1
|
Snoozy J, Bhattacharya S, Fettig RR, Van Asma A, Brede C, Warnhoff K. XDH-1 inactivation causes xanthine stone formation in C. elegans which is inhibited by SULP-4-mediated anion exchange in the excretory cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634556. [PMID: 39975063 PMCID: PMC11838210 DOI: 10.1101/2025.01.24.634556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Xanthine dehydrogenase (XDH-1) is a molybdenum cofactor (Moco) requiring enzyme that catabolizes hypoxanthine into xanthine and xanthine into uric acid, the final steps in purine catabolism. Human patients with mutations in xdh-1 develop xanthinuria which can lead to xanthine stones in the kidney, recurrent urinary tract infections, and renal failure. Currently there are no therapies for treating human XDH-1 deficiency. Thus, understanding mechanisms that maintain purine homeostasis is an important goal of human health. Here, we used the nematode C. elegans to model human XDH-1 deficiency using 2 clinically relevant paradigms, Moco deficiency or loss-of-function mutations in xdh-1. Both Moco deficiency and xdh-1 mutations caused the formation of autofluorescent xanthine stones in C. elegans. Surprisingly, only 2% of xdh-1 null mutant C. elegans developed a xanthine stone, suggesting additional pathways may regulate this process. To uncover such pathways, we performed a forward genetic screen for mutations that enhance the penetrance of xanthine stone formation in xdh-1 null mutant C. elegans. We isolated multiple loss-of-function mutations in the gene sulp-4 which encodes a transmembrane transport protein homologous to human SLC26 anion exchange proteins. We demonstrated that SULP-4 acts cell-nonautonomously in the excretory cell to limit xanthine stone accumulation. Interestingly, sulp-4 mutant phenotypes were suppressed by mutations in genes that encode for cystathionase (cth-2) or cysteine dioxygenase (cdo-1), members of the sulfur amino acid metabolism pathway required for production of the osmolyte taurine. Furthermore, cdo-1 mRNA accumulated in sulp-4 mutant animals, mirroring cdo-1 activation observed during hyperosmotic stress in C. elegans and mammals. We propose that loss of SULP-4-mediated anion exchange causes osmotic stress and cdo-1 activation, a maladaptive response that promotes xanthine stone accumulation. Supporting the model that the osmotic stress response impacts xanthine stone accumulation, a mutation in osm-8 that constitutively activates the osmotic stress response, also promoted xanthine stone accumulation in an xdh-1 mutant background. Thus, our work establishes a C. elegans model for human XDH-1 deficiency and identifies sulp-4 and the osmotic stress response governed by cdo-1 as critical players in controlling xanthine stone accumulation.
Collapse
Affiliation(s)
- Jennifer Snoozy
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Sushila Bhattacharya
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Robin R. Fettig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | | - Chloe Brede
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Kurt Warnhoff
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105 USA
| |
Collapse
|
2
|
Popiel EM, Ahluwalia R, Schuetz S, Yu B, Derry WB. MRCK-1 activates non-muscle myosin for outgrowth of a unicellular tube in Caenorhabditis elegans. Development 2024; 151:dev202772. [PMID: 39494605 PMCID: PMC11634028 DOI: 10.1242/dev.202772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
The formation and patterning of unicellular biological tubes is essential for metazoan development. It is well established that vascular tubes and neurons use similar guidance cues to direct their development, but the downstream mechanisms that promote the outgrowth of biological tubes are not well characterized. We show that the conserved kinase MRCK-1 and its substrate the regulatory light chain of non-muscle myosin, MLC-4, are required for outgrowth of the unicellular excretory canal in C. elegans. Ablation of MRCK-1 or MLC-4 in the canal causes severe truncations with unlumenized projections of the basal membrane. Structure-function analysis of MRCK-1 indicates that the kinase domain, but not the small GTPase-binding CRIB domain, is required for canal outgrowth. Expression of a phosphomimetic form of MLC-4 rescues canal truncations in mrck-1 mutants and shows enrichment at the growing canal tip. Moreover, our work reveals a previously unreported function for non-muscle myosin downstream of MRCK-1 in excretory canal outgrowth that may be conserved in the development of seamless tubes in other organisms.
Collapse
Affiliation(s)
- Evelyn M. Popiel
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1X5, Canada
| | - Rhea Ahluwalia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Ontario Institute for Cancer Research, 661 University Avenue, Toronto, ON M5G 0A3, Canada
| | - Stefan Schuetz
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1X5, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - W. Brent Derry
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1X5, Canada
| |
Collapse
|
3
|
Abrams J, Nance J. A polarity pathway for exocyst-dependent intracellular tube extension. eLife 2021; 10:65169. [PMID: 33687331 PMCID: PMC8021397 DOI: 10.7554/elife.65169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Lumen extension in intracellular tubes can occur when vesicles fuse with an invading apical membrane. Within the Caenorhabditis elegans excretory cell, which forms an intracellular tube, the exocyst vesicle-tethering complex is enriched at the lumenal membrane and is required for its outgrowth, suggesting that exocyst-targeted vesicles extend the lumen. Here, we identify a pathway that promotes intracellular tube extension by enriching the exocyst at the lumenal membrane. We show that PAR-6 and PKC-3/aPKC concentrate at the lumenal membrane and promote lumen extension. Using acute protein depletion, we find that PAR-6 is required for exocyst membrane recruitment, whereas PAR-3, which can recruit the exocyst in mammals, appears dispensable for exocyst localization and lumen extension. Finally, we show that CDC-42 and RhoGEF EXC-5/FGD regulate lumen extension by recruiting PAR-6 and PKC-3 to the lumenal membrane. Our findings reveal a pathway that connects CDC-42, PAR proteins, and the exocyst to extend intracellular tubes.
Collapse
Affiliation(s)
- Joshua Abrams
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, United States
| | - Jeremy Nance
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, United States.,Department of Cell Biology, NYU Grossman School of Medicine, New York, United States
| |
Collapse
|
4
|
Abstract
As multi-cellular organisms evolved from small clusters of cells to complex metazoans, biological tubes became essential for life. Tubes are typically thought of as mainly playing a role in transport, with the hollow space (lumen) acting as a conduit to distribute nutrients and waste, or for gas exchange. However, biological tubes also provide a platform for physiological, mechanical, and structural functions. Indeed, tubulogenesis is often a critical aspect of morphogenesis and organogenesis. C. elegans is made up of tubes that provide structural support and protection (the epidermis), perform the mechanical and enzymatic processes of digestion (the buccal cavity, pharynx, intestine, and rectum), transport fluids for osmoregulation (the excretory system), and execute the functions necessary for reproduction (the germline, spermatheca, uterus and vulva). Here we review our current understanding of the genetic regulation, molecular processes, and physical forces involved in tubulogenesis and morphogenesis of the epidermal, digestive and excretory systems in C. elegans.
Collapse
Affiliation(s)
- Daniel D Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago-College of Medicine, Chicago, IL, United States.
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
5
|
Buechner M, Yang Z, Al-Hashimi H. A Series of Tubes: The C. elegans Excretory Canal Cell as a Model for Tubule Development. J Dev Biol 2020; 8:jdb8030017. [PMID: 32906663 PMCID: PMC7557474 DOI: 10.3390/jdb8030017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Formation and regulation of properly sized epithelial tubes is essential for multicellular life. The excretory canal cell of C. elegans provides a powerful model for investigating the integration of the cytoskeleton, intracellular transport, and organismal physiology to regulate the developmental processes of tube extension, lumen formation, and lumen diameter regulation in a narrow single cell. Multiple studies have provided new understanding of actin and intermediate filament cytoskeletal elements, vesicle transport, and the role of vacuolar ATPase in determining tube size. Most of the genes discovered have clear homologues in humans, with implications for understanding these processes in mammalian tissues such as Schwann cells, renal tubules, and brain vasculature. The results of several new genetic screens are described that provide a host of new targets for future studies in this informative structure.
Collapse
Affiliation(s)
- Matthew Buechner
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA;
- Correspondence:
| | - Zhe Yang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA;
| | | |
Collapse
|
6
|
Novel exc Genes Involved in Formation of the Tubular Excretory Canals of Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2019; 9:1339-1353. [PMID: 30885922 PMCID: PMC6505153 DOI: 10.1534/g3.119.200626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Regulation of luminal diameter is critical to the function of small single-celled tubes, of which the seamless tubular excretory canals of Caenorhabditis elegans provide a tractable genetic model. Mutations in several sets of genes exhibit the Exc phenotype, in which canal luminal growth is visibly altered. Here, a focused reverse genomic screen of genes highly expressed in the canals found 18 genes that significantly affect luminal outgrowth or diameter. These genes encode novel proteins as well as highly conserved proteins involved in processes including gene expression, cytoskeletal regulation, and vesicular and transmembrane transport. In addition, two genes act as suppressors on a pathway of conserved genes whose products mediate vesicle movement from early to recycling endosomes. The results provide new tools for understanding the integration of cytoplasmic structure and physiology in forming and maintaining the narrow diameter of single-cell tubules.
Collapse
|
7
|
Patel S, Wall DM, Castillo A, McCormick BA. Caspase-3 cleavage of Salmonella type III secreted effector protein SifA is required for localization of functional domains and bacterial dissemination. Gut Microbes 2019; 10:172-187. [PMID: 30727836 PMCID: PMC6546311 DOI: 10.1080/19490976.2018.1506668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SifA is a bi-functional Type III Secretion System (T3SS) effector protein that plays an important role in Salmonella virulence. The N-terminal domain of SifA binds SifA-Kinesin-Interacting-Protein (SKIP), and via an interaction with kinesin, forms tubular membrane extensions called Sif filaments (Sifs) that emanate from the Salmonella Containing Vacuole (SCV). The C-terminal domain of SifA harbors a WxxxE motif that functions to mimic active host cell GTPases. Taken together, SifA functions in inducing endosomal tubulation in order to maintain the integrity of the SCV and promote bacterial dissemination. Since SifA performs multiple, unrelated functions, the objective of this study was to determine how each functional domain of SifA becomes processed. Our work demonstrates that a linker region containing a caspase-3 cleavage motif separates the two functional domains of SifA. To test the hypothesis that processing of SifA by caspase-3 at this particular site is required for function and proper localization of the effector protein domains, we developed two tracking methods to analyze the intracellular localization of SifA. We first adapted a fluorescent tag called phiLOV that allowed for type-III secretion system (T3SS) mediated delivery of SifA and observation of its intracellular colocalization with caspase-3. Additionally, we created a dual-tagging strategy that permitted tracking of each of the SifA functional domains following caspase-3 cleavage to different subcellular locations. The results of this study reveal that caspase-3 cleavage of SifA is required for the proper localization of functional domains and bacterial dissemination. Considering the importance of these events in Salmonella pathogenesis, we conclude that caspase-3 cleavage of effector proteins is a more broadly applicable effector processing mechanism utilized by Salmonella to invade and persist during infection.
Collapse
Affiliation(s)
- Samir Patel
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA,CONTACT Beth McCormick Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street AS8-2011, Worcester, MA 01605, USA
| | - Daniel M. Wall
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Antonio Castillo
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
8
|
Jewett CE, Prekeris R. Insane in the apical membrane: Trafficking events mediating apicobasal epithelial polarity during tube morphogenesis. Traffic 2018; 19:10.1111/tra.12579. [PMID: 29766620 PMCID: PMC6239989 DOI: 10.1111/tra.12579] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
The creation of cellular tubes is one of the most vital developmental processes, resulting in the formation of most organ types. Cells have co-opted a number of different mechanisms for tube morphogenesis that vary among tissues and organisms; however, generation and maintenance of cell polarity is fundamental for successful lumenogenesis. Polarized membrane transport has emerged as a key driver not only for establishing individual epithelial cell polarity, but also for coordination of epithelial polarization during apical lumen formation and tissue morphogenesis. In recent years, much work has been dedicated to identifying membrane trafficking regulators required for lumenogenesis. In this review we will summarize the findings from the past couple of decades in defining the molecular machinery governing lumenogenesis both in 3D tissue culture models and during organ development in vivo.
Collapse
Affiliation(s)
- Cayla E. Jewett
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity. Genetics 2017; 203:35-63. [PMID: 27183565 DOI: 10.1534/genetics.116.189357] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/07/2016] [Indexed: 12/12/2022] Open
Abstract
The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular topology of excretory tubes, their varied and sometimes complex shapes, and the dynamic reprogramming of cell identity and remodeling of tube connectivity that occur during larval development are particularly fascinating features of this organ. The physiological roles of the excretory system in osmoregulation and other aspects of the animal's life cycle are only beginning to be explored. The cellular mechanisms and molecular pathways used to build and shape excretory tubes appear similar to those used in both unicellular and multicellular tubes in more complex organs, such as the vertebrate vascular system and kidney, making this simple organ system a useful model for understanding disease processes.
Collapse
|
10
|
Shaye DD, Greenwald I. A network of conserved formins, regulated by the guanine exchange factor EXC-5 and the GTPase CDC-42, modulates tubulogenesis in vivo. Development 2016; 143:4173-4181. [PMID: 27697907 DOI: 10.1242/dev.141861] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
Abstract
The C. elegans excretory cell (EC) is a powerful model for tubulogenesis, a conserved process that requires precise cytoskeletal regulation. EXC-6, an ortholog of the disease-associated formin INF2, coordinates cell outgrowth and lumen formation during EC tubulogenesis by regulating F-actin at the tip of the growing canal and the dynamics of basolateral microtubules. EXC-6 functions in parallel with EXC-5/FGD, a predicted activator of the Rho GTPase Cdc42. Here, we identify the parallel pathway: EXC-5 functions through CDC-42 to regulate two other formins: INFT-2, another INF2 ortholog, and CYK-1, the sole ortholog of the mammalian diaphanous (mDia) family of formins. We show that INFT-2 promotes F-actin accumulation in the EC, and that CYK-1 inhibits INFT-2 to regulate F-actin levels and EXC-6-promoted outgrowth. As INF2 and mDia physically interact and cross-regulate in cultured cells, our work indicates that a conserved EXC-5-CDC-42 pathway modulates this regulatory interaction and that it is functionally important in vivo during tubulogenesis.
Collapse
Affiliation(s)
- Daniel D Shaye
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA .,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
11
|
Grussendorf KA, Trezza CJ, Salem AT, Al-Hashimi H, Mattingly BC, Kampmeyer DE, Khan LA, Hall DH, Göbel V, Ackley BD, Buechner M. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans. Genetics 2016; 203:1789-806. [PMID: 27334269 PMCID: PMC4981278 DOI: 10.1534/genetics.116.192559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023] Open
Abstract
Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn's disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling.
Collapse
Affiliation(s)
- Kelly A Grussendorf
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045 Department of Biological Sciences, Minnesota State University, Mankato, Minnesota 56001
| | - Christopher J Trezza
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Alexander T Salem
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Hikmat Al-Hashimi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Brendan C Mattingly
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Drew E Kampmeyer
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota 56001
| | - Liakot A Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - David H Hall
- Department of Neuroscience, Center for Caenorhabditis elegans Anatomy, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Verena Göbel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Matthew Buechner
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
12
|
Quintin S, Gally C, Labouesse M. Noncentrosomal microtubules in C. elegans epithelia. Genesis 2016; 54:229-42. [PMID: 26789944 DOI: 10.1002/dvg.22921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/12/2022]
Abstract
The microtubule cytoskeleton has a dual contribution to cell organization. First, microtubules help displace chromosomes and provide tracks for organelle transport. Second, microtubule rigidity confers specific mechanical properties to cells, which are crucial in cilia or mechanosensory structures. Here we review the recently uncovered organization and functions of noncentrosomal microtubules in C. elegans epithelia, focusing on how they contribute to nuclear positioning and protein transport. In addition, we describe recent data illustrating how the microtubule and actin cytoskeletons interact to achieve those functions.
Collapse
Affiliation(s)
- Sophie Quintin
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Christelle Gally
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Michel Labouesse
- Université Pierre Et Marie Curie, IBPS, CNRS UMR7622, 7 Quai St-Bernard, Paris, 75005, France
| |
Collapse
|
13
|
Shaye DD, Greenwald I. The disease-associated formin INF2/EXC-6 organizes lumen and cell outgrowth during tubulogenesis by regulating F-actin and microtubule cytoskeletons. Dev Cell 2015; 32:743-55. [PMID: 25771894 DOI: 10.1016/j.devcel.2015.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/02/2014] [Accepted: 01/13/2015] [Indexed: 10/23/2022]
Abstract
We investigate how outgrowth at the basolateral cell membrane is coordinated with apical lumen formation in the development of a biological tube by characterizing exc-6, a gene required for C. elegans excretory cell (EC) tubulogenesis. We show that EXC-6 is orthologous to the human formin INF2, which polymerizes filamentous actin (F-actin) and binds microtubules (MTs) in vitro. Dominant INF2 mutations cause focal segmental glomerulosclerosis (FSGS), a kidney disease, and FSGS+Charcot-Marie-Tooth neuropathy. We show that activated INF2 can substitute for EXC-6 in C. elegans and that disease-associated mutations cause constitutive activity. Using genetic analysis and live imaging, we show that exc-6 regulates MT and F-actin accumulation at EC tips and dynamics of basolateral-localized MTs, indicating that EXC-6 organizes F-actin and MT cytoskeletons during tubulogenesis. The pathology associated with INF2 mutations is believed to reflect misregulation of F-actin, but our results suggest alternative or additional mechanisms via effects on MT dynamics.
Collapse
Affiliation(s)
- Daniel D Shaye
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Iva Greenwald
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
14
|
Lant B, Yu B, Goudreault M, Holmyard D, Knight JDR, Xu P, Zhao L, Chin K, Wallace E, Zhen M, Gingras AC, Derry WB. CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling. Nat Commun 2015; 6:6449. [PMID: 25743393 DOI: 10.1038/ncomms7449] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/29/2015] [Indexed: 01/25/2023] Open
Abstract
The mechanisms governing apical membrane assembly during biological tube development are poorly understood. Here, we show that extension of the C. elegans excretory canal requires cerebral cavernous malformation 3 (CCM-3), independent of the CCM1 orthologue KRI-1. Loss of ccm-3 causes canal truncations and aggregations of canaliculular vesicles, which form ectopic lumen (cysts). We show that CCM-3 localizes to the apical membrane, and in cooperation with GCK-1 and STRIPAK, promotes CDC-42 signalling, Golgi stability and endocytic recycling. We propose that endocytic recycling is mediated through the CDC-42-binding kinase MRCK-1, which interacts physically with CCM-3-STRIPAK. We further show canal membrane integrity to be dependent on the exocyst complex and the actin cytoskeleton. This work reveals novel in vivo roles of CCM-3·STRIPAK in regulating tube extension and membrane integrity through small GTPase signalling and vesicle dynamics, which may help explain the severity of CCM3 mutations in patients.
Collapse
Affiliation(s)
- Benjamin Lant
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Bin Yu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Marilyn Goudreault
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | - Doug Holmyard
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | - James D R Knight
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | - Peter Xu
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Linda Zhao
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Kelly Chin
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Evan Wallace
- 1] Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4 [2] Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Mei Zhen
- 1] Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5 [2] Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Anne-Claude Gingras
- 1] Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5 [2] Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - W Brent Derry
- 1] Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4 [2] Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
15
|
Opperman K, Moseley-Alldredge M, Yochem J, Bell L, Kanayinkal T, Chen L. A novel nondevelopmental role of the sax-7/L1CAM cell adhesion molecule in synaptic regulation in Caenorhabditis elegans. Genetics 2015; 199:497-509. [PMID: 25488979 PMCID: PMC4317657 DOI: 10.1534/genetics.114.169581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/02/2014] [Indexed: 01/25/2023] Open
Abstract
The L1CAM family of cell adhesion molecules is a conserved set of single-pass transmembrane proteins that play diverse roles required for proper nervous system development and function. Mutations in L1CAMs can cause the neurological L1 syndrome and are associated with autism and neuropsychiatric disorders. L1CAM expression in the mature nervous system suggests additional functions besides the well-characterized developmental roles. In this study, we demonstrate that the gene encoding the Caenorhabditis elegans L1CAM, sax-7, genetically interacts with gtl-2, as well as with unc-13 and rab-3, genes that function in neurotransmission. These sax-7 genetic interactions result in synthetic phenotypes that are consistent with abnormal synaptic function. Using an inducible sax-7 expression system and pharmacological reagents that interfere with cholinergic transmission, we uncovered a previously uncharacterized nondevelopmental role for sax-7 that impinges on synaptic function.
Collapse
Affiliation(s)
- Karla Opperman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Melinda Moseley-Alldredge
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - John Yochem
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Leslie Bell
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Tony Kanayinkal
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lihsia Chen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
16
|
Jiang L, Phang JM, Yu J, Harrop SJ, Sokolova AV, Duff AP, Wilk KE, Alkhamici H, Breit SN, Valenzuela SM, Brown LJ, Curmi PMG. CLIC proteins, ezrin, radixin, moesin and the coupling of membranes to the actin cytoskeleton: a smoking gun? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:643-57. [PMID: 23732235 DOI: 10.1016/j.bbamem.2013.05.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
The CLIC proteins are a highly conserved family of metazoan proteins with the unusual ability to adopt both soluble and integral membrane forms. The physiological functions of CLIC proteins may include enzymatic activity in the soluble form and anion channel activity in the integral membrane form. CLIC proteins are associated with the ERM proteins: ezrin, radixin and moesin. ERM proteins act as cross-linkers between membranes and the cortical actin cytoskeleton. Both CLIC and ERM proteins are controlled by Rho family small GTPases. CLIC proteins, ERM and Rho GTPases act in a concerted manner to control active membrane processes including the maintenance of microvillar structures, phagocytosis and vesicle trafficking. All of these processes involve the interaction of membranes with the underlying cortical actin cytoskeleton. The relationships between Rho GTPases, CLIC proteins, ERM proteins and the membrane:actin cytoskeleton interface are reviewed. Speculative models are proposed involving the formation of localised multi-protein complexes on the membrane surface that assemble via multiple weak interactions. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Lele Jiang
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Juanita M Phang
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiang Yu
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Stephen J Harrop
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Anna V Sokolova
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Anthony P Duff
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Krystyna E Wilk
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Heba Alkhamici
- School of Medical and Molecular Biosciences, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Samuel N Breit
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Stella M Valenzuela
- School of Medical and Molecular Biosciences, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Louise J Brown
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Paul M G Curmi
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia; School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
17
|
Khan LA, Zhang H, Abraham N, Sun L, Fleming JT, Buechner M, Hall DH, Gobel V. Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux. Nat Cell Biol 2013; 15:143-56. [PMID: 23334498 PMCID: PMC4091717 DOI: 10.1038/ncb2656] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 11/16/2012] [Indexed: 01/29/2023]
Abstract
Many unicellular tubes such as capillaries form lumens intracellularly, a process that is not well understood. Here we show that the cortical membrane organizer ERM-1 is required to expand the intracellular apical/lumenal membrane and its actin undercoat during single-cell C.elegans excretory canal morphogenesis. We characterize AQP-8, identified in an ERM-1 overexpression (ERM-1[++]) suppressor screen, as a canalicular aquaporin that interacts with ERM-1 in lumen extension in a mercury-sensitive manner, implicating water-channel activity. AQP-8 is transiently recruited to the lumen by ERM-1, co-localizing in peri-lumenal cuffs interspaced along expanding canals. An ERM-1[++]-mediated increase in the number of lumen-associated canaliculi is reversed by AQP-8 depletion. We propose that the ERM-1-AQP-8 interaction propels lumen extension by translumenal flux, suggesting a direct morphogenetic effect of water-channel-regulated fluid pressure.
Collapse
Affiliation(s)
- Liakot A Khan
- Department of Pediatrics, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kolotuev I, Hyenne V, Schwab Y, Rodriguez D, Labouesse M. A pathway for unicellular tube extension depending on the lymphatic vessel determinant Prox1 and on osmoregulation. Nat Cell Biol 2013; 15:157-68. [DOI: 10.1038/ncb2662] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 11/26/2012] [Indexed: 01/14/2023]
|
19
|
Xu N, Bagumian G, Galiano M, Myat MM. Rho GTPase controls Drosophila salivary gland lumen size through regulation of the actin cytoskeleton and Moesin. Development 2011; 138:5415-27. [PMID: 22071107 DOI: 10.1242/dev.069831] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Generation and maintenance of proper lumen size is important for tubular organ function. We report on a novel role for the Drosophila Rho1 GTPase in control of salivary gland lumen size through regulation of cell rearrangement, apical domain elongation and cell shape change. We show that Rho1 controls cell rearrangement and apical domain elongation by promoting actin polymerization and regulating F-actin distribution at the apical and basolateral membranes through Rho kinase. Loss of Rho1 resulted in reduction of F-actin at the basolateral membrane and enrichment of apical F-actin, the latter accompanied by enrichment of apical phosphorylated Moesin. Reducing cofilin levels in Rho1 mutant salivary gland cells restored proper distribution of F-actin and phosphorylated Moesin and rescued the cell rearrangement and apical domain elongation defects of Rho1 mutant glands. In support of a role for Rho1-dependent actin polymerization in regulation of gland lumen size, loss of profilin phenocopied the Rho1 lumen size defects to a large extent. We also show that Ribbon, a BTB domain-containing transcription factor functions with Rho1 in limiting apical phosphorylated Moesin for apical domain elongation. Our studies reveal a novel mechanism for controlling salivary gland lumen size, namely through Rho1-dependent actin polymerization and distribution and downregulation of apical phosphorylated Moesin.
Collapse
Affiliation(s)
- Na Xu
- BCMB Program of Weill Graduate School of Medical Sciences at Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
20
|
Zou W, Greenblatt MB, Shim JH, Kant S, Zhai B, Lotinun S, Brady N, Hu DZ, Gygi SP, Baron R, Davis RJ, Jones D, Glimcher LH. MLK3 regulates bone development downstream of the faciogenital dysplasia protein FGD1 in mice. J Clin Invest 2011; 121:4383-92. [PMID: 21965325 PMCID: PMC3204846 DOI: 10.1172/jci59041] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/24/2011] [Indexed: 12/28/2022] Open
Abstract
Mutations in human FYVE, RhoGEF, and PH domain-containing 1 (FGD1) cause faciogenital dysplasia (FGDY; also known as Aarskog syndrome), an X-linked disorder that affects multiple skeletal structures. FGD1 encodes a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase CDC42. However, the mechanisms by which mutations in FGD1 affect skeletal development are unknown. Here, we describe what we believe to be a novel signaling pathway in osteoblasts initiated by FGD1 that involves the MAP3K mixed-lineage kinase 3 (MLK3). We observed that MLK3 functions downstream of FGD1 to regulate ERK and p38 MAPK, which in turn phosphorylate and activate the master regulator of osteoblast differentiation, Runx2. Mutations in FGD1 found in individuals with FGDY ablated its ability to activate MLK3. Consistent with our description of this pathway and the phenotype of patients with FGD1 mutations, mice with a targeted deletion of Mlk3 displayed multiple skeletal defects, including dental abnormalities, deficient calvarial mineralization, and reduced bone mass. Furthermore, mice with knockin of a mutant Mlk3 allele that is resistant to activation by FGD1/CDC42 displayed similar skeletal defects, demonstrating that activation of MLK3 specifically by FGD1/CDC42 is important for skeletal mineralization. Thus, our results provide a putative biochemical mechanism for the skeletal defects in human FGDY and suggest that modulating MAPK signaling may benefit these patients.
Collapse
MESH Headings
- Animals
- Bone Development/genetics
- Bone Development/physiology
- Disease Models, Animal
- Dwarfism/genetics
- Dwarfism/pathology
- Dwarfism/physiopathology
- Enzyme Activation
- Face/abnormalities
- Face/pathology
- Face/physiopathology
- Female
- Gene Knock-In Techniques
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/pathology
- Genetic Diseases, X-Linked/physiopathology
- Genitalia, Male/abnormalities
- Genitalia, Male/pathology
- Genitalia, Male/physiopathology
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/physiology
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/pathology
- Hand Deformities, Congenital/physiopathology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Heart Defects, Congenital/physiopathology
- Humans
- MAP Kinase Kinase Kinases/deficiency
- MAP Kinase Kinase Kinases/genetics
- MAP Kinase Kinase Kinases/physiology
- MAP Kinase Signaling System
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mutation
- Osteoblasts/pathology
- Osteoblasts/physiology
- Proteins/genetics
- Proteins/physiology
- cdc42 GTP-Binding Protein/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
- Mitogen-Activated Protein Kinase Kinase Kinase 11
Collapse
Affiliation(s)
- Weiguo Zou
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Matthew B. Greenblatt
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Jae-Hyuck Shim
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Shashi Kant
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Bo Zhai
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Sutada Lotinun
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Nicholas Brady
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Dorothy Zhang Hu
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Steven P. Gygi
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Roland Baron
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Roger J. Davis
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Dallas Jones
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| | - Laurie H. Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Department of Medicine, Harvard Medical School, and Ragon Institute of MGH, Harvard and MIT, Boston, Massachusetts, USA.
Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Mattingly BC, Buechner M. The FGD homologue EXC-5 regulates apical trafficking in C. elegans tubules. Dev Biol 2011; 359:59-72. [PMID: 21889936 PMCID: PMC3212395 DOI: 10.1016/j.ydbio.2011.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 07/09/2011] [Accepted: 08/17/2011] [Indexed: 12/30/2022]
Abstract
Maintenance of the shape of biological tubules is critical for development and physiology of metazoan organisms. Loss of function of the Caenorhabditis elegans FGD protein EXC-5 allows large fluid-filled cysts to form in the lumen of the single-cell excretory canal tubules, while overexpression of exc-5 causes defects at the tubule's basolateral surface. We have examined the effects of altering expression levels of exc-5 on the distribution of fluorescently-marked subcellular organelles. In exc-5 mutants, early endosomes build up in the cell, especially in areas close to cysts, while recycling endosomes are depleted. Endosome morphology changes prior to cyst formation. Conversely, when exc-5 is overexpressed, recycling endosomes are enriched. Since FGD proteins activate the small GTPases CDC42 and Rac, these results support the hypothesis that EXC-5 acts through small GTPases to move material from apical early endosomes to recycling endosomes, and that loss of such movement is likely the cause of tubule deformation both in nematodes and in tissues affected by FGD dysfunction such as Charcot-Marie-Tooth Syndrome type 4H.
Collapse
Affiliation(s)
- Brendan C Mattingly
- Dept. of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Matthew Buechner
- Dept. of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
22
|
Massarwa R, Schejter ED, Shilo BZ. Apical secretion in epithelial tubes of the Drosophila embryo is directed by the Formin-family protein Diaphanous. Dev Cell 2009; 16:877-88. [PMID: 19531358 DOI: 10.1016/j.devcel.2009.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/15/2009] [Accepted: 04/21/2009] [Indexed: 01/19/2023]
Abstract
Apical localization of filamentous actin (F-actin) is a common feature of epithelial tubes in multicellular organisms. However, its origins and function are not known. We demonstrate that the Diaphanous (Dia)/Formin actin-nucleating factor is required for generation of apical F-actin in diverse types of epithelial tubes in the Drosophila embryo. Dia itself is apically localized both at the RNA and protein levels, and apical localization of its activators, including Rho1 and two guanine exchange factor proteins (Rho-GEFs), contributes to its activity. In the absence of apical actin polymerization, apical-basal polarity and microtubule organization of tubular epithelial cells remain intact; however, secretion through the apical surface to the lumen of tubular organs is blocked. Apical secretion also requires the Myosin V (MyoV) motor, implying that secretory vesicles are targeted to the apical membrane by MyoV-based transport, along polarized actin filaments nucleated by Dia. This mechanism allows efficient utilization of the entire apical membrane for secretion.
Collapse
Affiliation(s)
- R'ada Massarwa
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
23
|
Baer MM, Chanut-Delalande H, Affolter M. Cellular and molecular mechanisms underlying the formation of biological tubes. Curr Top Dev Biol 2009; 89:137-62. [PMID: 19737645 DOI: 10.1016/s0070-2153(09)89006-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological tubes are integral components of many organs. Based on their cellular organization, tubes can be divided into three types: multicellular, unicellular, and intracellular. The mechanisms by which these tubes form during development vary significantly, in many cases even for those sharing a similar final architecture. Here, we present recent advances in studying cellular and molecular aspects of tubulogenesis in different organisms.
Collapse
Affiliation(s)
- Magdalena M Baer
- Biozentrum der Universität Basel, Klingelbergstrasse, Basel, Switzerland
| | | | | |
Collapse
|
24
|
Schink KO, Bölker M. Coordination of cytokinesis and cell separation by endosomal targeting of a Cdc42-specific guanine nucleotide exchange factor in Ustilago maydis. Mol Biol Cell 2008; 20:1081-8. [PMID: 19073889 DOI: 10.1091/mbc.e08-03-0280] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The small GTPase Cdc42 is a key regulator of cell polarity and cytoskeletal organization in most eukaryotic cells. In Ustilago maydis, Cdc42 and the guanine nucleotide exchange factor (GEF) Don1 regulate cytokinesis and cell separation. Don1 belongs to the FGD1 family of Cdc42-specific GEFs that are characterized by a C-terminal lipid-binding FYVE domain. Although the FGD1/frabin family of Rho-GEFs is evolutionary conserved from fungi to mammals the role of the FYVE domain for its biological function is unknown. Here, we show that the FYVE domain is specific for phosphatidylinositol-3-phosphate (PtdIns(3)P) and targets Don1 to endosomal vesicles. During cytokinesis asymmetric accumulation of Don1-containing vesicles occurs at the site of septation. We could show that FYVE-dependent localization is critical for the function of Don1 at normal expression levels but can be compensated for by overexpression of Don1 lacking a functional FYVE domain. Our results demonstrate that endosomal compartmentalization of a Cdc42-specific exchange factor is involved in the coordination of cytokinesis and cell separation.
Collapse
Affiliation(s)
- Kay Oliver Schink
- Philipps-University Marburg, Department of Biology, D-35032 Marburg, Germany
| | | |
Collapse
|
25
|
Tong X, Buechner M. CRIP homologues maintain apical cytoskeleton to regulate tubule size in C. elegans. Dev Biol 2008; 317:225-33. [PMID: 18384766 PMCID: PMC2735100 DOI: 10.1016/j.ydbio.2008.02.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Accepted: 02/11/2008] [Indexed: 11/22/2022]
Abstract
Maintenance of the shape and diameter of biological tubules is a critical task in the development and physiology of all metazoan organisms. We have cloned the exc-9 gene of Caenorhabditis elegans, which regulates the diameter of the single-cell excretory canal tubules. exc-9 encodes a homologue of the highly expressed mammalian intestinal LIM-domain protein CRIP, whose function has not previously been determined. A second well-conserved CRIP homologue functions in multiple valves of C. elegans. EXC-9 shows genetic interactions with other EXC proteins, including the EXC-5 guanine exchange factor that regulates CDC-42 activity. EXC-9 and its nematode homologue act in polarized epithelial cells that must maintain great flexibility at their apical surface; our results suggest that CRIPs function to maintain cytoskeletal flexibility at the apical surface.
Collapse
Affiliation(s)
- Xiangyan Tong
- Department of Molecular Biosciences, 1200 Sunnyside Drive, 8035 Haworth Hall, University of Kansas, Lawrence, KS 66045-7534, USA.
| | | |
Collapse
|
26
|
Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, Mostov K. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 2007; 128:383-97. [PMID: 17254974 PMCID: PMC1865103 DOI: 10.1016/j.cell.2006.11.051] [Citation(s) in RCA: 577] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 09/07/2006] [Accepted: 11/14/2006] [Indexed: 12/21/2022]
Abstract
Formation of the apical surface and lumen is a fundamental, yet poorly understood, step in epithelial organ development. We show that PTEN localizes to the apical plasma membrane during epithelial morphogenesis to mediate the enrichment of PtdIns(4,5)P2 at this domain during cyst development in three-dimensional culture. Ectopic PtdIns(4,5)P2 at the basolateral surface causes apical proteins to relocalize to the basolateral surface. Annexin 2 (Anx2) binds PtdIns(4,5)P2 and is recruited to the apical surface. Anx2 binds Cdc42, recruiting it to the apical surface. Cdc42 recruits aPKC to the apical surface. Loss of function of PTEN, Anx2, Cdc42, or aPKC prevents normal development of the apical surface and lumen. We conclude that the mechanism of PTEN, PtdIns(4,5)P2, Anx2, Cdc42, and aPKC controls apical plasma membrane and lumen formation.
Collapse
|
27
|
Fujita M, Hawkinson D, King KV, Hall DH, Sakamoto H, Buechner M. The role of the ELAV homologue EXC-7 in the development of the Caenorhabditis elegans excretory canals. Dev Biol 2003; 256:290-301. [PMID: 12679103 DOI: 10.1016/s0012-1606(03)00040-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exc mutations of Caenorhabditis elegans alter the position and shape of the apical cytoskeleton in polarized epithelial cells. Mutants in exc-7 form small cysts throughout the tubular excretory canals that regulate organismal osmolarity. We have cloned the exc-7 gene, the closest nematode homologue to the neural RNA-binding protein ELAV. EXC-7 is expressed in the canal for a short time midway through embryogenesis. Cysts in exc-7 mutants do not develop until several hours later, beginning at the time of hatching. We find that the first larval period is when the canal completes the majority of its outgrowth, and adds new apical cytoskeleton at a rapid rate. Ultrastructural studies show that exc-7 mutant defects resemble loss of beta(H)-spectrin (encoded by sma-1) at the distal ends of the excretory canals. In addition, exc-7 mutants exhibit synergistic excretory canal defects with mutations in sma-1, and EXC-7 binds sma-1 mRNA. These data imply that EXC-7 protein may affect expression of sma-1 and other genes to effect proper development of the excretory canals.
Collapse
Affiliation(s)
- Masaki Fujita
- Department of Biology, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Many organs are composed of epithelial tubes that transport vital fluids. Such tubular organs develop in many different ways and generate tubes of widely varying sizes and structures, but always with the apical epithelial surface lining the lumen. We describe recent progress in several diverse cell culture and genetic models of tube morphogenesis, which suggest apical membrane biogenesis, vesicle fusion, and secretion play central roles in tube formation and growth. We propose a unifying mechanism of tube morphogenesis that has been modified to create tube diversity and describe how defects in the tube size-sensing step can lead to polycystic kidney disease.
Collapse
Affiliation(s)
- Barry Lubarsky
- Howard Hughes Medical Institute, Department of Biochemistry, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
29
|
Abstract
As organisms have evolved in size and complexity, tubular systems have developed to enable the efficient transport of substances into and out of tissues. These tubular systems are generated using strategies that are based on common elements of cell behaviour, including cell polarization, tube migration to target sites, cell-fate diversification and localization of specialized cells to different regions of the tube system. Using examples from both invertebrate and vertebrate systems, this review highlights progress in understanding these basic principles and briefly discusses the possible evolution of strategies to regulate the morphogenesis of tubular systems.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt Medical Center, Nashville, Tennessee 37232-2175, USA.
| | | |
Collapse
|
30
|
Ikeda W, Nakanishi H, Takekuni K, Itoh S, Takai Y. Identification of splicing variants of Frabin with partly different functions and tissue distribution. Biochem Biophys Res Commun 2001; 286:1066-72. [PMID: 11527409 DOI: 10.1006/bbrc.2001.5481] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Frabin is a GDP/GTP exchange protein for Cdc42 small G protein with actin filament-binding activity. Frabin consists of the actin filament-binding domain, the Dbl homology domain, the first pleckstrin homology domain, the FYVE-finger domain, and the second pleckstrin homology domain in this order from the N-terminus. Frabin forms filopodia through direct activation of Cdc42 and lamellipodia through indirect activation of Rac small G protein. We isolated here two smaller splicing variants of frabin and named the original one, middle-size one, and smallest one frabin-alpha, -beta, and -gamma, respectively. Frabin-beta lacked the second pleckstrin homology domain and frabin-gamma lacked the FYVE-finger domain and the second pleckstrin homology domain. These three variants were expressed in all of the tissues examined but their expression levels are different depending on tissues. In L fibroblasts, all the three variants formed filopodia. As to lamellipodia, frabin-alpha formed them; frabin-beta formed them to a small extent; and frabin-gamma did not. In MDCK epithelial cells, frabin-alpha formed microspikes but frabin-beta or -gamma did not.
Collapse
Affiliation(s)
- W Ikeda
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, 565-0871, Japan
| | | | | | | | | |
Collapse
|