1
|
Zhang L, Xia J. N6-Methyladenosine Methylation of mRNA in Cell Apoptosis. Mol Neurobiol 2024; 61:3934-3948. [PMID: 38040996 DOI: 10.1007/s12035-023-03813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Apoptosis, a highly controlled homeostatic mechanism that eliminates single cells without destroying tissue function, occurs during growing development and senescence. N6-methyladenosine (m6A), as the most common internal modification of eukaryotic mRNA, fine-tunes gene expression by regulating many aspects of mRNA metabolism, such as splicing, nucleation, stability, translation, and degradation. Remarkably, recent reports have indicated that aberrant methylation of m6A-related RNA may directly or indirectly influence the expression of apoptosis-related genes, thus regulating the process of cell apoptosis. In this review, we summarized the relationship between m6A modification and cell apoptosis, especially its role in the nervous system, and analyzed the limitations of the current research.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Lee H, Haque S, Gupta R, Kolitz JE, Allen SL, Rai K, Chiorazzi N, Mongini PKA. BCL2 Protein Progressively Declines during Robust CLL Clonal Expansion: Potential Impact on Venetoclax Clinical Efficacy and Insights on Mechanism. LYMPHATICS 2024; 2:50-78. [PMID: 39664277 PMCID: PMC11632909 DOI: 10.3390/lymphatics2020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
CLL B cells express elevated pro-survival BCL2, and its selective inhibitor, venetoclax, significantly reduces leukemic cell load, leading to clinical remission. Nonetheless, relapses occur. This study evaluates the hypothesis that progressively diminished BCL2 protein in cycling CLL cells within patient lymph node niches contributes to relapse. Using CFSE-labeled, purified CLL populations known to respond with vigorous cycling in d6 cultures stimulated with TLR9-activating ODN (oligodeoxynucleotide) + IL15, we show that BCL2 protein progressively declines during consecutive cell divisions. In contrast, MCL1 and survivin are maintained/slightly elevated during cycling. Delayed pulsing of quiescent and activated CLL cultures with selective inhibitors of BCL2 or survivin revealed selective targeting of noncycling and cycling populations, respectively, raising implications for therapy. To address the hypothesis that BCL2-repressive miRs (miR15a/miR16-1), encoded in Chr13, are mechanistically involved, we compared BCL2 protein levels within ODN + IL15-stimulated CLL cells, with/without del(13q), yielding results suggesting these miRs contribute to BCL2 reduction. In support, within ODN-primed CLL cells, an IL15-driven STAT5/PI-3K pathway (required for vigorous cycling) triggers elevated p53 TF protein known to directly activate the miR15a/miR16-1 locus. Furthermore, IL15 signaling elicits the repression of BCL2 mRNA within 24 h. Additional comparisons of del(13q)+ and del(13q)-/- cohorts for elevated p53 TF expression during cycling suggest that a documented miR15a/miR16-1-mediated negative feedback loop for p53 synthesis is active during cycling. Findings that robust CLL cycling associates with progressively decreasing BCL2 protein that directly correlates with decreasing venetoclax susceptibility, combined with past findings that these cycling cells have the greatest potential for activation-induced cytosine deaminase (AICDA)-driven mutations, suggest that venetoclax treatment should be accompanied by modalities that selectively target the cycling compartment without eliciting further mutations. The employment of survivin inhibitors might be such an approach.
Collapse
Affiliation(s)
- Hyunjoo Lee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Shabirul Haque
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Rashmi Gupta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Jonathan E. Kolitz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Steven L. Allen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kanti Rai
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Northwell Health Cancer Institute, Lake Success, NY 11042, USA
| | - Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Northwell Health Cancer Institute, Lake Success, NY 11042, USA
| | - Patricia K. A. Mongini
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
3
|
Morelli C, Chiodo C, Nocito MC, Cormace A, Catalano S, Sisci D, Sirianni R, Casaburi I, Andò S, Lanzino M. Androgens Modulate Bcl-2 Agonist of Cell Death (BAD) Expression and Function in Breast Cancer Cells. Int J Mol Sci 2023; 24:13464. [PMID: 37686282 PMCID: PMC10487823 DOI: 10.3390/ijms241713464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Androgen receptor (AR) expression in estrogen receptor-positive (ER+) breast cancer (BC) correlates with lower tumor grade and a better clinical outcome. Additionally, in normal mammary epithelium or ER+ BC preclinical models, androgens counteract basal/ER-dependent proliferation. Here, we report an additional mechanism, underlining the protective role exerted by AR. Specifically, the activation of intracellular AR upregulates the Bcl-2-family protein BAD, and TCGA database analyses show that in ER+ BC, BAD expression is associated with better disease-free survival. Ligand-activated AR influences its own and BAD cellular compartmentalization by enhancing levels in the nucleus, as well as in mitochondrial fractions. In both compartments, BAD exerts unconventional functions. In the nucleus, BAD and AR physically interact and, upon androgen stimulation, are recruited at the AP-1 and ARE sites within the cyclin D1 promoter region, contributing to explaining the anti-proliferative effect of androgens in BC cells. Androgens cause an enrichment in BAD and AR content in the mitochondria, correlated with a decrease in mitochondrial function. Thus, we have defined a novel mechanism by which androgens modulate BAD expression, its mitochondria localization, and nuclear content to force its ability to act as a cell cycle inhibitor, strengthening the protective role of androgen signaling in estrogen-responsive BCs.
Collapse
Affiliation(s)
- Catia Morelli
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Chiara Chiodo
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Marta Claudia Nocito
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
| | - Alessandro Cormace
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Stefania Catalano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Diego Sisci
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Rosa Sirianni
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
| | - Ivan Casaburi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
| | - Sebastiano Andò
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Marilena Lanzino
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| |
Collapse
|
4
|
Yang Y, Chen T, Liu J, Chen S, Cai R, Wu L, Hu J, Lin Q, Qi X, Liu Z, Cheng Y. Integrated chemical profiling, network pharmacology and pharmacological evaluation to explore the potential mechanism of Xinbao pill against myocardial ischaemia-reperfusion injury. PHARMACEUTICAL BIOLOGY 2022; 60:255-273. [PMID: 35148221 PMCID: PMC8845110 DOI: 10.1080/13880209.2022.2025859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT Xinbao pill (XBW), a traditional Chinese herbal formula, is widely used in clinical treatment for cardiovascular diseases; however, the therapeutic effect of XBW on myocardial ischaemia-reperfusion injury (MI/RI) is unclear. OBJECTIVE This study evaluates the cardioprotective effect and molecular mechanism of XBW against MI/RI. MATERIALS AND METHODS A phytochemistry-based network pharmacology analysis was used to uncover the mechanism of XBW against MI/RI. Ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was used to identify chemicals. MI/RI-related targets of XBW were predicted using TargetNet database, OMIC database, etc. Sprague-Dawley (SD) rats under anterior descending artery ligation model were divided into Sham, MI/RI and XBW (180 mg/kg, intragastric administration). After 30 min ischaemia and 24 h reperfusion, heart tissues were collected for measurement of myocardial infarct size. After oxygen glucose deprivation for 6 h, H9c2 cells were treated with XBW (60, 240 and 720 μg/mL) and diazoxide (100 μM) for 18 h of reperfusion. RESULTS Thirty-seven chemicals were identified in XBW; 50 MI/RI-related targets of XBW were predicted using indicated databases. XBW significantly reduced infarct size and creatine kinase MB (CK-MB) level after MI/RI; XBW protected H9c2 cells against OGD/R injury. Gene ontology (GO) and KEGG pathway enrichment analyses by String database showed that the cardioprotective effect of XBW was associated with autophagy and apoptosis signalling pathways. Experimental investigation also verified that XBW suppressed apoptosis, autophagy and endoplasmic reticulum (ER) stress. CONCLUSIONS XBW showed therapeutic effects against MI/RI mainly via attenuating apoptosis though suppressing excessive autophagy and ER stress.
Collapse
Affiliation(s)
- Ying Yang
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ting Chen
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Jiaming Liu
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Sixuan Chen
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongqing Cai
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Liqiong Wu
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Jiexiong Hu
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Qiongying Lin
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Xiaoxiao Qi
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- CONTACT Zhongqiu Liu
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Yuanyuan Cheng School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Sela Y, Li J, Maheswaran S, Norgard R, Yuan S, Hubbi M, Doepner M, Xu JP, Ho E, Measaros C, Sheehan C, Croley G, Muir A, Blair IA, Shalem O, Dang CV, Stanger BZ. Bcl-xL Enforces a Slow-Cycling State Necessary for Survival in the Nutrient-Deprived Microenvironment of Pancreatic Cancer. Cancer Res 2022; 82:1890-1908. [PMID: 35315913 PMCID: PMC9117449 DOI: 10.1158/0008-5472.can-22-0431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022]
Abstract
Solid tumors possess heterogeneous metabolic microenvironments where oxygen and nutrient availability are plentiful (fertile regions) or scarce (arid regions). While cancer cells residing in fertile regions proliferate rapidly, most cancer cells in vivo reside in arid regions and exhibit a slow-cycling state that renders them chemoresistant. Here, we developed an in vitro system enabling systematic comparison between these populations via transcriptome analysis, metabolomic profiling, and whole-genome CRISPR screening. Metabolic deprivation led to pronounced transcriptional and metabolic reprogramming, resulting in decreased anabolic activities and distinct vulnerabilities. Reductions in anabolic, energy-consuming activities, particularly cell proliferation, were not simply byproducts of the metabolic challenge, but rather essential adaptations. Mechanistically, Bcl-xL played a central role in the adaptation to nutrient and oxygen deprivation. In this setting, Bcl-xL protected quiescent cells from the lethal effects of cell-cycle entry in the absence of adequate nutrients. Moreover, inhibition of Bcl-xL combined with traditional chemotherapy had a synergistic antitumor effect that targeted cycling cells. Bcl-xL expression was strongly associated with poor patient survival despite being confined to the slow-cycling fraction of human pancreatic cancer cells. These findings provide a rationale for combining traditional cancer therapies that target rapidly cycling cells with those that target quiescent, chemoresistant cells associated with nutrient and oxygen deprivation. SIGNIFICANCE The majority of pancreatic cancer cells inhabit nutrient- and oxygen-poor tumor regions and require Bcl-xL for their survival, providing a compelling antitumor metabolic strategy.
Collapse
Affiliation(s)
- Yogev Sela
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Jinyang Li
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Shivahamy Maheswaran
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Robert Norgard
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Salina Yuan
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Maimon Hubbi
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Miriam Doepner
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Jimmy P. Xu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Elaine Ho
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Clementina Measaros
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Colin Sheehan
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Grace Croley
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Ian A. Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chi V. Dang
- Systems and Computational Biology Center and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, 19104, USA
- Ludwig Institute for Cancer Research, New York, 10016, USA
| | - Ben Z. Stanger
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
6
|
Stress Relief Techniques: p38 MAPK Determines the Balance of Cell Cycle and Apoptosis Pathways. Biomolecules 2021; 11:biom11101444. [PMID: 34680077 PMCID: PMC8533283 DOI: 10.3390/biom11101444] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Protein signaling networks are formed from diverse and inter-connected cell signaling pathways converging into webs of function and regulation. These signaling pathways both receive and conduct molecular messages, often by a series of post-translation modifications such as phosphorylation or through protein-protein interactions via intrinsic motifs. The mitogen activated protein kinases (MAPKs) are components of kinase cascades that transmit signals through phosphorylation. There are several MAPK subfamilies, and one subfamily is the stress-activated protein kinases, which in mammals is the p38 family. The p38 enzymes mediate a variety of cellular outcomes including DNA repair, cell survival/cell fate decisions, and cell cycle arrest. The cell cycle is itself a signaling system that precisely controls DNA replication, chromosome segregation, and cellular division. Another indispensable cell function influenced by the p38 stress response is programmed cell death (apoptosis). As the regulators of cell survival, the BCL2 family of proteins and their dynamics are exquisitely sensitive to cell stress. The BCL2 family forms a protein-protein interaction network divided into anti-apoptotic and pro-apoptotic members, and the balance of binding between these two sides determines cell survival. Here, we discuss the intersections among the p38 MAPK, cell cycle, and apoptosis signaling pathways.
Collapse
|
7
|
Opydo-Chanek M, Cichoń I, Rak A, Kołaczkowska E, Mazur L. The pan-Bcl-2 inhibitor obatoclax promotes differentiation and apoptosis of acute myeloid leukemia cells. Invest New Drugs 2020; 38:1664-1676. [PMID: 32367199 PMCID: PMC7575496 DOI: 10.1007/s10637-020-00931-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
One of the key features of acute myeloid leukemia (AML) is the arrest of differentiation at the early progenitor stage of myelopoiesis. Therefore, the identification of new agents that could overcome this differentiation block and force leukemic cells to enter the apoptotic pathway is essential for the development of new treatment strategies in AML. Regarding this, herein we report the pro-differentiation activity of the pan-Bcl-2 inhibitor, obatoclax. Obatoclax promoted differentiation of human AML HL-60 cells and triggered their apoptosis in a dose- and time-dependent manner. Importantly, obatoclax-induced apoptosis was associated with leukemic cell differentiation. Moreover, decreased expression of Bcl-2 protein was observed in obatoclax-treated HL-60 cells. Furthermore, differentiation of these cells was accompanied by the loss of their proliferative capacity, as shown by G0/G1 cell cycle arrest. Taken together, these findings indicate that the anti-AML effects of obatoclax involve not only the induction of apoptosis but also differentiation of leukemic cells. Therefore, obatoclax represents a promising treatment for AML that warrants further exploration.
Collapse
Affiliation(s)
- Małgorzata Opydo-Chanek
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Iwona Cichoń
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Elżbieta Kołaczkowska
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Lidia Mazur
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
8
|
Saalim M, Resham S, Manzoor S, Ahmad H, Bangash TA, Latif A, Jaleel S. IL-22 in hepatocyte's survival of Pakistani patients with end stage liver disease: an insight into IL 22 mediated hepato-regenerative pathway. Mol Biol Rep 2019; 46:1127-1138. [PMID: 30603953 DOI: 10.1007/s11033-018-04573-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
Hepatitis is the principal cause of hepatocellular carcinoma (HCC) and decompensated cirrhosis. HCC is amongst the leading causes of deaths worldwide. Current therapeutic options have proven to be unsuccessful in treating this disease due to multifactorial nature of the disease. The present study was designed to investigate the role of IL-22 mediated survival of hepatocytes during cirrhosis and HCC. Resected/explanted liver tissue samples of patients with End Stage Liver Disease were obtained from Hepato-Pancreato-Biliary Liver Transplant Unit of Sheikh Zayed Hospital, Lahore, Pakistan. Qualitative expression of IL-22, SOCS3, and IL-22 induced anti-apoptotic protein, B-cell lymphoma extra-large (Bcl-xL), were evaluated by Immunohistochemical analysis (IHC). The IHC analysis revealed significantly high expression of IL-22, SOCS3, and Bcl-xL within explanted livers of HCC patients. Overall, the expression of SOCS3 was higher than any other protein, and the expression of all proteins showed significant variation in different group of patients based on clincopathological features. The results of the current study indicated that IL-22 mediated JAK-STAT pathway i.e. liver regeneration and healing is dependent on the disease progression and type of agent responsible for causing the infection in the first place. However, quantitative analysis of these factors in future can provide further evidence of the role of this pathway in HCC for development of anti-HCC therapies.
Collapse
Affiliation(s)
- Muhammad Saalim
- Atta-ur-Rehman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Saleha Resham
- Atta-ur-Rehman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rehman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Hassam Ahmad
- Hepato-Pancreato-Biliary Liver Transplant Unit, Shaikh Zayed Hospital, Lahore, 54000, Punjab, Pakistan
| | - Tariq Ali Bangash
- Hepato-Pancreato-Biliary Liver Transplant Unit, Shaikh Zayed Hospital, Lahore, 54000, Punjab, Pakistan
| | - Amir Latif
- Hepato-Pancreato-Biliary Liver Transplant Unit, Shaikh Zayed Hospital, Lahore, 54000, Punjab, Pakistan
| | - Shahla Jaleel
- Department of Histopathology, Shaikh Zayed Hospital, Lahore, 54000, Punjab, Pakistan
| |
Collapse
|
9
|
Khayyat LI, Essawy AE, Sorour JM, Soffar A. Sunset Yellow and Allura Red modulate Bcl2 and COX2 expression levels and confer oxidative stress-mediated renal and hepatic toxicity in male rats. PeerJ 2018; 6:e5689. [PMID: 30280050 PMCID: PMC6166620 DOI: 10.7717/peerj.5689] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022] Open
Abstract
Studies on the adverse health effects caused by azo dyes are insufficient and quite contradictory. This work aims to investigate the possible toxic effect of two types of widely used food additives, Sunset Yellow and Allura Red, by assessing the physiological, histopathological and ultrastructural changes in the liver and kidney. Also, we investigated the genotoxic effect of both dyes on white blood cells. Thirty adult male albino rats were divided into three groups of 10 animals each: control (received water), Sunset Yellow-treated (2.5 mg/kg body weight) and Allura Red-treated (seven mg/kg body weight). The doses were orally applied for 4 weeks. Our results indicated an increase in the biochemical markers of hepatic and renal function (Aspartate aminotransferase, alanine aminotransferase, urea, uric acid and creatinine) in animals administered with the azo dyes. We also observed a noticeable increase in MDA and a marked decrease in total antioxidant levels in azo dye-treated animals compared to controls. Conversely, both dyes adversely affected the liver and kidney of albino rats and altered their histological and fine structure, with downregulation of Bcl2 and upregulation of COX2 expression. Our comet assay results showed a significant elevation in the fold change of tail moment in response to application of Sunset Yellow but not Allura Red. Collectively, we show that Sunset Yellow and Allura Red cause histopathological and physiological aberrations in the liver and kidney of male Wistar albino rats. Moreover, Sunset Yellow but not Allura Red induces a potential genotoxic effect.
Collapse
Affiliation(s)
- Latifa I Khayyat
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Jehan M Sorour
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed Soffar
- Division of Molecular Biology, Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
De Amicis F, Guido C, Santoro M, Giordano F, Donà A, Rizza P, Pellegrino M, Perrotta I, Bonofiglio D, Sisci D, Panno ML, Tramontano D, Aquila S, Andò S. Ligand activated progesterone receptor B drives autophagy-senescence transition through a Beclin-1/Bcl-2 dependent mechanism in human breast cancer cells. Oncotarget 2018; 7:57955-57969. [PMID: 27462784 PMCID: PMC5295403 DOI: 10.18632/oncotarget.10799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/09/2016] [Indexed: 12/21/2022] Open
Abstract
Loss of progesterone-receptors (PR) expression is associated with breast cancer progression. Herein we provide evidence that OHPg/PR-B through Beclin-1 evoke autophagy-senescence transition, in breast cancer cells. Specifically, OHPg increases Beclin-1 expression through a transcriptional mechanism due to the occupancy of Beclin-1 promoter by PR-B, together with the transcriptional coactivator SRC-2. This complex binds at a canonical half progesterone responsive element, which is fundamental for OHPg effects, as shown by site-directed mutagenesis. Beside, OHPg via non-genomic action rapidly activates JNK, which phosphorylates Bcl-2, producing the functional release from Beclin-1 interaction. This is not linked to an efficient autophagic flux, since p62 levels, marker of degradation via lysosomes, were not reduced after sustained OHPg stimulus. Instead, the cell cycle inhibitor p27 was induced, together with an irreversible G1 arrest, hallmark of cellular senescence. Specifically the increase of senescence-associated β-galactosidase activity was blocked by Bcl-2 siRNA but also by Beclin-1 siRNA. Collectively these findings support the importance of PR-B expression in breast cancer cells, thus targeting PR-B may be a useful strategy to provide additional approaches to existing therapies for breast cancer patients.
Collapse
Affiliation(s)
- Francesca De Amicis
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Carmela Guido
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Marta Santoro
- Centro Sanitario, University of Calabria, Rende, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Ada Donà
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Pietro Rizza
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | | | - Daniela Bonofiglio
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Diego Sisci
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Donatella Tramontano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Saveria Aquila
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Sebastiano Andò
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| |
Collapse
|
11
|
Klintman M, Buus R, Cheang MCU, Sheri A, Smith IE, Dowsett M. Changes in Expression of Genes Representing Key Biologic Processes after Neoadjuvant Chemotherapy in Breast Cancer, and Prognostic Implications in Residual Disease. Clin Cancer Res 2018; 22:2405-16. [PMID: 27179111 DOI: 10.1158/1078-0432.ccr-15-1488] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/20/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The primary aim was to derive evidence for or against the clinical importance of several biologic processes in patients treated with neoadjuvant chemotherapy (NAC) by assessing expression of selected genes with prior implications in prognosis or treatment resistance. The secondary aim was to determine the prognostic impact in residual disease of the genes' expression. EXPERIMENTAL DESIGN Expression levels of 24 genes were quantified by NanoString nCounter on formalin-fixed paraffin-embedded residual tumors from 126 patients treated with NAC and 56 paired presurgical biopsies. The paired t test was used for testing changes in gene expression, and Cox regression and penalized elastic-net Cox Regression for estimating HRs. RESULTS After NAC, 12 genes were significantly up- and 8 downregulated. Fourteen genes were significantly associated with time to recurrence in univariable analysis in residual disease. In a multivariable model, ACACB, CD3D, MKI67, and TOP2A added prognostic value independent of clinical ER(-), PgR(-), and HER2(-) status. In ER(+)/HER2(-) patients, ACACB, PAWR, and ERBB2 predicted outcome, whereas CD3D and PAWR were prognostic in ER(-)/HER2(-) patients. By use of elastic-net analysis, a 6-gene signature (ACACB, CD3D, DECORIN, ESR1, MKI67, PLAU) was identified adding prognostic value independent of ER, PgR, and HER2. CONCLUSIONS Most of the tested genes were significantly enriched or depleted in response to NAC. Expression levels of genes representing proliferation, stromal activation, metabolism, apoptosis, stemcellness, immunologic response, and Ras-ERK activation predicted outcome in residual disease. The multivariable gene models identified could, if validated, be used to identify patients needing additional post-neoadjuvant treatment to improve prognosis. Clin Cancer Res; 22(10); 2405-16. ©2016 AACR.
Collapse
Affiliation(s)
- Marie Klintman
- Academic Department of Biochemistry, Royal Marsden Hospital, London, United Kingdom. Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Richard Buus
- Academic Department of Biochemistry, Royal Marsden Hospital, London, United Kingdom. Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Maggie Chon U Cheang
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Amna Sheri
- Breast Unit, Royal Marsden Hospital, London, United Kingdom
| | - Ian E Smith
- Breast Unit, Royal Marsden Hospital, London, United Kingdom
| | - Mitch Dowsett
- Academic Department of Biochemistry, Royal Marsden Hospital, London, United Kingdom. Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom. Breast Unit, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
12
|
Bakrania AK, Variya BC, Patel SS. Role of β-Interferon Inducer (DEAE-Dextran) in Tumorigenesis by VEGF and NOTCH1 Inhibition along with Apoptosis Induction. Front Pharmacol 2017; 8:930. [PMID: 29311933 PMCID: PMC5742137 DOI: 10.3389/fphar.2017.00930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 12/08/2017] [Indexed: 12/26/2022] Open
Abstract
As a novel target for breast cancer, interferon inducers have found its role as anti-angiogenic agents with diethylaminoethyl dextran (DEAE-Dextran) being a molecule used for centuries as a transfection agent. Our results herein offer an explanation for the emergence of DEAE-Dextran as an anti-tumor agent for TNBC with in-depth mechanistic approach as an anti-angiogenic molecule. DEAE-Dextran has found to possess cytotoxic activity demonstrated during the various in vitro cytotoxicity assays; moreover, as an anti-oxidant, DEAE-Dextran has shown to possess excellent reactive oxygen species scavenging activity. The interferon inducing capacity of DEAE-Dextran was determined qualitatively as well as quantitatively specifically demonstrating overexpression of β-interferon. As a measure of anti-proliferative activity, DEAE-Dextran exhibited reduced ki67, p53, and PCNA levels. Also, overexpression of CK5/6 and p63 in DEAE-Dextran treated animals indicated improvement in breast cell morphology along with an improvement in cell-cell adhesion by virtue of upregulation of β-catenin and E-cadherin. Anti-angiogenic property of DEAE-Dextran was concluded by the downregulation of CD31, VEGF, and NOTCH1 both in vivo and in vitro. Further, apoptosis due to DEAE-Dextran, initially determined by downregulation of Bcl2, was confirmed with flow cytometry. Overall, results are defensive of DEAE-Dextran as an emerging anti-tumor agent with mechanisms pertaining to β-interferon induction with probable VEGF and NOTCH1 inhibition as well as apoptosis which still needs to be studied in further depth.
Collapse
Affiliation(s)
- Anita K. Bakrania
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Bhavesh C. Variya
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
- Zydus Research Centre, Ahmedabad, India
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
13
|
He D, Jiang Z, Tian Y, Han H, Xia M, Wei W, Zhang L, Chen J. Genetic variants in IL15 promoter affect transcription activity and intramuscular fat deposition in longissimus dorsi muscle of pigs. Anim Genet 2017; 49:19-28. [PMID: 29168191 DOI: 10.1111/age.12611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 01/11/2023]
Abstract
Intramuscular fat (IMF) content is a key aspect of pork quality. Elucidation of intramuscular adipocyte regulation mechanisms is important for improving IMF content. Intramuscular adipocytes are dispersed among muscle fibers, so they are inclined to be affected by muscle-derived factors. Interleukin-15 is a major muscle-secreted factor. In this study, the genetic and physiological impacts of IL15 on adipogenesis is investigated. The promoter region of IL15 was scanned by comparative sequencing using two DNA pools of high- and low-IMF individuals. Two SNPs, c.-342C>T (ss2137497757) and c.-334G>A (ss2137497756) (the translation start site is designated as +1), were identified with reverse allele distribution in these two groups. Genotyping by allele-specific PCR revealed that the two SNPs were completely linked. The IMF content of TA/TA individuals was lower than that for CG/CG ones, whereas the IL15 expression level was higher in T-A/T-A individuals. Luciferase assaying also revealed that the T-A haplotype promoter had higher transcription activity. Meanwhile, the effect of interleukin-15 on adipocyte differentiation was further assessed in vitro. Results showed that interleukin-15 suppressed preadipocyte proliferation in a dose-dependent manner. The cell cycle of preadipocytes was arrested, and apoptosis was induced. Oil Red O staining and triglyceride quantification indicated that adipocyte differentiation was also inhibited by interleukin-15. The mRNA levels of PPARG and FABP4 decreased markably upon interleukin-15 treatment. Taken together, we identified two completely linked SNPs in the porcine IL15 promoter region that could alter IL15 transcription activity. As interleukin-15 can inhibit porcine adipocyte differentiation, these promoter mutations could affect IMF deposition by producing differential levels of muscle-derived interleukin-15.
Collapse
Affiliation(s)
- D He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - H Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - M Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - W Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - L Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - J Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Gabellini C, Trisciuoglio D, Del Bufalo D. Non-canonical roles of Bcl-2 and Bcl-xL proteins: relevance of BH4 domain. Carcinogenesis 2017; 38:579-587. [PMID: 28203756 DOI: 10.1093/carcin/bgx016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/14/2017] [Indexed: 02/07/2023] Open
Abstract
Bcl-2 protein family is constituted by multidomain members originally identified as modulators of programmed cell death and whose expression is frequently misbalanced in cancer cells. The lead member Bcl-2 and its homologue Bcl-xL proteins are characterized by the presence of all four conserved BH domain and exert their antiapoptotic role mainly through the involvement of BH1, BH2 and BH3 homology domains, that mediate the interaction with the proapoptotic members of the same Bcl-2 family. The N-terminal BH4 domain of Bcl-2 and Bcl-xL is responsible for the interaction with other proteins that do not belong to Bcl-2 protein family. Beyond a classical role in inhibiting apoptosis, BH4 domain has been characterized as a crucial regulator of other important cellular functions attributed to Bcl-2 and Bcl-xL, including proliferation, autophagy, differentiation, DNA repair, cell migration, tumor progression and angiogenesis. During the last two decades a strong effort has been made to dissect the molecular pathways involved the capability of BH4 domain to regulate the canonical antiapoptotic and the non-canonical activities of Bcl-2 and Bcl-xL, creating the basis for the development of novel anticancer agents targeting this domain. Indeed, recent evidences obtained on in vitro and in vivo model of different cancer histotypes are confirming the promising therapeutic potential of BH4 domain inhibitors supporting their future employment as a novel anticancer strategy.
Collapse
Affiliation(s)
- Chiara Gabellini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy and.,Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
15
|
ZNF509S1 downregulates PUMA by inhibiting p53K382 acetylation and p53-DNA binding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:962-972. [DOI: 10.1016/j.bbagrm.2017.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/20/2017] [Accepted: 07/26/2017] [Indexed: 11/21/2022]
|
16
|
Gross A, Katz SG. Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ 2017; 24:1348-1358. [PMID: 28234359 PMCID: PMC5520452 DOI: 10.1038/cdd.2017.22] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 02/06/2023] Open
Abstract
The BCL-2 family proteins are major regulators of the apoptosis process, but the mechanisms by which they regulate this process are only partially understood. It is now well documented that these proteins play additional non-apoptotic roles that are likely to be related to their apoptotic roles and to provide important clues to cracking their mechanisms of action. It seems that these non-apoptotic roles are largely related to the activation of cellular survival pathways designated to maintain or regain cellular survival, but, if unsuccessful, will switch over into a pro-apoptotic mode. These non-apoptotic roles span a wide range of processes that include the regulation of mitochondrial physiology (metabolism, electron transport chain, morphology, permeability transition), endoplasmic reticulum physiology (calcium homeostasis, unfolded protein response (UPR)), nuclear processes (cell cycle, DNA damage response (DDR)), whole-cell metabolism (glucose and lipid), and autophagy. Here we review all these different non-apoptotic roles, make an attempt to link them to the apoptotic roles, and present many open questions for future research directions in this fascinating field.
Collapse
Affiliation(s)
- Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, 100 Herzel Street, Rehovot, Israel,Department of Biological Regulation, Weizmann Institute of Science, 100 Herzel Street, Rehovot 76100, Israel. Tel: +972 8 9343656; Fax: +972 8 934 4116; E-mail:
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, Brady Memorial Laboratory 127A, New Haven, CT 06520, USA,Department of Pathology, Yale University School of Medicine, 310 Cedar Street, Brady Memorial Laboratory 127A, New Haven CT 06520, USA. Tel: +203 785 2757; E-mail:
| |
Collapse
|
17
|
Hatok J, Racay P. Bcl-2 family proteins: master regulators of cell survival. Biomol Concepts 2017; 7:259-70. [PMID: 27505095 DOI: 10.1515/bmc-2016-0015] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The most prominent function of proteins of the Bcl-2 family is regulation of the initiation of intrinsic (mitochondrial) pathways of apoptosis. However, recent research has revealed that in addition to regulation of mitochondrial apoptosis, proteins of the Bcl-2 family play important roles in regulating other cellular pathways with a strong impact on cell survival like autophagy, endoplasmic reticulum (ER) stress response, intracellular calcium dynamics, cell cycle progression, mitochondrial dynamics and energy metabolism. This review summarizes the recent knowledge about functions of Bcl-2 family proteins that are related to cell survival.
Collapse
|
18
|
Wu JM, Oraee A, Doonan BB, Pinto JT, Hsieh TC. Activation of NQO1 in NQO1*2 polymorphic human leukemic HL-60 cells by diet-derived sulforaphane. Exp Hematol Oncol 2016; 5:27. [PMID: 27625902 PMCID: PMC5020469 DOI: 10.1186/s40164-016-0056-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
Background The NAD(P)H: quinone oxidoreductase (NQO1) confers protection against semiquinones and also elicits oxidative stress. The C609T polymorphism of the NQO1 gene, designated NQO1*2, significantly reduces its enzymatic activity due to rapid degradation of protein. Since down regulation of NQO1 mRNA expression correlates with increased susceptibility for developing different types of cancers, we investigated the link between leukemia and the NQO1*2 genotype by mining a web-based microarray dataset, ONCOMINE. Phytochemicals prevent DNA damage through activation of phase II detoxification enzymes including NQO1. Whether NQO1 expression/activity in leukemia cells that carry the labile NQO1*2 genotype can be induced by broccoli-derived phytochemical sulforaphane (SFN) is currently unknown. Methods and Results The ONCOMINE query showed that: (1) acute lymphoblastic leukemia and chronic myelogenous leukemia are associated with reduced NQO1 levels, and (2) under-expressed NQO1 was found in human HL-60 leukemia cell line containing the heterozygous NQO1*2 polymorphism. We examined induction of NQO1 activity/expression by SFN in HL-60 cells. A dose-dependent increase in NQO1 level/activity is accompanied by upregulation of the transcription factor, Nrf2, following 1–10 μM SFN treatment. Treatment with 25 µM SFN drastically reduced NQO1 levels, inhibited cell proliferation, caused sub-G1 cell arrest, and induced apoptosis, and a decrease in the levels of the transcription factor, nuclear factor-κB (NFκB). Conclusions Up to 10 μM of SFN increases NQO1 expression and suppresses HL-60 cell proliferation whereas ≥ 25 μM of SFN induces apoptosis in HL-60 cells. Further, SFN treatment restores NQO1 activity/levels in HL-60 cells expressing the NQO1*2 genotype.
Collapse
Affiliation(s)
- Joseph M Wu
- Room 147, Department of Biochemistry and Molecular Biology, Basic Sciences Building, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| | - Ardalan Oraee
- Room 147, Department of Biochemistry and Molecular Biology, Basic Sciences Building, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| | - Barbara B Doonan
- Room 147, Department of Biochemistry and Molecular Biology, Basic Sciences Building, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| | - John T Pinto
- Room 147, Department of Biochemistry and Molecular Biology, Basic Sciences Building, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| | - Tze-Chen Hsieh
- Room 147, Department of Biochemistry and Molecular Biology, Basic Sciences Building, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| |
Collapse
|
19
|
Dynamic Bcl-xL (S49) and (S62) Phosphorylation/Dephosphorylation during Mitosis Prevents Chromosome Instability and Aneuploidy in Normal Human Diploid Fibroblasts. PLoS One 2016; 11:e0159091. [PMID: 27398719 PMCID: PMC4939973 DOI: 10.1371/journal.pone.0159091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/27/2016] [Indexed: 02/02/2023] Open
Abstract
Bcl-xL proteins undergo dynamic phosphorylation/dephosphorylation on Ser49 and Ser62 residues during mitosis. The expression of Bcl-xL(S49A), (S62A) and dual (S49/62A) phosphorylation mutants in tumor cells lead to severe mitotic defects associated with multipolar spindle, chromosome lagging and bridging, and micro-, bi- and multi-nucleated cells. Because the above observations were made in tumor cells which already display genomic instability, we now address the question: will similar effects occur in normal human diploid cells? We studied normal human diploid BJ foreskin fibroblast cells expressing Bcl-xL (wild type), (S49A), (S49D), (S62A), (S62D) and the dual-site (S49/62A) and (S49/62D) mutants. Cells expressing S49 and/or S62 phosphorylation mutants showed reduced kinetics of cell population doubling. These effects on cell population doubling kinetics correlated with early outbreak of senescence with no impact on the cell death rate. Senescent cells displayed typical senescence-associated phenotypes including high-level of senescence-associated β-galactosidase activity, interleukin-6 (IL-6) secretion, tumor suppressor p53 and cyclin-dependent kinase inhibitor p21Waf1/Cip1 activation as well as γH2A.X-associated nuclear chromatin foci. Fluorescence in situ hybridization analysis and Giemsa-banded karyotypes revealed that the expression of Bcl-xL phosphorylation mutants in normal diploid BJ cells provoked chromosome instability and aneuploidy. These findings suggest that dynamic Bcl-xL(S49) and (S62) phosphorylation/dephosphorylation cycles are important in the maintenance of chromosome integrity during mitosis in normal cells. They could impact future strategies aiming to develop and identify compounds that could target not only the anti-apoptotic domain of Bcl-xL protein, but also its mitotic domain for cancer therapy.
Collapse
|
20
|
Singh K, Briggs JM. Functional Implications of the spectrum of BCL2 mutations in Lymphoma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 769:1-18. [PMID: 27543313 DOI: 10.1016/j.mrrev.2016.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 12/12/2022]
Abstract
Mutations in the translocated BCL2 gene are often detected in diffuse large B-cell lymphomas (DLBCLs), indicating both their significance and pervasiveness. Large series genome sequencing of more than 200 DLBCLs has identified frequent BCL2 mutations clustered in the exons coding for the BH4 domain and the folded loop domain (FLD) of the protein. However, BCL2 mutations are mostly contemplated to represent bystander events with negligible functional impact on the pathogenesis of DLBCL. BCL2 arbitrates apoptosis through a classic interaction between its hydrophobic groove forming BH1-3 domains and the BH3 domain of pro-apoptotic members of the BCL2 family. The effects of mutations are mainly determined by the ability of the mutated BCL2 to mediate apoptosis by this inter-member protein binding. Nevertheless, BCL2 regulates diverse non-canonical pathways that are unlikely to be explained by canonical interactions. In this review, first, we identify recurrent missense mutations in the BH4 domain and the FLD reported in independent lymphoma sequencing studies. Second, we discuss the probable consequences of mutations on the binding ability of BCL2 to non-BCL2 family member proteins crucial for 1) maintaining mitochondrial energetics and calcium hemostasis such as VDAC, IP3R, and RyR and 2) oncogenic pathways implicated in the acquisition of the 'hallmarks of cancer' such as SOD, Raf-1, NFAT, p53, HIF-1α, and gelsolin. The study also highlights the likely ramifications of mutations on binding of BCL2 antagonists and BH3 profiling. Based on our analysis, we believe that an in-depth focus on BCL2 interactions mediated by these domains is warranted to elucidate the functional significance of missense mutations in DLBCL. In summary, we provide an extensive overview of the pleiotropic functions of BCL2 mediated by its physical binding interaction with other proteins and the various ways BCL2 mutations would affect the normal function of the cell leading to the development of DLBCL.
Collapse
Affiliation(s)
- Khushboo Singh
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - James M Briggs
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA.
| |
Collapse
|
21
|
Affinity purification-mass spectrometry analysis of bcl-2 interactome identified SLIRP as a novel interacting protein. Cell Death Dis 2016; 7:e2090. [PMID: 26866271 PMCID: PMC4849145 DOI: 10.1038/cddis.2015.357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023]
Abstract
Members of the bcl-2 protein family share regions of sequence similarity, the bcl-2 homology (BH) domains. Bcl-2, the most studied member of this family, has four BH domains, BH1–4, and has a critical role in resistance to antineoplastic drugs by regulating the mitochondrial apoptotic pathway. Moreover, it is also involved in other relevant cellular processes such as tumor progression, angiogenesis and autophagy. Deciphering the network of bcl-2-interacting factors should provide a critical advance in understanding the different functions of bcl-2. Here, we characterized bcl-2 interactome by mass spectrometry in human lung adenocarcinoma cells. In silico functional analysis associated most part of the identified proteins to mitochondrial functions. Among them we identified SRA stem–loop interacting RNA-binding protein, SLIRP, a mitochondrial protein with a relevant role in regulating mitochondrial messenger RNA (mRNA) homeostasis. We validated bcl-2/SLIRP interaction by immunoprecipitation and immunofluorescence experiments in cancer cell lines from different histotypes. We showed that, although SLIRP is not involved in mediating bcl-2 ability to protect from apoptosis and oxidative damage, bcl-2 binds and stabilizes SLIRP protein and regulates mitochondrial mRNA levels. Moreover, we demonstrated that the BH4 domain of bcl-2 has a role in maintaining this binding.
Collapse
|
22
|
Zhong D, Gu C, Shi L, Xun T, Li X, Liu S, Yu L. Obatoclax induces G1/G0-phase arrest via p38/p21(waf1/Cip1) signaling pathway in human esophageal cancer cells. J Cell Biochem 2015; 115:1624-35. [PMID: 24788582 DOI: 10.1002/jcb.24829] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/29/2014] [Indexed: 12/15/2022]
Abstract
Pan-Bcl-2 family inhibitor obatoclax has been demonstrated to be effective against various cancers, of which the mechanism of action is not fully understood. In this study, we demonstrate that obatoclax suppressed esophageal cancer cell viability with concomitant G1/G0-phase cell cycle arrest. At the tested concentrations (1/2 IC50 and IC50), obatoclax neither induced PARP cleavage nor increased the Annexin V-positive population, suggesting G1/G0-phase arrest rather than apoptosis accounts for most of the reduction of cell viability produced by obatoclax. Double knockdown of Bak and Bax by small interference RNA failed to block obatoclax-induced G1/G0-phase arrest, implying its role in cell cycle progression is Bak/Bax-independent. The cell cycle arresting effect of obatoclax was associated with up-regulation of p21(waf1/Cip1). Knockdown of p21(waf1/Cip1) significantly attenuated obatoclax-induced G1/G0-phase arrest. Although obatoclax stimulated phosphorylation of Erk, p38, and JNK, pharmacological inhibition of p38 but not Erk or JNK blocked obatoclax-induced G1/G0-phase arrest. Moreover, knockdown of p38 abolished the cell cycle arresting effect of obatoclax. In consistent with this finding, inhibition of p38 blocked obatoclax-induced p21(waf1/Cip1) expression while inhibition of Erk or JNK failed to exert similar effect. To conclude, these findings suggest that obatoclax induced cell cycle arrest via p38/p21(waf1/Cip1) signaling pathway. This study may shed a new light on the anti-cancer activity of obatoclax in relation to cell cycle arrest.
Collapse
Affiliation(s)
- Desheng Zhong
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Cekanova M, Fernando RI, Siriwardhana N, Sukhthankar M, Parra CDL, Woraratphoka J, Malone C, Ström A, Baek SJ, Wade PA, Saxton AM, Donnell RM, Pestell RG, Dharmawardhane S, Wimalasena J. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion. Exp Cell Res 2014; 331:1-10. [PMID: 25499972 DOI: 10.1016/j.yexcr.2014.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 10/27/2014] [Accepted: 11/24/2014] [Indexed: 01/29/2023]
Abstract
We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Maria Cekanova
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA.
| | - Romaine I Fernando
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN, USA
| | - Nalin Siriwardhana
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Mugdha Sukhthankar
- Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA
| | - Columba de la Parra
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Jirayus Woraratphoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN, USA
| | - Christine Malone
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Anders Ström
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Seung J Baek
- Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA
| | - Paul A Wade
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Robert M Donnell
- Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA
| | - Richard G Pestell
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Jay Wimalasena
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
24
|
Akl H, Vervloessem T, Kiviluoto S, Bittremieux M, Parys JB, De Smedt H, Bultynck G. A dual role for the anti-apoptotic Bcl-2 protein in cancer: mitochondria versus endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2240-52. [PMID: 24768714 DOI: 10.1016/j.bbamcr.2014.04.017] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/14/2022]
Abstract
Anti-apoptotic Bcl-2 contributes to cancer formation and progression by promoting the survival of altered cells. Hence, it is a prime target for novel specific anti-cancer therapeutics. In addition to its canonical anti-apoptotic role, Bcl-2 has an inhibitory effect on cell-cycle progression. Bcl-2 acts at two different intracellular compartments, the mitochondria and the endoplasmic reticulum (ER). At the mitochondria, Bcl-2 via its hydrophobic cleft scaffolds the Bcl-2-homology (BH) domain 3 (BH3) of pro-apoptotic Bcl-2-family members. Small molecules (like BH3 mimetics) can disrupt this interaction, resulting in apoptotic cell death in cancer cells. At the ER, Bcl-2 modulates Ca(2+) signaling, thereby promoting proliferation while increasing resistance to apoptosis. Bcl-2 at the ER acts via its N-terminal BH4 domain, which directly binds and inhibits the inositol 1,4,5-trisphosphate receptor (IP3R), the main intracellular Ca(2+)-release channel. Tools targeting the BH4 domain of Bcl-2 reverse Bcl-2's inhibitory action on IP3Rs and trigger pro-apoptotic Ca(2+) signaling in cancer B-cells, including chronic lymphocytic leukemia (CLL) cells and diffuse large B-cell lymphoma (DLBCL) cells. The sensitivity of DLBCL cells to BH4-domain targeting tools strongly correlated with the expression levels of the IP3R2 channel, the IP3R isoform with the highest affinity for IP3. Interestingly, bio-informatic analysis of a database of primary CLL patient cells also revealed a transcriptional upregulation of IP3R2. Finally, this review proposes a model, in which cancer cell survival depends on Bcl-2 at the mitochondria and/or the ER. This dependence likely will have an impact on their responses to BH3-mimetic drugs and BH4-domain targeting tools. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Haidar Akl
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Molecular and Cellular Medicine, Campus Gasthuisberg, O/N-I, Bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Tamara Vervloessem
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Molecular and Cellular Medicine, Campus Gasthuisberg, O/N-I, Bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Santeri Kiviluoto
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Molecular and Cellular Medicine, Campus Gasthuisberg, O/N-I, Bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Mart Bittremieux
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Molecular and Cellular Medicine, Campus Gasthuisberg, O/N-I, Bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Molecular and Cellular Medicine, Campus Gasthuisberg, O/N-I, Bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Humbert De Smedt
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Molecular and Cellular Medicine, Campus Gasthuisberg, O/N-I, Bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Molecular and Cellular Medicine, Campus Gasthuisberg, O/N-I, Bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
25
|
Del Principe MI, Del Poeta G, Venditti A, Buccisano F, Maurillo L, Mazzone C, Bruno A, Neri B, Irno Consalvo M, Lo Coco F, Amadori S. Apoptosis and immaturity in acute myeloid leukemia. Hematology 2013; 10:25-34. [PMID: 16019442 DOI: 10.1080/10245330400020454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The primary cause of treatment failures in acute myeloid leukemia (AML) is the emergence of both resistant disease and early relapse. Among the most frequent agents of these phenomena are defects in the mitochondrial-mediated apoptotic pathway. This pathway is regulated by bcl-2 family of anti-apoptotic (bcl-2, bcl-xl, mcl-1) and pro-apoptotic proteins (bax, bad, bak). In particular, bcl-2 dimerizes with several members of bcl-2 family of proteins, altering the threshold of cell death. The flow cytometric quantitative measurement of bcl-2 and bax expression for the determination of bax/bcl-2 ratio provided crucial clinical information in AML: in our hands, lower bax/bcl-2 ratio conferred a very poor prognosis with decreased rates of complete remission (CR) and overall survival (OS). Moreover, striking correlations were found between lower bax/bcl-2 ratio and higher progenitor marker expression, such as CD34, CD117 and CD133 antigens, confirming the link between this apoptotic index and the maturation pathways. However, the capacity of bax/bcl-2 ratio to clearly identify patients with different prognosis with regard to CR and OS within the CD34+, CD117+ and CD133+ subgroups implies that other mechanisms, such as proliferation and/or cell cycle dysregulation may be involved to explain its clinical significance. Finally, small molecules that target both the receptor- and mitochondrial-mediated pathway of apoptosis are providing encouraging results in patients with relapsed and/or refractory disease (i.e. CDDOMe, bcl-2 antisense oligonucleotides, CEP-701, etc), confirming the key role of apoptotic mechanisms on the outcome of AML patients.
Collapse
|
26
|
Removal of the BH4 domain from Bcl-2 protein triggers an autophagic process that impairs tumor growth. Neoplasia 2013; 15:315-27. [PMID: 23479509 DOI: 10.1593/neo.121392] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 12/19/2022] Open
Abstract
Here, we show that forced expression of a B-cell lymphoma 2 (bcl-2) protein lacking residues 1 to 36 at the N-terminal, including the entire Bcl-2 homology 4 (BH4) domain, determines reduction of in vitro and in vivo human melanoma growth. Noteworthy, melanoma cells in vivo exhibit markedly increased autophagy, as response to expression of bcl-2 protein deleted of its BH4 domain. This observation led to the identification of a novel gain of function for bcl-2 protein lacking the BH4 domain. In particular, upon different autophagic stimuli in vitro, overexpression of bcl-2 protein deleted of BH4 domain induces autophagosome accumulation, conversion of microtubule-associated protein 1 light chain 3B-II, reduced expression of p62/SQSTM1 protein, and thereby enhanced autophagic flux. The relevance of Beclin-1 is evidenced by the fact that 1) the autophagy-promoting and growth-inhibiting properties are partially rescued by Beclin-1 knockdown in cells expressing bcl-2 protein lacking the BH4 domain, 2) Beclin-1 only interacts with wild-type but not with deleted bcl-2, and 3) BH4 domain removal from bcl-2 protein does not influence in vitro and in vivo growth of tumor cells expressing low levels of endogenous Beclin-1. These results provide new insight into molecular mechanism of bcl-2 functions and represent a rationale for the development of agents interfering with the BH4 domain of bcl-2 protein.
Collapse
|
27
|
Santucci-Pereira J, George C, Armiss D, Russo IH, Vanegas JE, Sheriff F, de Cicco RL, Su Y, Russo PA, Bidinotto LT, Russo J. Mimicking pregnancy as a strategy for breast cancer prevention. BREAST CANCER MANAGEMENT 2013; 2:283-294. [PMID: 24738009 DOI: 10.2217/bmt.13.16] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pregnancy and its effects on breast cancer risk have been widely investigated; there is consensus among researchers that early pregnancy confers protection against breast cancer later in life, whereas nulliparity and late-age parity have been associated with increased risk of developing breast cancer. The answer to the question of how pregnancy reduces breast cancer risk has been elusive; however, pregnancy, like breast cancer, is a similar hormone-dependent entity under direct control of estrogen, progesterone and, of particular importance, human chorionic gonadotropin (hCG). In this report, we emphasize the main changes, previously described by our laboratory, in morphology and gene expression levels of the mammary gland of Sprague-Dawley rats exposed to known cancer-preventative conditions (pregnancy, hCG and progesterone + estrogen). In addition, we postulate a protective mechanism induced by hCG that could reduce the cell's potential to be transformed by carcinogens.
Collapse
Affiliation(s)
| | - Christina George
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David Armiss
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Irma H Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Johana E Vanegas
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Fathima Sheriff
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Yanrong Su
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Patricia A Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Lucas T Bidinotto
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
28
|
Bonneau B, Prudent J, Popgeorgiev N, Gillet G. Non-apoptotic roles of Bcl-2 family: the calcium connection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1755-65. [PMID: 23360981 DOI: 10.1016/j.bbamcr.2013.01.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 01/06/2023]
Abstract
The existence of the bcl-2 (B-cell lymphoma-2) gene was reported nearly 30 years ago. Yet, Bcl-2 family group of proteins still surprises us with their structural and functional diversity. Since the discovery of the Bcl-2 family of proteins as one of the main apoptosis judges, the precise mechanism of their action remains a hot topic of intensive scientific research and debates. Although extensive work has been performed on the role of mitochondria in apoptosis, more and more studies point out an implication of the endoplasmic reticulum in this process. Interestingly, Bcl-2 family proteins could be localized to both the mitochondria and the endoplasmic reticulum highlighting their crucial role in apoptosis control. In particular, in these organelles Bcl-2 proteins seem to be involved in calcium homeostasis regulation although the mechanisms underlying this function are still misunderstood. We now assume with high degree of certainty that the majority of Bcl-2 family members take part not only in apoptosis regulation but also in other processes important for the cell physiology briefly denominated as "non-apoptotic" functions. Drawing a complete and comprehensive image of Bcl-2 family requires the understanding of their implications in all cellular processes. Here, we review the current knowledge on the control of calcium homeostasis by the Bcl-2 family at the endoplasmic reticulum and at the mitochondria. Then we focus on the non-apoptotic functions of the Bcl-2 proteins in relation with the regulation of this versatile intracellular messenger. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
29
|
Stacchiotti S, Negri T, Libertini M, Palassini E, Marrari A, De Troia B, Gronchi A, Dei Tos AP, Morosi C, Messina A, Pilotti S, Casali PG. Sunitinib malate in solitary fibrous tumor (SFT). Ann Oncol 2012; 23:3171-3179. [PMID: 22711763 DOI: 10.1093/annonc/mds143] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND To report on sunitinib activity in a retrospective series of 35 solitary fibrous tumor (SFT) treated at a single institution. PATIENTS AND METHODS From April 2008, 35 patients with progressive advanced SFT (male/female: 20/15; mean age: 58 years; meningeal/extrameningeal: 6/29; locally advanced/metastatic: 15/20; prior chemotherapy: 25) were treated, on an individual use basis, with continuous-dosing sunitinib 37.5 mg/day. Platelet-derived growth factor receptor beta (PDGFRB) and vascular endothelial growth factor receptor 2 (VEGFR2) status were assessed by immunohistochemistry and, in a subgroup of patients, by real time PCR. RESULTS Thirty-one patients were assessable for response by RECIST (one early death; three early interruptions). Best responses were 2 partial response (PR), 16 stable disease, 13 progressive disease. A <30% decrease in size was observed in three patients. Fourteen of 29 patients assessable by Choi criteria had a PR. Median progression-free survival by RECIST was 6 months (range 1-22). In two of six patients, resistance to sunitinib was overcome by increasing sunitinib to 50 mg/day. PDGFRB and/or VEGFR2 were positive in all cases and not predictive of response; a less aggressive morphology corresponded to an increased response rate (53% PR by Choi in the malignant SFT, 20% PR in the pleomorphic/dedifferentiated SFT). CONCLUSIONS Sunitinib is active in SFT. Response can be long-lasting.
Collapse
Affiliation(s)
- S Stacchiotti
- Department of Cancer Medicine, Adult Sarcoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | - T Negri
- Department of Pathology, Experimental Molecular Pathology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - M Libertini
- Department of Cancer Medicine, Adult Sarcoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - E Palassini
- Department of Cancer Medicine, Adult Sarcoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - A Marrari
- Department of Cancer Medicine, Adult Sarcoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - B De Troia
- Department of Cancer Medicine, Adult Sarcoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - A Gronchi
- (3)Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - A P Dei Tos
- Department of Anatomic Pathology, General Hospital of Treviso, Treviso, Italy
| | - C Morosi
- Department of Radiology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - A Messina
- Department of Radiology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Pilotti
- Department of Pathology, Experimental Molecular Pathology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - P G Casali
- Department of Cancer Medicine, Adult Sarcoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
30
|
Okamoto T, Campbell S, Mehta N, Thibault J, Colman PM, Barry M, Huang DCS, Kvansakul M. Sheeppox virus SPPV14 encodes a Bcl-2-like cell death inhibitor that counters a distinct set of mammalian proapoptotic proteins. J Virol 2012; 86:11501-11. [PMID: 22896610 PMCID: PMC3486325 DOI: 10.1128/jvi.01115-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/24/2012] [Indexed: 12/16/2022] Open
Abstract
Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, expresses a virulence factor that is a potent inhibitor of apoptosis. In spite of the scant sequence similarity to Bcl-2, myxoma virus M11L adopts an almost identical 3-dimensional fold. We used M11L as bait in a sequence similarity search for other Bcl-2-like proteins and identified six putative vBcl-2 proteins from poxviruses. Some are potent inhibitors of apoptosis, in particular sheeppox virus SPPV14, which inhibited cell death induced by multiple agents. Importantly, SPPV14 compensated for the loss of antiapoptotic F1L in vaccinia virus and acts to directly counter the cell death mediators Bax and Bak. SPPV14 also engages a unique subset of the death-promoting BH3-only ligands, including Bim, Puma, Bmf, and Hrk. This suggests that SPPV14 may have been selected for specific biological roles as a virulence factor for sheeppox virus.
Collapse
Affiliation(s)
- Toru Okamoto
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Campbell
- Li Ka Shing Institute for Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Ninad Mehta
- Li Ka Shing Institute for Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - John Thibault
- Li Ka Shing Institute for Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Peter M. Colman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michele Barry
- Li Ka Shing Institute for Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Marc Kvansakul
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| |
Collapse
|
31
|
The secret life of Bcl-2: Apoptosis-independent inhibition of DNA repair by Bcl-2 family members. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:247-257. [DOI: 10.1016/j.mrrev.2012.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/25/2012] [Accepted: 05/26/2012] [Indexed: 11/22/2022]
|
32
|
|
33
|
Wang J, Beauchemin M, Bertrand R. Phospho-Bcl-x(L)(Ser62) plays a key role at DNA damage-induced G(2) checkpoint. Cell Cycle 2012; 11:2159-69. [PMID: 22617334 PMCID: PMC3368867 DOI: 10.4161/cc.20672] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Accumulating evidence suggests that Bcl-xL, an anti-apoptotic member of the Bcl-2 family, also functions in cell cycle progression and cell cycle checkpoints. Analysis of a series of phosphorylation site mutants reveals that cells expressing Bcl-xL(Ser62Ala) mutant are less stable at the G 2 checkpoint and enter mitosis more rapidly than cells expressing wild-type Bcl-xL or Bcl-xL phosphorylation site mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala and Thr115Ala. Analysis of the dynamic phosphorylation and location of phospho-Bcl-xL(Ser62) in unperturbed, synchronized cells and during DNA damage-induced G 2 arrest discloses that a pool of phospho-Bcl-xL(Ser62) accumulates into nucleolar structures in etoposide-exposed cells during G 2 arrest. In a series of in vitro kinase assays, pharmacological inhibitors and specific siRNAs experiments, we found that Polo kinase 1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) phosphorylation and accumulation into nucleolar structures during the G 2 checkpoint. In nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes with Cdk1(cdc2), the key cyclin-dependent kinase required for entry into mitosis. These data indicate that during G 2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G 2 arrest by timely trapping of Cdk1(cdc2) in nucleolar structures to slow mitotic entry. It also highlights that DNA damage affects the dynamic composition of the nucleolus, which now emerges as a piece of the DNA damage response.
Collapse
Affiliation(s)
- Jianfang Wang
- Centre de recherche; Centre hospitalier de l’Université of Montréal (CRCHUM) - Hôpital Notre-Dame and Institut du Cancer de Montréal; Montréal, Québec, Canada
| | - Myriam Beauchemin
- Centre de recherche; Centre hospitalier de l’Université of Montréal (CRCHUM) - Hôpital Notre-Dame and Institut du Cancer de Montréal; Montréal, Québec, Canada
| | - Richard Bertrand
- Centre de recherche; Centre hospitalier de l’Université of Montréal (CRCHUM) - Hôpital Notre-Dame and Institut du Cancer de Montréal; Montréal, Québec, Canada
- Département de médecine; Université de Montréal; Montréal, Québec, Canada
| |
Collapse
|
34
|
Liman N, Alan E, Bayram GK, Gürbulak K. Expression of Survivin, Bcl-2 and Bax Proteins in the Domestic Cat (Felis catus) Endometrium During the Oestrus Cycle. Reprod Domest Anim 2012; 48:33-45. [DOI: 10.1111/j.1439-0531.2012.02021.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Non-apoptotic functions of apoptosis-regulatory proteins. EMBO Rep 2012; 13:322-30. [PMID: 22402666 DOI: 10.1038/embor.2012.19] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 01/23/2012] [Indexed: 01/24/2023] Open
Abstract
During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications.
Collapse
|
36
|
Kouri FM, Jensen SA, Stegh AH. The role of Bcl-2 family proteins in therapy responses of malignant astrocytic gliomas: Bcl2L12 and beyond. ScientificWorldJournal 2012; 2012:838916. [PMID: 22431925 PMCID: PMC3289992 DOI: 10.1100/2012/838916] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/14/2011] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain cancer with a median survival of less than two years after diagnosis. Hallmarks of GBM tumors include soaring proliferative indices, high levels of angiogenesis, diffuse invasion into normal brain parenchyma, resistance toward therapy-induced apoptosis, and pseudopallisading necrosis. Despite the recent advances in neurosurgery, radiation therapy, and the development of targeted chemotherapeutic regimes, GBM remains one of the deadliest types of cancer. Particularly, the alkylating agent temozolomide (TMZ) in combination with radiation therapy prolonged patient survival only marginally, and clinical studies assessing efficacies of targeted therapies, foremost ATP mimetics inhibiting the activity of receptor tyrosine kinases (RTKs), revealed only few initial responders; tumor recurrence is nearly universal, and salvage therapies to combat such progression remain ineffective. Consequently, myriad preclinical and clinical studies began to define the molecular mechanisms underlying therapy resistance of GBM tumors, and pointed to the Bcl-2 protein family, in particular the atypical member Bcl2-Like 12 (Bcl2L12), as important regulators of therapy-induced cell death. This review will discuss the multi-faceted modi operandi of Bcl-2 family proteins, describe their roles in therapy resistance of malignant glioma, and outline current and future drug development efforts to therapeutically target Bcl-2 proteins.
Collapse
Affiliation(s)
- Fotini M Kouri
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
| | | | | |
Collapse
|
37
|
Willimott S, Wagner SD. miR-125b and miR-155 contribute to BCL2 repression and proliferation in response to CD40 ligand (CD154) in human leukemic B-cells. J Biol Chem 2011; 287:2608-17. [PMID: 22139839 DOI: 10.1074/jbc.m111.285718] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Developmental stage-specific regulation of BCL2 occurs during B-cell maturation and has a role in normal immunity. CD40 signaling promotes proliferation and rescues B-cells from apoptosis, partly through induction of BCL2L1 and BCL2A1 and repression of BCL2. We previously showed that a stromal cell/CD40 ligand (CD154) culture system reproduced this switch in survival protein expression in primary human leukemic B-cells and we employed this model system to investigate BCL2 repression. BCL2 was post-transcriptionally regulated and the repressed BCL2 mRNA was associated with non-polysomal, but dense fractions on sucrose density gradients. Microarrays identified a set of miRNA that were induced by culture conditions and potentially able to bind to the BCL2 3'-UTR. Luciferase reporter assays demonstrated that miR-125b and miR-155 repressed BCL2 mRNA but while stromal cell contact alone was sufficient to induce strongly miR-125b this did not cause BCL2 repression. miR-155, which is the most abundant miRNA under basal conditions, specifically required CD154 for further induction above a threshold to exert its full repressive effects. Anti-miR-125b and anti-miR-155 prevented CD154-mediated repression of BCL2 and reduced CD154-mediated proliferation in the MEC1 B-cell line. We suggest that miR-155 and miR-125b, which are induced by CD154 and stromal cell signals, contribute to regulating proliferation and that BCL2 is one of their target mRNAs.
Collapse
Affiliation(s)
- Shaun Willimott
- Department of Cancer Studies and Molecular Medicine and MRC Toxicology Unit, University of Leicester, Leicester LE19HN, United Kingdom
| | | |
Collapse
|
38
|
|
39
|
Ali HR, Dawson SJ, Blows FM, Provenzano E, Leung S, Nielsen T, Pharoah PD, Caldas C. A Ki67/BCL2 index based on immunohistochemistry is highly prognostic in ER-positive breast cancer. J Pathol 2011; 226:97-107. [DOI: 10.1002/path.2976] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/08/2011] [Accepted: 07/19/2011] [Indexed: 02/04/2023]
|
40
|
Wang YH, Yan Y, Rice JS, Volpe BT, Diamond B. Enforced expression of the apoptosis inhibitor Bcl-2 ablates tolerance induction in DNA-reactive B cells through a novel mechanism. J Autoimmun 2011; 37:18-27. [PMID: 21458954 PMCID: PMC3110588 DOI: 10.1016/j.jaut.2011.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/21/2022]
Abstract
How self tolerance is maintained during B cell development in the bone marrow has been a focal area of study in immunology. Receptor editing, anergy and clonal deletion all play important roles in the regulation of autoimmunity in the immature population. The mechanisms of tolerance induction in the periphery, however, are less well characterized. Overexpression of the apoptosis inhibitor Bcl-2 rescues autoreactive B cells from deletion and can contribute to the development of autoimmune disease in certain genetic backgrounds. Using a peptide-induced autoimmunity model, we recently identified a peripheral tolerance checkpoint in antigen-activated B cells that have undergone class switching and somatic hypermutation. At this checkpoint, receptor editing, induced by antigen engagement, dampened the autoantibody response. In this study, we show that receptor editing fails to be induced in antigen-activated DNA-reactive B cells that overexpress Bcl-2 (Bcl-2 Tg). The failure to induce RAG and receptor editing is likely due, at least partially, to the lack of self antigen. First, the levels of circulating DNA and of apoptotic bodies in the spleen of Bcl-2 Tg mice are significantly lower than in control mice. Second, in Bcl-2 Tg mice, RAG can be induced in a population of antigen-activated B cells by providing exogenous soluble antigen. These data suggest that, in addition to its anti-apoptotic activity, Bcl-2 may indirectly inhibit tolerance induction in B cells acquiring anti-nuclear antigen reactivity after peripheral activation by limiting the availability of self antigen.
Collapse
Affiliation(s)
- Ying-Hua Wang
- The Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY
| | - Yi Yan
- The Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY
| | - Jeffrey S. Rice
- Department of Immunology, University of Colorado School of Medicine and National Jewish Medical and Research Center, Denver, CO
| | - Bruce T. Volpe
- Department of Neurology & Neuroscience, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, NY
| | - Betty Diamond
- The Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY
| |
Collapse
|
41
|
Fassnacht D, Rössing S, Singh RP, Al-Rubeai M, Pörtner R. Influence of bcl-2 on antibody productivity in high cell density perfusion cultures of hybridoma. Cytotechnology 2011; 30:95-106. [PMID: 19003359 DOI: 10.1023/a:1008055702079] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Apoptosis is an active, genetically determined death mechanism which can be induced by a wide range of physiological factors and by mild stress. It is the predominant form of cell death during the production of antibodies from murine hybridoma cell lines. A number of studies have now demonstrated that the suppression of this death pathway, by means of over-expression of survival genes such as bcl-2, results in improved cellular robustness and antibody productivity during batch culture. In the present study, the influence of bcl-2 expression on hybridoma productivity in two high density perfusion bioreactor systems was investigated. In the first system, a fixed-bed reactor, the DNA content in the spent medium was 25% higher in the control (TB/C3-pEF) culture than that found in the bcl-2 transfected (TB/C3-bcl2) cultures at all perfusion rates. This is indicative of a higher level of cell death in the control cell line. The average antibody concentration for the TB/C3-pEF cell line was 14.9 mg L-1 at perfusion rates of 2.6 and 5.2 d-1. However, for the TB/C3-bcl2 cell line it was 33 mg L-1 at dilution rates of 2 and 4 d-1. A substantial increase in antibody concentration was also found in the Integra Tecnomouse hollow fibre reactor. The antibody titre in the TB/C3-bcl2 cassette was nearly 100% higher than that in the TB/C3-pEF cassette during the cultivation period which lasted 6 weeks. Clearly, these results demonstrate the positive impact of bcl-2 over-expression on production of antibody in hybridoma perfusion cultures.
Collapse
Affiliation(s)
- D Fassnacht
- Bioprozess- und Bioverfahrenstechnik, Technische Universität Hamburg-Harburg, Denickestrasse 15, D-21071, Hamburg, Germany
| | | | | | | | | |
Collapse
|
42
|
Zhang S, Farag SS. From cell biology to therapy: ENMD-2076 in the treatment of multiple myeloma. Expert Opin Investig Drugs 2011; 20:1015-28. [DOI: 10.1517/13543784.2011.584869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Huang TT, Liu FG, Wei CF, Lu CC, Chen CC, Lin HC, Ojcius DM, Lai HC. Activation of multiple apoptotic pathways in human nasopharyngeal carcinoma cells by the prenylated isoflavone, osajin. PLoS One 2011; 6:e18308. [PMID: 21532751 PMCID: PMC3075243 DOI: 10.1371/journal.pone.0018308] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 03/03/2011] [Indexed: 11/25/2022] Open
Abstract
Osajin is a prenylated isoflavone showing antitumor activity in different tumor cell lines. The underlying mechanism of osajin-induced cancer cell death is not clearly understood. In the present study, the mechanisms of osajin-induced cell death of human nasopharyngeal carcinoma (NPC) cells were explored. Osajin was found to significantly induce apoptosis of NPC cells in a dose- and time-dependent manner. Multiple molecular effects were observed during osajin treatment including a significant loss of mitochondrial transmembrane potential, release of cytochrome c into the cytosol, enhanced expression of Fas ligand (FasL), suppression of glucose-regulated protein 78 kDa (GRP78), and activation of caspases-9, -8, -4 and -3. In addition, up-regulation of proapoptotic Bax protein and down-regulation of antiapoptotic Bcl-2 protein were also observed. Taken together, osajin induces apoptosis in human NPC cells through multiple apoptotic pathways, including the extrinsic death receptor pathway, and intrinsic pathways relying on mitochondria and endoplasmic reticulum stress. Thus, osajin could be developed as a new effective and chemopreventive compound for human NPC.
Collapse
Affiliation(s)
- Tsung-Teng Huang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan, Republic of China
| | - Fu-Guo Liu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan, Republic of China
- * E-mail: (F-GL); (DMO); (H-CL)
| | - Chia-Fong Wei
- Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| | - Chang-Chieh Chen
- Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Hung-Chi Lin
- Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - David M. Ojcius
- Health Sciences Research Institute and School of Natural Sciences, University of California Merced, Merced, California, United States of America
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- * E-mail: (F-GL); (DMO); (H-CL)
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- * E-mail: (F-GL); (DMO); (H-CL)
| |
Collapse
|
44
|
Courchesne SL, Karch C, Pazyra-Murphy MF, Segal RA. Sensory neuropathy attributable to loss of Bcl-w. J Neurosci 2011; 31:1624-34. [PMID: 21289171 PMCID: PMC3074348 DOI: 10.1523/jneurosci.3347-10.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 10/20/2010] [Accepted: 11/10/2010] [Indexed: 11/21/2022] Open
Abstract
Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small-diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w(-/-) mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w(-/-) sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w(-/-) mice as an animal model of small fiber sensory neuropathy and provide new insight regarding the role of Bcl-w and of mitochondria in preventing axonal degeneration.
Collapse
Affiliation(s)
- Stephanie L Courchesne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
45
|
Structural basis for apoptosis inhibition by Epstein-Barr virus BHRF1. PLoS Pathog 2010; 6:e1001236. [PMID: 21203485 PMCID: PMC3009601 DOI: 10.1371/journal.ppat.1001236] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 11/22/2010] [Indexed: 01/19/2023] Open
Abstract
Epstein-Barr virus (EBV) is associated with human malignancies, especially those affecting the B cell compartment such as Burkitt lymphoma. The virally encoded homolog of the mammalian pro-survival protein Bcl-2, BHRF1 contributes to viral infectivity and lymphomagenesis. In addition to the pro-apoptotic BH3-only protein Bim, its key target in lymphoid cells, BHRF1 also binds a selective sub-set of pro-apoptotic proteins (Bid, Puma, Bak) expressed by host cells. A consequence of BHRF1 expression is marked resistance to a range of cytotoxic agents and in particular, we show that its expression renders a mouse model of Burkitt lymphoma untreatable. As current small organic antagonists of Bcl-2 do not target BHRF1, the structures of it in complex with Bim or Bak shown here will be useful to guide efforts to target BHRF1 in EBV-associated malignancies, which are usually associated with poor clinical outcomes. Altruistic suicide of infected host cells is a key defense mechanism to combat viral infection. To ensure their own survival and proliferation, certain viruses, including Epstein-Barr virus (EBV), have mechanisms to subvert apoptosis, including the expression of homologs of the mammalian pro-survival protein Bcl-2. EBV was first identified in association with Burkitt lymphoma and it is also linked to certain Hodgkin's lymphomas and nasopharyngeal carcinoma. Whereas increased expression of Bcl-2 promotes malignancies such as human follicular lymphoma, the precise role of the EBV encoded Bcl-2 homolog BHRF1 in EBV-associated malignancies is less well defined. BHRF1 is known to bind the pro-apoptotic BH3-only protein Bim, and here we demonstrate that it also binds other pro-apoptotic proteins (Bid, Puma, Bak) expressed by host cells. Crystal structures of BHRF1 with the BH3 regions of Bim and Bak illustrate these interactions in atomic detail. A consequence of BHRF1 expression is marked resistance to a range of cytotoxic agents, and we show that its expression renders a mouse model of Burkitt lymphoma untreatable. As current antagonists of Bcl-2 do not target BHRF1, our crystal structures will be useful to guide efforts to target BHRF1 in EBV-associated malignancies, which are usually associated with poor clinical outcomes.
Collapse
|
46
|
Campbell KJ, Bath ML, Turner ML, Vandenberg CJ, Bouillet P, Metcalf D, Scott CL, Cory S. Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance. Blood 2010; 116:3197-207. [PMID: 20631380 PMCID: PMC2995351 DOI: 10.1182/blood-2010-04-281071] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/02/2010] [Indexed: 01/17/2023] Open
Abstract
Diverse human cancers with poor prognosis, including many lymphoid and myeloid malignancies, exhibit high levels of Mcl-1. To explore the impact of Mcl-1 overexpression on the hematopoietic compartment, we have generated vavP-Mcl-1 transgenic mice. Their lymphoid and myeloid cells displayed increased resistance to a variety of cytotoxic agents. Myelopoiesis was relatively normal, but lymphopoiesis was clearly perturbed, with excess mature B and T cells accumulating. Rather than the follicular lymphomas typical of vavP-BCL-2 mice, aging vavP-Mcl-1 mice were primarily susceptible to lymphomas having the phenotype of a stem/progenitor cell (11 of 30 tumors) or pre-B cell (12 of 30 tumors). Mcl-1 overexpression dramatically accelerated Myc-driven lymphomagenesis. Most vavP-Mcl-1/ Eμ-Myc mice died around birth, and transplantation of blood from bitransgenic E18 embryos into unirradiated mice resulted in stem/progenitor cell tumors. Furthermore, lethally irradiated mice transplanted with E13 fetal liver cells from Mcl-1/Myc bitransgenic mice uniformly died of stem/progenitor cell tumors. When treated in vivo with cyclophosphamide, tumors coexpressing Mcl-1 and Myc transgenes were significantly more resistant than conventional Eμ-Myc lymphomas. Collectively, these results demonstrate that Mcl-1 overexpression renders hematopoietic cells refractory to many cytotoxic insults, perturbs lymphopoiesis and promotes malignant transformation of hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
- Kirsteen J Campbell
- Molecular Genetics of CancerDivision, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Brakus SM, Govorko DK, Vukojevic K, Jakus IA, Carev D, Petricevic J, Saraga-Babic M. Apoptotic and anti-apoptotic factors in early human mandible development. Eur J Oral Sci 2010; 118:537-46. [DOI: 10.1111/j.1600-0722.2010.00777.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
48
|
Reyes NA, Fisher JK, Austgen K, VandenBerg S, Huang EJ, Oakes SA. Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. J Clin Invest 2010; 120:3673-9. [PMID: 20890041 DOI: 10.1172/jci42986] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/04/2010] [Indexed: 02/01/2023] Open
Abstract
Apoptosis of motor neurons is a well-documented feature in amyotrophic lateral sclerosis (ALS) and related motor neuron diseases (MNDs). However, the role of apoptosis in the pathogenesis of these diseases remains unresolved. One possibility is that the affected motor neurons only succumb to apoptosis once they have exhausted functional capacity. If true, blocking apoptosis should confer no therapeutic benefit. To directly investigate this idea, we tested whether tissue-specific deletion in the mouse CNS of BCL2-associated X protein (BAX) and BCL2-homologous antagonist/killer (BAK), 2 proapoptotic BCL-2 family proteins that together represent an essential gateway to the mitochondrial apoptotic pathway, would protect against motor neuron degeneration. We found that neuronal deletion of Bax and Bak in a mouse model of familial ALS not only halted neuronal loss, but prevented axonal degeneration, symptom onset, weight loss, and paralysis and extended survival. These results show that motor neurons damaged in ALS activate the mitochondrial apoptotic pathway early in the disease process and that apoptotic signaling directly contributes to neuromuscular degeneration and neuronal dysfunction. Hence, inhibiting apoptosis upstream of mitochondrial permeabilization represents a possible therapeutic strategy for preserving functional motor neurons in ALS and other MNDs.
Collapse
Affiliation(s)
- Nichole A Reyes
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143-0511, USA
| | | | | | | | | | | |
Collapse
|
49
|
Santiuste I, Buelta L, Iglesias M, Genre F, Mazorra F, Izui S, Merino J, Merino R. B-cell overexpression of Bcl-2 cooperates with p21 deficiency for the induction of autoimmunity and lymphomas. J Autoimmun 2010; 35:316-24. [PMID: 20691570 DOI: 10.1016/j.jaut.2010.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 11/13/2022]
Abstract
Genetic abnormalities predisposing to autoimmunity generally act in a cooperative manner affecting one or several mechanisms regulating immunological tolerance. In addition, many of these genetic abnormalities are also involved in the development of lymphoproliferative diseases. In the present study, we have determined the possible cooperation between deficiencies in members of the Cip/Kip family of cell cycle regulators (p21(WAF1/Cip1) or p27(kip1)) and the overexpression of human Bcl-2 in B lymphocytes in the induction of autoimmune and lymphoproliferative diseases in non-autoimmune C57BL/6 (B6) mice. Unlike single mutant mice, B6.p21(-/-) mice transgenic for human Bcl-2 in B cells developed a lethal autoimmune syndrome characterized by the production of autoantibodies, the prominent expansion of memory B and CD4(+) T cells and the development of severe glomerular lesions resembling IgA nephropathy. Furthermore, these mice presented a high incidence of B-cell lymphoproliferative disorders. Such genetic cooperation in the induction of autoimmunity was not observed in B6.p27(-/-) mice transgenic for human Bcl-2 in B cells. Altogether, what we have demonstrated here is the existence of preferential interactions among particular regulators of the G(1)/S transition of the cell cycle and B-cell survival in the induction of systemic autoimmune and lymphoproliferative diseases.
Collapse
Affiliation(s)
- Inés Santiuste
- Departmento de Biología Molecular, Universidad de Cantabria-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang X, Sinn AL, Pollok K, Sandusky G, Zhang S, Chen L, Liang J, Crean CD, Suvannasankha A, Abonour R, Sidor C, Bray MR, Farag SS. Preclinical activity of a novel multiple tyrosine kinase and aurora kinase inhibitor, ENMD-2076, against multiple myeloma. Br J Haematol 2010; 150:313-25. [PMID: 20560971 DOI: 10.1111/j.1365-2141.2010.08248.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ENMD-2076 is a novel, orally-active molecule that has been shown to have significant activity against aurora and multiple receptor tyrosine kinases. We investigated the activity of ENMD-2076 against multiple myeloma (MM) cells in vitro and in vivo. ENMD-2076 showed significant cytotoxicity against MM cell lines and primary cells, with minimal cytotoxicity to haematopoietic progenitors. ENMD-2076 inhibited the phosphoinositide 3-kinase/AKT pathway and downregulated survivin and X-linked inhibitor of apoptosis as early as 6 h after treatment. With longer treatment (24-48 h), ENMD-2076 also inhibited aurora A and B kinases, and induced G(2)/M cell cycle arrest. In non-obese diabetic/severe combined immunodeficient mice implanted with H929 human plasmacytoma xenografts, oral treatment with ENMD-2076 (50, 100, 200 mg/kg per day) resulted in a dose-dependent inhibition of tumour growth. Immunohistochemical staining of excised tumours showed significant reduction in phospho-Histone 3 (pH3), Ki-67, and angiogenesis, and also a significant increase in cleaved caspase-3 at all dose levels compared to tumours from vehicle-treated mice. In addition, a significant reduction in p-FGFR3 was observed on Western blot. ENMD-2076 shows significant activity against MM cells in vitro and in vivo, and acts on several pathways important for myeloma cell growth and survival. These results provide preclinical rationale for clinical investigation of ENMD-2076 in MM.
Collapse
Affiliation(s)
- Xiaojing Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|