats were determined by methods of enzyme-linked immunosorbent assay (ELISA) and Western blot. The levels of mPAP and RVHI in the HGF group were significantly lower than that in the PAH group (P < 0.05), but remained significantly higher than that of the control group (P < 0.05). Similar patterns of inflammatory scores and the levels of serum IL-6, TNF-α, ICAM-1, and HMGB1 were detected among the different groups of rats. Furthermore, the relative levels of IκBα expression in the lungs of the HGF group of rats were significantly higher than that in the control group, which were significantly higher than that in the PAH group. In contrast, the relative levels of NF-kB p65 expression in the HGF group were significantly lower than that in the PAH group (P < 0.05). HGF treatment significantly mitigated the severity of PAH and inhibited inflammation by attenuating the NF-kB signaling in the lungs of PAH rats.
Collapse
Affiliation(s)
- Ying Pang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University, Liaocheng, Shandong, China
| | - Ming-Ting Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University, Liaocheng, Shandong, China
| | - Ying Gong
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University, Liaocheng, Shandong, China
| | - Yong Yang
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University, Liaocheng, Shandong, China
| | - Pei-Li Bu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University, Liaocheng, Shandong, China.
| |
Collapse
|
21
|
Anti-HMGB1 Neutralizing Antibody Attenuates Periodontal Inflammation and Bone Resorption in a Murine Periodontitis Model. Infect Immun 2018. [PMID: 29531138 DOI: 10.1128/iai.00111-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a non-histone DNA-binding protein that is secreted into the extracellular milieu in response to inflammatory stimuli. The secreted HMGB1 mediates various inflammatory diseases, including periodontitis; however, the underlying mechanisms of HMGB1-induced periodontal inflammation are not completely understood. Here, we examined whether anti-HMGB1 neutralizing antibody inhibits periodontal progression and investigated the molecular pathology of HMGB1 in vitro and in vivo. In vitro analysis indicated that HMGB1, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-1β (IL-1β) were secreted in response to tumor necrosis factor-α (TNF-α) stimuli in human gingival epithelial cells (HGECs) and human monocytic leukemia cells (THP-1) treated with phorbol myristate acetate. Increased levels of GM-CSF and IL-1β were observed in the conditioned media from TNF-α-stimulated HGECs and THP-1 in vitro Simultaneous stimulation with TNF-α and anti-HMGB1 antibody significantly decreased TNF-α-induced inflammatory cytokine secretion. Experimental periodontitis was induced in mice using Porphyromonas gingivalis-soaked ligatures. The extracellular translocation was confirmed in gingival epithelia in the periodontitis model mice by immunofluorescence analysis. Systemic administration of anti-HMGB1 neutralizing antibody significantly inhibited translocation of HMGB1. The anti-HMGB1 antibody inhibited periodontal inflammation, expression of IL-1β and C-X-C motif chemokine ligand 1 (CXCL1), migration of neutrophils, and bone resorption, shown by bioluminescence imaging of myeloperoxidase activity, quantitative reverse transcription-PCR (RT-PCR), and micro-computed tomography analysis. These findings indicate that HMGB1 is secreted in response to inflammatory stimuli caused by periodontal infection, which is crucial for the initiation of periodontitis, and the anti-HMGB1 antibody attenuates the secretion of a series of inflammatory cytokines, consequently suppressing the progression of periodontitis.
Collapse
|
22
|
Rrapaj E, Trisolini E, Bertero L, Salvo M, Indellicato R, Andorno S, Garcia-Manteiga JM, Rena O, Boldorini RL. Expression analysis of HMGB1 in histological samples of malignant pleural mesothelioma. Histopathology 2018; 72:1039-1050. [PMID: 29356044 DOI: 10.1111/his.13470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/17/2018] [Indexed: 01/12/2023]
Abstract
AIMS High mobility group box 1 (HMGB1) is a chromatin structural protein, expressed ubiquitously in the nuclei of mammalian cells. When transported extracellularly, it acts as a tumour suppressor and oncogenic protein. In malignant pleural mesothelioma (MPM), high serum levels of HMGB1 have been related to a poor prognosis. Conversely, the significance of HMGB1 expression in MPM tissues is still unclear. METHODS AND RESULTS Biopsy samples from 170 patients with MPM were assessed by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) to evaluate HMGB1 protein and gene expression. The expression level of HMGB1 protein was scored using a semiquantitative system that sums the intensity (0-3) and the percentage (from 0 to 4) of positively stained cells in nuclei, cytoplasm and in both. The final score was considered as high (>3) or low (<3) expression. Gene expression levels were calculated using the ΔΔCt method. High expression levels of HMGB1 as total (P = 0.0011) and cytoplasmic score (P = 0.0462) were related to a worse disease-specific survival (DSS) in the entire cohort and in the clinicopathological subgroups. No significant correlation was found between HMGB1 gene expression and DSS. CONCLUSIONS These findings indicate that HMGB1 may be a useful prognostic biomarker in MPM when detected by immunohistochemistry. Conversely, as it is also expressed in normal and reactive mesothelial cells, HMGB1 cannot be considered a diagnostic biomarker in histological samples of mesothelioma.
Collapse
Affiliation(s)
- Eltjona Rrapaj
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Elena Trisolini
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Luca Bertero
- Division of Pathology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Michela Salvo
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | | | - Silvano Andorno
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Jose M Garcia-Manteiga
- Center For Translational Genomics and Bioinformatics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Ottavio Rena
- Unit of Thoracic Surgery, Maggiore della Carità Hospital, Novara, Italy
| | - Renzo L Boldorini
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy.,Unit of Pathology, Maggiore della Carità Hospital, Novara, Italy
| |
Collapse
|
23
|
Zhang H, Yang J, Walters MS, Staudt MR, Strulovici-Barel Y, Salit J, Mezey JG, Leopold PL, Crystal RG. Mandatory role of HMGA1 in human airway epithelial normal differentiation and post-injury regeneration. Oncotarget 2018; 9:14324-14337. [PMID: 29581847 PMCID: PMC5865673 DOI: 10.18632/oncotarget.24511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/20/2018] [Indexed: 12/11/2022] Open
Abstract
Due to high levels of expression in aggressive tumors, high mobility group AT-hook 1 (HMGA1) has recently attracted attention as a potential anti-tumor target. However, HMGA1 is also expressed in normal somatic progenitor cells, raising the question: how might systemic anti-HMGA1 therapies affect the structure and function of normal tissue differentiation? In the present study, RNA sequencing data demonstrated HMGA1 is highly expressed in human airway basal stem/progenitor cells (BC), but decreases with BC differentiation in air-liquid interface cultures (ALI). BC collected from nonsmokers, healthy smokers, and smokers with chronic obstructive pulmonary disease (COPD) displayed a range of HMGA1 expression levels. Low initial expression levels of HMGA1 in BC were associated with decreased ability to maintain a differentiated ALI epithelium. HMGA1 down-regulation in BC diminished BC proliferation, suppressed gene expression related to normal proliferation and differentiation, decreased airway epithelial resistance, suppressed junctional and cell polarity gene expression, and delayed wound closure of airway epithelium following injury. Furthermore, silencing of HMGA1 in airway BC in ALI increased the expression of genes associated with airway remodeling in COPD including squamous, epithelial-mesenchymal transition (EMT), and inflammatory genes. Together, the data suggests HMGA1 plays a central role in normal airway differentiation, and thus caution should be used to monitor airway epithelial structure and function in the context of systemic HMGA1-targeted therapies.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jing Yang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Matthew S Walters
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Michelle R Staudt
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jason G Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.,Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Philip L Leopold
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
24
|
Peng HH, Liu YJ, Ojcius DM, Lee CM, Chen RH, Huang PR, Martel J, Young JD. Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1. Sci Rep 2017; 7:16628. [PMID: 29192209 PMCID: PMC5709501 DOI: 10.1038/s41598-017-16778-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
Calcium phosphate-based mineralo-organic particles form spontaneously in the body and may represent precursors of ectopic calcification. We have shown earlier that these particles induce activation of caspase-1 and secretion of IL-1β by macrophages. However, whether the particles may produce other effects on immune cells is unclear. Here, we show that these particles induce the release of neutrophil extracellular traps (NETs) in a size-dependent manner by human neutrophils. Intracellular production of reactive oxygen species is required for particle-induced NET release by neutrophils. NETs contain the high-mobility group protein B1 (HMGB1), a DNA-binding protein capable of inducing secretion of TNF-α by a monocyte/macrophage cell line and primary macrophages. HMGB1 functions as a ligand of Toll-like receptors 2 and 4 on macrophages, leading to activation of the MyD88 pathway and TNF-α production. Furthermore, HMGB1 is critical to activate the particle-induced pro-inflammatory cascade in the peritoneum of mice. These results indicate that mineral particles promote pro-inflammatory responses by engaging neutrophils and macrophages via signaling of danger signals through NETs.
Collapse
Affiliation(s)
- Hsin-Hsin Peng
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan.,Laboratory Animal Center, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan
| | - Yu-Ju Liu
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan.,Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, 94103, USA
| | - Chiou-Mei Lee
- Laboratory Animal Center, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan
| | - Ren-Hao Chen
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan
| | - Pei-Rong Huang
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan
| | - Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan
| | - John D Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan. .,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan. .,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan. .,Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY, 10021, USA. .,Biochemical Engineering Research Center, Ming Chi University of Technology, Taishan, New Taipei City 24301, Taiwan.
| |
Collapse
|
25
|
Pellegrini L, Xue J, Larson D, Pastorino S, Jube S, Forest KH, Saad-Jube ZS, Napolitano A, Pagano I, Negi VS, Bianchi ME, Morris P, Pass HI, Gaudino G, Carbone M, Yang H. HMGB1 targeting by ethyl pyruvate suppresses malignant phenotype of human mesothelioma. Oncotarget 2017; 8:22649-22661. [PMID: 28186988 PMCID: PMC5410252 DOI: 10.18632/oncotarget.15152] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022] Open
Abstract
Human malignant mesothelioma (MM) is an aggressive cancer linked to asbestos and erionite exposure. We previously reported that High-Mobility Group Box-1 protein (HMGB1), a prototypic damage-associated molecular pattern, drives MM development and sustains MM progression. Moreover, we demonstrated that targeting HMGB1 inhibited MM cell growth and motility in vitro, reduced tumor growth in vivo, and prolonged survival of MM-bearing mice. Ethyl pyruvate (EP), the ethyl ester of pyruvic acid, has been shown to be an effective HMGB1 inhibitor in inflammation-related diseases and several cancers. Here, we studied the effect of EP on the malignant phenotype of MM cells in tissue culture and on tumor growth in vivo using an orthotopic MM xenograft model. We found that EP impairs HMGB1 secretion by MM cells leading to reduced RAGE expression and NF-κB activation. As a consequence, EP impaired cell motility, cell proliferation, and anchorage-independent growth of MM cells. Moreover, EP reduced HMGB1 serum levels in mice and inhibited the growth of MM xenografts. Our results indicate that EP effectively hampers the malignant phenotype of MM, offering a novel potential therapeutic approach to patients afflicted with this dismal disease.
Collapse
Affiliation(s)
- Laura Pellegrini
- University of Hawai'i Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Jiaming Xue
- University of Hawai'i Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, USA.,Leeward Community College, Mathematics and Sciences Division, University of Hawai'i System, Pearl City, HI, USA
| | - David Larson
- University of Hawai'i Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Sandra Pastorino
- University of Hawai'i Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Sandro Jube
- University of Hawai'i at Manoa, Department of Cell and Molecular Biology, John A. Burns School of Medicine, Honolulu, HI, USA
| | - Kelly H Forest
- Leeward Community College, Mathematics and Sciences Division, University of Hawai'i System, Pearl City, HI, USA
| | - Zeyana Salim Saad-Jube
- University of Hawai'i at Manoa, Myron B. Thompson School of Social Work, Office of Public Health and Center on Aging, Honolulu, HI, USA
| | - Andrea Napolitano
- University of Hawai'i Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, USA.,University of Hawai'i at Manoa, Department of Molecular Biosciences and Bioengineering, Honolulu, HI, USA
| | - Ian Pagano
- University of Hawai'i Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Vishal S Negi
- University of Hawai'i at Manoa, Department of Molecular Biosciences and Bioengineering, Honolulu, HI, USA
| | - Marco E Bianchi
- San Raffaele University and Research Institute, Milan, Italy
| | - Paul Morris
- Department of Thoracic Surgery, Queen's Medical Center, Honolulu, HI, USA
| | - Harvey I Pass
- New York University School of Medicine, Department of Cardiothoracic Surgery, New York, NY, USA
| | - Giovanni Gaudino
- University of Hawai'i Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Michele Carbone
- University of Hawai'i Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Haining Yang
- University of Hawai'i Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| |
Collapse
|
26
|
Sato A, Suzuki S, Watanabe S, Shimizu T, Nakamura Y, Misaka T, Yokokawa T, Shishido T, Saitoh SI, Ishida T, Kubota I, Takeishi Y. DPP4 Inhibition Ameliorates Cardiac Function by Blocking the Cleavage of HMGB1 in Diabetic Mice After Myocardial Infarction. Int Heart J 2017; 58:778-786. [PMID: 28966327 DOI: 10.1536/ihj.16-547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High mobility group box 1 (HMGB1), a ubiquitous DNA-binding protein, promotes angiogenesis and tissue repair, resulting in restored cardiac function after myocardial infarction (MI). Although dipeptidyl peptidase 4 (DPP4) degrades certain peptides, it remains unclear as to whether HMGB1 is a substrate of DPP4 and whether DPP4 inhibition prevents the cleavage of HMGB1.In transgenic mice with cardiac-specific overexpression of HMGB1 (TG) and wild-type mice (WT), a diabetic state was induced by streptozotocin, and MI was created by ligation of the left anterior descending coronary artery. To inhibit DPP4 activity, a DPP4 inhibitor anagliptin was used. The plasma levels of HMGB1, infarct size, echocardiographic data, angiogenesis, and vascular endothelial growth factor (VEGF) expression in the peri-infarct area were compared among non-diabetic MI WT/TG, diabetic MI WT/TG, and anagliptin-treated diabetic MI WT/TG mice.DPP4 activity was increased in the diabetic state and blocked by anagliptin administration. The HMGB1 plasma levels were reduced in the diabetic TG compared with the non-diabetic TG mice, but DPP4 inhibition with anagliptin increased HMGB1 plasma levels in the diabetic TG mice. The infarct area was significantly larger in the diabetic TG than in the non-diabetic TG mice, and it was reduced by DPP4 inhibition. Cardiac function, angiogenesis, and VEGF expression were impaired in the diabetic TG mice, but they were ameliorated by the DPP4 inhibition to levels similar to those found in the non-diabetic TG mice.The DPP4 inhibitor ameliorated cardiac function by inhibiting the inactivation of HMGB1 in diabetic mice after MI.
Collapse
Affiliation(s)
- Akihiko Sato
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Satoshi Suzuki
- Department of Cardiovascular Medicine, Fukushima Medical University
| | | | - Takeshi Shimizu
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Yuichi Nakamura
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Tetsuro Yokokawa
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Tetsuro Shishido
- First Department of Internal Medicine, Yamagata University School of Medicine
| | - Shu-Ichi Saitoh
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Isao Kubota
- First Department of Internal Medicine, Yamagata University School of Medicine
| | | |
Collapse
|
27
|
Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ Res 2017; 119:91-112. [PMID: 27340270 DOI: 10.1161/circresaha.116.303577] [Citation(s) in RCA: 1523] [Impact Index Per Article: 190.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/15/2016] [Indexed: 12/14/2022]
Abstract
In adult mammals, massive sudden loss of cardiomyocytes after infarction overwhelms the limited regenerative capacity of the myocardium, resulting in the formation of a collagen-based scar. Necrotic cells release danger signals, activating innate immune pathways and triggering an intense inflammatory response. Stimulation of toll-like receptor signaling and complement activation induces expression of proinflammatory cytokines (such as interleukin-1 and tumor necrosis factor-α) and chemokines (such as monocyte chemoattractant protein-1/ chemokine (C-C motif) ligand 2 [CCL2]). Inflammatory signals promote adhesive interactions between leukocytes and endothelial cells, leading to extravasation of neutrophils and monocytes. As infiltrating leukocytes clear the infarct from dead cells, mediators repressing inflammation are released, and anti-inflammatory mononuclear cell subsets predominate. Suppression of the inflammatory response is associated with activation of reparative cells. Fibroblasts proliferate, undergo myofibroblast transdifferentiation, and deposit large amounts of extracellular matrix proteins maintaining the structural integrity of the infarcted ventricle. The renin-angiotensin-aldosterone system and members of the transforming growth factor-β family play an important role in activation of infarct myofibroblasts. Maturation of the scar follows, as a network of cross-linked collagenous matrix is formed and granulation tissue cells become apoptotic. This review discusses the cellular effectors and molecular signals regulating the inflammatory and reparative response after myocardial infarction. Dysregulation of immune pathways, impaired suppression of postinfarction inflammation, perturbed spatial containment of the inflammatory response, and overactive fibrosis may cause adverse remodeling in patients with infarction contributing to the pathogenesis of heart failure. Therapeutic modulation of the inflammatory and reparative response may hold promise for the prevention of postinfarction heart failure.
Collapse
Affiliation(s)
- Sumanth D Prabhu
- From the Division of Cardiovascular Disease, University of Alabama at Birmingham, and Medical Service, Birmingham VAMC (S.D.P.); and Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (N.G.F.)
| | - Nikolaos G Frangogiannis
- From the Division of Cardiovascular Disease, University of Alabama at Birmingham, and Medical Service, Birmingham VAMC (S.D.P.); and Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (N.G.F.).
| |
Collapse
|
28
|
Cai X, Ding H, Liu Y, Pan G, Li Q, Yang Z, Liu W. Expression of HMGB2 indicates worse survival of patients and is required for the maintenance of Warburg effect in pancreatic cancer. Acta Biochim Biophys Sin (Shanghai) 2017; 49:119-127. [PMID: 28069585 DOI: 10.1093/abbs/gmw124] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 01/05/2023] Open
Abstract
High mobility group proteins (HMGs) are the second most abundant chromatin proteins and exert global genomic functions in the establishment of active or inactive chromatin domains. Through interaction with nucleosomes, transcription factors, nucleosome-remodeling machines and histones, the HMGs family proteins contribute to the fine tuning of transcription in response to rapid environmental changes. Mammalian high mobility group Bs (HMGBs) are characterized by two tandem HMG box domains followed by a long acidic tail. Recent studies demonstrated that high expression of HMGBs has been found in many cancers, such as prostate, kidney, ovarian, and gastric cancers. However, their roles in pancreatic cancer have seldom been reported. In this study, we assessed the diagnostic and prognostic values of HMGBs proteins, including HMGB1, HMGB2, and HMGB3, in pancreatic cancer from the Cancer Genome Atlas (TCGA) dataset. Our results demonstrated that HMGB2 predicted poor prognosis in pancreatic cancer. In vitro studies demonstrated that silencing HMGB2 inhibited cell proliferation and viability. Mechanistically, our results demonstrated that silencing HMGB2 decreased hypoxia inducible factor 1α (HIF1α) protein level and inhibited HIF1α-mediated glycolysis process. Further analysis indicated that HIF1α-targeted glycolytic genes, including GLUT1, HK2, and LDHA, are all prognostic factors and positively correlated with HMGB2 expression. Taken together, we discovered new prognostic and predictive markers for pancreatic cancer, and shed light on the novel function of HMGB2 in glycolytic control in cancer.
Collapse
Affiliation(s)
- Xin Cai
- Department of Radiotherapy, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
| | - Hongjian Ding
- Department of General Surgery, Fudan University, Minhang Hospital, Shanghai 201199, China
| | - Yanxia Liu
- Department of Emergency, Fudan University, Minhang Hospital, Shanghai 201199, China
| | - Gaofeng Pan
- Department of General Surgery, Fudan University, Minhang Hospital, Shanghai 201199, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Yang
- Department of General Surgery, Fudan University, Minhang Hospital, Shanghai 201199, China
| | - Weiyan Liu
- Department of General Surgery, Fudan University, Minhang Hospital, Shanghai 201199, China
| |
Collapse
|
29
|
Chen W, Ma X, Zhang P, Li Q, Liang X, Liu J. MiR-212-3p inhibits LPS-induced inflammatory response through targeting HMGB1 in murine macrophages. Exp Cell Res 2017; 350:318-326. [DOI: 10.1016/j.yexcr.2016.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 11/24/2022]
|
30
|
Kadono K, Uchida Y, Hirao H, Miyauchi T, Watanabe T, Iida T, Ueda S, Kanazawa A, Mori A, Okajima H, Terajima H, Uemoto S. Thrombomodulin Attenuates Inflammatory Damage Due to Liver Ischemia and Reperfusion Injury in Mice in Toll-Like Receptor 4-Dependent Manner. Am J Transplant 2017; 17:69-80. [PMID: 27467205 DOI: 10.1111/ajt.13991] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 01/25/2023]
Abstract
Liver ischemia reperfusion injury (IRI) is an important problem in liver transplantation. Thrombomodulin (TM), an effective drug for disseminated intravascular coagulation, is also known to exhibit an anti-inflammatory effect through binding to the high-mobility group box 1 protein (HMGB-1) known as a proinflammatory mediator. We examined the effect of recombinant human TM (rTM) on a partial warm hepatic IRI model in wild-type (WT) and toll-like receptor 4 (TLR-4) KO mice focusing on the HMGB-1/TLR-4 axis. As in vitro experiments, peritoneal macrophages were stimulated with recombinant HMGB-1 protein. The rTM showed a protective effect on liver IRI. The rTM diminished the downstream signals of TLR-4 and also HMGB-1 expression in liver cells, as well as release of HMGB-1 from the liver. Interestingly, neither rTM treatment in vivo nor HMGB-1 treatment in vitro showed any effect on TLR-4 KO mice. Parallel in vitro studies have confirmed that rTM interfered with the interaction between HMGB-1 and TLR-4. Furthermore, the recombinant N-terminal lectin-like domain 1 (D1) subunit of TM (rTMD1) also ameliorated liver IRI to the same extent as whole rTM. Not only rTM but also rTMD1 might be a novel and useful medicine for liver transplantation. This is the first report clarifying that rTM ameliorates inflammation such as IRI in a TLR-4 pathway-dependent manner.
Collapse
Affiliation(s)
- K Kadono
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - Y Uchida
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - H Hirao
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - T Miyauchi
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - T Watanabe
- Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - T Iida
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - S Ueda
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - A Kanazawa
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - A Mori
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - H Okajima
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - H Terajima
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - S Uemoto
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
31
|
Andreozzi M, Quintavalle C, Benz D, Quagliata L, Matter M, Calabrese D, Tosti N, Ruiz C, Trapani F, Tornillo L, Fusco A, Heim MH, Ng CK, Pallante P, Terracciano LM, Piscuoglio S. HMGA1 Expression in Human Hepatocellular Carcinoma Correlates with Poor Prognosis and Promotes Tumor Growth and Migration in in vitro Models. Neoplasia 2016; 18:724-731. [PMID: 27855356 PMCID: PMC5110473 DOI: 10.1016/j.neo.2016.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND HMGA1 is a non-histone nuclear protein that regulates cellular proliferation, invasion and apoptosis and is overexpressed in many carcinomas. In this study we sought to explore the expression of HMGA1 in HCCs and cirrhotic tissues, and its effect in in vitro models. METHODS We evaluated HMGA1 expression using gene expression microarrays (59 HCCs, of which 37 were matched with their corresponding cirrhotic tissue and 5 normal liver donors) and tissue microarray (192 HCCs, 108 cirrhotic tissues and 79 normal liver samples). HMGA1 expression was correlated with clinicopathologic features and patient outcome. Four liver cancer cell lines with stable induced or knockdown expression of HMGA1 were characterized using in vitro assays, including proliferation, migration and anchorage-independent growth. RESULTS HMGA1 expression increased monotonically from normal liver tissues to cirrhotic tissue to HCC (P<.01) and was associated with Edmondson grade (P<.01). Overall, 51% and 42% of HCCs and cirrhotic tissues expressed HMGA1, respectively. Patients with HMGA1-positive HCCs had earlier disease progression and worse overall survival. Forced expression of HMGA1 in liver cancer models resulted in increased cell growth and migration, and vice versa. Soft agar assay showed that forced expression of HMGA1 led to increased foci formation, suggesting an oncogenic role of HMGA1 in hepatocarcinogenesis. CONCLUSIONS HMGA1 is frequently expressed in cirrhotic tissues and HCCs and its expression is associated with high Edmondson grade and worse prognosis in HCC. Our results suggest that HMGA1 may act as oncogenic driver of progression, implicating it in tumor growth and migration potential in liver carcinogenesis.
Collapse
Affiliation(s)
| | | | - David Benz
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Luca Quagliata
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Matthias Matter
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Diego Calabrese
- Department of Biomedicine, Hepatology Laboratory, University of Basel, Basel, Switzerland
| | - Nadia Tosti
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Christian Ruiz
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Francesca Trapani
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Luigi Tornillo
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Alfredo Fusco
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), and Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II, Naples, Italy; National Cancer Institute-INCA, Rua Andrè Cavalcanti, 37-Centro, Rio de Janeiro, Brazil
| | - Markus H Heim
- Department of Biomedicine, Hepatology Laboratory, University of Basel, Basel, Switzerland
| | - Charlotte Ky Ng
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Pierlorenzo Pallante
- Institute of Pathology, University Hospital Basel, Basel, Switzerland; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), and Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II, Naples, Italy
| | | | | |
Collapse
|
32
|
Structural aspects of the interaction of anticancer drug Actinomycin-D to the GC rich region of hmgb1 gene. Int J Biol Macromol 2016; 87:433-42. [DOI: 10.1016/j.ijbiomac.2016.02.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
|
33
|
Geraldo MT, Valente GT, Nakajima RT, Martins C. Dimerization and Transactivation Domains as Candidates for Functional Modulation and Diversity of Sox9. PLoS One 2016; 11:e0156199. [PMID: 27196604 PMCID: PMC4873142 DOI: 10.1371/journal.pone.0156199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/10/2016] [Indexed: 01/08/2023] Open
Abstract
Sox9 plays an important role in a large variety of developmental pathways in vertebrates. It is composed of three domains: high-mobility group box (HMG box), dimerization (DIM) and transactivation (TAD). One of the main processes for regulation and variability of the pathways involving Sox9 is the self-gene expression regulation of Sox9. However, the subsequent roles of the Sox9 domains can also generate regulatory modulations. Studies have shown that TADs can bind to different types of proteins and its function seems to be influenced by DIM. Therefore, we hypothesized that both domains are directly associated and can be responsible for the functional variability of Sox9. We applied a method based on a broad phylogenetic context, using sequences of the HMG box domain, to ensure the homology of all the Sox9 copies used herein. The data obtained included 4,921 sequences relative to 657 metazoan species. Based on coevolutionary and selective pressure analyses of the Sox9 sequences, we observed coevolutions involving DIM and TADs. These data, along with the experimental data from literature, indicate a functional relationship between these domains. Moreover, DIM and TADs may be responsible for the functional plasticity of Sox9 because they are more tolerant for molecular changes (higher Ka/Ks ratio than the HMG box domain). This tolerance could allow a differential regulation of target genes or promote novel targets during transcriptional activation. In conclusion, we suggest that DIM and TADs functional association may regulate differentially the target genes or even promote novel targets during transcription activation mediated by Sox9 paralogs, contributing to the subfunctionalization of Sox9a and Sox9b in teleosts.
Collapse
Affiliation(s)
- Marcos Tadeu Geraldo
- Integrative Genomics Laboratory, Department of Morphology, Institute of Biosciences, Sao Paulo State University-UNESP, Botucatu, SP, 18618-000, Brazil
| | - Guilherme Targino Valente
- Systems Biology and Genomics Laboratory, Department of Bioprocess and Biotechnology, Agronomical Science Faculty, Sao Paulo State University-UNESP, Botucatu, SP, 18610-307, Brazil
| | - Rafael Takahiro Nakajima
- Integrative Genomics Laboratory, Department of Morphology, Institute of Biosciences, Sao Paulo State University-UNESP, Botucatu, SP, 18618-000, Brazil
| | - Cesar Martins
- Integrative Genomics Laboratory, Department of Morphology, Institute of Biosciences, Sao Paulo State University-UNESP, Botucatu, SP, 18618-000, Brazil
| |
Collapse
|
34
|
Suzuki S, Nakazato K, Sugimoto K, Yoshihisa A, Yamaki T, Kunii H, Suzuki H, Saitoh SI, Takeishi Y. Plasma Levels of Receptor for Advanced Glycation End-Products and High-Mobility Group Box 1 in Patients With Pulmonary Hypertension. Int Heart J 2016; 57:234-40. [PMID: 26973260 DOI: 10.1536/ihj.15-188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An increase of pulmonary artery pressure in patients with pulmonary hypertension (PH) results in right ventricular failure and ultimately death. High-mobility group box 1 (HMGB1), a nuclear protein, acts as a pro-inflammatory cytokine by activating receptor for advanced glycation end-products (RAGE) in the extracellular environment. The purpose of this study was to examine the clinical significance of circulating levels of HMGB1 and RAGE in patients with PH. Plasma levels of HMGB1 and soluble RAGE were measured in 27 patients with PH (14 with pulmonary arterial hypertension [PAH], 13 with chronic thromboembolic pulmonary hypertension [CTEPH]) and 30 normal subjects as control. There was no difference in the plasma levels of HMGB1 between the PH patients and the control subjects. However, plasma levels of soluble RAGE were significantly higher in the patients with PH than in the controls (P < 0.001). Plasma soluble RAGE levels were higher in PAH (P < 0.001) and CTEPH (P < 0.0001) than in the controls. In addition, there was a statistically significant positive correlation between pulmonary artery pressure and plasma levels of soluble RAGE (r = 0.403, P < 0.0001). In the CTEPH patients, soluble RAGE levels were reduced after balloon pulmonary angioplasty (P < 0.001). Plasma levels of soluble RAGE, but not HMGB1, might be a novel marker that reflects the pathological condition in patients with PH.
Collapse
Affiliation(s)
- Satoshi Suzuki
- Department of Cardiology and Hematology, Fukushima Medical University
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang X, Chen L. The recent progress of the mechanism and regulation of tumor necrosis in colorectal cancer. J Cancer Res Clin Oncol 2016; 142:453-63. [PMID: 26094047 DOI: 10.1007/s00432-015-1997-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
Abstract
In colorectal cancer (CRC), despite the complex inducing and regulating mechanism in necrosis progress, the prognostic value of tumor necrosis has been reported. It is generally recognized that necrosis is associated with many process involving severe hypoxia, inflammatory responses and angiogenesis, all of which contribute to promote tumor growth and poor prognosis. In addition to local hypoxia, regulation by RIP kinase and the conversion from apoptosis to necrosis can result in necrosis also. Recent studies showed necrosis can be a histopathologic characteristic for special molecular phenotype of CRC. A novel and attractive complementary treatment, tumor necrosis therapy, using radiolabelled compounds avid for necrosis has emerged. However, the complicated regulatory mechanisms of tumor necrosis were rarely reported in CRC, and we collected and reviewed these effect and relevance in CRC.
Collapse
Affiliation(s)
- Xi Zhang
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Lirong Chen
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
36
|
Huang Z, Zhong Z, Zhang L, Wang X, Xu R, Zhu L, Wang Z, Hu S, Zhao X. Down-regulation of HMGB1 expression by shRNA constructs inhibits the bioactivity of urothelial carcinoma cell lines via the NF-κB pathway. Sci Rep 2015; 5:12807. [PMID: 26239046 PMCID: PMC4523846 DOI: 10.1038/srep12807] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/07/2015] [Indexed: 02/01/2023] Open
Abstract
The high mobility group box 1 (HMGB1), which is a highly conserved and evolutionarily non-histone nuclear protein, has been shown to associate with a variety of biological important processes, such as transcription, DNA repair, differentiation, and extracellular signalling. High HMGB1 expression has been reported in many cancers, such as prostate, kidney, ovarian, and gastric cancer. However, there have been few studies of the function of HMGB1 in the malignant biological behaviour of bladder urothelial carcinoma (BUC), and the potential mechanism of HMGB1 in the pathogenesis of BUC remains unclear. Thus, in this study, we constructed plasmid vectors that are capable of synthesizing specific shRNAs targeting HMGB1 and transfected them into BUC cells to persistently suppress the endogenous gene expression of HMGB1. The expression of HMGB1, the bioactivity of BUC cells, including proliferation, apoptosis, cell cycle distribution, migration and invasion, and the effects of HMGB1 knockdown on downstream signalling pathways were investigated. Our data suggest that HMGB1 promotes the malignant biological behaviour of BUC, and that this effect may be partially mediated by the NF-κB signalling pathway. HMGB1 may serve as a potential therapeutic target for BUC in the future.
Collapse
Affiliation(s)
- Zhichao Huang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Zhaohui Zhong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lei Zhang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xinjun Wang
- Department of Urology, Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Liang Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Zijian Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Shanbiao Hu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xiaokun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
37
|
Zullo J, Matsumoto K, Xavier S, Ratliff B, Goligorsky MS. The cell secretome, a mediator of cell-to-cell communication. Prostaglandins Other Lipid Mediat 2015; 120:17-20. [PMID: 25936481 DOI: 10.1016/j.prostaglandins.2015.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 02/08/2023]
Abstract
We are witnessing the emergence of a novel type of biological regulation, namely, the communication between cells via their secreted substances, the secretome. This brief overview is based on the available published data and our own experience. We discuss three vignettes illustrating the importance of communication via the secretome: (1) the secretome of stem cells and its effects in sepsis and systemic inflammatory response; (2) the profibrotic secretomes partially responsible for development of fibrotic complications; and (3) the contribution of senescence-associated secretory products to the propagation of the senescence phenotype. Considering the richness of secretomes of different cells under diverse conditions, it becomes imperative to gain insights into their individual components in an attempt to harness cell secretomes for therapeutic purposes.
Collapse
Affiliation(s)
- Joseph Zullo
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College, Valhalla, NY 10595, USA
| | - Kei Matsumoto
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College, Valhalla, NY 10595, USA
| | - Sandhya Xavier
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College, Valhalla, NY 10595, USA
| | - Brian Ratliff
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College, Valhalla, NY 10595, USA
| | - Michael S Goligorsky
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
38
|
Narumi T, Shishido T, Otaki Y, Kadowaki S, Honda Y, Funayama A, Honda S, Hasegawa H, Kinoshita D, Yokoyama M, Nishiyama S, Takahashi H, Arimoto T, Miyamoto T, Watanabe T, Tanaka A, Woo CH, Abe JI, Takeishi Y, Kubota I. High-mobility group box 1-mediated heat shock protein beta 1 expression attenuates mitochondrial dysfunction and apoptosis. J Mol Cell Cardiol 2015; 82:1-12. [PMID: 25736854 DOI: 10.1016/j.yjmcc.2015.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/04/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
AIMS Apoptosis of cardiomyocytes is thought to account for doxorubicin cardiotoxicity as it contributes to loss of myocardial tissue and contractile dysfunction. Given that high-mobility group box 1 (HMGB1) is a nuclear DNA-binding protein capable of inhibiting apoptosis, we aimed to clarify the role of HMGB1 in heat shock protein beta 1 (HSPB1) expression during doxorubicin-induced cardiomyopathy. METHODS AND RESULTS Mitochondrial damage, cardiomyocyte apoptosis, and cardiac dysfunction after doxorubicin administration were significantly attenuated in mice with cardiac-specific overexpression of HMGB1 (HMGB1-Tg) compared with wild type (WT) -mice. HSPB1 levels after doxorubicin administration were significantly higher in HMGB1-Tg mice than in WT mice. Transfection with HMGB1 increased the expression of HSPB1 at both the protein and mRNA levels, and HMGB1 inhibited mitochondrial dysfunction and apoptosis after exposure of cardiomyocytes to doxorubicin. HSPB1 silencing abrogated the inhibitory effect of HMGB1 on cardiomyocyte apoptosis. Doxorubicin increased the binding of HMGB1 to heat shock factor 2 and enhanced heat shock element promoter activity. Moreover, HMGB1 overexpression greatly enhanced heat shock element promoter activity. Silencing of heat shock factor 2 attenuated HMGB1-dependent HSPB1 expression and abrogated the ability of HMGB1 to suppress cleaved caspase-3 accumulation after doxorubicin stimulation. CONCLUSIONS We report the first in vivo and in vitro evidence that cardiac HMGB1 increases HSPB1 expression and attenuates cardiomyocyte apoptosis associated with doxorubicin-induced cardiomyopathy. Cardiac HMGB1 increases HSPB1 expression in cardiomyocytes in a heat shock factor 2-dependent manner.
Collapse
Affiliation(s)
- Taro Narumi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsuro Shishido
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan.
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Shinpei Kadowaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yuki Honda
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Akira Funayama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Shintaro Honda
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiromasa Hasegawa
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Daisuke Kinoshita
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Miyuki Yokoyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Satoshi Nishiyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takuya Miyamoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Atsushi Tanaka
- Research Institute for Medical Sciences, Yamagata University School of Medicine, Yamagata, Japan
| | - Chang-Hoon Woo
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jun-ichi Abe
- Department of Cardiology Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
39
|
Zhang QY, Wu LQ, Zhang T, Han YF, Lin X. Autophagy-mediated HMGB1 release promotes gastric cancer cell survival via RAGE activation of extracellular signal-regulated kinases 1/2. Oncol Rep 2015; 33:1630-8. [PMID: 25652880 PMCID: PMC4358082 DOI: 10.3892/or.2015.3782] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/30/2014] [Indexed: 12/15/2022] Open
Abstract
High mobility group box-B1 (HMGB1), an autophagy activator, is crucial in tumorigenesis. However, its extracellular role and signaling in gastric cancer remain unclear. Samples were collected from gastric cancer patients and healthy controls. Immunohistochemistry and immunocytochemistry were used to determine the localization of HMGB1 in gastric cancer tissues, four gastric carcinoma cell lines (BGC-823, SGC-7901, MKN-28 and MKN-45) and a gastric epithelial cell line GES-1. Western blot analysis and ELISA were used to assess the effects of gefitinib, an epidermal growth factor receptor inhibitor, on autophagy and HMGB1 release in BGC-823 cells. MTT assay and western blot analysis assessed the effects of extracellular HMGB1 on cell proliferation and signaling transduction. Released HMGB1 promoted proliferation through activation of ERK1/2 MAPK. HMGB1 expression in gastric cancer tissues and serum was significantly increased compared to the controls and healthy serum. Gastric carcinoma cells showed an increased HMGB1 in the nuclei and cytoplasm, whereas GES-1 cells exhibited a lower HMGB1 with nuclear localization. Gefitinib increased autophagy and cytoplasmic HMGB1 release from the BGC-823 cells. Extracellular HMGB1 in autophagic cell supernatant promoted proliferation that was abolished by glycyrrhizic acid, an HMGB1 inhibitor. BGC-823 cells incubated with HMGB1 had increased ERK1/2 phosphorylation, while levels of JNK, p38 or AKT were not affected. Blocking RAGE-HMGB1 interaction with antibody or siRNA suppressed the ERK1/2 activation and gastric cancer cell growth, indicating that RAGE-mediated ERK1/2 signaling was necessary for tumor progression.
Collapse
Affiliation(s)
- Qiu-Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Lin-Qing Wu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Tao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Yan-Fei Han
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xu Lin
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
40
|
Nakamura Y, Suzuki S, Shimizu T, Miyata M, Shishido T, Ikeda K, Saitoh SI, Kubota I, Takeishi Y. High Mobility Group Box 1 Promotes Angiogenesis from Bone Marrow-derived Endothelial Progenitor Cells after Myocardial Infarction. J Atheroscler Thromb 2015; 22:570-81. [PMID: 25735431 DOI: 10.5551/jat.27235] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIMS High mobility group box 1 (HMGB1) is a DNA-binding protein secreted into the extracellular space from necrotic cells that acts as a cytokine. We examined the role of HMGB1 in angiogenesis from bone marrow-derived cells in the heart using transgenic mice exhibiting the cardiac-specific overexpression of HMGB1 (HMGB1-TG). METHODS HMGB1-TG mice and wild-type littermate (WT) mice were lethally irradiated and injected with bone marrow cells from green fluorescent protein mice through the tail vein. After bone marrow transplantation, the left anterior descending artery was ligated to induce myocardial infarction (MI). RESULTS Flow cytometry revealed that the levels of circulating endothelial progenitor cells (EPCs) mobilized from the bone marrow increased after MI in the HMGB-TG mice versus the WT mice. In addition, the size of MI was smaller in the HMGB1-TG mice than in the WT mice, and immunofluorescence staining demonstrated that the number of engrafted vascular endothelial cells derived from bone marrow in the border zones of the MI areas was increased in the HMGB1-TG mice compared to that observed in the WT mice. Moreover, the levels of cardiac vascular endothelial growth factor after MI were higher in the HMGB1-TG mice than in the WT mice. CONCLUSIONS The present study demonstrated that HMGB1 promotes angiogenesis and reduces the MI size by enhancing the mobilization and differentiation of bone marrow cells to EPCs as well as their migration to the border zones of the MI areas and engraftment as vascular endothelial cells in new capillaries or arterioles in the infarcted heart.
Collapse
Affiliation(s)
- Yuichi Nakamura
- Department of Cardiology and Hematology, Fukushima Medical University
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen M, Huang W, Wang C, Nie H, Li G, Sun T, Yang F, Zhang Y, Shu K, Wang C, Gong Q. High-mobility group box 1 exacerbates CCl4-induced acute liver injury in mice. Clin Immunol 2014; 153:56-63. [DOI: 10.1016/j.clim.2014.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 01/28/2023]
|
42
|
Salimi M, Salehi M, Masteri Farahani R, Dehghani M, Abadi M, Novin MG, Nourozian M, Hosseini A. The Effect of Melatonin on Maturation, Glutathione Level and Expression of H MGB1 Gene in Brilliant Cresyl Blue (BCB) Stained Immature Oocyte. CELL JOURNAL 2014; 15:294-301. [PMID: 24381853 PMCID: PMC3866532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/17/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Nutrients and antioxidants in the medium of immature oocyte have a profound effect on maturation, fertilization and development of resulting embryos. In this study the effects of melatonin as an antioxidant agent on maturation, glutathione level and expression of High mobility group box-1 (HMGB1) gene were evaluated in immature oocytes of mice stained with brilliant cresyl blue (BCB). MATERIALS AND METHODS In this experimental study, immature oocytes were harvested from ovaries of Naval Medical Research Institute (NMRI) mice. Oocytes were stained with 26 μM BCB for 90 minutes and transferred to in vitro maturation medium containing varying doses of melatonin (10-12, 10-9, 10-6, 10-3 M) and without melatonin, for 22-24 hours. Maturation was monitored using an inverted microscope. Glutathione was assessed by monochlorobimane (MCB) staining and HMGB1 expression in mature oocyte was analyzed using real-time polymerase chain reaction (PCR). RESULTS Melatonin in the concentration of 10-6 M had the most effect on maturation and HMGB1 expression of BCB+ oocytes (p<0.05). Meanwhile melatonin had no effects on glutathione levels. Additionally in immature BCB- oocytes, compared to the control group, melatonin did not affect cytoplasm maturation (p>0.05). CONCLUSION In vitro treatment with melatonin increases the maturation and HMGB1 expression in BCB+ immature oocytes and has no significant effect on glutathione levels.
Collapse
Affiliation(s)
- Maryam Salimi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti
University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Biotechnology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
* Corresponding Address:
P.O.Box: 193954717Cellular and Molecular Biology Research CenterShahid Beheshti
University of Medical SciencesTehranIran
Email
| | - Reza Masteri Farahani
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti
University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Abadi
- Department of Transgenic Animal Science, Stem Cell Technology Research Center, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti
University of Medical Sciences, Tehran, Iran
| | - Mohsen Nourozian
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti
University of Medical Sciences, Tehran, Iran
| | - Ahmad Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Guo Z, Zhang S, Zhang H, Jin L, Zhao S, Yang W, Tang J, Wang D. Cloning, purification, crystallization and preliminary X-ray studies of HMO2 from Saccharomyces cerevisiae. Acta Crystallogr F Struct Biol Commun 2014; 70:57-9. [PMID: 24419618 PMCID: PMC3943102 DOI: 10.1107/s2053230x13031580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/19/2013] [Indexed: 11/10/2022] Open
Abstract
The high-mobility group protein (HMO2) of Saccharomyces cerevisiae is a component of the chromatin-remodelling complex INO80, which is involved in double-strand break (DSB) repair. HMO2 can also bind DNA to protect it from exonucleolytic cleavage. Nevertheless, little structural information is available regarding these functions of HMO2. Since determination of three-dimensional structure is a powerful means to facilitate functional characterization, X-ray crystallography has been used to accomplish this task. Here, the expression, purification, crystallization and preliminary crystallographic analysis of HMO2 from S. cerevisiae are reported. The crystal belonged to space group P222, with unit-cell parameters a = 39.35, b = 75.69, c = 108.03 Å, and diffracted to a resolution of 3.0 Å. The crystals are most likely to contain one molecule in the asymmetric unit, with a VM value of 3.19 Å(3) Da(-1).
Collapse
Affiliation(s)
- Zhen Guo
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Shaocheng Zhang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Hongpeng Zhang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Li Jin
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Shasha Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Wei Yang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Jian Tang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Deqiang Wang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| |
Collapse
|
44
|
Musumeci D, Roviello GN, Montesarchio D. An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther 2013; 141:347-57. [PMID: 24220159 DOI: 10.1016/j.pharmthera.2013.11.001] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/25/2013] [Indexed: 12/13/2022]
Abstract
HMGB1 (High-Mobility Group Box-1) is a nuclear protein that acts as an architectural chromatin-binding factor involved in the maintenance of nucleosome structure and regulation of gene transcription. It can be released into the extracellular milieu from immune and non-immune cells in response to various stimuli. Extracellular HMGB1 contributes to the pathogenesis of numerous chronic inflammatory and autoimmune diseases, including sepsis, rheumatoid arthritis, atherosclerosis, chronic kidney disease, systemic lupus erythematosus (SLE), as well as cancer pathogenesis. Interaction of released HMGB1 with the cell-surface receptor for advanced glycation end products (RAGE) is one of the main signaling pathways triggering these diseases. It has been also demonstrated that the inhibition of the HMGB1-RAGE interaction represents a promising approach for the modulation of the inflammatory and tumor-facilitating activity of HMGB1. In this review we describe various approaches recently proposed in the literature to inhibit HMGB1 and the related inflammatory processes, especially focusing on the block of RAGE-HMGB1 signaling. Several strategies are based on molecules which mainly interact with RAGE as competitive antagonists of HMGB1. As an alternative, encouraging results have been obtained with HMGB1-targeting, leading to the identification of compounds that directly bind to HMGB1, ranging from small natural or synthetic molecules, such as glycyrrhizin and gabexate mesilate, to HMGB1-specific antibodies, peptides, proteins as well as bent DNA-based duplexes. Future perspectives are discussed in the light of the overall body of knowledge acquired by a large number of research groups operating in different but related fields.
Collapse
Affiliation(s)
- Domenica Musumeci
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", via Cintia 21, Complesso Universitario di Monte Sant'Angelo, I-80126 Napoli, Italy.
| | - Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini - CNR, via Mezzocannone 16, I-80134 Napoli, Italy
| | - Daniela Montesarchio
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", via Cintia 21, Complesso Universitario di Monte Sant'Angelo, I-80126 Napoli, Italy
| |
Collapse
|
45
|
Szénási T, Kénesi E, Nagy A, Molnár A, Bálint BL, Zvara Á, Csabai Z, Deák F, Boros Oláh B, Mátés L, Nagy L, Puskás LG, Kiss I. Hmgb1 can facilitate activation of the matrilin-1 gene promoter by Sox9 and L-Sox5/Sox6 in early steps of chondrogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1075-91. [DOI: 10.1016/j.bbagrm.2013.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 02/05/2023]
|
46
|
A new omics data resource of Pleurocybella porrigens for gene discovery. PLoS One 2013; 8:e69681. [PMID: 23936076 PMCID: PMC3720577 DOI: 10.1371/journal.pone.0069681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 06/14/2013] [Indexed: 01/11/2023] Open
Abstract
Background Pleurocybellaporrigens is a mushroom-forming fungus, which has been consumed as a traditional food in Japan. In 2004, 55 people were poisoned by eating the mushroom and 17 people among them died of acute encephalopathy. Since then, the Japanese government has been alerting Japanese people to take precautions against eating the P. porrigens mushroom. Unfortunately, despite efforts, the molecular mechanism of the encephalopathy remains elusive. The genome and transcriptome sequence data of P. porrigens and the related species, however, are not stored in the public database. To gain the omics data in P. porrigens, we sequenced genome and transcriptome of its fruiting bodies and mycelia by next generation sequencing. Methodology/Principal Findings Short read sequences of genomic DNAs and mRNAs in P. porrigens were generated by Illumina Genome Analyzer. Genome short reads were de novo assembled into scaffolds using Velvet. Comparisons of genome signatures among Agaricales showed that P. porrigens has a unique genome signature. Transcriptome sequences were assembled into contigs (unigenes). Biological functions of unigenes were predicted by Gene Ontology and KEGG pathway analyses. The majority of unigenes would be novel genes without significant counterparts in the public omics databases. Conclusions Functional analyses of unigenes present the existence of numerous novel genes in the basidiomycetes division. The results mean that the omics information such as genome, transcriptome and metabolome in basidiomycetes is short in the current databases. The large-scale omics information on P. porrigens, provided from this research, will give a new data resource for gene discovery in basidiomycetes.
Collapse
|
47
|
Dong Y, Gu Y, Huan Y, Wang Y, Liu Y, Liu M, Ding F, Gu X, Wang Y. HMGB1 protein does not mediate the inflammatory response in spontaneous spinal cord regeneration: a hint for CNS regeneration. J Biol Chem 2013; 288:18204-18. [PMID: 23649623 DOI: 10.1074/jbc.m113.463810] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Uncontrolled, excessive inflammation contributes to the secondary tissue damage of traumatic spinal cord, and HMGB1 is highlighted for initiation of a vicious self-propagating inflammatory circle by release from necrotic cells or immune cells. Several regenerative-competent vertebrates have evolved to circumvent the second damages during the spontaneous spinal cord regeneration with an unknown HMGB1 regulatory mechanism. By genomic surveys, we have revealed that two paralogs of HMGB1 are broadly retained from fish in the phylogeny. However, their spatial-temporal expression and effects, as shown in lowest amniote gecko, were tightly controlled in order that limited inflammation was produced in spontaneous regeneration. Two paralogs from gecko HMGB1 (gHMGB1) yielded distinct injury and infectious responses, with gHMGB1b significantly up-regulated in the injured cord. The intracellular gHMGB1b induced less release of inflammatory cytokines than gHMGB1a in macrophages, and the effects could be shifted by exchanging one amino acid in the inflammatory domain. Both intracellular proteins were able to mediate neuronal programmed apoptosis, which has been indicated to produce negligible inflammatory responses. In vivo studies demonstrated that the extracellular proteins could not trigger a cascade of the inflammatory cytokines in the injured spinal cord. Signal transduction analysis found that gHMGB1 proteins could not bind with cell surface receptors TLR2 and TLR4 to activate inflammatory signaling pathway. However, they were able to interact with the receptor for advanced glycation end products to potentiate oligodendrocyte migration by activation of both NFκB and Rac1/Cdc42 signaling. Our results reveal that HMGB1 does not mediate the inflammatory response in spontaneous spinal cord regeneration, but it promotes CNS regeneration.
Collapse
Affiliation(s)
- Yingying Dong
- Key Laboratory of Neuroregeneration, Nantong University, Nantong 226007, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Arrigo T, Chirico V, Salpietro V, Munafò C, Ferraù V, Gitto E, Lacquaniti A, Salpietro C. High-mobility group protein B1: a new biomarker of metabolic syndrome in obese children. Eur J Endocrinol 2013; 168:631-8. [PMID: 23384711 DOI: 10.1530/eje-13-0037] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Obesity is associated with a chronic low-grade inflammation. High-mobility group box 1 protein (HMGB1) plays a key role in inflammation and immunostimulatory and chemotactic processes. The aim of the study was to assess the role of HMGB1 in obese children and to evaluate its diagnostic profile in identifying childhood obesity-related complications, such as the metabolic syndrome (MS). PATIENTS AND METHODS Sixty obese children were enrolled and compared with 40 healthy children (control). Homeostasis model assessment of insulin resistance (HOMA-IR), lipid profile, thyroid hormones, and pro- and anti-inflammatory peptides such as C-reactive protein (CRP), adiponectin, interleukin 6 (IL6), IL18, IL23, TNFα, resistin, and HMGB1 were evaluated. Receiver operating characteristics (ROC) analysis was employed to calculate the area under the curve (AUC) for HMGB1, IL6, and adiponectin to find the best cutoff values capable of identifying MS in obese children. RESULTS HMGB1 levels were statistically higher in obese patients than in the control group (19.4±6.8 vs 3.7±1.2 ng/ml; P<0.0001). In obese patients, IL18, IL6, and resistin levels were significantly high, while adiponectin levels were low. At multivariate analysis, HMGB1 was found to be independently correlated with BMI, IL23, IL6, free triiodothyronine, HDL, and HOMA-IR. At ROC analysis, HMGB1 showed higher sensitivity and specificity (AUC, 0. 992; sensitivity, 94.7%; specificity, 97.5%) than IL6 and adiponectin in identifying MS in obese children. CONCLUSION HMGB1 plays an important role in the inflammatory process associated with childhood obesity. This peptide may be an important diagnostic marker for obesity-related complications, such as MS.
Collapse
Affiliation(s)
- Teresa Arrigo
- Department of Pediatric Sciences, University of Messina, 98100 Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ratliff BB, Rabadi MM, Vasko R, Yasuda K, Goligorsky MS. Messengers without borders: mediators of systemic inflammatory response in AKI. J Am Soc Nephrol 2013; 24:529-36. [PMID: 23349311 DOI: 10.1681/asn.2012060633] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The list of signals sent by an injured organ to systemic circulation, so-called danger signals, is growing to include multiple metabolites and secreted moieties, thus revealing a highly complex and integrated network of interlinked systemic proinflammatory and proregenerative messages. Emerging new data indicate that, apart from the well established local inflammatory response to AKI, danger signaling unleashes a cascade of precisely timed, interdependent, and intensity-gradated mediators responsible for development of the systemic inflammatory response. This fledgling realization of the importance of the systemic inflammatory response to the localized injury and inflammation is at the core of this brief overview. It has a potential to explain the additive effects of concomitant diseases or preexisting chronic conditions that can prime the systemic inflammatory response and exacerbate it out of proportion to the actual degree of acute kidney damage. Although therapies for ameliorating AKI per se remain limited, a potentially powerful strategy that could reap significant benefits in the future is to modulate the intensity of danger signals and consequently the systemic inflammatory response, while preserving its intrinsic proregenerative stimuli.
Collapse
Affiliation(s)
- Brian B Ratliff
- Department of Medicine, Renal Research Institute, New York Medical College, 15 Dana Road, BSB C-06, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
50
|
Rabadi MM, Ghaly T, Goligorksy MS, Ratliff BB. HMGB1 in renal ischemic injury. Am J Physiol Renal Physiol 2012; 303:F873-85. [PMID: 22759395 PMCID: PMC3468521 DOI: 10.1152/ajprenal.00092.2012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/22/2012] [Indexed: 11/22/2022] Open
Abstract
Factors that initiate cellular damage and trigger the inflammatory response cascade and renal injury are not completely understood after renal ischemia-reperfusion injury (IRI). High-mobility group box-1 protein (HMGB1) is a damage-associated molecular pattern molecule that binds to chromatin, but upon signaling undergoes nuclear-cytoplasmic translocation and release from cells. Immunohistochemical and Western blot analysis identified HMGB1 nuclear-cytoplasmic translocation and release from renal cells (particularly vascular and tubular cells) into the venous circulation after IRI. Time course analysis indicated HMGB1 release into the venous circulation progressively increased parallel to increased renal ischemic duration. Ethyl pyruvate (EP) treatment blocked H(2)O(2) (oxidative stress)-induced HMGB1 release from human umbilical vein endothelial cells in vitro, and in vivo resulted in nuclear retention and significant blunting of HMGB1 release into the circulation after IRI. EP treatment before IRI improved short-term serum creatinine and albuminuria, proinflammatory cyto-/chemokine release, and long-term albuminuria and fibrosis. The renoprotective effect of EP was abolished when exogenous HMGB1 was injected, suggesting EP's therapeutic efficacy is mediated by blocking HMGB1 translocation and release. To determine the independent effects of circulating HMGB1 after injury, exogenous HMGB1 was administered to healthy animals at pathophysiological dose. HMGB1 administration induced a rapid surge in systemic circulating cyto-/chemokines (including TNF-α, eotaxin, G-CSF, IFN-γ, IL-10, IL-1α, IL-6, IP-10, and KC) and led to mobilization of bone marrow CD34+Flk1+ cells into the circulation. Our results indicate that increased ischemic duration causes progressively enhanced HMGB1 release into the circulation triggering damage/repair signaling, an effect inhibited by EP because of its ability to block HMGB1 nuclear-cytoplasmic translocation.
Collapse
Affiliation(s)
- May M Rabadi
- Departments of Medicine, Pharmacology, and Physiology, New York Medical College, Valhalla, 10595, USA
| | | | | | | |
Collapse
|