1
|
Kikuchi S, Odashima K, Yasui T, Torii S, Hosaka M, Gomi H. Dominant Expression of Chromogranin B in Pituitary Corticotrophs and Its Putative Role in Interaction With Secretogranin III. J Histochem Cytochem 2025; 73:29-53. [PMID: 39791490 PMCID: PMC11719422 DOI: 10.1369/00221554241311965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
SummaryPrevious studies have suggested that chromogranin A (CgA) is a partner molecule of secretogranin III (SgIII). In mouse pituitary corticotroph-derived AtT-20 cells, SgIII plays a role in sorting CgA/hormone aggregates into secretory granules (SGs). Although CgA expression is equivocal, CgB is clearly detectable in the rat pituitary corticotrophs. Therefore, we hypothesized that CgB shares a function with CgA in pituitary corticotrophs. In the binding assays, CgB, similar to CgA, showed binding activity to SgIII under weakly acidic conditions and in the presence of Ca2+. Considering the differences in animal species, the different abilities of antibodies, and the conditions of tissue fixation and thin sectioning in immunofluorescence histochemistry, we found that CgA was expressed in a small population (approximately 10%), and its expression intensity was weaker than that of CgB (>98%) in rodent pituitary corticotrophs. In addition, similar to CgA, CgB and SgIII were colocalized in adrenocorticotropic hormone (ACTH) granules. The labeling of CgA and CgB was not completely consistent, and CgB colocalized with SgIII in many granules. These results suggest that there are multiple sorting systems for ACTH granules in pituitary corticotrophs and that the SgIII/CgB complex behaves more dominantly than the SgIII/CgA complex, which has somewhat different properties.
Collapse
Affiliation(s)
- Shota Kikuchi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Koki Odashima
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Seiji Torii
- Center for Food Science and Wellness, Gunma University, Maebashi, Japan
| | - Masahiro Hosaka
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
2
|
Loh YP, Xiao L, Park JJ. Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:568-587. [PMID: 38435713 PMCID: PMC10906782 DOI: 10.20517/evcna.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It is well known that peptide hormones and neurotrophic factors are intercellular messengers that are packaged into secretory vesicles in endocrine cells and neurons and released by exocytosis upon the stimulation of the cells in a calcium-dependent manner. These secreted molecules bind to membrane receptors, which then activate signal transduction pathways to mediate various endocrine/trophic functions. Recently, there is evidence that these molecules are also in extracellular vesicles, including small extracellular vesicles (sEVs), which appear to be taken up by recipient cells. This finding raised the hypothesis that they may have functions differentiated from their classical secretory hormone/neurotrophic factor actions. In this article, the historical perspective and updated mechanisms for the sorting and packaging of hormones and neurotrophic factors into secretory vesicles and their transport in these organelles for release at the plasma membrane are reviewed. In contrast, little is known about the packaging of hormones and neurotrophic factors into extracellular vesicles. One proposal is that these molecules could be sorted at the trans-Golgi network, which then buds to form Golgi-derived vesicles that can fuse to endosomes and subsequently form intraluminal vesicles. They are then taken up by multivesicular bodies to form extracellular vesicles, which are subsequently released. Other possible mechanisms for packaging RSP proteins into sEVs are discussed. We highlight some studies in the literature that suggest the dual vesicular pathways for the release of hormones and neurotrophic factors from the cell may have some physiological significance in intercellular communication.
Collapse
Affiliation(s)
- Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua J. Park
- Scientific Review Branch, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
4
|
Parchure A, Tian M, Stalder D, Boyer CK, Bearrows SC, Rohli KE, Zhang J, Rivera-Molina F, Ramazanov BR, Mahata SK, Wang Y, Stephens SB, Gershlick DC, von Blume J. Liquid-liquid phase separation facilitates the biogenesis of secretory storage granules. J Cell Biol 2022; 221:e202206132. [PMID: 36173346 PMCID: PMC9526250 DOI: 10.1083/jcb.202206132] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
Insulin is synthesized by pancreatic β-cells and stored into secretory granules (SGs). SGs fuse with the plasma membrane in response to a stimulus and deliver insulin to the bloodstream. The mechanism of how proinsulin and its processing enzymes are sorted and targeted from the trans-Golgi network (TGN) to SGs remains mysterious. No cargo receptor for proinsulin has been identified. Here, we show that chromogranin (CG) proteins undergo liquid-liquid phase separation (LLPS) at a mildly acidic pH in the lumen of the TGN, and recruit clients like proinsulin to the condensates. Client selectivity is sequence-independent but based on the concentration of the client molecules in the TGN. We propose that the TGN provides the milieu for converting CGs into a "cargo sponge" leading to partitioning of client molecules, thus facilitating receptor-independent client sorting. These findings provide a new receptor-independent sorting model in β-cells and many other cell types and therefore represent an innovation in the field of membrane trafficking.
Collapse
Affiliation(s)
- Anup Parchure
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Meng Tian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cierra K. Boyer
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Shelby C. Bearrows
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Kristen E. Rohli
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Bulat R. Ramazanov
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA
- VA San Diego Healthcare System, San Diego, CA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Samuel B. Stephens
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
5
|
Reck J, Beuret N, Demirci E, Prescianotto-Baschong C, Spiess M. Small disulfide loops in peptide hormones mediate self-aggregation and secretory granule sorting. Life Sci Alliance 2022; 5:5/5/e202101279. [PMID: 35086936 PMCID: PMC8807871 DOI: 10.26508/lsa.202101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Unlike constitutively secreted proteins, peptide hormones are stored in densely packed secretory granules, before regulated release upon stimulation. Secretory granules are formed at the TGN by self-aggregation of prohormones as functional amyloids. The nonapeptide hormone vasopressin, which forms a small disulfide loop, was shown to be responsible for granule formation of its precursor in the TGN as well as for toxic fibrillar aggregation of unfolded mutants in the ER. Several other hormone precursors also contain similar small disulfide loops suggesting their function as a general device to mediate aggregation for granule sorting. To test this hypothesis, we studied the capacity of small disulfide loops of different hormone precursors to mediate aggregation in the ER and the TGN. They indeed induced ER aggregation in Neuro-2a and COS-1 cells. Fused to a constitutively secreted reporter protein, they also promoted sorting into secretory granules, enhanced stimulated secretion, and increased Lubrol insolubility in AtT20 cells. These results support the hypothesis that small disulfide loops act as novel signals for sorting into secretory granules by self-aggregation.
Collapse
|
6
|
Germanos M, Gao A, Taper M, Yau B, Kebede MA. Inside the Insulin Secretory Granule. Metabolites 2021; 11:metabo11080515. [PMID: 34436456 PMCID: PMC8401130 DOI: 10.3390/metabo11080515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.
Collapse
|
7
|
Ma CIJ, Burgess J, Brill JA. Maturing secretory granules: Where secretory and endocytic pathways converge. Adv Biol Regul 2021; 80:100807. [PMID: 33866198 DOI: 10.1016/j.jbior.2021.100807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Secretory granules (SGs) are specialized organelles responsible for the storage and regulated release of various biologically active molecules from the endocrine and exocrine systems. Thus, proper SG biogenesis is critical to normal animal physiology. Biogenesis of SGs starts at the trans-Golgi network (TGN), where immature SGs (iSGs) bud off and undergo maturation before fusing with the plasma membrane (PM). How iSGs mature is unclear, but emerging studies have suggested an important role for the endocytic pathway. The requirement for endocytic machinery in SG maturation blurs the line between SGs and another class of secretory organelles called lysosome-related organelles (LROs). Therefore, it is important to re-evaluate the differences and similarities between SGs and LROs.
Collapse
Affiliation(s)
- Cheng-I Jonathan Ma
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jason Burgess
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
8
|
Abbineni PS, Bittner MA, Axelrod D, Holz RW. Chromogranin A, the major lumenal protein in chromaffin granules, controls fusion pore expansion. J Gen Physiol 2018; 151:118-130. [PMID: 30504267 PMCID: PMC6363410 DOI: 10.1085/jgp.201812182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/07/2018] [Indexed: 01/03/2023] Open
Abstract
Upon fusion of the secretory granule with the plasma membrane, small molecules are discharged through the immediately formed narrow fusion pore, but protein discharge awaits pore expansion. Recently, fusion pore expansion was found to be regulated by tissue plasminogen activator (tPA), a protein present within the lumen of chromaffin granules in a subpopulation of chromaffin cells. Here, we further examined the influence of other lumenal proteins on fusion pore expansion, especially chromogranin A (CgA), the major and ubiquitous lumenal protein in chromaffin granules. Polarized TIRF microscopy demonstrated that the fusion pore curvature of granules containing CgA-EGFP was long lived, with curvature lifetimes comparable to those of tPA-EGFP-containing granules. This was surprising because fusion pore curvature durations of granules containing exogenous neuropeptide Y-EGFP (NPY-EGFP) are significantly shorter (80% lasting <1 s) than those containing CgA-EGFP, despite the anticipated expression of endogenous CgA. However, quantitative immunocytochemistry revealed that transiently expressed lumenal proteins, including NPY-EGFP, caused a down-regulation of endogenously expressed proteins, including CgA. Fusion pore curvature durations in nontransfected cells were significantly longer than those of granules containing overexpressed NPY but shorter than those associated with granules containing overexpressed tPA, CgA, or chromogranin B. Introduction of CgA to NPY-EGFP granules by coexpression converted the fusion pore from being transient to being longer lived, comparable to that found in nontransfected cells. These findings demonstrate that several endogenous chromaffin granule lumenal proteins are regulators of fusion pore expansion and that alteration of chromaffin granule contents affects fusion pore lifetimes. Importantly, the results indicate a new role for CgA. In addition to functioning as a prohormone, CgA plays an important role in controlling fusion pore expansion.
Collapse
Affiliation(s)
| | - Mary A Bittner
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Daniel Axelrod
- Department of Pharmacology, University of Michigan, Ann Arbor, MI.,Department of Physics, LSA Biophysics, University of Michigan, Ann Arbor, MI
| | - Ronald W Holz
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
9
|
Garringer HJ, Sammeta N, Oblak A, Ghetti B, Vidal R. Amyloid and intracellular accumulation of BRI 2. Neurobiol Aging 2016; 52:90-97. [PMID: 28131015 DOI: 10.1016/j.neurobiolaging.2016.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/29/2016] [Accepted: 12/18/2016] [Indexed: 01/07/2023]
Abstract
Familial British dementia (FBD) and familial Danish dementia (FDD) are caused by mutations in the BRI2 gene. These diseases are characterized clinically by progressive dementia and ataxia and neuropathologically by amyloid deposits and neurofibrillary tangles. Herein, we investigate BRI2 protein accumulation in FBD, FDD, Alzheimer disease and Gerstmann-Sträussler-Scheinker disease. In FBD and FDD, we observed reduced processing of the mutant BRI2 pro-protein, which was found accumulating intracellularly in the Golgi of neurons and glial cells. In addition, we observed an accumulation of a mature form of BRI2 protein in dystrophic neurites, surrounding amyloid cores. Accumulation of BRI2 was also observed in dystrophic neurites of Alzheimer disease and Gerstmann-Sträussler-Scheinker disease cases. Although it remains to be determined whether intracellular accumulation of BRI2 may lead to cell damage in these degenerative diseases, our study provides new insights into the role of mutant BRI2 in the pathogenesis of FBD and FDD and implicates BRI2 as a potential indicator of neuritic damage in diseases characterized by cerebral amyloid deposition.
Collapse
Affiliation(s)
- Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Neeraja Sammeta
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian Oblak
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
10
|
Seuring C, Gath J, Verasdonck J, Cadalbert R, Rivier J, Böckmann A, Meier BH, Riek R. Solid-state NMR sequential assignment of the β-endorphin peptide in its amyloid form. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:259-268. [PMID: 27165576 DOI: 10.1007/s12104-016-9681-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Insights into the three-dimensional structure of hormone fibrils are crucial for a detailed understanding of how an amyloid structure allows the storage of hormones in secretory vesicles prior to hormone secretion into the blood stream. As an example for various hormone amyloids, we have studied the endogenous opioid neuropeptide β-endorphin in one of its fibril forms. We have achieved the sequential assignment of the chemical shifts of the backbone and side-chain heavy atoms of the fibril. The secondary chemical shift analysis revealed that the β-endorphin peptide adopts three β-strands in its fibril state. This finding fosters the amyloid nature of a hormone at the atomic level.
Collapse
Affiliation(s)
- Carolin Seuring
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| | - Julia Gath
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| | - Joeri Verasdonck
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| | - Riccardo Cadalbert
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| | - Jean Rivier
- Structural Biology Laboratory, The Salk Institute, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, Université de Lyon 1, 7 passage du Vercors, 69367, Lyon, France
| | - Beat H Meier
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland.
- Structural Biology Laboratory, The Salk Institute, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
11
|
Cawley NX, Rathod T, Young S, Lou H, Birch N, Loh YP. Carboxypeptidase E and Secretogranin III Coordinately Facilitate Efficient Sorting of Proopiomelanocortin to the Regulated Secretory Pathway in AtT20 Cells. Mol Endocrinol 2015; 30:37-47. [PMID: 26646096 DOI: 10.1210/me.2015-1166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Proopiomelanocortin (POMC) is a multivalent prohormone that can be processed into at least 7 biologically active peptide hormones. Processing can begin in the trans-Golgi network (TGN) and continues in the secretory granules of the regulated secretory pathway (RSP). Sorting of POMC into these granules is a complex process. Previously, a membrane-associated form of carboxypeptidase E (CPE) was shown to bind to POMC and facilitate its trafficking into these granules. More recently, secretogranin III (SgIII) was also found to affect POMC trafficking. Here, we show by RNA silencing that CPE and SgIII play a synergistic role in the trafficking of POMC to granules of the RSP in AtT20 cells. Reduction of either protein resulted in increased constitutive secretion of POMC and chromogranin A, which was increased even further when both proteins were reduced together, indicative of missorting at the TGN. In SgIII-reduced cells, POMC accumulated in a compartment that cofractionated and colocalized with syntaxin 6, a marker of the TGN, on sucrose density gradients and in immunocytochemistry, respectively, indicating an accumulation of this protein in the presumed sorting compartment. Regulated secretion of ACTH, as a measure of sorting and processing of POMC in mature granules, was reduced in the SgIII down-regulated cells but was increased in the CPE down-regulated cells. These results suggest that multiple sorting systems exist, providing redundancy to ensure the important task of continuous and accurate trafficking of prohormones to the granules of the RSP for the production of peptide hormones.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular Neurobiology (N.X.C., T.R., S.Y., H.L., Y.P.L.), Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480; and School of Biological Sciences (N.B.), Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, New Zealand
| | - Trushar Rathod
- Section on Cellular Neurobiology (N.X.C., T.R., S.Y., H.L., Y.P.L.), Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480; and School of Biological Sciences (N.B.), Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, New Zealand
| | - Sigrid Young
- Section on Cellular Neurobiology (N.X.C., T.R., S.Y., H.L., Y.P.L.), Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480; and School of Biological Sciences (N.B.), Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, New Zealand
| | - Hong Lou
- Section on Cellular Neurobiology (N.X.C., T.R., S.Y., H.L., Y.P.L.), Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480; and School of Biological Sciences (N.B.), Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, New Zealand
| | - Nigel Birch
- Section on Cellular Neurobiology (N.X.C., T.R., S.Y., H.L., Y.P.L.), Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480; and School of Biological Sciences (N.B.), Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, New Zealand
| | - Y Peng Loh
- Section on Cellular Neurobiology (N.X.C., T.R., S.Y., H.L., Y.P.L.), Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480; and School of Biological Sciences (N.B.), Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, New Zealand
| |
Collapse
|
12
|
Stability of proICA512/IA-2 and its targeting to insulin secretory granules require β4-sheet-mediated dimerization of its ectodomain in the endoplasmic reticulum. Mol Cell Biol 2015; 35:914-27. [PMID: 25561468 DOI: 10.1128/mcb.00994-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The type 1 diabetes autoantigen ICA512/IA-2/RPTPN is a receptor protein tyrosine phosphatase of the insulin secretory granules (SGs) which regulates the size of granule stores, possibly via cleavage/signaling of its cytosolic tail. The role of its extracellular region remains unknown. Structural studies indicated that β2- or β4-strands in the mature ectodomain (ME ICA512) form dimers in vitro. Here we show that ME ICA512 prompts proICA512 dimerization in the endoplasmic reticulum. Perturbation of ME ICA512 β2-strand N-glycosylation upon S508A replacement allows for proICA512 dimerization, O-glycosylation, targeting to granules, and conversion, which are instead precluded upon G553D replacement in the ME ICA512 β4-strand. S508A/G553D and N506A/G553D double mutants dimerize but remain in the endoplasmic reticulum. Removal of the N-terminal fragment (ICA512-NTF) preceding ME ICA512 allows an ICA512-ΔNTF G553D mutant to exit the endoplasmic reticulum, and ICA512-ΔNTF is constitutively delivered to the cell surface. The signal for SG sorting is located within the NTF RESP18 homology domain (RESP18-HD), whereas soluble NTF is retained in the endoplasmic reticulum. Hence, we propose that the ME ICA512 β2-strand fosters proICA512 dimerization until NTF prevents N506 glycosylation. Removal of this constraint allows for proICA512 β4-strand-induced dimerization, exit from the endoplasmic reticulum, O-glycosylation, and RESP18-HD-mediated targeting to granules.
Collapse
|
13
|
Borges R, Dominguez N, Smith CB, Bandyopadhyay GK, O'Connor DT, Mahata SK, Bartolomucci A. Granins and catecholamines: functional interaction in chromaffin cells and adipose tissue. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:93-113. [PMID: 24054141 DOI: 10.1016/b978-0-12-411512-5.00005-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Catecholamines (CAs) and granin peptides are costored in dense-core vesicles within the chromaffin cells of the adrenal medulla and in other endocrine organs and neurons. Granins play a major functional and structural role in chromaffin cells but are ubiquitous proteins, which are present also in secretory cells of the nervous, endocrine, and immune systems, where they regulate a number of cellular functions. Furthermore, recent studies also demonstrate that granin-derived peptides can functionally interact with CA to modulate key physiological functions such as lipolysis and blood pressure. In this chapter, we will provide a brief update on the interaction between CA and granins at the cellular and organ levels. We will first discuss recent data on the regulation of exocytosis of CA and peptides from the chromaffin cells by the sympathetic nervous system with a specific reference to the prominent role played by splanchnic nerve-derived pituitary adenylate cyclase-activating peptide (PACAP). Secondly, we will discuss the role of granins in the storage and regulation of exocytosis in large dense-core vesicles. Finally, we will provide an up-to-date review of the roles played by two granin-derived peptides, the chromogranin A-derived peptide catestatin and the VGF-derived peptide TLQP-21, on lipolysis and obesity. In conclusion, the knowledge gathered from recent findings on the role played by proteins/peptides in the sympathetic/target cell synapses, discussed in this chapter, would contribute to and provide novel mechanistic support for an increased appreciation of the physiological role of CA in human pathophysiology.
Collapse
Affiliation(s)
- Ricardo Borges
- Pharmacology Unit, Medical School, University of La Laguna, Tenerife, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Domínguez N, Estévez-Herrera J, Pardo MR, Pereda D, Machado JD, Borges R. The Functional Role of Chromogranins in Exocytosis. J Mol Neurosci 2012; 48:317-22. [DOI: 10.1007/s12031-012-9736-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
|
15
|
Vázquez-Martínez R, Díaz-Ruiz A, Almabouada F, Rabanal-Ruiz Y, Gracia-Navarro F, Malagón MM. Revisiting the regulated secretory pathway: from frogs to human. Gen Comp Endocrinol 2012; 175:1-9. [PMID: 21907200 DOI: 10.1016/j.ygcen.2011.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/16/2011] [Accepted: 08/20/2011] [Indexed: 01/01/2023]
Abstract
The regulated secretory pathway is a hallmark of endocrine and neuroendocrine cells. This process comprises different sequential steps, including ER-associated protein synthesis, ER-to-Golgi protein transport, Golgi-associated posttranslational modification, sorting and packing of secretory proteins into carrier granules, cytoskeleton-based granule transport towards the plasma membrane and tethering, docking and fusion of granules with specialized releasing zones in the plasma membrane. Each one of these steps is tightly regulated by a large number of factors that function in a spatially and temporarily coordinated fashion. During the past three decades, much effort has been devoted to characterize the precise role of the yet-known proteins participating in the different steps of this process and to identify new regulatory factors in order to obtain a unifying picture of the secretory pathway. In spite of this and given the enormous complexity of the process, certain steps are not fully understood yet and many players remain to be identified. In this review, we offer a summary of the current knowledge on the main molecular mechanisms that govern and ensure the correct release of secretory proteins. In addition, we have integrated the advance on the field made possible by studies carried out in non-mammalian vertebrates, which, although not very numerous, have substantially contributed to acquire a mechanistic understanding of the regulated secretory pathway.
Collapse
Affiliation(s)
- Rafael Vázquez-Martínez
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica, University of Córdoba, 14014-Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SRJ. The extended granin family: structure, function, and biomedical implications. Endocr Rev 2011; 32:755-97. [PMID: 21862681 PMCID: PMC3591675 DOI: 10.1210/er.2010-0027] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chromogranins (chromogranin A and chromogranin B), secretogranins (secretogranin II and secretogranin III), and additional related proteins (7B2, NESP55, proSAAS, and VGF) that together comprise the granin family subserve essential roles in the regulated secretory pathway that is responsible for controlled delivery of peptides, hormones, neurotransmitters, and growth factors. Here we review the structure and function of granins and granin-derived peptides and expansive new genetic evidence, including recent single-nucleotide polymorphism mapping, genomic sequence comparisons, and analysis of transgenic and knockout mice, which together support an important and evolutionarily conserved role for these proteins in large dense-core vesicle biogenesis and regulated secretion. Recent data further indicate that their processed peptides function prominently in metabolic and glucose homeostasis, emotional behavior, pain pathways, and blood pressure modulation, suggesting future utility of granins and granin-derived peptides as novel disease biomarkers.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
17
|
Schmidt S, Mo M, Heidrich FM, Ćelić A, Ehrlich BE. C-terminal domain of chromogranin B regulates intracellular calcium signaling. J Biol Chem 2011; 286:44888-96. [PMID: 22016391 DOI: 10.1074/jbc.m111.251330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The versatility of intracellular calcium as a second messenger is seen in its ability to mediate opposing events such as neuronal cell growth and apoptosis. A leading hypothesis used to explain how calcium regulates such divergent signaling pathways is that molecules responsible for maintaining calcium homeostasis have multiple roles. For example, chromogranin B (CGB), a calcium binding protein found in secretory granules and in the lumen of the endoplasmic reticulum, buffers calcium and also binds to and amplifies the activity of the inositol 1,4,5-trisphosphate receptor (InsP(3)R). Previous studies have identified two conserved domains of CGB, an N-terminal domain (N-CGB) and a C-terminal domain (C-CGB). N-CGB binds to the third intraluminal loop of the InsP(3)R and inhibits binding of full-length CGB. This displacement of CGB decreases InsP(3)R-dependent calcium release and alters normal signaling patterns. In the present study, we further characterized the role of N-CGB and identified roles for C-CGB. The effect of N-CGB on calcium release depended upon endogenous levels of cellular CGB, whereas the regulatory effect of C-CGB was apparent regardless of endogenous levels of CGB. When either full-length CGB or C-CGB was expressed in cells, calcium transients were increased. Additionally, the calcium signal initiation site was altered upon C-CGB expression in neuronally differentiated PC12 and SHSY5Y cells. These results show that CGB has numerous regulatory roles and that CGB is a critical component in modulating InsP(3)R-dependent calcium signaling.
Collapse
Affiliation(s)
- Stefan Schmidt
- Department of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
18
|
Díaz-Vera J, Camacho M, Machado JD, Domínguez N, Montesinos MS, Hernández-Fernaud JR, Luján R, Borges R. Chromogranins A and B are key proteins in amine accumulation, but the catecholamine secretory pathway is conserved without them. FASEB J 2011; 26:430-8. [PMID: 21990378 DOI: 10.1096/fj.11-181941] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chromogranins are the main soluble proteins in the large dense core secretory vesicles (LDCVs) found in aminergic neurons and chromaffin cells. We recently demonstrated that chromogranins A and B each regulate the concentration of adrenaline in chromaffin granules and its exocytosis. Here we have further studied the role played by these proteins by generating mice lacking both chromogranins. Surprisingly, these animals are both viable and fertile. Although chromogranins are thought to be essential for their biogenesis, LDCVs were evident in these mice. These vesicles do have a somewhat atypical appearance and larger size. Despite their increased size, single-cell amperometry recordings from chromaffin cells showed that the amine content in these vesicles is reduced by half. These data demonstrate that although chromogranins regulate the amine concentration in LDCVs, they are not completely essential, and other proteins unrelated to neurosecretion, such as fibrinogen, might compensate for their loss to ensure that vesicles are generated and the secretory pathway conserved.
Collapse
Affiliation(s)
- Jésica Díaz-Vera
- Unidad de Farmacología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mayer SI, Müller I, Mannebach S, Endo T, Thiel G. Signal transduction of pregnenolone sulfate in insulinoma cells: activation of Egr-1 expression involving TRPM3, voltage-gated calcium channels, ERK, and ternary complex factors. J Biol Chem 2011; 286:10084-96. [PMID: 21257751 DOI: 10.1074/jbc.m110.202697] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The neurosteroid pregnenolone sulfate acts on the nervous system by modifying neurotransmission and receptor functions, thus influencing synaptic strength, neuronal survival, and neurogenesis. Here we show that pregnenolone sulfate induces a signaling cascade in insulinoma cells leading to enhanced expression of the zinc finger transcription factor Egr-1 and Egr-1-responsive target genes. Pharmacological and genetic experiments revealed that influx of Ca(2+) ions via transient receptor potential M3 and voltage-gated Ca(2+) channels, elevation of the cytosolic Ca(2+) level, and activation of ERK are essential for connecting pregnenolone sulfate stimulation with enhanced Egr-1 biosynthesis. Expression of a dominant-negative mutant of Elk-1, a key regulator of gene transcription driven by a serum response element, attenuated Egr-1 expression following stimulation, indicating that Elk-1 or related ternary complex factors connect the transcription of the Egr-1 gene with the pregnenolone sulfate-induced intracellular signaling cascade elicited by the initial influx of Ca(2+). The newly synthesized Egr-1 was biologically active and bound under physiological conditions to the regulatory regions of the Pdx-1, Synapsin I, and Chromogranin B genes. Pdx-1 is a major regulator of insulin gene transcription. Accordingly, elevated insulin promoter activity and increased mRNA levels of insulin could be detected in pregnenolone sulfate-stimulated insulinoma cells. Likewise, the biosynthesis of synapsin I, a synaptic vesicle protein that is found at secretory granules in insulinoma cells, was stimulated in pregnenolone sulfate-treated INS-1 cells. Together, these data show that pregnenolone sulfate induces a signaling cascade in insulinoma cells that is very similar to the signaling cascade induced by glucose in β-cells.
Collapse
Affiliation(s)
- Sabine I Mayer
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Machado JD, Díaz-Vera J, Domínguez N, Alvarez CM, Pardo MR, Borges R. Chromogranins A and B as regulators of vesicle cargo and exocytosis. Cell Mol Neurobiol 2010; 30:1181-7. [PMID: 21046455 PMCID: PMC11498875 DOI: 10.1007/s10571-010-9584-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
Abstract
Chromogranins (Cgs) are acidic proteins that have been implicated in several physiological processes such as vesicle sorting, the production of bioactive peptides and the accumulation of soluble species inside large dense core vesicles (LDCV). They constitute the main protein component in the vesicular matrix of LDCV. This latter characteristic of Cgs accounts for the ability of vesicles to concentrate catecholamines and Ca(2+). It is likely that Cgs are behind the delay in the neurotransmitter exit towards the extracellular milieu after vesicle fusion, due to their low affinity and high capacity to bind solutes present inside LDCV. The recent availability of mouse strains lacking Cgs, combined with the arrival of several techniques for the direct monitoring of exocytosis, have helped to expand our knowledge about the mechanisms used by granins to concentrate catecholamines and Ca(2+) in LDCV, and how they affect the kinetics of exocytosis. We will discuss the roles of Cgs A and B in maintaining the intravesicular environment of secretory vesicles and in exocytosis, bringing together the most recent findings from adrenal chromaffin cells.
Collapse
Affiliation(s)
- José D Machado
- Unit of Pharmacology, Medical School, La Laguna University, 38071 La Laguna, Tenerife, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Suckale J, Solimena M. The insulin secretory granule as a signaling hub. Trends Endocrinol Metab 2010; 21:599-609. [PMID: 20609596 DOI: 10.1016/j.tem.2010.06.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/01/2010] [Accepted: 06/03/2010] [Indexed: 02/06/2023]
Abstract
The insulin granule was previously thought of as merely a container, but accumulating evidence suggests that it also acts as a signaling node. Regulatory pathways intersect at but also originate from the insulin granule membrane. Examples include the small G-proteins Rab3a and Rab27a, which influence granule movement, and the transmembrane proteins (tyrosine phosphatase receptors type N) PTPRN and PTPRN2, which upregulate β-cell transcription and proliferation. In addition, many cosecreted compounds possess regulatory functions, often related to energy metabolism. For instance, ATP and γ-amino butyric acid (GABA) modulate insulin and glucagon secretion, respectively; C-peptide protects β-cells and kidney cells; and amylin reduces gastric emptying and food intake via the brain. In this paper, we review the current knowledge of the insulin granule proteome and discuss its regulatory functions.
Collapse
Affiliation(s)
- Jakob Suckale
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic Carl Gustav Carus, Dresden University of Technology, Dresden 01307, Germany
| | | |
Collapse
|
22
|
Le Parc A, Leonil J, Chanat E. AlphaS1-casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly membrane-associated form. BMC Cell Biol 2010; 11:65. [PMID: 20704729 PMCID: PMC2928771 DOI: 10.1186/1471-2121-11-65] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Caseins, the main milk proteins, aggregate in the secretory pathway of mammary epithelial cells into large supramolecular structures, casein micelles. The role of individual caseins in this process and the mesostructure of the casein micelle are poorly known. RESULTS In this study, we investigate primary steps of casein micelle formation in rough endoplasmic reticulum-derived vesicles prepared from rat or goat mammary tissues. The majority of both alphaS1- and beta-casein which are cysteine-containing casein was dimeric in the endoplasmic reticulum. Saponin permeabilisation of microsomal membranes in physico-chemical conditions believed to conserve casein interactions demonstrated that rat immature beta-casein is weakly aggregated in the endoplasmic reticulum. In striking contrast, a large proportion of immature alphaS1-casein was recovered in permeabilised microsomes when incubated in conservative conditions. Furthermore, a substantial amount of alphaS1-casein remained associated with microsomal or post-ER membranes after saponin permeabilisation in non-conservative conditions or carbonate extraction at pH11, all in the presence of DTT. Finally, we show that protein dimerisation via disulfide bond is involved in the interaction of alphaS1-casein with membranes. CONCLUSIONS These experiments reveal for the first time the existence of a membrane-associated form of alphaS1-casein in the endoplasmic reticulum and in more distal compartments of the secretory pathway of mammary epithelial cells. Our data suggest that alphaS1-casein, which is required for efficient export of the other caseins from the endoplasmic reticulum, plays a key role in early steps of casein micelle biogenesis and casein transport in the secretory pathway.
Collapse
Affiliation(s)
- Annabelle Le Parc
- INRA, UR1196 Génomique et Physiologie de la Lactation, Domaine de Vilvert, F-78352 Jouy-en-Josas cedex, France
| | | | | |
Collapse
|
23
|
Borges R, Díaz-Vera J, Domínguez N, Arnau MR, Machado JD. Chromogranins as regulators of exocytosis. J Neurochem 2010; 114:335-43. [PMID: 20456013 DOI: 10.1111/j.1471-4159.2010.06786.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromogranins (Cgs) constitute the main protein component in the vesicular matrix of large dense core vesicles (LDCV). These acidic proteins have been implicated in several physiological processes such as vesicle sorting, the generation of bioactive peptides and the accumulation of soluble species inside LDCV. This latter feature of Cgs accounts for the ability of vesicles to concentrate catecholamines and Ca(2+). Indeed, the low affinity and high capacity of Cgs to bind solutes at the low pH of the LDCV lumen seems to be behind the delay in the neurotransmitter exit towards the extracellular milieu after vesicle fusion. The availability of new mouse strains lacking Cgs in combination with the arrival of several techniques for the direct monitoring of exocytosis (like amperometry, patch-amperometry and intracellular electrochemistry), have helped advance our understanding of how these granins concentrate catecholamines and Ca(2+) in LDCV, and how they influence the kinetics of exocytosis. In this review, we will discuss the roles of Cgs A and B in maintaining the intravesicular environment of secretory vesicles and in exocytosis, bringing together the most recent findings from adrenal chromaffin cells.
Collapse
Affiliation(s)
- Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain.
| | | | | | | | | |
Collapse
|
24
|
Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Front Neuroendocrinol 2010; 31:134-56. [PMID: 20074584 PMCID: PMC2849853 DOI: 10.1016/j.yfrne.2010.01.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 12/29/2009] [Accepted: 01/06/2010] [Indexed: 12/29/2022]
Abstract
The hypothalamic-pituitary-thyroid (HPT) axis plays a critical role in mediating changes in metabolism and thermogenesis. Thus, the central regulation of the thyroid axis by Thyrotropin Releasing Hormone (TRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) is of key importance for the normal function of the axis under different physiological conditions including cold stress and changes in nutritional status. Before the TRH peptide becomes biologically active, a series of tightly regulated processes occur including the proper folding of the prohormone for targeting to the secretory pathway, its post-translational processing, and targeting of the processed peptides to the secretory granules near the plasma membrane of the cell ready for secretion. Multiple inputs coming from the periphery or from neurons present in different areas of the brain including the hypothalamus are responsible for the activation or inhibition of the TRH neuron and in turn affect the output of TRH and the set point of the axis.
Collapse
|
25
|
Chromogranin B gene ablation reduces the catecholamine cargo and decelerates exocytosis in chromaffin secretory vesicles. J Neurosci 2010; 30:950-7. [PMID: 20089903 DOI: 10.1523/jneurosci.2894-09.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chromogranins/secretogranins (Cgs) are the major soluble proteins of large dense-core secretory vesicles (LDCVs). We have recently reported that the absence of chromogranin A (CgA) caused important changes in the accumulation and in the exocytosis of catecholamines (CAs) using a CgA-knock-out (CgA-KO) mouse. Here, we have analyzed a CgB-KO mouse strain that can be maintained in homozygosis. These mice have 36% less adrenomedullary epinephrine when compared to Chgb(+/+) [wild type (WT)], whereas the norepinephrine content was similar. The total evoked release of CA was 33% lower than WT mice. This decrease was not due to a lower frequency of exocytotic events but to less secretion per quantum (approximately 30%) measured by amperometry; amperometric spikes exhibited a slower ascending but a normal decaying phase. Cell incubation with L-DOPA increased the vesicle CA content of WT but not of the CgB-KO cells. Intracellular electrochemistry, using patch amperometry, showed that L-DOPA overload produced a significantly larger increase in cytosolic CAs in cells from the KO animals than chromaffin cells from the WT. These data indicate that the mechanisms for vesicular accumulation of CAs in the CgB-KO cells were saturated, while there was ample capacity for further accumulation in WT cells. Protein analysis of LDCVs showed the overexpression of CgA as well as other proteins apparently unrelated to the secretory process. We conclude that CgB, like CgA, is a highly efficient system directly involved in monoamine accumulation and in the kinetics of exocytosis from LDCVs.
Collapse
|
26
|
Hosaka M, Watanabe T. Secretogranin III: a bridge between core hormone aggregates and the secretory granule membrane. Endocr J 2010; 57:275-86. [PMID: 20203425 DOI: 10.1507/endocrj.k10e-038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Secretory granules in endocrine cells selectively store bioactive peptide hormones and amines, which are secreted in a regulated manner upon appropriate stimulation. In addition to bioactive substances, various proteins and lipids characteristic of secretory granules are likely recruited to a restricted space at the trans-Golgi Network (TGN), and the space then matures to the secretory granule. Although experimental findings so far have strongly suggested that aggregation- and receptor-mediated processes are essential for the formation of secretory granules, the putative link between these two processes remains to be clarified. Recently, secretogranin III (SgIII) has been identified as a specific binding protein for chromogranin A (CgA), a representative constituent of the core aggregate within secretory granules, and it was later revealed that SgIII can also bind to the cholesterol-rich membrane domain at the TGN. Based on its multifaceted binding properties, SgIII may act as a central player in the formation of cholesterol-rich membrane platforms. Upon these platforms, essential processes for secretory granule biogenesis coordinately occur; that is, selective recruitment of prohormones, processing and modifying of prohormones, and condensation of mature hormones as an aggregate. This review summarizes the findings and theoretical concepts on the issue to date and then focuses on the putative role of SgIII in secretory granule biogenesis in endocrine cells.
Collapse
Affiliation(s)
- Masahiro Hosaka
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| | | |
Collapse
|
27
|
Abstract
Acute insulin secretion from stimulated pancreatic beta-cells is derived from the intracellular pool of insulin secretory granules wherein insulin is packaged in a highly concentrated (and in some species, crystalline) state. Here we review experimental work, principally from our laboratory, on the question of biogenesis of mature secretory granules within the broader context of intracellular protein trafficking. Events occurring in the lumen of organelles at various stages of intracellular transport within the secretory pathway and events at the limiting membrane of newly forming secretory granules each contribute to formation of the insulin storage compartment comprising the readily releasable pool.
Collapse
Affiliation(s)
- Peter Arvan
- Divisions of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Determinants for chromogranin A sorting into the regulated secretory pathway are also sufficient to generate granule-like structures in non-endocrine cells. Biochem J 2009; 418:81-91. [PMID: 18973469 DOI: 10.1042/bj20071382] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells. To identify which segment of CgA (chromogranin A) is important to induce the formation of such granule-like structures, a series of deletion constructs fused to either GFP (green fluorescent protein) or a short epitope tag was expressed in COS-1 fibroblast cells and analysed by fluorescence and electron microscopy and pulse-chase labelling. Full-length CgA as well as deletion constructs containing the N-terminal 77 residues generated granule-like structures in the cell periphery that co-localized with co-expressed SgII (secretogranin II). These are essentially the same segments of the protein that were previously shown to be required for granule sorting in wild-type PC12 (pheochromocytoma cells) cells and for rescuing a regulated secretory pathway in A35C cells, a variant PC12 line deficient in granule formation. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.
Collapse
|
29
|
Abstract
Exocrine, endocrine, and neuroendocrine cells store hormones and neuropeptides in secretory granules (SGs), which undergo regulated exocytosis in response to an appropriate stimulus. These cargo proteins are sorted at the trans-Golgi network into forming immature secretory granules (ISGs). ISGs undergo maturation while they are transported to and within the F-actin-rich cortex. This process includes homotypic fusion of ISGs, acidification of their lumen, processing, and aggregation of cargo proteins as well as removal of excess membrane and missorted cargo. The resulting mature secretory granules (MSGs) are stored in the F-actin-rich cell cortex, perhaps as segregated pools exhibiting specific responses to stimuli for regulated exocytosis. During the last decade our understanding of the maturation of ISGs advanced substantially. The use of biochemical approaches led to the identification of membrane molecules mechanistically involved in this process. Furthermore, live cell imaging in combination with fluorescently tagged marker proteins of SGs provided insights into the dynamics of maturing ISGs, and the functional implications of cytoskeletal elements and motor proteins.
Collapse
|
30
|
Biogenesis of Dense-Core Secretory Granules. TRAFFICKING INSIDE CELLS 2009. [PMCID: PMC7122546 DOI: 10.1007/978-0-387-93877-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dense core granules (DCGs) are vesicular organelles derived from outbound traffic through the eukaryotic secretory pathway. As DCGs are formed, the secretory pathway can also give rise to other types of vesicles, such as those bound for endosomes, lysosomes, and the cell surface. DCGs differ from these other vesicular carriers in both content and function, storing highly concentrated cores’ of condensed cargo in vesicles that are stably maintained within the cell until a specific extracellular stimulus causes their fusion with the plasma membrane. These unique features are imparted by the activities of membrane and lumenal proteins that are specifically delivered to the vesicles during synthesis. This chapter will describe the DCG biogenesis pathway, beginning with the sorting of DCG proteins from proteins that are destined for other types of vesicle carriers. In the trans-Golgi network (TGN), sorting occurs as DCG proteins aggregate, causing physical separation from non-DCG proteins. Recent work addresses the nature of interactions that produce these aggregates, as well as potentially important interactions with membranes and membrane proteins. DCG proteins are released from the TGN in vesicles called immature secretory granules (ISGs). The mechanism of ISG formation is largely unclear but is not believed to rely on the assembly of vesicle coats like those observed in other secretory pathways. The required cytosolic factors are now beginning to be identified using in vitro systems with purified cellular components. ISG transformation into a mature fusion-competent, stimulus-dependent DCG occurs as endoproteolytic processing of many DCG proteins causes continued condensation of the lumenal contents. At the same time, proteins that fail to be incorporated into the condensing core are removed by a coat-mediated budding mechanism, which also serves to remove excess membrane and membrane proteins from the maturing vesicle. This chapter will summarize the work leading to our current view of granule synthesis, and will discuss questions that need to be addressed in order to gain a more complete understanding of the pathway.
Collapse
|
31
|
Ma GQ, Wang B, Wang HB, Wang Q, Bao L. Short elements with charged amino acids form clusters to sort protachykinin into large dense-core vesicles. Traffic 2008; 9:2165-79. [PMID: 18939957 DOI: 10.1111/j.1600-0854.2008.00836.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sorting of neuropeptide tachykinins into large dense-core vesicles (LDCVs) is a key step in their regulated secretion from neurons. However, the sorting mechanism for protachykinin has not yet to be clearly resolved. In this study, we report that the clustered short elements with charged amino acids regulate the efficiency of protachykinin sorting into LDCVs. A truncation experiment showed that the propeptide and the mature peptide-containing sequence of protachykinin were sorted into LDCVs. These two regions exhibit a polarized distribution of charged amino acids. The LDCV localization of the propeptide was gradually decreased with an increasing number of neutral amino acids. Furthermore, the short element with four to five amino acids containing two charged residues was found to be a basic unit for LDCV sorting that enables regulated secretion. In the native propeptide sequence, these charged short elements were clustered to enhance the intermolecular aggregation by electrostatic interaction and produce a gradual and additive effect on LDCV sorting. The optimal conditions for intermolecular aggregation of protachykinin were at millimolar Ca(2+) concentrations and pH 5.5-6.0. These results demonstrate that the charged short elements are clustered such that they serve as aggregative signals and regulate the efficiency of protachykinin sorting into LDCVs. These findings reveal a novel mechanism for the sorting of neuropeptides into a regulated secretory pathway.
Collapse
Affiliation(s)
- Guo-Qiang Ma
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
32
|
Abstract
The O-sulfation of tyrosine residues of plasma membrane and secretory proteins that transit through the secretory pathway of eukaryotic cells is a widespread post-translational modification. This enzymatic reaction is catalyzed by trans-Golgi-associated tyrosylprotein sulfotransferases, which recognize tyrosine residues located in a specific acidic amino acid sequence. Tyrosine sulfation promotes extracellular protein-protein interactions involved in diverse biological processes, ranging from the receptor binding of regulatory peptides to the interaction of viral envelope proteins with the cell surface. This unit outlines procedures to determine whether a protein of interest contains sulfated tyrosine residues, using methods based on labeling proteins with inorganic [35S]-sulfate, alkaline hydrolysis, and one-dimensional thin-layer electrophoresis.
Collapse
Affiliation(s)
- Denis Corbeil
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | |
Collapse
|
33
|
Giordano T, Brigatti C, Podini P, Bonifacio E, Meldolesi J, Malosio ML. Beta cell chromogranin B is partially segregated in distinct granules and can be released separately from insulin in response to stimulation. Diabetologia 2008; 51:997-1007. [PMID: 18437352 DOI: 10.1007/s00125-008-0980-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 02/08/2008] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS We investigated, in three beta cell lines (INS-1E, RIN-5AH, betaTC3) and in human and rodent primary beta cells, the storage and release of chromogranin B, a secretory protein expressed in beta cells and postulated to play an autocrine role. We asked whether chromogranin B is stored together with and discharged in constant ratio to insulin upon various stimuli. METHODS The intracellular distribution of insulin and chromogranin B was revealed by immunofluorescence followed by three-dimensional image reconstruction and by immunoelectron microscopy; their stimulated discharge was measured by ELISA and immunoblot analysis of homogenates and incubation media. RESULTS Insulin and chromogranin B, co-localised in the Golgi complex/trans-Golgi network, appeared largely segregated from each other in the secretory granule compartment. In INS-1E cells, the percentage of granules positive only for insulin or chromogranin B and of those positive for both was 66, 7 and 27%, respectively. In resting cells, both insulin and chromogranin B were concentrated in the granule cores; upon stimulation, chromogranin B (but not insulin) was largely redistributed to the core periphery and the surrounding halo. Strong stimulation with a secretagogue mixture induced parallel release of insulin and chromogranin B, whereas with 3-isobutyl-1-methylxantine and forskolin +/- high glucose release of chromogranin B predominated. Weak, Ca(2+)-dependent stimulation with ionomycin or carbachol induced exclusive release of chromogranin B, suggesting a higher Ca(2+) sensitivity of the specific granules. CONCLUSIONS/INTERPRETATION The unexpected complexity of the beta cell granule population in terms of heterogeneity, molecular plasticity and the differential discharge, could play an important role in physiological control of insulin release and possibly also in beta cell pathology.
Collapse
Affiliation(s)
- T Giordano
- Immunology of Diabetes Research Unit, San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Han L, Suda M, Tsuzuki K, Wang R, Ohe Y, Hirai H, Watanabe T, Takeuchi T, Hosaka M. A large form of secretogranin III functions as a sorting receptor for chromogranin A aggregates in PC12 cells. Mol Endocrinol 2008; 22:1935-49. [PMID: 18483175 DOI: 10.1210/me.2008-0006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Granin-family proteins, including chromogranin A and secretogranin III, are sorted to the secretory granules in neuroendocrine cells. We previously demonstrated that secretogranin III binds chromogranin A and targets it to the secretory granules in pituitary corticotrope-derived AtT-20 cells. However, secretogranin III has not been identified in adrenal chromaffin and PC12 cells, where chromogranin A is correctly sorted to the secretory granules. In this study, low levels of a large and noncleaved secretogranin III have been identified in PC12 cells and rat adrenal glands. Although the secretogranin III expression was limited in PC12 cells, when the FLAG-tagged secretogranin III lacking the secretory granule membrane-binding domain was expressed excessively, hemagglutinin-tagged chromogranin A was unable to target to the secretory granules at the tips and shifted to the constitutive secretory pathway. Secretogranin III was able to bind the aggregated form of chromogranin A, suggesting that a small quantity of secretogranin III is enough to carry a large quantity of chromogranin A. Furthermore, secretogranin III bound adrenomedullin, a major peptide hormone in chromaffin cells. Indeed, small interfering RNA-directed secretogranin III depletion impaired intracellular retention of chromogranin A and adrenomedullin, suggesting that they are constitutively released to the medium. We suggest that the sorting function of secretogranin III for chromogranin A is common in PC12 and chromaffin cells as well as in other endocrine cells, and a small amount of secretogranin III is able to sort chromogranin A aggregates together with adrenomedullin to secretory granules.
Collapse
Affiliation(s)
- Lu Han
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Courel M, Vasquez MS, Hook VY, Mahata SK, Taupenot L. Sorting of the neuroendocrine secretory protein Secretogranin II into the regulated secretory pathway: role of N- and C-terminal alpha-helical domains. J Biol Chem 2008; 283:11807-22. [PMID: 18299326 DOI: 10.1074/jbc.m709832200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative alpha-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane.
Collapse
Affiliation(s)
- Maïté Courel
- Department of Medicine, University of California at San Diego, La Jolla, California 92093-0838, USA
| | | | | | | | | |
Collapse
|
36
|
Montero-Hadjadje M, Vaingankar S, Elias S, Tostivint H, Mahata SK, Anouar Y. Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol (Oxf) 2008; 192:309-24. [PMID: 18005393 DOI: 10.1111/j.1748-1716.2007.01806.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chromogranins/secretogranins or granins are a class of acidic, secretory proteins that occur in endocrine, neuroendocrine, and neuronal cells. Granins are the precursors of several bioactive peptides and may be involved in secretory granule formation and neurotransmitter/hormone release. Characterization and analysis of chromogranin A (CgA), chromogranin B (CgB), and secretogranin II (SgII) in distant vertebrate species confirmed that CgA and CgB belong to related monophyletic groups, probably evolving from a common ancestral precursor, while SgII sequences constitute a distinct monophyletic group. In particular, selective sequences within these proteins, bounded by potential processing sites, have been remarkably conserved during evolution. Peptides named vasostatin, secretolytin and secretoneurin, which occur in these regions, have been shown to exert various biological activities. These conserved domains may also be involved in the formation of secretory granules in different vertebrates. Other peptides such as catestatin and pancreastatin may have appeared late during evolution. The function of granins as propeptide precursors and granulogenic factors is discussed in the light of recent data obtained in various model species and using knockout mice strains.
Collapse
Affiliation(s)
- M Montero-Hadjadje
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
37
|
Origins of the regulated secretory pathway. THE GOLGI APPARATUS 2008. [PMCID: PMC7121582 DOI: 10.1007/978-3-211-76310-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modes of transport of soluble (or luminal) secretory proteins synthesized in the endoplasmic reticulum (ER) could be divided into two groups. The socalled constitutive secretory pathway (CSP) is common to all eukaryotic cells, constantly delivering constitutive soluble secretory proteins (CSSPs) linked to the rate of protein synthesis but largely independent of external stimuli. In regulated secretion, protein is sorted from the Golgi into storage/secretory granules (SGs) whose contents are released when stimuli trigger their final fusion with the plasma membrane (Hannah et al. 1999).
Collapse
|
38
|
Lacmann A, Hess D, Gohla G, Roussa E, Krieglstein K. Activity-dependent release of transforming growth factor-beta in a neuronal network in vitro. Neuroscience 2007; 150:647-57. [DOI: 10.1016/j.neuroscience.2007.09.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 09/05/2007] [Accepted: 10/11/2007] [Indexed: 01/17/2023]
|
39
|
Dikeakos JD, Reudelhuber TL. Sending proteins to dense core secretory granules: still a lot to sort out. ACTA ACUST UNITED AC 2007; 177:191-6. [PMID: 17438078 PMCID: PMC2064127 DOI: 10.1083/jcb.200701024] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracellular sorting of peptide hormone precursors to the dense core secretory granules (DCSGs) is essential for their bioactivation. Despite the fundamental importance of this cellular process, the nature of the sorting signals for entry of proteins into DCSGs remains a source of vigorous debate. This review highlights recent discoveries that are consistent with a model in which several protein domains, acting in a cell-specific fashion and at different steps in the sorting process, act in concert to regulate the entry of proteins into DCSGs.
Collapse
Affiliation(s)
- Jimmy D Dikeakos
- Laboratory of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | |
Collapse
|
40
|
Zhang K, Rao F, Wen G, Salem RM, Vaingankar S, Mahata M, Mahapatra NR, Lillie EO, Cadman PE, Friese RS, Hamilton BA, Hook VY, Mahata SK, Taupenot L, O'Connor DT. Catecholamine storage vesicles and the metabolic syndrome: The role of the chromogranin A fragment pancreastatin. Diabetes Obes Metab 2006; 8:621-33. [PMID: 17026486 PMCID: PMC10843892 DOI: 10.1111/j.1463-1326.2006.00575.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromogranins or secretogranins (granins), present in secretory granules of virtually all neuroendocrine cells and neurones, are structurally related proteins encoded by different genetic loci: chromogranins A and B, and secretogranins II through VI. Compelling evidence supports both intracellular and extracellular functions for this protein family. Within the cells of origin, a granulogenic or sorting role in the regulated pathway of hormone or neurotransmitter secretion has been documented, especially for chromogranin A (CHGA). Granins also function as pro-hormones, giving rise by proteolytic processing to an array of peptide fragments for which diverse autocrine, paracrine, and endocrine activities have been demonstrated. CHGA measurements yield insight into the pathogenesis of such human diseases as essential hypertension, in which deficiency of the catecholamine release-inhibitory CHGA fragment catestatin may trigger sympathoadrenal overactivity as an aetiologic culprit in the syndrome. The CHGA dysglycaemic fragment pancreastatin is functional in humans in vivo, affecting both carbohydrate (glucose) and lipid (fatty acid) metabolism. Pancreastatin is cleaved from CHGA in hormone storage granules in vivo, and its plasma concentration varies in human disease. The pancreastatin region of CHGA gives rise to three naturally occurring human variants, one of which (Gly297Ser) occurs in the functionally important carboxy-terminus of the peptide, and substantially increases the peptide's potency to inhibit cellular glucose uptake. These observations establish a role for pancreastatin in human intermediary metabolism and disease, and suggest that qualitative hereditary alterations in pancreastatin's primary structure may give rise to interindividual differences in glucose disposition.
Collapse
Affiliation(s)
- Kuixing Zhang
- Department of Medicine, University of California at San Diego, San Diego, California 92093-0838, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yakovleva T, Bazov I, Cebers G, Marinova Z, Hara Y, Ahmed A, Vlaskovska M, Johansson B, Hochgeschwender U, Singh IN, Bruce-Keller AJ, Hurd YL, Kaneko T, Terenius L, Ekström TJ, Hauser KF, Pickel VM, Bakalkin G. Prodynorphin storage and processing in axon terminals and dendrites. FASEB J 2006; 20:2124-6. [PMID: 16966485 DOI: 10.1096/fj.06-6174fje] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The classical view postulates that neuropeptide precursors in neurons are processed into mature neuropeptides in the somatic trans-Golgi network (TGN) and in secretory vesicles during axonal transport. Here we show that prodynorphin (PDYN), precursor to dynorphin opioid peptides, is predominantly located in axon terminals and dendrites in hippocampal and striatal neurons. The molar content of unprocessed PDYN was much greater than that of dynorphin peptides in axon terminals of PDYN-containing neurons projecting to the CA3 region of the hippocampus and in the striatal projections to the ventral tegmental area. Electron microscopy showed coexistence of PDYN and dynorphins in the same axon terminals with occasional codistribution in individual dense core vesicles. Thus, the precursor protein is apparently stored at presynaptic sites. In comparison with the hippocampus and striatum, PDYN and dynorphins were more equally distributed between neuronal somata and processes in the amygdala and cerebral cortex, suggesting regional differences in the regulation of trafficking and processing of the precursor protein. Potassium-induced depolarization activated PDYN processing and secretion of opioid peptides in neuronal cultures and in a model cell line. Regulation of PDYN storage and processing at synapses by neuronal activity or extracellular stimuli may provide a local mechanism for regulation of synaptic transmission.
Collapse
Affiliation(s)
- Tatiana Yakovleva
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim T, Gondré-Lewis MC, Arnaoutova I, Loh YP. Dense-core secretory granule biogenesis. Physiology (Bethesda) 2006; 21:124-33. [PMID: 16565478 DOI: 10.1152/physiol.00043.2005] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dense-core secretory granule is a key organelle for secretion of hormones and neuropeptides in endocrine cells and neurons, in response to stimulation. Cholesterol and granins are critical for the assembly of these organelles at the trans-Golgi network, and their biogenesis is regulated quantitatively by posttranscriptional and posttranslational mechanisms.
Collapse
Affiliation(s)
- Taeyoon Kim
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
43
|
Lara-Lemus R, Liu M, Turner MD, Scherer P, Stenbeck G, lyengar P, Arvan P. Lumenal protein sorting to the constitutive secretory pathway of a regulated secretory cell. J Cell Sci 2006; 119:1833-42. [PMID: 16608874 PMCID: PMC2547412 DOI: 10.1242/jcs.02905] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newly synthesized secretory granule content proteins are delivered via the Golgi complex for storage within mature granules, whereas constitutive secretory proteins are not stored. Most soluble proteins traveling anterograde through the trans-Golgi network are not excluded from entering immature secretory granules, whether or not they have granule-targeting signals. However, the ;sorting-for-entry' hypothesis suggests that soluble lumenal proteins lacking signals enter transport intermediates for the constitutive secretory pathway. We aimed to investigate how these constitutive secretory proteins are sorted. In a pancreatic beta-cell line, we stably expressed two lumenal proteins whose normal sorting information has been deleted: alkaline phosphatase, truncated to eliminate its glycosylphosphatidylinositol membrane anchor (SEAP); and Cab45361, a Golgi lumenal resident, truncated to eliminate its intracellular retention (Cab308Myc). Both truncated proteins are efficiently secreted, but whereas SEAP enters secretory granules, Cab308Myc behaves as a true constitutive marker excluded from granules. Interestingly, upon permeabilization of organelle membranes with saponin, SEAP is extracted as a soluble protein whereas Cab308Myc remains associated with the membrane. These are among the first data to support a model in which association with the lumenal aspect of Golgi and/or post-Golgi membranes can serve as a means for selective sorting of constitutive secretory proteins.
Collapse
Affiliation(s)
- Roberto Lara-Lemus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| | - Ming Liu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| | - Mark D. Turner
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Queen Mary’s School of Medicine and Dentistry, University of London, Whitechapel, London, E1 1BB, UK
| | - Philipp Scherer
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gudrun Stenbeck
- Bone and Mineral Centre, University College London, London, WC1E 6JJ, UK
| | - Puneeth lyengar
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| |
Collapse
|
44
|
Garcia AL, Han SK, Janssen WG, Khaing ZZ, Ito T, Glucksman MJ, Benson DL, Salton SRJ. A prohormone convertase cleavage site within a predicted alpha-helix mediates sorting of the neuronal and endocrine polypeptide VGF into the regulated secretory pathway. J Biol Chem 2005; 280:41595-608. [PMID: 16221685 DOI: 10.1074/jbc.m509122200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distinct intracellular pathways are involved in regulated and constitutive protein secretion from neuronal and endocrine cells, yet the peptide signals and molecular mechanisms responsible for targeting and retention of soluble proteins in secretory granules are incompletely understood. By using confocal microscopy and subcellular fractionation, we examined trafficking of the neuronal and endocrine peptide precursor VGF that is stored in large dense core vesicles and undergoes regulated secretion. VGF cofractionated with secretory vesicle membranes but was not detected in detergent-resistant lipid rafts. Deletional analysis using epitope-tagged VGF suggested that the C-terminal 73-amino acid fragment of VGF, containing two predicted alpha-helical loops and four potential prohormone convertase (PC) cleavage sites, was necessary and sufficient with an N-terminal signal peptide-containing domain, for large dense core vesicle sorting and regulated secretion from PC12 and INS-1 cells. Further transfection analysis identified the sorting sequence as a compact C-terminal alpha-helix and embedded 564RRR566 PC cleavage site; mutation of the 564RRR566 PC site in VGF-(1-65): GFP:VGF-(545-617) blocked regulated secretion, whereas disruption of the alpha-helix had no effect. Mutation of the adjacent 567HFHH570 motif, a charged region that might enhance PC cleavage in acidic environments, also blocked regulated release. Finally, inhibition of PC cleavage in PC12 cells using the membrane-permeable synthetic peptide chloromethyl ketone (decanoyl-RVKR-CMK) blocked regulated secretion of VGF. Our studies define a critical RRR-containing C-terminal domain that targets VGF into the regulated pathway in neuronal PC12 and endocrine INS-1 cells, providing additional support for the proposed role that PCs and their cleavage sites play in regulated peptide secretion.
Collapse
Affiliation(s)
- Angelo L Garcia
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Mulcahy LR, Barker AJ, Nillni EA. Disruption of disulfide bond formation alters the trafficking of prothyrotropin releasing hormone (proTRH)-derived peptides. ACTA ACUST UNITED AC 2005; 133:123-33. [PMID: 16257458 DOI: 10.1016/j.regpep.2005.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/23/2005] [Accepted: 09/23/2005] [Indexed: 11/16/2022]
Abstract
Rat prothyrotropin releasing hormone (proTRH) is processed in the regulated secretory pathway (RSP) of neuroendocrine cells yielding five TRH peptides and several non-TRH peptides. It is not understood how these peptides are targeted to the RSP. We show here that a disulfide bond in the carboxy-terminus of proTRH plays an important role in the trafficking of this prohormone. Recombinant proTRH was observed to migrate faster on a native gel when treated with dithiothreitol (DTT) suggesting the presence of a disulfide bond. In vitro disulfide bond formation was prevented either by DTT treatment or by mutating cysteines 213 and 219 to glycines. In both cases the peptides derived from these mutants exhibited increased constitutive release and processing defects when expressed in AtT20 cells, a neuroendocrine cell line used in our prior studies on proTRH processing. Immunocytochemistry revealed that wild-type proTRH and mutant proTRH localized in a punctate pattern typical of proteins sorted to the regulated secretory pathway. These data suggest that the proposed disulfide bond of proTRH is involved in sorting of proTRH-derived peptides and in their retention within maturing secretory granules. This is the first evidence of structural motifs being important for the sorting of proTRH.
Collapse
Affiliation(s)
- Lawrence R Mulcahy
- Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
46
|
Mulcahy LR, Vaslet CA, Nillni EA. Prohormone-convertase 1 processing enhances post-Golgi sorting of prothyrotropin-releasing hormone-derived peptides. J Biol Chem 2005; 280:39818-26. [PMID: 16204236 DOI: 10.1074/jbc.m507193200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat prothyrotropin-releasing hormone (pro-TRH) is endoproteolyzed within the regulated secretory pathway of neuroendocrine cells yielding five TRH peptides and seven to nine other unique peptides. Endoproteolysis is performed by two prohormone convertases, PC1 and PC2. Proteolysis of pro-TRH begins in the trans-Golgi network and forms two intermediates that are then differentially processed as they exit the Golgi and are packaged into immature secretory granules. We hypothesized that this initial endoproteolysis may be necessary for downstream sorting of pro-TRH-derived peptides as it occurs before Golgi exit and thus entry into the regulated secretory pathway. We now report that when pro-TRH is transiently expressed in GH4C1 cells, a neuroendocrine cell line lacking PC1, under pulse-chase conditions release is constitutive and composed of more immature processing intermediates. This is also observed by radioimmunoassay under steady-state conditions. When a mutant form of pro-TRH, which has the dibasic sites of initial processing mutated to glycines, is expressed in AtT20 cells, a neuroendocrine cell line endogenously expressing PC1, both steady-state and pulse-chase experiments revealed that peptides derived from this mutant precursor are secreted in a constitutive fashion. A constitutively secreted form of PC1 does not target pro-TRH peptides to the constitutive secretory pathway but results in sorting to the regulated secretory pathway. These results indicated that initial processing action of PC1 on pro-TRH in the trans-Golgi network, and not a cargo-receptor relationship, is important for the downstream sorting events that result in storage of pro-TRH-derived peptides in mature secretory granules.
Collapse
Affiliation(s)
- Lawrence R Mulcahy
- Department of Medicine, Division of Endocrinology, Brown University Medical School, Rhode Island Hospital, Providence, Rhode Island 02903, USA
| | | | | |
Collapse
|
47
|
Bowman GR, Elde NC, Morgan G, Winey M, Turkewitz AP. Core formation and the acquisition of fusion competence are linked during secretory granule maturation in Tetrahymena. Traffic 2005; 6:303-23. [PMID: 15752136 PMCID: PMC4708285 DOI: 10.1111/j.1600-0854.2005.00273.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The formation of dense core secretory granules is a multistage process beginning in the trans Golgi network and continuing during a period of granule maturation. Direct interactions between proteins in the membrane and those in the forming dense core may be important for sorting during this process, as well as for organizing membrane proteins in mature granules. We have isolated two mutants in dense core granule formation in the ciliate Tetrahymena thermophila, an organism in which this pathway is genetically accessible. The mutants lie in two distinct genes but have similar phenotypes, marked by accumulation of a set of granule cargo markers in intracellular vesicles resembling immature secretory granules. Sorting to these vesicles appears specific, since they do not contain detectable levels of an extraneous secretory marker. The mutants were initially identified on the basis of aberrant proprotein processing, but also showed defects in the docking of the immature granules. These defects, in core assembly and docking, were similarly conditional with respect to growth conditions, and therefore are likely to be tightly linked. In starved cells, the processing defect was less severe, and the immature granules could dock but still did not undergo stimulated exocytosis. We identified a lumenal protein that localizes to the docking-competent end of wildtype granules, but which is delocalized in the mutants. Our results suggest that dense cores have functionally distinct domains that may be important for organizing membrane proteins involved in docking and fusion.
Collapse
Affiliation(s)
- Grant R Bowman
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
48
|
Bosco D, Meda P, Morel P, Matthey-Doret D, Caille D, Toso C, Bühler LH, Berney T. Expression and secretion of alpha1-proteinase inhibitor are regulated by proinflammatory cytokines in human pancreatic islet cells. Diabetologia 2005; 48:1523-33. [PMID: 16001235 DOI: 10.1007/s00125-005-1816-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 03/06/2005] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS Alpha1-proteinase inhibitor (alpha1-PI) has been considered a key player in inflammatory processes. In humans, the main production site of alpha1-PI is the liver, but other tissues, including pancreatic islets, also synthesise this molecule. The aims of this study were to assess the islet cell types that produce alpha1-PI, to determine whether alpha1-PI is actually secreted by islet cells, and to assess how its production and/or secretion are regulated. METHODS Expression of alpha1-PI in human islet cells was assessed by immunofluorescence, electron microscopy and western blotting. Release of alpha1-PI was analysed by reverse haemolytic plaque assay and ELISA. The effects of cytokines on alpha1-PI synthesis and secretion were tested. RESULTS Immunofluorescence showed that alpha and delta cells do express alpha1-PI, whereas beta cells do not. By electron microscopy, we demonstrated a colocalisation of alpha1-PI with glucagon and somatostatin within secretory granules. Immunolabelling also revealed localisation of alpha1-PI within the Golgi apparatus, related vesicles and lysosomal structures. The expression of alpha1-PI in islet cells was also demonstrated by western blotting and ELISA of protein extracts. ELISA and reverse haemolytic plaque assay showed that alpha1-PI is secreted into the culture medium. Treatment of islet cells with IL-1beta and oncostatin M for 4 days increased the production and release of alpha1-PI. CONCLUSIONS/INTERPRETATION Our results demonstrate that alpha1-PI is expressed by the alpha and delta cells of human islets, and that proinflammatory cytokines enhance the production and release of this inhibitor.
Collapse
Affiliation(s)
- Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Helle KB. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc 2005; 79:769-94. [PMID: 15682870 DOI: 10.1017/s146479310400644x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chromogranins A (CgA) and B (CgB) and secretogranin II (SgII) constitute the main members of a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These genetically distinct proteins, CgA, CgB, SgII and the less well known secretogranins III-VII are collectively referred to as 'granins' and characterised by numerous pairs of basic amino acids as potential cleavage sites for processing by the co-stored prohormone converting enzymes PC 1/3 and PC2. This review is directed towards comparative and functional aspects of the granins with emphasis on their phylogenetically conserved sequences. Recent developments provide ample evidence of widely different effects and targets for the intact granins and their derived peptides, intracellularly in the directed trafficking of storage components during granule maturation and extracellularly in autocrine, paracrine and endocrine interactions. Most of the effects assigned to the granin derived peptides fit into patterns of direct or indirect inhibitory modulations of major functions. So far, peptides derived from CgA (vasostatins, chromacin, pancreastatin, WE-14, catestatin and parastatin), CgB (secretolytin) and SgII (secretoneurin) are the most likely candidates for granin-derived regulatory peptides, of postulated relevance not only for homeostatic processes, but also for tissue assembly and repair, inflammatory responses and the first line of defence against invading microorganisms.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, Division of Physiology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
50
|
Cheng LT, Plemper RK, Compans RW. Atypical fusion peptide of Nelson Bay virus fusion-associated small transmembrane protein. J Virol 2005; 79:1853-60. [PMID: 15650209 PMCID: PMC544091 DOI: 10.1128/jvi.79.3.1853-1860.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 10-kDa nonstructural transmembrane protein (p10) encoded by a reovirus, Nelson Bay virus, has been shown to induce syncytium formation (34). Sequence analysis and structural studies identified p10 as a type I membrane protein with a central transmembrane domain, a cytoplasmic basic region, and an N-terminal hydrophobic domain (HD) that was hypothesized to function as a fusion peptide. We performed mutational analysis on this slightly hydrophobic motif to identify possible structural requirements for fusion activity. Bulky aliphatic residues were found to be essential for optimal fusion, and an aromatic or highly hydrophobic side chain was found to be required at position 12. The requirement for hydrophilic residues within the HD was also examined: substitution of 10-Ser or 14-Ser with hydrophobic residues was found to reduce cell surface expression of p10 and delayed the onset of syncytium formation. Nonconservative substitutions of charged residues in the HD did not have an effect on fusion activity. Taken together, our results suggest that the HD is involved in both syncytium formation and in determining p10 transport and surface expression.
Collapse
Affiliation(s)
- LiTing T Cheng
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm. 3001, Atlanta, GA 30322, USA
| | | | | |
Collapse
|