1
|
Abstract
Virtually all cell types have the same DNA, yet each type exhibits its own cell-specific pattern of gene expression. During the brief period of mitosis, the chromosomes exhibit changes in protein composition and modifications, a marked condensation, and a consequent reduction in transcription. Yet as cells exit mitosis, they reactivate their cell-specific programs with high fidelity. Initially, the field focused on the subset of transcription factors that are selectively retained in, and hence bookmark, chromatin in mitosis. However, recent studies show that many transcription factors can be retained in mitotic chromatin and that, surprisingly, such retention can be due to nonspecific chromatin binding. Here, we review the latest studies focusing on low-level transcription via promoters, rather than enhancers, as contributing to mitotic memory, as well as new insights into chromosome structure dynamics, histone modifications, cell cycle signaling, and nuclear envelope proteins that together ensure the fidelity of gene expression through a round of mitosis.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | | |
Collapse
|
2
|
Mustafi P, Hu M, Kumari S, Das C, Li G, Kundu T. Phosphorylation-dependent association of human chromatin protein PC4 to linker histone H1 regulates genome organization and transcription. Nucleic Acids Res 2022; 50:6116-6136. [PMID: 35670677 PMCID: PMC9226532 DOI: 10.1093/nar/gkac450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Human Positive Coactivator 4 (PC4) is a multifaceted chromatin protein involved in diverse cellular processes including genome organization, transcription regulation, replication, DNA repair and autophagy. PC4 exists as a phospho-protein in cells which impinges on its acetylation by p300 and thereby affects its transcriptional co-activator functions via double-stranded DNA binding. Despite the inhibitory effects, the abundance of phosphorylated PC4 in cells intrigued us to investigate its role in chromatin functions in a basal state of the cell. We found that casein kinase-II (CKII)-mediated phosphorylation of PC4 is critical for its interaction with linker histone H1. By employing analytical ultracentrifugation and electron microscopy imaging of in vitro reconstituted nucleosomal array, we observed that phospho-mimic (PM) PC4 displays a superior chromatin condensation potential in conjunction with linker histone H1. ATAC-sequencing further unveiled the role of PC4 phosphorylation to be critical in inducing chromatin compaction of a wide array of coding and non-coding genes in vivo. Concordantly, phospho-PC4 mediated changes in chromatin accessibility led to gene repression and affected global histone modifications. We propose that the abundance of PC4 in its phosphorylated state contributes to genome compaction contrary to its co-activator function in driving several cellular processes like gene transcription and autophagy.
Collapse
Affiliation(s)
- Pallabi Mustafi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Mingli Hu
- National laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Sujata Kumari
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Chandrima Das
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Guohong Li
- National laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Jankipuram Extension, Lucknow 226031, India
| |
Collapse
|
3
|
Hoffman JA, Papas BN, Trotter KW, Archer TK. Single-cell RNA sequencing reveals a heterogeneous response to Glucocorticoids in breast cancer cells. Commun Biol 2020; 3:126. [PMID: 32170217 PMCID: PMC7070043 DOI: 10.1038/s42003-020-0837-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/18/2020] [Indexed: 12/03/2022] Open
Abstract
Steroid hormone receptors such as the Glucocorticoid Receptor (GR) mediate transcriptional responses to hormones and are frequently targeted in the treatment of human diseases. Experiments using bulk populations of cells have provided a detailed picture of the global transcriptional hormone response but are unable to interrogate cell-to-cell transcriptional heterogeneity. To examine the glucocorticoid response in individual cells, we performed single cell RNA sequencing (scRNAseq) in a human breast cancer cell line. The transcriptional response to hormone was robustly detected in individual cells and scRNAseq provided additional statistical power to identify over 100 GR-regulated genes that were not detected in bulk RNAseq. scRNAseq revealed striking cell-to-cell variability in the hormone response. On average, individual hormone-treated cells showed a response at only 30% of the total set of GR target genes. Understanding the basis of this heterogeneity will be critical for the development of more precise models of steroid hormone signaling.
Collapse
Affiliation(s)
- Jackson A Hoffman
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Brian N Papas
- Integrative Bioinformatics, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Kevin W Trotter
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA.
| |
Collapse
|
4
|
Liao R, Mizzen CA. Site-specific regulation of histone H1 phosphorylation in pluripotent cell differentiation. Epigenetics Chromatin 2017; 10:29. [PMID: 28539972 PMCID: PMC5440973 DOI: 10.1186/s13072-017-0135-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural variation among histone H1 variants confers distinct modes of chromatin binding that are important for differential regulation of chromatin condensation, gene expression and other processes. Changes in the expression and genomic distributions of H1 variants during cell differentiation appear to contribute to phenotypic differences between cell types, but few details are known about the roles of individual H1 variants and the significance of their disparate capacities for phosphorylation. In this study, we investigated the dynamics of interphase phosphorylation at specific sites in individual H1 variants during the differentiation of pluripotent NT2 and mouse embryonic stem cells and characterized the kinases involved in regulating specific H1 variant phosphorylations in NT2 and HeLa cells. RESULTS Here, we show that the global levels of phosphorylation at H1.5-Ser18 (pS18-H1.5), H1.2/H1.5-Ser173 (pS173-H1.2/5) and H1.4-Ser187 (pS187-H1.4) are regulated differentially during pluripotent cell differentiation. Enrichment of pS187-H1.4 near the transcription start site of pluripotency factor genes in pluripotent cells is markedly reduced upon differentiation, whereas pS187-H1.4 levels at housekeeping genes are largely unaltered. Selective inhibition of CDK7 or CDK9 rapidly diminishes pS187-H1.4 levels globally and its enrichment at housekeeping genes, and similar responses were observed following depletion of CDK9. These data suggest that H1.4-S187 is a bona fide substrate for CDK9, a notion that is further supported by the significant colocalization of CDK9 and pS187-H1.4 to gene promoters in reciprocal re-ChIP analyses. Moreover, treating cells with actinomycin D to inhibit transcription and trigger the release of active CDK9/P-TEFb from 7SK snRNA complexes induces the accumulation of pS187-H1.4 at promoters and gene bodies. Notably, the levels of pS187-H1.4 enrichment after actinomycin D treatment or cell differentiation reflect the extent of CDK9 recruitment at the same loci. Remarkably, the global levels of H1.5-S18 and H1.2/H1.5-S173 phosphorylation are not affected by these transcription inhibitor treatments, and selective inhibition of CDK2 does not affect the global levels of phosphorylation at H1.4-S187 or H1.5-S18. CONCLUSIONS Our data provide strong evidence that H1 variant interphase phosphorylation is dynamically regulated in a site-specific and gene-specific fashion during pluripotent cell differentiation, and that enrichment of pS187-H1.4 at genes is positively related to their transcription. H1.4-S187 is likely to be a direct target of CDK9 during interphase, suggesting the possibility that this particular phosphorylation may contribute to the release of paused RNA pol II. In contrast, the other H1 variant phosphorylations we investigated appear to be mediated by distinct kinases and further analyses are needed to determine their functional significance.
Collapse
Affiliation(s)
- Ruiqi Liao
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, B107 Chemistry and Life Sciences Building, MC-123 601 S. Goodwin Ave., Urbana, IL 61801 USA
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, B107 Chemistry and Life Sciences Building, MC-123 601 S. Goodwin Ave., Urbana, IL 61801 USA.,Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801 USA
| |
Collapse
|
5
|
Sorrentino G, Ruggeri N, Zannini A, Ingallina E, Bertolio R, Marotta C, Neri C, Cappuzzello E, Forcato M, Rosato A, Mano M, Bicciato S, Del Sal G. Glucocorticoid receptor signalling activates YAP in breast cancer. Nat Commun 2017; 8:14073. [PMID: 28102225 PMCID: PMC5253666 DOI: 10.1038/ncomms14073] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
The Hippo pathway is an oncosuppressor signalling cascade that plays a major role in the control of cell growth, tissue homoeostasis and organ size. Dysregulation of the Hippo pathway leads to aberrant activation of the transcription co-activator YAP (Yes-associated protein) that contributes to tumorigenesis in several tissues. Here we identify glucocorticoids (GCs) as hormonal activators of YAP. Stimulation of glucocorticoid receptor (GR) leads to increase of YAP protein levels, nuclear accumulation and transcriptional activity in vitro and in vivo. Mechanistically, we find that GCs increase expression and deposition of fibronectin leading to the focal adhesion-Src pathway stimulation, cytoskeleton-dependent YAP activation and expansion of chemoresistant cancer stem cells. GR activation correlates with YAP activity in human breast cancer and predicts bad prognosis in the basal-like subtype. Our results unveil a novel mechanism of YAP activation in cancer and open the possibility to target GR to prevent cancer stem cells self-renewal and chemoresistance.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Laboratorio Nazionale CIB (LNCIB), Area Science Park Padriciano, Trieste 34149, Italy
| | - Naomi Ruggeri
- Laboratorio Nazionale CIB (LNCIB), Area Science Park Padriciano, Trieste 34149, Italy
| | - Alessandro Zannini
- Laboratorio Nazionale CIB (LNCIB), Area Science Park Padriciano, Trieste 34149, Italy
| | - Eleonora Ingallina
- Laboratorio Nazionale CIB (LNCIB), Area Science Park Padriciano, Trieste 34149, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste 34127, Italy
| | - Rebecca Bertolio
- Laboratorio Nazionale CIB (LNCIB), Area Science Park Padriciano, Trieste 34149, Italy
| | - Carolina Marotta
- Laboratorio Nazionale CIB (LNCIB), Area Science Park Padriciano, Trieste 34149, Italy
| | - Carmelo Neri
- Laboratorio Nazionale CIB (LNCIB), Area Science Park Padriciano, Trieste 34149, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste 34127, Italy
| | - Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova 35124, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova 35124, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padova 35128, Italy
| | - Miguel Mano
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3060-197, Portugal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste 34149, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park Padriciano, Trieste 34149, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste 34127, Italy
| |
Collapse
|
6
|
Swinstead EE, Paakinaho V, Presman DM, Hager GL. Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: A new perspective: Multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. Bioessays 2016; 38:1150-1157. [PMID: 27633730 DOI: 10.1002/bies.201600137] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcription factor (TF) signaling regulates gene transcription and requires a complex network of proteins. This network includes co-activators, co-repressors, multiple TFs, histone-modifying complexes, and the basal transcription machinery. It has been widely appreciated that pioneer factors, such as FoxA1 and GATA1, play an important role in opening closed chromatin regions, thereby allowing binding of a secondary factor. In this review we will focus on a newly proposed model wherein multiple TFs, such as steroid receptors (SRs), can function in a pioneering role. This model, termed dynamic assisted loading, integrates data from widely divergent methodologies, including genome wide ChIP-Seq, digital genomic footprinting, DHS-Seq, live cell protein dynamics, and biochemical studies of ATP-dependent remodeling complexes, to present a real time view of TF chromatin interactions. Under this view, many TFs can act as initiating factors for chromatin landscape programming. Furthermore, enhancer and promoter states are more accurately described as energy-dependent, non-equilibrium steady states.
Collapse
Affiliation(s)
- Erin E Swinstead
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
7
|
Kalashnikova AA, Rogge RA, Hansen JC. Linker histone H1 and protein-protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:455-61. [PMID: 26455956 PMCID: PMC4775371 DOI: 10.1016/j.bbagrm.2015.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 01/11/2023]
Abstract
Linker histones H1 are ubiquitous chromatin proteins that play important roles in chromatin compaction, transcription regulation, nucleosome spacing and chromosome spacing. H1 function in DNA and chromatin structure stabilization is well studied and established. The current paradigm of linker histone mode of function considers all other cellular roles of linker histones to be a consequence from H1 chromatin compaction and repression. Here we review the multiple processes regulated by linker histones and the emerging importance of protein interactions in H1 functioning. We propose a new paradigm which explains the multi functionality of linker histones through linker histones protein interactions as a way to directly regulate recruitment of proteins to chromatin.
Collapse
Affiliation(s)
- Anna A Kalashnikova
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Ryan A Rogge
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| |
Collapse
|
8
|
Liao R, Mizzen CA. Interphase H1 phosphorylation: Regulation and functions in chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:476-85. [PMID: 26657617 DOI: 10.1016/j.bbagrm.2015.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022]
Abstract
Many metazoan cell types differentially express multiple non-allelic amino acid sequence variants of histone H1. Although early work revealed that H1 variants, collectively, are phosphorylated during interphase and mitosis, differences between individual H1 variants in the sites they possess for mitotic and interphase phosphorylation have been elucidated only relatively recently. Here, we review current knowledge on the regulation and function of interphase H1 phosphorylation, with a particular emphasis on how differences in interphase phosphorylation among the H1 variants of mammalian cells may enable them to have differential effects on transcription and other chromatin processes.
Collapse
Affiliation(s)
- Ruiqi Liao
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA; Institute for Genomic Biology, University of Illinois at Urbana Champaign, USA.
| |
Collapse
|
9
|
Bednar J, Hamiche A, Dimitrov S. H1-nucleosome interactions and their functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:436-43. [PMID: 26477489 DOI: 10.1016/j.bbagrm.2015.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 01/13/2023]
Abstract
Linker histones are three domain proteins and consist of a structured (globular) domain, flanked by two likely non-structured NH2- and COOH-termini. The binding of the linker histones to the nucleosome was characterized by different methods in solution. Apparently, the globular domain interacts with the linker DNA and the nucleosome dyad, while the binding of the large and rich in lysines COOH-terminus results in "closing" the linker DNA of the nucleosome and the formation of the "stem" structure. What is the mode of binding of the linker histones within the chromatin fiber remains still elusive. Nonetheless, it is clear that linker histones are essential for both the assembly and maintenance of the condensed chromatin fiber. Interestingly, linker histones are post-translationally modified and how this affects both their binding to chromatin and functions is now beginning to emerge. In addition, linker histones are highly mobile in vivo, but not in vitro. No explanation of this finding is reported for the moment. The higher mobility of the linker histones should, however, have strong impact on their function. Linker histones plays an important role in gene expression regulation and other chromatin related process and their function is predominantly regulated by their posttranslational modifications. However, the detailed mechanism how the linker histones do function remains still not well understood despite numerous efforts. Here we will summarize and analyze the data on the linker histone binding to the nucleosome and the chromatin fiber and will discuss its functional consequences.
Collapse
Affiliation(s)
- Jan Bednar
- Université de Grenoble Alpes/CNRS, Laboratoire Interdisciplinaire de Physique, UMR 5588, 140 rue de la Physique, B.P. 87, St. Martin d'Heres, F-38402, France.
| | - Ali Hamiche
- Equipe labellisée Ligue contre le Cancer, Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UDS, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Stefan Dimitrov
- INSERM/UJF, Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, France
| |
Collapse
|
10
|
Miranda TB, Morris SA, Hager GL. Complex genomic interactions in the dynamic regulation of transcription by the glucocorticoid receptor. Mol Cell Endocrinol 2013; 380:16-24. [PMID: 23499945 PMCID: PMC3724757 DOI: 10.1016/j.mce.2013.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/26/2013] [Accepted: 03/03/2013] [Indexed: 12/13/2022]
Abstract
The glucocorticoid receptor regulates transcriptional output through complex interactions with the genome. These events require continuous remodeling of chromatin, interactions of the glucocorticoid receptor with chaperones and other accessory factors, and recycling of the receptor by the proteasome. Therefore, the cohort of factors expressed in a particular cell type can determine the physiological outcome upon treatment with glucocorticoid hormones. In addition, circadian and ultradian cycling of hormones can also affect GR response. Here we will discuss revision of the classical static model of GR binding to response elements to incorporate recent findings from single cell and genome-wide analyses of GR regulation. We will highlight how these studies have changed our views on the dynamics of GR recruitment and its modulation of gene expression.
Collapse
|
11
|
Lone IN, Shukla MS, Charles Richard JL, Peshev ZY, Dimitrov S, Angelov D. Binding of NF-κB to nucleosomes: effect of translational positioning, nucleosome remodeling and linker histone H1. PLoS Genet 2013; 9:e1003830. [PMID: 24086160 PMCID: PMC3784511 DOI: 10.1371/journal.pgen.1003830] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/12/2013] [Indexed: 01/29/2023] Open
Abstract
NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A–H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes. In eukaryotes DNA is hierarchically packaged into chromatin by histones. The fundamental subunit of chromatin is the nucleosome. The packaging of DNA into nucleosomes not only restricts DNA accessibility for regulatory proteins but also provides opportunities to regulate DNA based processes. Accessibility of transcription factor NF-κB to their recognition sequences embedded in nucleosomes is highly controversial. On one hand in vivo studies have suggested that packaging of DNA into chromatin plays an important role in regulating the expression of NF-κB dependent genes, and on the other hand some in vitro studies reported that NF-κB can bind by itself to its recognition sequences embedded in the nucleosome. In this study, we show that NF-κB can specifically bind to its recognition sequences placed at the end of the nucleosome but not when placed inside the nucleosome core. We then demonstrate that disruption of nucleosome is necessary for the productive binding of NF-κB. Finally, we show that the presence of histone H1 does not affect the specific binding of NF-κB to its cognate sequence, when its binding region overlaps with the binding site of NF-κB. We propose that histone eviction is needed for NF-κB to bind specifically to its recognition sequence embedded in the nucleosome.
Collapse
Affiliation(s)
- Imtiaz Nisar Lone
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Manu Shubhdarshan Shukla
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Joseph Fourier - Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, Grenoble, France
| | - John Lalith Charles Richard
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Joseph Fourier - Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, Grenoble, France
| | - Zahary Yordanov Peshev
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
- Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stefan Dimitrov
- Université Joseph Fourier - Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, Grenoble, France
- * E-mail: (SD); (DA)
| | - Dimitar Angelov
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (SD); (DA)
| |
Collapse
|
12
|
Harshman SW, Young NL, Parthun MR, Freitas MA. H1 histones: current perspectives and challenges. Nucleic Acids Res 2013; 41:9593-609. [PMID: 23945933 PMCID: PMC3834806 DOI: 10.1093/nar/gkt700] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
H1 and related linker histones are important both for maintenance of higher-order chromatin structure and for the regulation of gene expression. The biology of the linker histones is complex, as they are evolutionarily variable, exist in multiple isoforms and undergo a large variety of posttranslational modifications in their long, unstructured, NH2- and COOH-terminal tails. We review recent progress in understanding the structure, genetics and posttranslational modifications of linker histones, with an emphasis on the dynamic interactions of these proteins with DNA and transcriptional regulators. We also discuss various experimental challenges to the study of H1 and related proteins, including limitations of immunological reagents and practical difficulties in the analysis of posttranslational modifications by mass spectrometry.
Collapse
Affiliation(s)
- Sean W Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA and Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
13
|
Rossetto D, Avvakumov N, Côté J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 2012; 7:1098-108. [PMID: 22948226 DOI: 10.4161/epi.21975] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone posttranslational modifications are key components of diverse processes that modulate chromatin structure. These marks function as signals during various chromatin-based events, and act as platforms for recruitment, assembly or retention of chromatin-associated factors. The best-known function of histone phosphorylation takes place during cellular response to DNA damage, when phosphorylated histone H2A(X) demarcates large chromatin domains around the site of DNA breakage. However, multiple studies have also shown that histone phosphorylation plays crucial roles in chromatin remodeling linked to other nuclear processes. In this review, we summarize the current knowledge of histone phosphorylation and describe the many kinases and phosphatases that regulate it. We discuss the key roles played by this histone mark in DNA repair, transcription and chromatin compaction during cell division and apoptosis. Additionally, we describe the intricate crosstalk that occurs between phosphorylation and other histone modifications and allows for sophisticated control over the chromatin remodeling processes.
Collapse
Affiliation(s)
- Dorine Rossetto
- Laval University Cancer Research Center, Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | | | | |
Collapse
|
14
|
King HA, Trotter KW, Archer TK. Chromatin remodeling during glucocorticoid receptor regulated transactivation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:716-26. [PMID: 22425674 DOI: 10.1016/j.bbagrm.2012.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 12/21/2022]
Abstract
Steroid hormone receptor (SR) signaling leads to widespread changes in gene expression, and aberrant SR signaling can lead to malignancies including breast, prostate, and lung cancers. Chromatin remodeling is an essential component of SR signaling, and defining the process of chromatin and nucleosome remodeling during signaling is critical to the continued development of related therapies. The glucocorticoid receptor (GR) is a key SR that activates numerous promoters including the well defined MMTV promoter. The activation of MMTV by GR provides an excellent model for teasing apart the sequence of events between hormone treatment and changes in gene expression. Comparing hormone-induced transcription from stably integrated promoters with defined nucleosomal structure to that from transiently expressed, unstructured promoters permits key distinctions between interactions that require remodeling and those that do not. The importance of co-activators and histone modifications prior to remodeling and the formation of the preinitiation complex that follows can also be clarified by defining key transition points in the propagation of hormonal signals. Combined with detailed mapping of proteins along the promoter, a temporal and spatial understanding of the signaling and remodeling processes begins to emerge. In this review, we examine SR signaling with a focus on GR activation of the MMTV promoter. We also discuss the ATP-dependent remodeling complex SWI/SNF, which provides the necessary remodeling activity during GR signaling and interacts with several SRs. BRG1, the central ATPase of SWI/SNF, also interacts with a set of BAF proteins that help determine the specialized function and fine-tuned regulation of BRG1 remodeling activity. BRG1 regulation comes from its own subdomains as well as its interactive partners. In particular, the HSA domain region of BRG1 and unique features of its ATPase homology appear to play key roles in regulating remodeling function. Details of the inter-workings of this chromatin remodeling protein continue to be revealed and promise to improve our understanding of the mechanism of chromatin remodeling during steroid hormone signaling. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Heather A King
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
15
|
Medrzycki M, Zhang Y, McDonald JF, Fan Y. Profiling of linker histone variants in ovarian cancer. FRONT BIOSCI-LANDMRK 2012; 17:396-406. [PMID: 22201751 DOI: 10.2741/3934] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
H1 linker histones play a key role in facilitating higher order chromatin folding. Emerging evidence suggests that H1 and its multiple variants are important epigenetic factors in modulating chromatin function and gene expression. Ovarian cancer is a devastating disease, ranking the fifth leading cause of all women cancer death due to its poor prognosis and difficulty in early diagnosis. Although epigenetic alterations in ovarian cancers are being appreciated in general, the role of H1 has not been explored. Here, using quantitative RT-PCR assays, we systematically examined the expression of 7 H1 genes in 33 human epithelial ovarian tumors. Whereas the expression of H1.3 was markedly increased, the expression of H10, H1.1, H1.4 and H1x were significantly reduced in malignant adenocarcinomas compared with benign adenomas. Strikingly, ovarian adenocarcinomas and adenomas exhibited characteristic expression patterns, and expression profiling of 7 H1 genes in tumor samples discriminated adenocarcinomas vs. adenomas with high accuracy. These findings indicate that the expression of H1 variants is exquisitely regulated and may serve as potential epigenetic biomarkers for ovarian cancer.
Collapse
Affiliation(s)
- Magdalena Medrzycki
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
16
|
Oleggini R, Di Donato A. Lysyl oxidase regulates MMTV promoter: indirect evidence of histone H1 involvement. Biochem Cell Biol 2011; 89:522-32. [DOI: 10.1139/o11-049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysyl oxidase (LOX) is the enzyme that facilitates the cross-linking of collagen and elastin, although other functions for this enzyme have been indicated. Of these other functions, we describe herein the ability of LOX to regulate several gene promoters, like collagen III, elastin, and cyclin D1. We have previously demonstrated a specific binding between LOX and histone H1, in vitro. Therefore, we investigated whether LOX would affect the mouse mammary tumor virus (MMTV) promoter and its glucocorticoid regulation, which depends on the phophorylation status of histone H1. Our results show that the over-expression of recombinant human LOX was able to trigger MMTV activity, both in the presence and absence of glucocorticoids. Moreover, we demonstrated that histone H1 from cells expressing recombinant LOX contained isodesmosine and desmosine, indicating specific lysyl-oxidase-dependent lysine modifications. Finally, we were able to co-immunoprecipitate the exogenous LOX and histone H1 from the LOX transfected cells. The data are compatible with a decreased positive charge of histone H1, owing to deamination by LOX of its lysine residues. This event would favor H1 detachment from the target DNA, and consequent opening of the MMTV promoter structure to the activating transcription factors. The presented data, therefore, suggest a possible histone-H1-dependent mechanism for the modulation of MMTV promoter by LOX.
Collapse
|
17
|
Chu CS, Hsu PH, Lo PW, Scheer E, Tora L, Tsai HJ, Tsai MD, Juan LJ. Protein kinase A-mediated serine 35 phosphorylation dissociates histone H1.4 from mitotic chromosome. J Biol Chem 2011; 286:35843-35851. [PMID: 21852232 PMCID: PMC3195632 DOI: 10.1074/jbc.m111.228064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Global histone H1 phosphorylation correlates with cell cycle progression. However, the function of site-specific H1 variant phosphorylation remains unclear. Our mass spectrometry analysis revealed a novel N-terminal phosphorylation of the major H1 variant H1.4 at serine 35 (H1.4S35ph), which accumulates at mitosis immediately after H3 phosphorylation at serine 10. Protein kinase A (PKA) was found to be a kinase for H1.4S35. Importantly, Ser-35-phosphorylated H1.4 dissociates from mitotic chromatin. Moreover, H1.4S35A substitution mutant cannot efficiently rescue the mitotic defect following H1.4 depletion, and inhibition of PKA activity increases the mitotic chromatin compaction depending on H1.4. Our results not only indicate that PKA-mediated H1.4S35 phosphorylation dissociates H1.4 from mitotic chromatin but also suggest that this phosphorylation is necessary for specific mitotic functions.
Collapse
Affiliation(s)
- Chi-Shuen Chu
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan; Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Pang-Hung Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Department of Life Science, National Taiwan Ocean University, Keelung, Taiwan 20224; Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan 20224
| | - Pei-Wen Lo
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Elisabeth Scheer
- Program of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, BP 10142-67404 Illkirch Cedex, France
| | - Laszlo Tora
- Program of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, BP 10142-67404 Illkirch Cedex, France
| | - Hang-Jen Tsai
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Daw Tsai
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Li-Jung Juan
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan; Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
18
|
Vicent GP, Nacht AS, Font-Mateu J, Castellano G, Gaveglia L, Ballaré C, Beato M. Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene activation. Genes Dev 2011; 25:845-62. [PMID: 21447625 DOI: 10.1101/gad.621811] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene regulation by external signals requires access of transcription factors to DNA sequences of target genes, which is limited by the compaction of DNA in chromatin. Although we have gained insight into how core histones and their modifications influence this process, the role of linker histones remains unclear. Here we show that, within the first minute of progesterone action, a complex cooperation between different enzymes acting on chromatin mediates histone H1 displacement as a requisite for gene induction and cell proliferation. First, activated progesterone receptor (PR) recruits the chromatin remodeling complexes NURF and ASCOM (ASC-2 [activating signal cointegrator-2] complex) to hormone target genes. The trimethylation of histone H3 at Lys 4 by the MLL2/MLL3 subunits of ASCOM, enhanced by the hormone-induced displacement of the H3K4 demethylase KDM5B, stabilizes NURF binding. NURF facilitates the PR-mediated recruitment of Cdk2/CyclinA, which is required for histone H1 displacement. Cooperation of ATP-dependent remodeling, histone methylation, and kinase activation, followed by H1 displacement, is a prerequisite for the subsequent displacement of histone H2A/H2B catalyzed by PCAF and BAF. Chromatin immunoprecipitation (ChIP) and sequencing (ChIP-seq) and expression arrays show that H1 displacement is required for hormone induction of most hormone target genes, some of which are involved in cell proliferation.
Collapse
Affiliation(s)
- Guillermo Pablo Vicent
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Aoyagi S, Archer TK. Differential glucocorticoid receptor-mediated transcription mechanisms. J Biol Chem 2011; 286:4610-9. [PMID: 21127044 PMCID: PMC3039389 DOI: 10.1074/jbc.m110.195040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/28/2010] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors such as the glucocorticoid receptor (GR) are ligand-dependent transcription factors that mediate transcription of target genes by recruiting factors that modulate chromatin structure. In this study, curcumin, a compound known to inhibit GR-mediated transcription, was used to examine the different mechanisms by which GR regulates transcription. The mechanisms of transcription regulation of metallothioneine-2A (MT2A) and solute carrier family 19 member 2 (SLC19A2), two GR target genes where the hormone-dependent gene activation is inhibited or unaffected by curcumin treatment, respectively, were analyzed by chromatin immunoprecipitation and RT-PCR experiments. The data suggest that the loss of hormone-dependent MT2A gene expression is due to the inhibition of continued transcription activity after initial assembly of the transcription machinery. In contrast, the hormone-dependent SLC19A2 gene expression is maintained because the continued transcription output after assembly of transcription machinery is unaffected by curcumin. These results suggest that the two GR target genes use alternate mechanisms to regulate expression levels at the level of continued transcription output after transcription machinery assembly.
Collapse
Affiliation(s)
- Sayura Aoyagi
- From the Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Trevor K. Archer
- From the Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
20
|
Rahmanpour R, Bathaie SZ. Histone H1 Structural Changes and its Interaction with DNA in the Presence of High Glucose ConcentrationIn VivoandIn Vitro. J Biomol Struct Dyn 2011; 28:575-86. [DOI: 10.1080/07391102.2011.10508596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
O'Brien SK, Cao H, Nathans R, Ali A, Rana TM. P-TEFb kinase complex phosphorylates histone H1 to regulate expression of cellular and HIV-1 genes. J Biol Chem 2010; 285:29713-20. [PMID: 20551309 DOI: 10.1074/jbc.m110.125997] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of HIV-1 genes depends on the RNA polymerase II kinase and elongation factor positive transcription elongation factor b (P-TEFb), the complex of cyclin T1 and CDK9. Recent evidence suggests that regulation of transcription by P-TEFb involves chromatin binding and modifying factors. To determine how P-TEFb may connect chromatin remodeling to transcription, we investigated the relationship between P-TEFb and histone H1. We identify histone H1 as a substrate for P-TEFb involved in cellular and HIV-1 transcription. We show that P-TEFb interacts with H1 and that P-TEFb inhibition by RNAi, flavopiridol, or dominant negative CDK9 expression correlates with loss of phosphorylation and mobility of H1 in vivo. Importantly, P-TEFb directs H1 phosphorylation in response to wild-type HIV-1 infection, but not Tat-mutant HIV-1 infection. Our results show that P-TEFb phosphorylates histone H1 at a specific C-terminal phosphorylation site. Expression of a mutant H1.1 that cannot be phosphorylated by P-TEFb also disrupts Tat transactivation in an HIV reporter cell line as well as transcription of the c-fos and hsp70 genes in HeLa cells. We identify histone H1 as a novel P-TEFb substrate, and our results suggest new roles for P-TEFb in both cellular and HIV-1 transcription.
Collapse
Affiliation(s)
- Siobhan K O'Brien
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
22
|
Zheng Y, John S, Pesavento JJ, Schultz-Norton JR, Schiltz RL, Baek S, Nardulli AM, Hager GL, Kelleher NL, Mizzen CA. Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II. J Cell Biol 2010; 189:407-15. [PMID: 20439994 PMCID: PMC2867294 DOI: 10.1083/jcb.201001148] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 04/06/2010] [Indexed: 11/22/2022] Open
Abstract
Histone H1 phosphorylation affects chromatin condensation and function, but little is known about how specific phosphorylations impact the function of H1 variants in higher eukaryotes. In this study, we show that specific sites in H1.2 and H1.4 of human cells are phosphorylated only during mitosis or during both mitosis and interphase. Antisera generated to individual H1.2/H1.4 interphase phosphorylations reveal that they are distributed throughout nuclei and enriched in nucleoli. Moreover, interphase phosphorylated H1.4 is enriched at active 45S preribosomal RNA gene promoters and is rapidly induced at steroid hormone response elements by hormone treatment. Our results imply that site-specific interphase H1 phosphorylation facilitates transcription by RNA polymerases I and II and has an unanticipated function in ribosome biogenesis and control of cell growth. Differences in the numbers, structure, and locations of interphase phosphorylation sites may contribute to the functional diversity of H1 variants.
Collapse
Affiliation(s)
- Yupeng Zheng
- Department of Cell and Developmental Biology, Department of Chemistry, Department of Molecular and Integrative Physiology, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Sam John
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - James J. Pesavento
- Department of Cell and Developmental Biology, Department of Chemistry, Department of Molecular and Integrative Physiology, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jennifer R. Schultz-Norton
- Department of Cell and Developmental Biology, Department of Chemistry, Department of Molecular and Integrative Physiology, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - R. Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sonjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ann M. Nardulli
- Department of Cell and Developmental Biology, Department of Chemistry, Department of Molecular and Integrative Physiology, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Neil L. Kelleher
- Department of Cell and Developmental Biology, Department of Chemistry, Department of Molecular and Integrative Physiology, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Craig A. Mizzen
- Department of Cell and Developmental Biology, Department of Chemistry, Department of Molecular and Integrative Physiology, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
23
|
Vicent GP, Zaurin R, Ballaré C, Nacht AS, Beato M. Erk signaling and chromatin remodeling in MMTV promoter activation by progestins. NUCLEAR RECEPTOR SIGNALING 2009; 7:e008. [PMID: 20087429 PMCID: PMC2807634 DOI: 10.1621/nrs.07008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 08/27/2009] [Indexed: 12/05/2022]
Abstract
Transcription from the mouse mammary tumor virus (MMTV) promoter can be induced by progestins. The progesterone receptor (PR) binds to a cluster of five hormone responsive elements (HREs) and activates the promoter by synergistic interactions with the ubiquitous transcription factor, nuclear factor 1 (NF1). Progesterone treatment of cells in culture leads to activation of the Src/Ras/Erk/Msk1 cascade. Selective inhibition of Erk, or its target kinase Msk1, interferes with chromatin remodeling and blocks MMTV activation. A complex of activated PR, Erk and Msk1 is recruited to promoter after 5 min of hormone treatment and phosphorylates histone H3 at serine 10. This modification promotes the displacement of HP1γ and subsequent chromatin remodeling. Progestin treatment leads to the recruitment of the BAF complex, which selectively displaces histones H2A and H2B from the nucleosome containing the HREs. The acetyltransferase PCAF is also required for induction of progesterone target genes and acetylates histone H3 at K14, an epigenetic mark, which interacts with Brg1 and Brm, anchoring the BAF complex to chromatin. In nucleosomes assembled on either MMTV or mouse rDNA promoter sequences, SWI/SNF displaces histones H2A and H2B from MMTV, but not from the rDNA nucleosome. Thus, the outcome of nucleosome remodeling by purified SWI/SNF depends on DNA sequence. The resultant H3/H4 tetramer particle is then the substrate for subsequent events in induction. Thus, initial activation of the MMTV promoter requires activation of several kinases and PCAF leading to phosphoacetylation of H3, and recruitment of BAF with subsequent removal of H2A/H2B.
Collapse
Affiliation(s)
- Guillermo P Vicent
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | | | | | | | | |
Collapse
|
24
|
John S, Johnson TA, Sung MH, Biddie SC, Trump S, Koch-Paiz CA, Davis SR, Walker R, Meltzer PS, Hager GL. Kinetic complexity of the global response to glucocorticoid receptor action. Endocrinology 2009; 150:1766-74. [PMID: 19131569 PMCID: PMC2659280 DOI: 10.1210/en.2008-0863] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have characterized the kinetic response of gene targets throughout the murine genome to transcriptional modulation by the glucocorticoid receptor (GR). In contrast to a model in which multiple genes are either repressed or activated during the GR response, the vast majority of responsive genes are subject to complex regulation profiles, frequently with alternate activation and repression phases. We also observe that GR binding at response elements does not always correlate with the target gene response profile. Thus, the cellular response to GR stimulation involves a highly orchestrated series of regulatory actions and not simply a binary response to hormone.
Collapse
Affiliation(s)
- Sam John
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Raghuram N, Carrero G, Th’ng J, Hendzel MJ. Molecular dynamics of histone H1This paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2009; 87:189-206. [DOI: 10.1139/o08-127] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The histone H1 family of nucleoproteins represents an important class of structural and architectural proteins that are responsible for maintaining and stabilizing higher-order chromatin structure. Essential for mammalian cell viability, they are responsible for gene-specific regulation of transcription and other DNA-dependent processes. In this review, we focus on the wealth of information gathered on the molecular kinetics of histone H1 molecules using novel imaging techniques, such as fluorescence recovery after photobleaching. These experiments have shed light on the effects of H1 phosphorylation and core histone acetylation in influencing chromatin structure and dynamics. We also delineate important concepts surrounding the C-terminal domain of H1, such as the intrinsic disorder hypothesis, and how it affects H1 function. Finally, we address the biochemical mechanisms behind low-affinity H1 binding.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - Gustavo Carrero
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - John Th’ng
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - Michael J. Hendzel
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| |
Collapse
|
26
|
Burkhart BA, Ivey ML, Archer TK. Long-term low level glucocorticoid exposure induces persistent repression in chromatin. Mol Cell Endocrinol 2009; 298:66-75. [PMID: 19007849 PMCID: PMC2657048 DOI: 10.1016/j.mce.2008.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/07/2008] [Accepted: 10/13/2008] [Indexed: 12/31/2022]
Abstract
Environmental exposure to low concentration hormones can have permanent epigenetic effects in animals and humans. The consequence of long-term low concentration glucocorticoid exposure was investigated in cell culture using glucocorticoid responsive genes organized in alternative chromatin structures. The MMTV promoter is induced by short-term glucocorticoid exposure on either an integrated (normal chromatin) or transient (unstructured chromatin) promoter. Longer hormone treatment causes a transient refractory repression of only the integrated promoter. Exposure to low concentrations of hormone for several passages persistently represses the integrated MMTV and endogenous glucocorticoid responsive promoters. The glucocorticoid receptor cannot bind to persistently repressed promoters. Induction by androgens is also inhibited on the repressed MMTV promoter. Similarly, osmotic stress induction of the endogenous Sgk gene is repressed. Persistent repression by glucocorticoids targets glucocorticoid responsive genes using a chromatin-dependent mechanism that disrupts binding of both GR-dependent and GR-independent transcription complexes.
Collapse
Affiliation(s)
- Barbara A. Burkhart
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Melissa L. Ivey
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Trevor K. Archer
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
27
|
Voss TC, Schiltz RL, Sung MH, Johnson TA, John S, Hager GL. Combinatorial probabilistic chromatin interactions produce transcriptional heterogeneity. J Cell Sci 2009; 122:345-56. [PMID: 19126674 DOI: 10.1242/jcs.035865] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene regulation often appears deterministic in the average cell population, but transcription is a probabilistic process at the single-cell level. Although many mechanisms are invoked to account for this behavior, it is difficult to determine how cell-to-cell variation in the interactions of transcription factors with target chromatin impact transcriptional output. Here, we use cells that contain a 200-copy tandem array of promoter or reporter gene units to simultaneously visualize transient interaction, equilibrium or steady-state binding of fluorescent-protein-labeled glucocorticoid receptor with its DNA response elements, the recruitment of diverse coregulators, and transcriptional output at the single-cell level. These regulatory proteins associate with target chromatin via a probabilistic mechanism that produces cell-to-cell variability in binding. The multiple steps of this process are partially independent and differ between individual regulators. The association level of each regulator influences the transcriptional output in individual cells, but this does not account for all transcriptional heterogeneity. Additionally, specific combinatorial interactions of the glucocorticoid receptor and coregulators with response elements regulate transcription at the single-cell level. Like many endogenous genes, the average array transcriptional activity evolves over time. This apparently deterministic average temporal promoter progression involves changes in the probability that specific combinatorial glucocorticoid receptor and coregulator interactions will occur on the response elements in single cells. These data support the emerging ;return-to-template' transcription model, which mechanistically unifies the observed extremely transient interactions between the transcription factor and response elements, cell-to-cell variability in steady-state association of factors with chromatin, and the resulting heterogeneous gene expression between individual cells.
Collapse
Affiliation(s)
- Ty C Voss
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Chromatin serves to package, protect and organize the complex eukaryotic genomes to assure their stable inheritance over many cell generations. At the same time, chromatin must be dynamic to allow continued use of DNA during a cell's lifetime. One important principle that endows chromatin with flexibility involves ATP-dependent 'remodeling' factors, which alter DNA-histone interactions to form, disrupt or move nucleosomes. Remodeling is well documented at the nucleosomal level, but little is known about the action of remodeling factors in a more physiological chromatin environment. Recent findings suggest that some remodeling machines can reorganize even folded chromatin fibers containing the linker histone H1, extending the potential scope of remodeling reactions to the bulk of euchromatin.
Collapse
Affiliation(s)
- Verena K Maier
- Adolf-Butenandt Institut, Abt. Molekularbiologie, and Münchner Zentrum für Integrierte Proteinforschung, Ludwig-Maximilian-Universität München, Schillerstrasse 44, D-80336 München, Germany
| | | | | |
Collapse
|
29
|
Deterding LJ, Bunger MK, Banks GC, Tomer KB, Archer TK. Global changes in and characterization of specific sites of phosphorylation in mouse and human histone H1 Isoforms upon CDK inhibitor treatment using mass spectrometry. J Proteome Res 2008; 7:2368-79. [PMID: 18416567 PMCID: PMC2761089 DOI: 10.1021/pr700790a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Global changes in the phosphorylation state of human H1 isoforms isolated from UL3 cells have been investigated using mass spectrometry. Relative changes in H1 phosphorylation between untreated cells and cells treated with dexamethasone or various CDK inhibitors were determined. The specific cyclin-dependent kinase consensus sites of phosphorylation on the histone H1 isoforms that show changes in phosphorylation were also investigated. Three sites of phosphorylation on histone H1.4 isoforms have been identified.
Collapse
Affiliation(s)
- Leesa J. Deterding
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, P.O. Box 12233, RTP, North Carolina 27709
| | - Maureen K. Bunger
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, P.O. Box 12233, RTP, North Carolina 27709
| | - Geoffrey C. Banks
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, P.O. Box 12233, RTP, North Carolina 27709
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, P.O. Box 12233, RTP, North Carolina 27709
| | - Trevor K. Archer
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, P.O. Box 12233, RTP, North Carolina 27709
| |
Collapse
|
30
|
Hebbar PB, Archer TK. Altered histone H1 stoichiometry and an absence of nucleosome positioning on transfected DNA. J Biol Chem 2008; 283:4595-601. [PMID: 18156629 PMCID: PMC3339569 DOI: 10.1074/jbc.m709121200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The packaging of DNA with histones to form chromatin represents an important and powerful mechanism to regulate gene expression. Critical aspects of chromatin-specific contributions to gene regulation have been revealed by the comparison of the activities from DNA regulatory elements examined both as transiently transfected reporters and stably integrated reporters organized as chromatin. Using the mouse mammary tumor virus (MMTV) promoter as a model, we probed the structural differences between transiently transfected and stably integrated DNA templates. We demonstrated that all four core histones and the linker histone (H1) are associated with the transient template. However, whereas the core histones were present at a similar stoichiometry between the transient and the stable templates, we found that linker histone H1 molecules are fewer on the transient template. By using supercoiling assay, we show that the transient template shows intermediate levels of nucleosomal assembly. Overexpression of H1 resulted in repression of MMTV transcriptional activity and reduced accessibility to restriction endonucleases on the transient MMTV promoter. However, the addition of exogenous H1 failed to impose a normal chromatin structure on the transient template as measured by micrococcal nuclease digestion pattern. Thus, our results suggest that while transiently transfected DNA acquires a full complement of core histones, the underrepresentation of H1 on the transient template is indicative of structural differences between the two templates that may underlie the differences in the mechanisms of activation of the two templates.
Collapse
Affiliation(s)
- Pratibha B Hebbar
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
31
|
Aoyagi S, Archer TK. Dynamics of coactivator recruitment and chromatin modifications during nuclear receptor mediated transcription. Mol Cell Endocrinol 2008; 280:1-5. [PMID: 17935877 PMCID: PMC2233606 DOI: 10.1016/j.mce.2007.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 08/22/2007] [Indexed: 11/16/2022]
Abstract
The mechanisms and interplay of coactivators that underlie transcription activation is a critical avenue of investigation in biology today. Using nuclear receptor (NR) mediated transcription activation as a model, the nature of coactivator recruitment and chromatin modifications has been found to be highly dynamic. Progress in understanding the kinetics and regulation of coactivator recruitment, and subsequent effects on transcriptional readout, has greatly improved our understanding of nuclear receptor mediated transcription, the subject of discussion in this 'At the Cutting Edge' review.
Collapse
Affiliation(s)
- Sayura Aoyagi
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, NC 27709, USA
| | | |
Collapse
|
32
|
Yin VP, Thummel CS, Bashirullah A. Down-regulation of inhibitor of apoptosis levels provides competence for steroid-triggered cell death. J Cell Biol 2007; 178:85-92. [PMID: 17591924 PMCID: PMC2064425 DOI: 10.1083/jcb.200703206] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 05/31/2007] [Indexed: 01/23/2023] Open
Abstract
A pulse of the steroid hormone ecdysone triggers the destruction of larval salivary glands during Drosophila metamorphosis through a transcriptional cascade that converges on reaper (rpr) and head involution defective (hid) induction, resulting in caspase activation and cell death. We identify the CREB binding protein (CBP) transcriptional cofactor as essential for salivary gland cell death. We show that CBP acts 1 d before the onset of metamorphosis in apparent response to a mid-third instar ecdysone pulse, when CBP is necessary and sufficient for down-regulation of the Drosophila inhibitor of apoptosis 1 (DIAP1). It is only after DIAP1 levels are reduced that salivary glands become competent to die through rpr/hid-mediated cell death. Before this time, high levels of DIAP1 block salivary gland cell death, even in the presence of ectopic rpr expression. This study shows that naturally occurring changes in inhibitor of apoptosis levels can be critical for regulating cell death during development. It also provides a molecular mechanism for the acquisition of competence in steroid signaling pathways.
Collapse
Affiliation(s)
- Viravuth P Yin
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
33
|
Roque A, Ponte I, Suau P. Macromolecular crowding induces a molten globule state in the C-terminal domain of histone H1. Biophys J 2007; 93:2170-7. [PMID: 17513371 PMCID: PMC1959549 DOI: 10.1529/biophysj.107.104513] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied the secondary structure of the C-terminal domains of the histone H1 subtypes H1 degrees (C-H1 degrees ) and H1t (C-H1t) in the presence of macromolecular crowding agents (Ficoll 70 and PEG 6000) by IR spectroscopy. The carboxyl-terminal domain has little structure in aqueous solution but became extensively folded in the presence of crowding agents. In 30% PEG, C-H1 degrees contained 19% alpha-helix, 28% beta-sheet, 16% turns, and 31% open loops. Similar proportions were observed in 30% Ficoll 70 and for C-H1t in both crowding agents. The proportions of secondary structure motifs were comparable to those of the DNA-bound domain. Kratky plots of the small-angle x-ray scattering showed that in crowding agents the C-terminus had the compaction of a globular state. Progressive dissipation of the secondary structure and a linear increase in partial heat capacity with temperature together with increased binding of ANS indicated that the C-terminus is not cooperatively folded in crowded conditions. Native-like secondary structure and compactness in absence of folding cooperativity indicate that the C-terminus in crowding agents is in a molten globule state. Folding of the C-terminus in crowded conditions may increase the rate of the transition toward the DNA-bound state and facilitate H1 diffusion inside cell nuclei.
Collapse
Affiliation(s)
- Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
34
|
Orrego M, Ponte I, Roque A, Buschati N, Mora X, Suau P. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin. BMC Biol 2007; 5:22. [PMID: 17498293 PMCID: PMC1890542 DOI: 10.1186/1741-7007-5-22] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 05/11/2007] [Indexed: 11/10/2022] Open
Abstract
Background Histone H1 is involved in the formation and maintenance of chromatin higher order structure. H1 has multiple isoforms; the subtypes differ in timing of expression, extent of phosphorylation and turnover rate. In vertebrates, the amino acid substitution rates differ among subtypes by almost one order of magnitude, suggesting that each subtype might have acquired a unique function. We have devised a competitive assay to estimate the relative binding affinities of histone H1 mammalian somatic subtypes H1a-e and H1° for long chromatin fragments (30–35 nucleosomes) in physiological salt (0.14 M NaCl) at constant stoichiometry. Results The H1 complement of native chromatin was perturbed by adding an additional amount of one of the subtypes. A certain amount of SAR (scaffold-associated region) DNA was present in the mixture to avoid precipitation of chromatin by excess H1. SAR DNA also provided a set of reference relative affinities, which were needed to estimate the relative affinities of the subtypes for chromatin from the distribution of the subtypes between the SAR and the chromatin. The amounts of chromatin, SAR and additional H1 were adjusted so as to keep the stoichiometry of perturbed chromatin similar to that of native chromatin. H1 molecules freely exchanged between the chromatin and SAR binding sites. In conditions of free exchange, H1a was the subtype of lowest affinity, H1b and H1c had intermediate affinities and H1d, H1e and H1° the highest affinities. Subtype affinities for chromatin differed by up to 19-fold. The relative affinities of the subtypes for chromatin were equivalent to those estimated for a SAR DNA fragment and a pUC19 fragment of similar length. Avian H5 had an affinity ~12-fold higher than H1e for both DNA and chromatin. Conclusion H1 subtypes freely exchange in vitro between chromatin binding sites in physiological salt (0.14 M NaCl). The large differences in relative affinity of the H1 subtypes for chromatin suggest that differential affinity could be functionally relevant and thus contribute to the functional differentiation of the subtypes. The conservation of the relative affinities for SAR and non-SAR DNA, in spite of a strong preference for SAR sequences, indicates that differential affinity alone cannot be responsible for the heterogeneous distribution of some subtypes in cell nuclei.
Collapse
Affiliation(s)
- Mary Orrego
- Departamento de Bioquímica y Biología Molecular, Facultad de BiocienciasUniversidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Universidad Autónoma de Manizales. Colombia
| | - Imma Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de BiocienciasUniversidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de BiocienciasUniversidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Natascha Buschati
- Departamento de Bioquímica y Biología Molecular, Facultad de BiocienciasUniversidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Mora
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de BiocienciasUniversidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
35
|
Song X, Gorovsky MA. Unphosphorylated H1 is enriched in a specific region of the promoter when CDC2 is down-regulated during starvation. Mol Cell Biol 2006; 27:1925-33. [PMID: 17194754 PMCID: PMC1820472 DOI: 10.1128/mcb.01619-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tetrahymena thermophila macronuclear histone H1 is phosphorylated by a cdc2 kinase, and H1 phosphorylation regulates CDC2 expression by a positive feedback mechanism. In starved wild-type cells, decreased expression of the CDC2 gene is correlated with a global reduction in the phosphorylation of H1 and reduced phosphorylation of H1 in the region upstream of the CDC2 gene. To determine whether the reduced H1 phosphorylation upstream of the CDC2 gene is merely a reflection of global dephosphorylation or is due to specific targeting of dephosphorylation of H1 to the CDC2 promoter during starvation, the CDC2 promoter was mapped, and the distributions of phosphorylated and unphosphorylated H1 across the CDC2 gene were determined using chromatin immunoprecipitation. Unphosphorylated H1 is specifically enriched in a region of the CDC2 promoter when the gene's expression is reduced during starvation but not when CDC2 is highly active in growing cells. The region of unphosphorylated H1 coincides with a region that is essential for CDC2 expression. These studies are the first in vivo demonstration that the phosphorylation of H1 is being regulated at a fine level and that unphosphorylated H1 can be specifically targeted to a promoter, where it likely regulates transcription in a gene-specific manner.
Collapse
Affiliation(s)
- Xiaoyuan Song
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | |
Collapse
|
36
|
Konesky KL, Nyborg JK, Laybourn PJ. Tax abolishes histone H1 repression of p300 acetyltransferase activity at the human T-cell leukemia virus type 1 promoter. J Virol 2006; 80:10542-53. [PMID: 16943293 PMCID: PMC1641794 DOI: 10.1128/jvi.00631-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Upon infection of human T-cell leukemia virus type 1 (HTLV-1), the provirus is integrated into the host cell genome and subsequently packaged into chromatin that contains histone H1. Consequently, transcriptional activation of the virus requires overcoming the environment of chromatin and H1. To efficiently activate transcription, HTLV-1 requires the virally encoded protein Tax and cellular transcription factor CREB. Together Tax and CREB interact with three cis-acting promoter elements called viral cyclic-AMP response elements (vCREs). Binding of Tax and CREB to the vCREs promotes association of p300/CBP into the complex and leads to transcriptional activation. Therefore, to fully understand the mechanism of Tax transactivation, it is necessary to examine transcriptional activation from chromatin assembled with H1. Using a DNA template harboring the complete HTLV-1 promoter sequence and a highly defined recombinant assembly system, we demonstrate proper incorporation of histone H1 into chromatin. Addition of H1 to the chromatin template reduces HTLV-1 transcriptional activation through a novel mechanism. Specifically, H1 does not inhibit CREB or Tax binding to the vCREs or p300 recruitment to the promoter. Rather, H1 directly targets p300 acetyltransferase activity. Interestingly, in determining the mechanism of H1 repression, we have discovered a previously undefined function of Tax, overcoming the repressive effects of H1-chromatin. Tax specifically abrogates the H1 repression of p300 enzymatic activity in a manner independent of p300 recruitment and without displacement of H1 from the promoter.
Collapse
Affiliation(s)
- Kasey L Konesky
- Department of Biochemistry and Molecular Biology, Colorado State University, 1870 Campus Delivery, Fort Collins, CO 80523-1870, USA
| | | | | |
Collapse
|
37
|
Qiu Y, Zhao Y, Becker M, John S, Parekh BS, Huang S, Hendarwanto A, Martinez ED, Chen Y, Lu H, Adkins NL, Stavreva DA, Wiench M, Georgel PT, Schiltz RL, Hager GL. HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription. Mol Cell 2006; 22:669-79. [PMID: 16762839 DOI: 10.1016/j.molcel.2006.04.019] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 02/06/2006] [Accepted: 04/14/2006] [Indexed: 12/23/2022]
Abstract
Although histone deacetylases (HDACs) are generally viewed as corepressors, we show that HDAC1 serves as a coactivator for the glucocorticoid receptor (GR). Furthermore, a subfraction of cellular HDAC1 is acetylated after association with the GR, and this acetylation event correlates with a decrease in promoter activity. HDAC1 in repressed chromatin is highly acetylated, while the deacetylase found on transcriptionally active chromatin manifests a low level of acetylation. Acetylation of purified HDAC1 inactivates its deacetylase activity, and mutation of the critical acetylation sites abrogates HDAC1 function in vivo. We propose that hormone activation of the receptor leads to progressive acetylation of HDAC1 in vivo, which in turn inhibits the deacetylase activity of the enzyme and prevents a deacetylation event that is required for promoter activation. These findings indicate that HDAC1 is required for the induction of some genes by the GR, and this activator function is dynamically modulated by acetylation.
Collapse
Affiliation(s)
- Yi Qiu
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, B602, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bhattacharjee RN, Archer TK. Transcriptional silencing of the mouse mammary tumor virus promoter through chromatin remodeling is concomitant with histone H1 phosphorylation and histone H3 hyperphosphorylation at M phase. Virology 2006; 346:1-6. [PMID: 16458342 DOI: 10.1016/j.virol.2005.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 10/21/2005] [Accepted: 12/16/2005] [Indexed: 12/01/2022]
Abstract
We examined histone phosphorylation and their effects on glucocorticoid receptor (GR)-mediated activation of the mouse mammary tumor virus promoter (MMTV) in synchronized cells. In vivo protein expression studies suggest that both histones H1 and H3 are highly phosphorylated in mitotic-arrested cells in which GR is unable to remodel chromatin and recruit transcription factor NF1 to the promoter. Postmitotic cells show an open chromatin structure and efficient binding of NF1 to the promoter accompanied by reversing histone H1 and H3 phosphorylation level. In contrast, the acetylation status of histone H3 and H4 did not change in either condition. These results suggest that hyperphosphorylation of histone H1 and H3 leads to inhibition of GR-mediated chromatin remodeling and inactivation of MMTV by preventing the association of transcription factors to the promoter in vivo.
Collapse
Affiliation(s)
- Rabindra N Bhattacharjee
- Department of Obstetrics and Gynaecology, University of Western Ontario, London, ON, Canada N6A 4L6.
| | | |
Collapse
|
39
|
Stavreva DA, McNally JG. Role of H1 phosphorylation in rapid GR exchange and function at the MMTV promoter. Histochem Cell Biol 2005; 125:83-9. [PMID: 16397795 DOI: 10.1007/s00418-005-0086-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2005] [Indexed: 01/08/2023]
Abstract
Photobleaching technology has demonstrated in live cells that the glucocorticoid receptor (GR) exchanges rapidly at the mouse mammary tumor virus (MMTV) promoter. GR rapid exchange at MMTV depends on chaperone and proteasome activity, and as suggested by several in vitro and in vivo biochemical approaches, may also involve chromatin remodeling activity. Inhibition of H1 phosphorylation, chromatin remodeling and transcription from MMTV can be accomplished by long-term blocking of Cdk2 protein kinase activity. We find that Cdk2 is recruited by a tandem array of MMTV promoters, strengthening the model that this kinase has a specific role in MMTV transcription. We also demonstrate that following a brief Cdk2 inhibition by a selective cyclin-dependent kinase inhibitor (Roscovitine), transcription from MMTV drops and GR exchange at MMTV becomes slower, with a fraction of GR molecules now tightly bound at the promoter. This immobile fraction is absent elsewhere in the nucleus, suggesting a specific effect of Cdk2 inhibition on GR-MMTV interactions. These are the first live cell data suggesting a role for H1 phosphorylation, and by implication chromatin remodeling, in rapid exchange of GR at MMTV.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bldg 41, Room B516, Bethesda, MD 20892, USA
| | | |
Collapse
|
40
|
Roque A, Iloro I, Ponte I, Arrondo JLR, Suau P. DNA-induced secondary structure of the carboxyl-terminal domain of histone H1. J Biol Chem 2005; 280:32141-7. [PMID: 16006555 DOI: 10.1074/jbc.m505636200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the secondary structure of the carboxyl-terminal domains of linker histone H1 subtypes H1(0) (C-H1(0)) and H1t (C-H1t), free in solution and bound to DNA, by IR spectroscopy. The carboxyl-terminal domain has little structure in aqueous solution but becomes extensively folded upon interaction with DNA. The secondary structure elements present in the bound carboxyl-terminal domain include the alpha-helix, beta-structure, turns, and open loops. The structure of the bound domain shows a significant dependence on salt concentration. In low salt (10 mm NaCl), there is a residual amount of random coil, 7% in C-H1(0) and 12% in C-H1t. In physiological salt concentrations (140 mm NaCl), the carboxyl termini become fully structured. Under these conditions, C-H1(0) contained 24% alpha-helix, 25% beta-structure, 17% open loops, and 33% turns. The latter component could include a substantial proportion of the 3(10) helix. Despite their low sequence identity (approximately 30%), the representation of the different structural motifs in C-H1t was similar to that in C-H1(0). Examination of the changes in the amide I components in the 20-80 degrees C temperature interval showed that the secondary structure of the DNA-bound C-H1t is for the most part extremely stable. The H1 carboxyl-terminal domain appears to belong to the so-called disordered proteins, undergoing coupled binding and folding.
Collapse
Affiliation(s)
- Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
41
|
Chen J, Kinyamu HK, Archer TK. Changes in attitude, changes in latitude: nuclear receptors remodeling chromatin to regulate transcription. Mol Endocrinol 2005; 20:1-13. [PMID: 16002433 DOI: 10.1210/me.2005-0192] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nuclear receptors (NRs) are a large family of ligand-dependent transcription factors that regulate important physiological processes. To activate or repress genes assembled naturally as chromatin, NRs recruit two distinct enzymatic activities, namely histone-modifying enzymes and ATP-dependent chromatin remodeling complexes, to alter local chromatin structure at target gene promoters. In this review, we examine the functional relationship between ATP-dependent chromatin remodeling complexes and NRs in the context of transcriptional regulation. Using the steroid-responsive mouse mammary tumor virus promoter as a model system, we discuss in detail the molecular mechanisms underlying the recruitment of these complexes and subsequent chromatin structure changes catalyzed by this group of enzymes. In addition, we extend the discussion to other NR-regulated promoters including the pS2 promoter. Finally, we summarize specific principles governing this critical relationship, identify unanswered questions and discuss the potential application of these principles in rational drug design.
Collapse
Affiliation(s)
- Jianguang Chen
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
42
|
Deterding LJ, Banks GC, Tomer KB, Archer TK. Understanding global changes in histone H1 phosphorylation using mass spectrometry. Methods 2005; 33:53-8. [PMID: 15039087 DOI: 10.1016/j.ymeth.2003.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2003] [Indexed: 10/26/2022] Open
Abstract
Histone post-translational modifications have been implicated in a variety of biological processes such as gene expression, DNA replication, and chromatin assembly. The modifications include methylation, acetylation, phosphorylation, ubiquitination, glycosylation, and ADP-ribosylation. For several years, we have been investigating the role of histone H1 phosphorylation in transcription using the hormone inducible mouse mammary tumor virus (MMTV) promoter. When mouse cells were exposed to prolonged treatment with dexamethasone, a significant decrease in the level of histone H1 phosphorylation was observed. Traditionally, Western analyses with anti-histone H1 and phospho-specific H1 antibodies were performed to observe changes in phosphorylation levels of the bulk H1 histones. More recently, we have applied electrospray ionization mass spectrometry to the analysis of histone H1 isoforms. Utilizing this approach, we have investigated the phosphorylation state of the specific H1 isoforms before and after prolonged treatment with dexamethasone. Specifically, we could determine that the relative phosphorylation levels of the histone H1.3, H1.4, and H1.5 isoforms decrease after prolonged hormone exposure. Recent advancements in mass spectrometry have proven invaluable toward the analysis of post-translational modifications on proteins. The continued developments in the area of mass spectrometry should provide new insights into not only the function of proteins but also into the basic regulatory mechanisms that control cellular functions.
Collapse
Affiliation(s)
- Leesa J Deterding
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
43
|
Dou Y, Song X, Liu Y, Gorovsky MA. The H1 phosphorylation state regulates expression of CDC2 and other genes in response to starvation in Tetrahymena thermophila. Mol Cell Biol 2005; 25:3914-22. [PMID: 15870266 PMCID: PMC1087734 DOI: 10.1128/mcb.25.10.3914-3922.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Tetrahymena thermophila, highly phosphorylated histone H1 of growing cells becomes partially dephosphorylated when cells are starved in preparation for conjugation. To determine the effects of H1 phosphorylation on gene expression, PCR-based subtractive hybridization was used to clone cDNAs that were differentially expressed during starvation in two otherwise-isogenic strains differing only in their H1s. H1 in A5 mutant cells lacked phosphorylation, and H1 in E5 cells mimicked constitutive H1 phosphorylation. Sequences enriched in A5 cells included genes encoding proteases. Sequences enriched in E5 cells included genes encoding cdc2 kinase and a Ser/Thr kinase. These results indicate that H1 phosphorylation plays an important role in regulating the pattern of gene expression during the starvation response and that its role in transcription regulation can be either positive or negative. Treatment of starved cells with a phosphatase inhibitor caused CDC2 gene overexpression. Expression of the E5 version of H1 in starved cells containing endogenous, wild-type H1 caused the wild-type H1 to remain highly phosphorylated. These results argue that Cdc2p is the kinase that phosphorylates Tetrahymena H1, establish a positive feedback mechanism between H1 phosphorylation and CDC2 expression, and indicate that CDC2 gene expression is regulated by an H1 phosphatase.
Collapse
Affiliation(s)
- Yali Dou
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
44
|
Aoyagi S, Trotter KW, Archer TK. ATP-dependent chromatin remodeling complexes and their role in nuclear receptor-dependent transcription in vivo. VITAMINS AND HORMONES 2005; 70:281-307. [PMID: 15727808 DOI: 10.1016/s0083-6729(05)70009-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that mediate transcription of target genes in chromatin. Modulation of chromatin structure plays an important part in the NR-mediated transcription process. ATP-dependent chromatin remodeling complexes have been shown to be intimately involved in NR-mediated transcription. In this review, we examine the role of chromatin remodeling complexes in facilitating the recruitment of coregulators and basal transcription factors. In addition, the role of subunit specificity within the chromatin remodeling complexes, the complexes' influence on remodeling activity, and complexes' recruitment to the NR-responsive promoters are discussed.
Collapse
Affiliation(s)
- Sayura Aoyagi
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
45
|
Adcock IM, Cosio B, Tsaprouni L, Barnes PJ, Ito K. Redox regulation of histone deacetylases and glucocorticoid-mediated inhibition of the inflammatory response. Antioxid Redox Signal 2005; 7:144-52. [PMID: 15650403 DOI: 10.1089/ars.2005.7.144] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene expression, at least in part, is regulated by changes in histone acetylation status induced by activation of the proinflammatory redox-sensitive transcription factors activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB). Hyperacetylated histone is associated with open actively transcribed DNA and enhanced inflammatory gene expression. In contrast, hypoacetylated histone is linked to a closed repressed DNA state and a lack of gene expression. The degree of inflammatory gene expression is a result of a balance between histone acetylation and histone deacetylation. One of the major mechanisms of glucocorticoid function is to recruit histone deacetylase enzymes to the site of active gene expression, thus reducing inflammation. Oxidative stress can enhance inflammatory gene expression by further stimulating AP-1- and NF-kappaB-mediated gene expression and elevating histone acetylation. In addition, oxidants can reduce glucocorticoid function by attenuating histone deacetylase activity and expression. Thus, oxidant stress, acting through changes in chromatin structure, can enhance inflammation and induce a state of relative glucocorticoid insensitivity. This may account for the lack of glucocorticoid sensitivity in patients with chronic obstructive pulmonary disease. Antioxidants should reduce the inflammation and restore glucocorticoid sensitivity in these subjects.
Collapse
Affiliation(s)
- Ian M Adcock
- Thoracic Medicine, National Heart and Lung Institute, Imperial College London, London, UK.
| | | | | | | | | |
Collapse
|
46
|
Rüegg J, Holsboer F, Turck C, Rein T. Cofilin 1 is revealed as an inhibitor of glucocorticoid receptor by analysis of hormone-resistant cells. Mol Cell Biol 2004; 24:9371-82. [PMID: 15485906 PMCID: PMC522229 DOI: 10.1128/mcb.24.21.9371-9382.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Significant knowledge about glucocorticoid signaling has accumulated, yet many aspects remain unknown. We aimed to discover novel factors involved in glucocorticoid receptor regulation that do not necessarily require direct receptor interaction. We achieved this by using a functional genetic screen: a stable cell line which cannot survive hormone treatment was engineered, randomly mutated, and selected in the presence of glucocorticoid. A hormone-resistant clone was analyzed by two-dimensional gel electrophoresis. Differentially expressed proteins were identified and tested as candidates for regulation of the glucocorticoid receptor. An unexpected candidate, cofilin 1, inhibited receptor activity. Cofilin is known to promote actin depolymerization and filament severing. Several experiments suggest that this feature of cofilin is involved in its inhibitory action. Both its actin depolymerization activity and its inhibitory action on the receptor are dependent on its phosphorylation state. Treatment of cells with a cytoskeleton-disrupting agent decreased receptor activity, as did overexpression of actin, particularly a mutant actin that does not polymerize. In addition, overexpression of cofilin and actin as well as chemical cytoskeleton disruption changed the subcellular receptor distribution and upregulated c-Jun, which could constitute the inhibitory mechanism of cofilin. In summary, cofilin represents a novel factor that can cause glucocorticoid resistance.
Collapse
Affiliation(s)
- Joëlle Rüegg
- Max Planck Institute of Psychiatry, Kraepelinstr. 10, D-80804 Munich, Germany
| | | | | | | |
Collapse
|
47
|
Roque A, Orrego M, Ponte I, Suau P. The preferential binding of histone H1 to DNA scaffold-associated regions is determined by its C-terminal domain. Nucleic Acids Res 2004; 32:6111-9. [PMID: 15562002 PMCID: PMC534626 DOI: 10.1093/nar/gkh945] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 10/29/2004] [Accepted: 10/29/2004] [Indexed: 01/11/2023] Open
Abstract
Histone H1 preferentially binds and aggregates scaffold-associated regions (SARs) via the numerous homopolymeric oligo(dA).oligo(dT) tracts present within these sequences. Here we show that the mammalian somatic subtypes H1a,b,c,d,e and H1 degrees and the male germline-specific subtype H1t, all preferentially bind to the Drosophila histone SAR. Experiments with the isolated domains show that whilst the C-terminal domain maintains strong and preferential binding, the N-terminal and globular domains show weak binding and poor specificity for the SAR. The preferential binding of SAR by the H1 molecule thus appears to be determined by its highly basic C-terminal domain. Salmine, a typical fish protamine, which could have its evolutionary origin in histone H1, also shows preferential binding to the SAR. The interaction of distamycin, a minor groove binder with high affinity for homopolymeric oligo(dA).oligo(dT) tracts, abolishes preferential binding of the C-terminal domain of histone H1 and protamine to the SAR, suggesting the involvement of the DNA minor groove in the interaction.
Collapse
Affiliation(s)
- Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
48
|
Parker M, White R, Leonardsson G, Milligan S, Steel J. Identification of RIP140 as a nuclear receptor cofactor with a role in female reproduction. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2004:23-31. [PMID: 15248502 DOI: 10.1007/978-3-662-05386-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- M Parker
- Institute of Reproduction and Developmental Biology, Faculty of Medicine, Imperial College, London, UK.
| | | | | | | | | |
Collapse
|
49
|
Kuzmichev A, Jenuwein T, Tempst P, Reinberg D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 2004; 14:183-93. [PMID: 15099518 DOI: 10.1016/s1097-2765(04)00185-6] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 02/26/2004] [Accepted: 03/01/2004] [Indexed: 12/14/2022]
Abstract
Human Enhancer of Zeste homolog (Ezh2) is a histone lysine methyltransferase (HKMT) associated with transcriptional repression. Ezh2 is present in several distinct complexes, one of which, PRC2, we characterized previously. Here we report an additional Ezh2 complex, PRC3. We show that the Ezh2 complexes exhibit differential targeting of specific histones for lysine methylation dependent upon the context of the histone substrates. This differential targeting is a function of the associated Eed protein within each complex. We found that Eed protein is present in four isoforms, which represent alternate translation start site usage from the same mRNA. These Eed isoforms selectively associate with distinct Ezh2-containing complexes with resultant differential targeting of their associated HKMT activity toward histone H3-K27 or histone H1-K26. Our data provide evidence for a novel mechanism regulating the substrate specificity of a chromatin-modifying enzyme through disparate translational products of a regulatory subunit.
Collapse
Affiliation(s)
- Andrei Kuzmichev
- Robert Wood Johnson Medical School, Howard Hughes Medical Institute and Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
50
|
Kinyamu HK, Archer TK. Modifying chromatin to permit steroid hormone receptor-dependent transcription. ACTA ACUST UNITED AC 2004; 1677:30-45. [PMID: 15020043 DOI: 10.1016/j.bbaexp.2003.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 09/24/2003] [Accepted: 09/24/2003] [Indexed: 02/07/2023]
Abstract
Lipophilic hormones, including steroids, exert their physiological effects through binding to high-affinity superfamily of steroid hormone receptor (SR) proteins that function as ligand-dependent DNA binding transcription factors. To date, SR proteins are among a few transcription factors shown to directly interact with higher order chromatin structures to regulate gene expression. To perturb chromatin, SRs employ enzymatic multicomplexes that can either remodel or modify chromatin. Here we examine the current state of knowledge concerning multicomplex chromatin remodeling/modification machines and SR-dependent transcription. We will focus on the role of these protein-protein and chromatin-protein interactions in vivo with the MMTV promoter as a primary model. In addition, we discuss emerging evidence implicating chaperone proteins and proteasome degradation machinery in SR-mediated gene regulation within chromatin.
Collapse
Affiliation(s)
- H Karimi Kinyamu
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, PO Box 12233 (MD E4-06), Research Triangle Park, NC 27709, USA
| | | |
Collapse
|