1
|
Kataria S, Rana I, Badarinath K, Zaarour RF, Kansagara G, Ahmed S, Rizvi A, Saha D, Dam B, Dutta A, Zirmire RK, Hajam EY, Kumar P, Gulyani A, Jamora C. Mindin regulates fibroblast subpopulations through distinct Src family kinases during fibrogenesis. JCI Insight 2024; 10:e173071. [PMID: 39739417 PMCID: PMC11948575 DOI: 10.1172/jci.insight.173071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/19/2024] [Indexed: 01/02/2025] Open
Abstract
Fibrosis results from excessive extracellular matrix (ECM) deposition, which causes tissue stiffening and organ dysfunction. Activated fibroblasts, central to fibrosis, exhibit increased migration, proliferation, contraction, and ECM production. However, it remains unclear if the same fibroblast performs all of the processes that fall under the umbrella term of "activation." Owing to fibroblast heterogeneity in connective tissues, subpopulations with specific functions may operate under distinct regulatory controls. Using a transgenic mouse model of skin fibrosis, we found that Mindin (also known as spondin-2), secreted by Snail-transgenic keratinocytes, differentially regulates fibroblast subpopulations. Mindin promotes migration and inflammatory gene expression in SCA1+ dermal fibroblasts via Fyn kinase. In contrast, it enhances contractility and collagen production in papillary CD26+ fibroblasts through c-Src signaling. Moreover, in the context of the fibrotic microenvironment of the tumor stroma, we found that differential responses of resident fibroblast subpopulations to Mindin extend to the generation of functionally heterogeneous cancer-associated fibroblasts. This study identifies Mindin as a key orchestrator of dermal fibroblast heterogeneity, reshaping cellular dynamics and signaling diversity in the complex landscapes of skin fibrosis and cancer.
Collapse
Affiliation(s)
- Sunny Kataria
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India
- National Centre for Biological Sciences, Gandhi Krishi Vigyan Kendra Post, Bangalore, Karnataka, India
| | - Isha Rana
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Krithika Badarinath
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- National Centre for Biological Sciences, Gandhi Krishi Vigyan Kendra Post, Bangalore, Karnataka, India
| | - Rania F. Zaarour
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Gaurav Kansagara
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, India
| | - Sultan Ahmed
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Abrar Rizvi
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Dyuti Saha
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, India
| | - Binita Dam
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, India
| | - Abhik Dutta
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Ravindra K. Zirmire
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Edries Yousaf Hajam
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Pankaj Kumar
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Akash Gulyani
- Integrative Chemical Biology, inStem, Bangalore, Karnataka, India
| | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India
| |
Collapse
|
2
|
Haase JA, Baheerathan A, Zhang X, Fu RM, Nocke MK, Decker C, Dao Thi VL, Todt D, Neyts J, Kaptein SJ, Steinmann E, Kinast V. The tyrosine kinase Yes1 is a druggable host factor of HEV. Hepatol Commun 2024; 8:e0553. [PMID: 39560373 PMCID: PMC11495762 DOI: 10.1097/hc9.0000000000000553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND HEV is a positive-sense, single-stranded RNA virus of the Hepeviridae family. Although HEV accounts for more than 3 million symptomatic cases of viral hepatitis per year, specific anti-HEV therapy and knowledge about HEV pathogenesis are scarce. METHODS To gain a deeper understanding of the HEV infectious cycle and guide the development of novel antiviral strategies, we here used an RNAi mini screen targeting a selection of kinases, including mitogen-activated protein kinases, receptor tyrosine kinases, and Src-family kinases. Further, we used state-of-the-art HEV infection models, including primary human hepatocytes and athymic nude rats. RESULTS Upon knockdown of the Src-family kinase Yes1, a significant reduction of HEV susceptibility could be observed, suggesting an important role of Yes1 in the HEV infectious cycle. Selective inhibition of Yes1 kinase activity resulted in significant inhibition of HEV infection in hepatoma cells and primary human hepatocytes, as well as in a rat HEV in vivo model system. Subsequent analysis of Y1KI during the HEV infectious life cycle indicated a role of Yes1 kinase activity in the early onset of HEV infection. CONCLUSIONS We identified the dependence of HEV on Yes1 signaling, which may contribute to the so far scarce knowledge of HEV's pathogenesis in the future. Moreover, we provide Y1KI as a novel antiviral drug candidate specifically targeting an HEV host factor.
Collapse
Affiliation(s)
- Jil Alexandra Haase
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Abarna Baheerathan
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Xin Zhang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Rebecca Menhua Fu
- Schaller Research Group, Department of Infectious Diseases and Virology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, Heidelberg, Germany
| | - Maximilian Klaus Nocke
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Charlotte Decker
- Schaller Research Group, Department of Infectious Diseases and Virology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, Heidelberg, Germany
| | - Viet Loan Dao Thi
- Schaller Research Group, Department of Infectious Diseases and Virology, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Centre (EVBC), Jena, Germany
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Suzanne J.F. Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
- German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany
| | - Volker Kinast
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
Clark JF, Soriano P. Diverse Fgfr1 signaling pathways and endocytic trafficking regulate mesoderm development. Genes Dev 2024; 38:393-414. [PMID: 38834239 PMCID: PMC11216173 DOI: 10.1101/gad.351593.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
The fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1-null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identified processes regulating early mesoderm development by mechanisms involving both canonical and noncanonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
4
|
Clark JF, Soriano P. Diverse Fgfr1 signaling pathways and endocytic trafficking regulate early mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580629. [PMID: 38405698 PMCID: PMC10888970 DOI: 10.1101/2024.02.16.580629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1 null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth, but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM-interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identify processes regulating early mesoderm development by mechanisms involving both canonical and non-canonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.
Collapse
Affiliation(s)
- James F. Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
5
|
Lapouge M, Meloche S. A renaissance for YES in cancer. Oncogene 2023; 42:3385-3393. [PMID: 37848624 DOI: 10.1038/s41388-023-02860-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Most of our understanding regarding the involvement of SRC-family tyrosine kinases in cancer has stemmed from studies focused on the prototypical SRC oncogene. However, emerging research has shed light on the important role of YES signaling in oncogenic transformation, tumor growth, metastatic progression, and resistance to various cancer therapies. Clinical evidence indicates that dysregulated expression or activity of YES is a frequent occurrence in human cancers and is associated with unfavorable outcomes. These findings provide a compelling rationale for specifically targeting YES in certain cancer subtypes. Here, we review the crucial role of YES in cancer and discuss the challenges associated with translating preclinical observations into effective YES-targeted therapies.
Collapse
Affiliation(s)
- Marjorie Lapouge
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
6
|
Kapustin A, Tsakali SS, Whitehead M, Chennell G, Wu MY, Molenaar C, Kutikhin A, Bogdanov L, Sinitsky M, Rubina K, Clayton A, Verweij FJ, Pegtel DM, Zingaro S, Lobov A, Zainullina B, Owen D, Parsons M, Cheney RE, Warren D, Humphries MJ, Iskratsch T, Holt M, Shanahan CM. Extracellular vesicles stimulate smooth muscle cell migration by presenting collagen VI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.551257. [PMID: 37645762 PMCID: PMC10462164 DOI: 10.1101/2023.08.17.551257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The extracellular matrix (ECM) supports blood vessel architecture and functionality and undergoes active remodelling during vascular repair and atherogenesis. Vascular smooth muscle cells (VSMCs) are essential for vessel repair and, via their secretome, are able to invade from the vessel media into the intima to mediate ECM remodelling. Accumulation of fibronectin (FN) is a hallmark of early vascular repair and atherosclerosis and here we show that FN stimulates VSMCs to secrete small extracellular vesicles (sEVs) by activating the β1 integrin/FAK/Src pathway as well as Arp2/3-dependent branching of the actin cytoskeleton. Spatially, sEV were secreted via filopodia-like cellular protrusions at the leading edge of migrating cells. We found that sEVs are trapped by the ECM in vitro and colocalise with FN in symptomatic atherosclerotic plaques in vivo. Functionally, ECM-trapped sEVs induced the formation of focal adhesions (FA) with enhanced pulling forces at the cellular periphery. Proteomic and GO pathway analysis revealed that VSMC-derived sEVs display a cell adhesion signature and are specifically enriched with collagen VI. In vitro assays identified collagen VI as playing the key role in cell adhesion and invasion. Taken together our data suggests that the accumulation of FN is a key early event in vessel repair acting to promote secretion of collage VI enriched sEVs by VSMCs. These sEVs stimulate migration and invasion by triggering peripheral focal adhesion formation and actomyosin contraction to exert sufficient traction forces to enable VSMC movement within the complex vascular ECM network.
Collapse
Affiliation(s)
- Alexander Kapustin
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Sofia Serena Tsakali
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Meredith Whitehead
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - George Chennell
- Wohl Cellular Imaging Centre, King’s College London, 5 Cutcombe Road, London, SE5 9NU
| | - Meng-Ying Wu
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Chris Molenaar
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Anton Kutikhin
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo, 650002, Russian Federation
| | - Leo Bogdanov
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo, 650002, Russian Federation
| | - Maxim Sinitsky
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo, 650002, Russian Federation
| | - Kseniya Rubina
- Laboratory of Morphogenesis and Tissue Reparation, Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia, tel/fax +74959329904
| | - Aled Clayton
- Tissue Microenvironment Research Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Tenovus Building, Cardiff, UK, CF14 2XN
| | - Frederik J Verweij
- Division of Cell Biology, Neurobiology & Biophysics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Dirk Michiel Pegtel
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Simona Zingaro
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL UK
| | - Arseniy Lobov
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretskiy Prospekt, 194064, St. Petersburg, Russia
| | - Bozhana Zainullina
- Centre for Molecular and Cell Technologies, Research Park, St. Petersburg State University, 7/9 Universitetskaya Embankment, 199034, St. Petersburg, Russia
| | - Dylan Owen
- Institute of Immunology and Immunotherapy, School of Mathematics and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL UK
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Derek Warren
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK, NR4 7TJ
| | - Martin James Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Faculty of Science and Engineering, Queen Mary University of London, Engineering Building, Mile End Road, E1 4NS
| | - Mark Holt
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Catherine M Shanahan
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| |
Collapse
|
7
|
Backe SJ, Votra SD, Stokes MP, Sebestyén E, Castelli M, Torielli L, Colombo G, Woodford MR, Mollapour M, Bourboulia D. PhosY-secretome profiling combined with kinase-substrate interaction screening defines active c-Src-driven extracellular signaling. Cell Rep 2023; 42:112539. [PMID: 37243593 PMCID: PMC10569185 DOI: 10.1016/j.celrep.2023.112539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/07/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
c-Src tyrosine kinase is a renowned key intracellular signaling molecule and a potential target for cancer therapy. Secreted c-Src is a recent observation, but how it contributes to extracellular phosphorylation remains elusive. Using a series of domain deletion mutants, we show that the N-proximal region of c-Src is essential for its secretion. The tissue inhibitor of metalloproteinases 2 (TIMP2) is an extracellular substrate of c-Src. Limited proteolysis-coupled mass spectrometry and mutagenesis studies verify that the Src homology 3 (SH3) domain of c-Src and the P31VHP34 motif of TIMP2 are critical for their interaction. Comparative phosphoproteomic analyses identify an enrichment of PxxP motifs in phosY-containing secretomes from c-Src-expressing cells with cancer-promoting roles. Inhibition of extracellular c-Src using custom SH3-targeting antibodies disrupt kinase-substrate complexes and inhibit cancer cell proliferation. These findings point toward an intricate role for c-Src in generating phosphosecretomes, which will likely influence cell-cell communication, particularly in c-Src-overexpressing cancers.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - SarahBeth D Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | - Matteo Castelli
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Luca Torielli
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
8
|
Farahani PE, Yang X, Mesev EV, Fomby KA, Brumbaugh-Reed EH, Bashor CJ, Nelson CM, Toettcher JE. pYtags enable spatiotemporal measurements of receptor tyrosine kinase signaling in living cells. eLife 2023; 12:82863. [PMID: 37212240 DOI: 10.7554/elife.82863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are major signaling hubs in metazoans, playing crucial roles in cell proliferation, migration, and differentiation. However, few tools are available to measure the activity of a specific RTK in individual living cells. Here, we present pYtags, a modular approach for monitoring the activity of a user-defined RTK by live-cell microscopy. pYtags consist of an RTK modified with a tyrosine activation motif that, when phosphorylated, recruits a fluorescently labeled tandem SH2 domain with high specificity. We show that pYtags enable the monitoring of a specific RTK on seconds-to-minutes time scales and across subcellular and multicellular length scales. Using a pYtag biosensor for epidermal growth factor receptor (EGFR), we quantitatively characterize how signaling dynamics vary with the identity and dose of activating ligand. We show that orthogonal pYtags can be used to monitor the dynamics of EGFR and ErbB2 activity in the same cell, revealing distinct phases of activation for each RTK. The specificity and modularity of pYtags open the door to robust biosensors of multiple tyrosine kinases and may enable engineering of synthetic receptors with orthogonal response programs.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical & Biological Engineering, Princeton University, Princeton, United States
| | - Xiaoyu Yang
- Department of Bioengineering, Rice University, Houston, United States
- Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Emily V Mesev
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Kaylan A Fomby
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Ellen H Brumbaugh-Reed
- Department of Molecular Biology, Princeton University, Princeton, United States
- IRCC International Research Collaboration Center, National Institutes of Natural Sciences, Tokyo, Japan
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, United States
- Department of Biosciences, Rice University, Houston, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, United States
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
9
|
Chhabra Y, Seiffert P, Gormal RS, Vullings M, Lee CMM, Wallis TP, Dehkhoda F, Indrakumar S, Jacobsen NL, Lindorff-Larsen K, Durisic N, Waters MJ, Meunier FA, Kragelund BB, Brooks AJ. Tyrosine kinases compete for growth hormone receptor binding and regulate receptor mobility and degradation. Cell Rep 2023; 42:112490. [PMID: 37163374 DOI: 10.1016/j.celrep.2023.112490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Growth hormone (GH) acts via JAK2 and LYN to regulate growth, metabolism, and neural function. However, the relationship between these tyrosine kinases remains enigmatic. Through an interdisciplinary approach combining cell biology, structural biology, computation, and single-particle tracking on live cells, we find overlapping LYN and JAK2 Box1-Box2-binding regions in GH receptor (GHR). Our data implicate direct competition between JAK2 and LYN for GHR binding and imply divergent signaling profiles. We show that GHR exhibits distinct mobility states within the cell membrane and that activation of LYN by GH mediates GHR immobilization, thereby initiating its nanoclustering in the membrane. Importantly, we observe that LYN mediates cytokine receptor degradation, thereby controlling receptor turnover and activity, and this applies to related cytokine receptors. Our study offers insight into the molecular interactions of LYN with GHR and highlights important functions for LYN in regulating GHR nanoclustering, signaling, and degradation, traits broadly relevant to many cytokine receptors.
Collapse
Affiliation(s)
- Yash Chhabra
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21204, USA.
| | - Pernille Seiffert
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rachel S Gormal
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Manon Vullings
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia
| | | | - Tristan P Wallis
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Farhad Dehkhoda
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sowmya Indrakumar
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nina L Jacobsen
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nela Durisic
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J Waters
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia
| | - Frédéric A Meunier
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Andrew J Brooks
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
10
|
Svec KV, Howe AK. Protein Kinase A in cellular migration-Niche signaling of a ubiquitous kinase. Front Mol Biosci 2022; 9:953093. [PMID: 35959460 PMCID: PMC9361040 DOI: 10.3389/fmolb.2022.953093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 12/28/2022] Open
Abstract
Cell migration requires establishment and maintenance of directional polarity, which in turn requires spatial heterogeneity in the regulation of protrusion, retraction, and adhesion. Thus, the signaling proteins that regulate these various structural processes must also be distinctly regulated in subcellular space. Protein Kinase A (PKA) is a ubiquitous serine/threonine kinase involved in innumerable cellular processes. In the context of cell migration, it has a paradoxical role in that global inhibition or activation of PKA inhibits migration. It follows, then, that the subcellular regulation of PKA is key to bringing its proper permissive and restrictive functions to the correct parts of the cell. Proper subcellular regulation of PKA controls not only when and where it is active but also specifies the targets for that activity, allowing the cell to use a single, promiscuous kinase to exert distinct functions within different subcellular niches to facilitate cell movement. In this way, understanding PKA signaling in migration is a study in context and in the elegant coordination of distinct functions of a single protein in a complex cellular process.
Collapse
Affiliation(s)
- Kathryn V. Svec
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
| | - Alan K. Howe
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, V T, United States
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| |
Collapse
|
11
|
Sontag JM, Schuhmacher D, Taleski G, Jordan A, Khan S, Hoffman A, Gomez RJ, Mazalouskas MD, Hanks SK, Spiller BW, Sontag E, Wadzinski BE. A new paradigm for regulation of protein phosphatase 2A function via Src and Fyn kinase-mediated tyrosine phosphorylation. J Biol Chem 2022; 298:102248. [PMID: 35820485 PMCID: PMC9396060 DOI: 10.1016/j.jbc.2022.102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/01/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a major phospho-Ser/Thr phosphatase and a key regulator of cellular signal transduction pathways. While PP2A dysfunction has been linked to human cancer and neurodegenerative disorders such as Alzheimer’s disease (AD), PP2A regulation remains relatively poorly understood. It has been reported that the PP2A catalytic subunit (PP2Ac) is inactivated by a single phosphorylation at the Tyr307 residue by tyrosine kinases such as v-Src. However, multiple mass spectrometry studies have revealed the existence of other putative PP2Ac phosphorylation sites in response to activation of Src and Fyn, two major Src family kinases (SFKs). Here, using PP2Ac phosphomutants and novel phosphosite-specific PP2Ac antibodies, we show that cellular pools of PP2Ac are instead phosphorylated on both Tyr127 and Tyr284 upon Src activation, and on Tyr284 following Fyn activation. We found these phosphorylation events enhanced the interaction of PP2Ac with SFKs. In addition, we reveal SFK-mediated phosphorylation of PP2Ac at Y284 promotes dissociation of the regulatory Bα subunit, altering PP2A substrate specificity; the phosphodeficient Y127/284F and Y284F PP2Ac mutants prevented SFK-mediated phosphorylation of Tau at the CP13 (pSer202) epitope, a pathological hallmark of AD, and SFK-dependent activation of ERK, a major growth regulatory kinase upregulated in many cancers. Our findings demonstrate a novel PP2A regulatory mechanism that challenges the existing dogma on the inhibition of PP2A catalytic activity by Tyr307 phosphorylation. We propose dysregulation of SFK signaling in cancer and AD can lead to alterations in PP2A phosphorylation and subsequent deregulation of key PP2A substrates, including ERK and Tau.
Collapse
Affiliation(s)
- Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Diana Schuhmacher
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Goce Taleski
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Anthony Jordan
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sarah Khan
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander Hoffman
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Rey J Gomez
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew D Mazalouskas
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Steven K Hanks
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Benjamin W Spiller
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.
| | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
12
|
Guégan JP, Lapouge M, Voisin L, Saba-El-Leil MK, Tanguay PL, Lévesque K, Brégeon J, Mes-Masson AM, Lamarre D, Haibe-Kains B, Trinh VQ, Soucy G, Bilodeau M, Meloche S. Signaling by the tyrosine kinase Yes promotes liver cancer development. Sci Signal 2022; 15:eabj4743. [PMID: 35041461 DOI: 10.1126/scisignal.abj4743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most patients with hepatocellular carcinoma (HCC) are diagnosed at a late stage and have few therapeutic options and a poor prognosis. This is due to the lack of clearly defined underlying mechanisms or a dominant oncogene that can be targeted pharmacologically, unlike in other cancer types. Here, we report the identification of a previously uncharacterized oncogenic signaling pathway in HCC that is mediated by the tyrosine kinase Yes. Using genetic and pharmacological interventions in cellular and mouse models of HCC, we showed that Yes activity was necessary for HCC cell proliferation. Transgenic expression of activated Yes in mouse hepatocytes was sufficient to induce liver tumorigenesis. Yes phosphorylated the transcriptional coactivators YAP and TAZ (YAP/TAZ), promoting their nuclear accumulation and transcriptional activity in HCC cells and liver tumors. We also showed that YAP/TAZ were effectors of the Yes-dependent oncogenic transformation of hepatocytes. Src family kinase activation correlated with the tyrosine phosphorylation and nuclear localization of YAP in human HCC and was associated with increased tumor burden in mice. Specifically, high Yes activity predicted shorter overall survival in patients with HCC. Thus, our findings identify Yes as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
| | - Marjorie Lapouge
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Laure Voisin
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | | | - Pierre-Luc Tanguay
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Kim Lévesque
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Jérémy Brégeon
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Anne-Marie Mes-Masson
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, Quebec, Canada
| | - Daniel Lamarre
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, Quebec, Canada
| | - Benjamin Haibe-Kains
- Departments of Medical Biophysiscs and Computer Science, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Vincent Q Trinh
- Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, Quebec, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Geneviève Soucy
- Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, Quebec, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Marc Bilodeau
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Zhao M, Finlay D, Kwong E, Liddington R, Viollet B, Sasaoka N, Vuori K. Cell adhesion suppresses autophagy via Src/FAK-mediated phosphorylation and inhibition of AMPK. Cell Signal 2022; 89:110170. [PMID: 34673141 PMCID: PMC8602780 DOI: 10.1016/j.cellsig.2021.110170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023]
Abstract
Autophagy is a multi-step process regulated in part by AMP-activated protein kinase (AMPK). Phosphorylation of threonine 172 on the AMPK α-subunit enhances AMPK kinase activity, resulting in activation of downstream signaling. Integrin-mediated cell adhesion activates Src/ Focal Adhesion Kinase (FAK) signaling complex, which regulates multiple cellular processes including cell survival. We show here that Src signaling leads to direct phosphorylation of the AMPK-α subunit on a novel site, tyrosine 179, resulting in suppression of AMPK-T172 phosphorylation and autophagy upon integrin-mediated cell adhesion. By using chemical inhibitors, genetic cell models and targeted mutagenesis, we confirm an important role for Src and FAK in suppressing AMPK signaling and autophagy induced by various additional stimuli, including glucose starvation. Furthermore, we found that autophagy suppression by hydroxychloroquine promotes apoptosis in a cancer cell model that had been treated with Src inhibitors. Our findings reveal a link between the Src/ FAK complex and AMPK/ autophagy regulation, which may play an important role in the maintenance of normal cellular homeostasis and tumor progression.
Collapse
Affiliation(s)
- Ming Zhao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Darren Finlay
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elizabeth Kwong
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert Liddington
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, 75014, France
| | - Norio Sasaoka
- Sumitomo Chemical Co., Ltd., 1-98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Kristiina Vuori
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA,Correpsonding author.
| |
Collapse
|
14
|
Lurette O, Guedouari H, Morris JL, Martín-Jiménez R, Robichaud JP, Hamel-Côté G, Khan M, Dauphinee N, Pichaud N, Prudent J, Hebert-Chatelain E. Mitochondrial matrix-localized Src kinase regulates mitochondrial morphology. Cell Mol Life Sci 2022; 79:327. [PMID: 35637383 PMCID: PMC9151517 DOI: 10.1007/s00018-022-04325-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/02/2023]
Abstract
The architecture of mitochondria adapts to physiological contexts: while mitochondrial fragmentation is usually associated to quality control and cell death, mitochondrial elongation often enhances cell survival during stress. Understanding how these events are regulated is important to elucidate how mitochondrial dynamics control cell fate. Here, we show that the tyrosine kinase Src regulates mitochondrial morphology. Deletion of Src increased mitochondrial size and reduced cellular respiration independently of mitochondrial mass, mitochondrial membrane potential or ATP levels. Re-expression of Src targeted to the mitochondrial matrix, but not of Src targeted to the plasma membrane, rescued mitochondrial morphology in a kinase activity-dependent manner. These findings highlight a novel function for Src in the control of mitochondrial dynamics.
Collapse
Affiliation(s)
- Olivier Lurette
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Hala Guedouari
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Jordan L. Morris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY UK
| | - Rebeca Martín-Jiménez
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Julie-Pier Robichaud
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Geneviève Hamel-Côté
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Mehtab Khan
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Nicholas Dauphinee
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, University of Moncton, Moncton, NB Canada
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY UK
| | - Etienne Hebert-Chatelain
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| |
Collapse
|
15
|
Iliev DB, Strandskog G, Sobhkhez M, Bruun JA, Jørgensen JB. Secretome Profiling of Atlantic Salmon Head Kidney Leukocytes Highlights the Role of Phagocytes in the Immune Response to Soluble β-Glucan. Front Immunol 2021; 12:736964. [PMID: 34917074 PMCID: PMC8671040 DOI: 10.3389/fimmu.2021.736964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/12/2021] [Indexed: 12/01/2022] Open
Abstract
β‐Glucans (BG) are glucose polymers which are produced in bacteria and fungi but not in vertebrate organisms. Being recognized by phagocytic leukocytes including macrophages and neutrophils through receptors such as dectin-1 and Complement receptor 3 (CR3), the BG are perceived by the innate immune system of vertebrates as foreign substances known as Pathogen Associated Molecular Patterns (PAMPs). The yeast-derived BG has been recognized for its potent biological activity and it is used as an immunomodulator in human and veterinary medicine. The goal of the current study was to characterize the immunostimulatory activity of soluble yeast BG in primary cultures of Atlantic salmon (Salmo salar) head kidney leukocytes (HKLs) in which phagocytic cell types including neutrophils and mononuclear phagocytes predominate. The effect of BG on the secretome of HKL cultures, including secretion of extracellular vesicles (EVs) and soluble protein55s was characterized through western blotting and mass spectrometry. The results demonstrate that, along with upregulation of proinflammatory genes, BG induces secretion of ubiquitinated proteins (UbP), MHCII-containing EVs from professional antigen presenting cells as well as proteins derived from granules of polymorphonuclear granulocytes (PMN). Among the most abundant proteins identified in BG-induced EVs were beta-2 integrin subunits, including CD18 and CD11 homologs, which highlights the role of salmon granulocytes and mononuclear phagocytes in the response to soluble BG. Overall, the current work advances the knowledge about the immunostimulatory activity of yeast BG on the salmon immune system by shedding light on the effect of this PAMP on the secretome of salmon leukocytes.
Collapse
Affiliation(s)
- Dimitar B Iliev
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Gene Regulation, Institute of Molecular Biology 'Roumen Tsanev', Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Guro Strandskog
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mehrdad Sobhkhez
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jack A Bruun
- Department of Medical Biology, Proteomics Platform, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
16
|
González Wusener AE, González Á, Perez Collado ME, Maza MR, General IJ, Arregui CO. Protein tyrosine phosphatase 1B targets focal adhesion kinase and paxillin in cell-matrix adhesions. J Cell Sci 2021; 134:272564. [PMID: 34553765 DOI: 10.1242/jcs.258769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B, also known as PTPN1) is an established regulator of cell-matrix adhesion and motility. However, the nature of substrate targets at adhesion sites remains to be validated. Here, we used bimolecular fluorescence complementation assays, in combination with a substrate trapping mutant of PTP1B, to directly examine whether relevant phosphotyrosines on paxillin and focal adhesion kinase (FAK, also known as PTK2) are substrates of the phosphatase in the context of cell-matrix adhesion sites. We found that the formation of catalytic complexes at cell-matrix adhesions requires intact tyrosine residues Y31 and Y118 on paxillin, and the localization of FAK at adhesion sites. Additionally, we found that PTP1B specifically targets Y925 on the focal adhesion targeting (FAT) domain of FAK at adhesion sites. Electrostatic analysis indicated that dephosphorylation of this residue promotes the closed conformation of the FAT 4-helix bundle and its interaction with paxillin at adhesion sites.
Collapse
Affiliation(s)
- Ana E González Wusener
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Ángela González
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - María E Perez Collado
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Melina R Maza
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martin, Instituto de Ciencias Físicas and CONICET, San Martin, Buenos Aires 1650, Argentina
| | - Ignacio J General
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martin, Instituto de Ciencias Físicas and CONICET, San Martin, Buenos Aires 1650, Argentina
| | - Carlos O Arregui
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| |
Collapse
|
17
|
Herold R, Sünwoldt G, Stump-Guthier C, Weiss C, Ishikawa H, Schroten H, Adam R, Schwerk C. Invasion of the choroid plexus epithelium by Neisseria meningitidis is differently mediated by Arp2/3 signaling and possibly by dynamin dependent on the presence of the capsule. Pathog Dis 2021; 79:6354783. [PMID: 34410374 DOI: 10.1093/femspd/ftab042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Neisseria meningitis (Nm) is a human-specific bacterial pathogen that can cause sepsis and meningitis. To cause meningitis Nm must enter the central nervous system (CNS) across one of the barriers between the blood and the brain. We have previously shown that a capsule-depleted Serogroup B strain of Nm displays enhanced invasion into human choroid plexus (CP) epithelial papilloma (HIBCPP) cells, which represent an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB). Still, the processes involved during CNS invasion by Nm, especially the role of host cell actin cytoskeleton remodeling, are not investigated in detail. Here, we demonstrate that invasion into CP epithelial cells by encapsulated and capsule-depleted Nm is mediated by distinct host cell pathways. Whereas a Serogroup B wild-type strain enters HIBCPP cells by a possibly dynamin-independent, but actin related protein 2/3 (Arp2/3)-dependent mechanism, invasion by a capsule-depleted mutant is reduced by the dynamin inhibitor dynasore and Arp2/3-independent. Both wild-type and mutant bacteria require Src kinase activity for entry into HIBCPP cells. Our data show that Nm can employ different mechanisms for invasion into the CP epithelium dependent on the presence of a capsule.
Collapse
Affiliation(s)
- Rosanna Herold
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Gina Sünwoldt
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Carolin Stump-Guthier
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christel Weiss
- Medical Faculty Mannheim, Department of Medical Statistics and Biomathematics, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Hiroshi Ishikawa
- Faculty of Medicine, Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Horst Schroten
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Rüdiger Adam
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christian Schwerk
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
18
|
Dine E, Reed EH, Toettcher JE. Positive feedback between the T cell kinase Zap70 and its substrate LAT acts as a clustering-dependent signaling switch. Cell Rep 2021; 35:109280. [PMID: 34161759 PMCID: PMC8292983 DOI: 10.1016/j.celrep.2021.109280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Protein clustering is pervasive in cell signaling, yet how signaling from higher-order assemblies differs from simpler forms of molecular organization is still poorly understood. We present an optogenetic approach to switch between oligomers and heterodimers with a single point mutation. We apply this system to study signaling from the kinase Zap70 and its substrate linker for activation of T cells (LAT), proteins that normally form membrane-localized condensates during T cell activation. We find that fibroblasts expressing synthetic Zap70:LAT clusters activate downstream signaling, whereas one-to-one heterodimers do not. We provide evidence that clusters harbor a positive feedback loop among Zap70, LAT, and Src-family kinases that binds phosphorylated LAT and further activates Zap70. Finally, we extend our optogenetic approach to the native T cell signaling context, where light-induced LAT clustering is sufficient to drive a calcium response. Our study reveals a specific signaling function for protein clusters and identifies a biochemical circuit that robustly senses protein oligomerization state. Dine et al. study how different modes of molecular organization contribute to cell signaling using the kinase Zap70 and its substrate LAT as a model system. Optogenetic manipulation reveals that LAT:Zap70 clusters—but not dimers—trigger potent signaling via localized positive feedback among LAT, Zap70, and Src-family kinases.
Collapse
Affiliation(s)
- Elliot Dine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ellen H Reed
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan.
| |
Collapse
|
19
|
Katoh K. Regulation of Fibroblast Cell Polarity by Src Tyrosine Kinase. Biomedicines 2021; 9:biomedicines9020135. [PMID: 33535441 PMCID: PMC7912711 DOI: 10.3390/biomedicines9020135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/20/2022] Open
Abstract
Src protein tyrosine kinases (SFKs) are a family of nonreceptor tyrosine kinases that are localized beneath the plasma membrane and are activated during cell adhesion, migration, and elongation. Due to their involvement in the activation of signal transduction cascades, SFKs have been suggested to play important roles in the determination of cell polarity during cell extension and elongation. However, the mechanism underlying Src-mediated polarity formation remains unclear. The present study was performed to investigate the mechanisms underlying Src-induced cell polarity formation and cell elongation using Src knockout fibroblasts (SYFs) together with an inhibitor of Src. Normal and Src knockout fibroblasts were also transfected with a wild-type c-Src, dominant negative c-Src, or constitutively active c-Src gene to analyze the changes in cell morphology. SYF cells cultured on a glass substrate elongated symmetrically into spindle-shaped cells, with the formation of focal adhesions at both ends of the cells. When normal fibroblasts were treated with Src Inhibitor No. 5, a selective inhibitor of Src tyrosine kinases, they elongated into symmetrical spindle-shaped cells, similar to SYF cells. These results suggest that cell polarity during extension and elongation may be regulated by SFKs and that the expression and regulation of Src are important for the formation of polarity during cell elongation.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba-city, Ibaraki 305-8521, Japan
| |
Collapse
|
20
|
Oh YS, Chae SC, Kim H, Yang HJ, Lee KJ, Yeo MG. Homeopathic Rhus toxicodendron Induces Cell Adhesions in the Mouse Pre-osteoblast Cell Line MC3T3-e1. HOMEOPATHY 2021; 110:108-114. [PMID: 33472246 DOI: 10.1055/s-0040-1718744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Rhus toxicodendron (R. tox) has been used as a homeopathic remedy for the treatment of inflammatory conditions. Previously, we reported that R. tox modulated inflammation in the mouse chondrocyte and pre-osteoblastic MC3T3-e1 cell line. During the inflammatory process, cells adhere to the extracellular matrix (ECM) and then migrate to the inflammation site. We examine here the process of cell adhesion in MC3T3-e1 cells after their stimulation with homeopathic R. tox. METHODS For the cell-substrate adhesion assay, the cultured MC3T3-e1 cells were trypsinized, starved for 1 h in serum-free media, and plated onto culture plates coated with fibronectin (FN), 30c R. tox or gelatin, respectively. The cells were allowed to adhere for 20 min incubation and unattached cells were washed out. Adherent cells were measured using the water-soluble tetrazolium salt-8 assay. The intracellular signals after stimulation of R. tox were examined by analyzing the tyrosine phosphorylation of focal adhesion kinase (FAK), Src kinase, and Paxillin using immunoblot assay. Formation of focal adhesion (FA, an integrin-containing multi-protein structure that forms between intracellular actin bundles and the ECM) was analyzed by immunocytochemistry using NIH ImageJ software. RESULTS Cell adhesion increased after stimulation with R. tox (FN, 20.50%; R. tox, 44.80%; and gelatin, 17.11% vs. uncoated cells [control]). Tyrosine phosphorylation of FAK, Paxillin, and Src increased compared with that of gelatin when stimulated with R. tox. Additionally, R. tox-stimulated cells formed many FAs (number of FAs per cell, 35.82 ± 7.68) compared with gelatin-stimulated cells (number of FAs per cell, 19.80 ± 7.18) and exhibited extensive formation of actin stress fibers anchored by FAs formed at the cell periphery. CONCLUSION Homeopathic R. tox promotes the formation of cell adhesions in vitro.
Collapse
Affiliation(s)
- Young Soo Oh
- Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Soo Chul Chae
- Department Integrative Medical Sciences, Nambu University, Gwangju, Republic of Korea
| | - Hwan Kim
- GIST Central Research Facilities, Bio Imaging Laboratory, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hun Ji Yang
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Myeong Gu Yeo
- Department Integrative Medical Sciences, Nambu University, Gwangju, Republic of Korea
| |
Collapse
|
21
|
Suzuki K, Honda T, Akatsu A, Yamaguchi N, Yamaguchi N. The promoting role of lysosome-localized c-Src in autophagosome-lysosome fusion. Cell Signal 2020; 75:109774. [PMID: 32916275 DOI: 10.1016/j.cellsig.2020.109774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Src-family kinases (SFKs), such as c-Src, Lyn and Fyn, belong to non-receptor-type tyrosine kinases and play key roles in cell proliferation, adhesion, and migration. SFKs are anchored to the plasma membrane, Golgi membranes and lysosomal membranes through lipid modifications. Although the functions of SFKs being localized to the plasma membrane are intensively studied, those of SFKs being localized to organelle membranes are poorly understood. Here, we show that, among SFKs, c-Src in particular is involved in a decrease in the amount of LC3-II. c-Src and non-palmitoylated Lyn [Lyn(C3S) (cysteine-3 → serine-3)], which are localized onto lysosomes, decrease the amount of LC3-II and treatment with SFK inhibitors increases the amount of LC3-II, suggesting the importance of SFKs' lysosomal localization for a change of autophagic flux in a kinase activity-dependent manner. Colocalization of LC3-II with the lysosome-associated membrane protein LAMP1 shows that lysosome-localized SFKs promote the fusion of autophagosomes with lysosomes. Lysosome-localized SFKs play a positive role in the maintenance of cell viability under starvation conditions, which is further supported by knockdown of c-Src. Therefore, our results suggest that autophagosome-lysosome fusion is promoted by lysosome-localized c-Src, leading to cell survival under starvation conditions.
Collapse
Affiliation(s)
- Ko Suzuki
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takuya Honda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Aki Akatsu
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Noritaka Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| |
Collapse
|
22
|
Epidermal Growth Factor Receptor and Abl2 Kinase Regulate Distinct Steps of Human Papillomavirus 16 Endocytosis. J Virol 2020; 94:JVI.02143-19. [PMID: 32188731 DOI: 10.1128/jvi.02143-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus 16 (HPV16), the leading cause of cervical cancer, exploits a novel endocytic pathway during host cell entry. This mechanism shares many requirements with macropinocytosis but differs in the mode of vesicle formation. Previous work indicated a role of the epidermal growth factor receptor (EGFR) in HPV16 endocytosis. However, the functional outcome of EGFR signaling and its downstream targets during HPV16 uptake are not well characterized. Here, we analyzed the functional importance of signal transduction via EGFR and its downstream effectors for endocytosis of HPV16. Our findings indicate two phases of EGFR signaling as follows: a-likely dispensable-transient activation with or shortly after cell binding and signaling required throughout the process of asynchronous internalization of HPV16. Interestingly, EGFR inhibition interfered with virus internalization and strongly reduced the number of endocytic pits, suggesting a role for EGFR signaling in the induction of HPV16 endocytosis. Moreover, we identified the Src-related kinase Abl2 as a novel regulator of virus uptake. Inhibition of Abl2 resulted in an accumulation of misshaped endocytic pits, indicating Abl2's importance for endocytic vesicle maturation. Since Abl2 rather than Src, a regulator of membrane ruffling during macropinocytosis, mediated downstream signaling of EGFR, we propose that the selective effector targeting downstream of EGFR determines whether HPV16 endocytosis or macropinocytosis is induced.IMPORTANCE Human papillomaviruses are small, nonenveloped DNA viruses that infect skin and mucosa. The so-called high-risk HPVs (e.g., HPV16, HPV18, HPV31) have transforming potential and are associated with various anogenital and oropharyngeal tumors. These viruses enter host cells by a novel endocytic pathway with unknown cellular function. To date, it is unclear how endocytic vesicle formation occurs mechanistically. Here, we addressed the role of epidermal growth factor receptor signaling, which has previously been implicated in HPV16 endocytosis and identified the kinase Abl2 as a novel regulator of virus uptake. Since other viruses, such as influenza A virus and lymphocytic choriomeningitis virus, possibly make use of related mechanisms, our findings shed light on fundamental strategies of virus entry and may in turn help to develop new host cell-targeted antiviral strategies.
Collapse
|
23
|
The Na/K-ATPase α1 and c-Src form signaling complex under native condition: A crosslinking approach. Sci Rep 2020; 10:6006. [PMID: 32265464 PMCID: PMC7138855 DOI: 10.1038/s41598-020-61920-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/04/2020] [Indexed: 11/09/2022] Open
Abstract
The protein-protein interactions amongst the Na/K-ATPase α1 subunit, c-Src, and caveolin-1 (cav-1) are essential for the Na/K-ATPase signaling functions. However, there are arguments concerning the interaction model. The present study aims to clarify the interactions amongst the endogenous native proteins in live cells under native resting condition. Under native condition, Blue Native-PAGE and Blue Native-PAGE/SDS-PAGE 2D analyses demonstrated co-existence of the α1 subunit and c-Src in same protein complex, as well as a direct interaction between the α1 subunit and c-Src. By comparison of cleavable and non-cleavable cysteine-cysteine crosslinked samples, capillary immunoblotting analysis demonstrated that depletion of Src kinase family members (c-Src, Yes, and Fyn) or cav-1 clearly reduced the interactions of the α1 subunit with proteins, but depletion of cav-1 did not affect the interaction of c-Src with the α1 subunit. The data indicated that there are direct interactions between the α1 subunit and c-Src as well as between the α1 subunit and cav-1, but argued about the interaction between c-Src and cav-1 under the condition. Furthermore, the data also indicated the existence of different protein complexes containing the α1 subunit and c-Src, which might have different signaling functions.
Collapse
|
24
|
Miller AE, Hu P, Barker TH. Feeling Things Out: Bidirectional Signaling of the Cell-ECM Interface, Implications in the Mechanobiology of Cell Spreading, Migration, Proliferation, and Differentiation. Adv Healthc Mater 2020; 9:e1901445. [PMID: 32037719 PMCID: PMC7274903 DOI: 10.1002/adhm.201901445] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Biophysical cues stemming from the extracellular environment are rapidly transduced into discernible chemical messages (mechanotransduction) that direct cellular activities-placing the extracellular matrix (ECM) as a potent regulator of cell behavior. Dynamic reciprocity between the cell and its associated matrix is essential to the maintenance of tissue homeostasis and dysregulation of both ECM mechanical signaling, via pathological ECM turnover, and internal mechanotransduction pathways contribute to disease progression. This review covers the current understandings of the key modes of signaling used by both the cell and ECM to coregulate one another. By taking an outside-in approach, the inherent complexities and regulatory processes at each level of signaling (ECM, plasma membrane, focal adhesion, and cytoplasm) are captured to give a comprehensive picture of the internal and external mechanoregulatory environment. Specific emphasis is placed on the focal adhesion complex which acts as a central hub of mechanical signaling, regulating cell spreading, migration, proliferation, and differentiation. In addition, a wealth of available knowledge on mechanotransduction is curated to generate an integrated signaling network encompassing the central components of the focal adhesion, cytoplasm and nucleus that act in concert to promote durotaxis, proliferation, and differentiation in a stiffness-dependent manner.
Collapse
Affiliation(s)
- Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Ping Hu
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| |
Collapse
|
25
|
Choi PW, So WW, Yang J, Liu S, Tong KK, Kwan KM, Kwok JSL, Tsui SKW, Ng SK, Hales KH, Hales DB, Welch WR, Crum CP, Fong WP, Berkowitz RS, Ng SW. MicroRNA-200 family governs ovarian inclusion cyst formation and mode of ovarian cancer spread. Oncogene 2020; 39:4045-4060. [PMID: 32214198 DOI: 10.1038/s41388-020-1264-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Epidemiologic and histopathologic findings and the laying hen model support the long-standing incessant ovulation hypothesis and cortical inclusion cyst involvement in sporadic ovarian cancer development. MicroRNA-200 (miR-200) family is highly expressed in ovarian cancer. Herewith, we show that ovarian surface epithelial (OSE) cells with ectopic miR-200 expression formed stabilized cysts in three-dimensional (3D) organotypic culture with E-cadherin fragment expression and steroid hormone pathway activation, whereas ovarian cancer 3D cultures with miR-200 knockdown showed elevated TGF-β expression, mitotic spindle disorientation, increased lumenization, disruption of ROCK-mediated myosin II phosphorylation, and SRC signaling, which led to histotype-dependent loss of collective movement in tumor spread. Gene expression profiling revealed that epithelial-mesenchymal transition and hypoxia were the top enriched gene sets regulated by miR-200 in both OSE and ovarian cancer cells. The molecular changes uncovered by the in vitro studies were verified in both human and laying hen ovarian cysts and tumor specimens. As miR-200 is also essential for ovulation, our results of estrogen pathway activation in miR-200-expressing OSE cells add another intriguing link between incessant ovulation and ovarian carcinogenesis.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Wing So
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Junzheng Yang
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shubai Liu
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ka Kui Tong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Center for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jamie S-L Kwok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen K W Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shu-Kay Ng
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Nathan, QLD, 4111, Australia
| | - Karen H Hales
- Department of Obstetrics/Gynecology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA
| | - Dale B Hales
- Department of Obstetrics/Gynecology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA.,Department of Physiology, Biochemistry & Molecular Biology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA
| | - William R Welch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher P Crum
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ross S Berkowitz
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shu-Wing Ng
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Obstetrics and Gynecology, Mother Infant Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| |
Collapse
|
26
|
Engleitner S, Milovanovic D, Kirisits K, Brenner S, Hong J, Ropek N, Huttary N, Rehak J, Nguyen CH, Bago-Horvath Z, Knasmüller S, De Martin R, Jäger W, Krupitza G. Feed‑back loops integrating RELA, SOX18 and FAK mediate the break‑down of the lymph‑endothelial barrier that is triggered by 12(S)‑HETE. Int J Oncol 2020; 56:1034-1044. [PMID: 32319559 DOI: 10.3892/ijo.2020.4985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/24/2020] [Indexed: 11/06/2022] Open
Abstract
Metastatic cancer cells cross endothelial barriers and travel through the blood or lymphatic fluid to pre‑metastatic niches, leading to their colonisation. 'S' stereoisomer 12S‑hydroxy‑5Z,8Z,10E,14Z‑eicosatetraenoic acid [12(S)‑HETE] is secreted by a variety of cancer cell types and has been indicated to open up these barriers. In the present study, another aspect of the endothelial unlocking mechanism was elucidated. This was achieved by investigating 12(S)‑HETE‑treated lymph endothelial cells (LECs) with regard to their expression and mutual interaction with v‑rel avian reticuloendotheliosis viral oncogene homolog A (RELA), intercellular adhesion molecule 1, SRY‑box transcription factor 18 (SOX18), prospero homeobox 1 (PROX1) and focal adhesion kinase (FAK). These key players of LEC retraction, which is a prerequisite for cancer cell transit into vasculature, were analysed using western blot analysis, reverse transcription‑quantitative PCR and transfection with small interfering (si)RNA. The silencing of a combination of these signalling and executing molecules using siRNA, or pharmacological inhibition with defactinib and Bay11‑7082, extended the mono‑culture experiments to co‑culture settings using HCT116 colon cancer cell spheroids that were placed on top of LEC monolayers to measure their retraction using the validated 'circular chemorepellent‑induced defect' assay. 12(S)‑HETE was indicated to induce the upregulation of the RELA/SOX18 feedback loop causing the subsequent phosphorylation of FAK, which fed back to RELA/SOX18. Therefore, 12(S)‑HETE was demonstrated to be associated with circuits involving RELA, SOX18 and FAK, which transduced signals causing the retraction of LECs. The FAK‑inhibitor defactinib and the NF‑κB inhibitor Bay11‑7082 attenuated LEC retraction additively, which was similar to the suppression of FAK and PROX1 (the target of SOX18) by the transfection of respective siRNAs. FAK is an effector molecule at the distal end of a pro‑metastatic signalling cascade. Therefore, targeting the endothelial‑specific activity of FAK through the pathway demonstrated herein may provide a potential therapeutic method to combat cancer dissemination via vascular routes.
Collapse
Affiliation(s)
- Stefanie Engleitner
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Daniela Milovanovic
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Kerstin Kirisits
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Stefan Brenner
- Department of Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, A‑1090 Vienna, Austria
| | - Junli Hong
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Nathalie Ropek
- Institute of Cancer Research, Department of Internal Medicine 1, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Nicole Huttary
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Judith Rehak
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Chi Huu Nguyen
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | | | - Siegfried Knasmüller
- Institute of Cancer Research, Department of Internal Medicine 1, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Rainer De Martin
- Department of Vascular Biology and Thrombosis Research, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, A‑1090 Vienna, Austria
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| |
Collapse
|
27
|
Katoh K. FAK-Dependent Cell Motility and Cell Elongation. Cells 2020; 9:cells9010192. [PMID: 31940873 PMCID: PMC7017285 DOI: 10.3390/cells9010192] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Fibroblastic cells show specific substrate selectivity for typical cell–substrate adhesion. However, focal adhesion kinase (FAK) contributes to controlling the regulation of orientation and polarity. When fibroblasts attach to micropatterns, tyrosine-phosphorylated proteins and FAK are both detected along the inner border between the adhesive micropatterns and the nonadhesive glass surface. FAK likely plays important roles in regulation of cell adhesion to the substrate, as FAK is a tyrosine-phosphorylated protein that acts as a signal transduction molecule at sites of cell–substrate attachment, called focal adhesions. FAK has been suggested to play a role in the attachment of cells at adhesive micropatterns by affecting cell polarity. Therefore, the localization of FAK might play a key role in recognition of the border of the cell with the adhesive micropattern, thus regulating cell polarity and the cell axis. This review discusses the regulation and molecular mechanism of cell proliferation and cell elongation by FAK and its associated signal transduction proteins.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology Tsukuba-city, Ibaraki, Japan
| |
Collapse
|
28
|
Hu J, Wang W, Liu C, Li M, Nice E, Xu H. Receptor tyrosine kinase inhibitor Sunitinib and integrin antagonist peptide HM-3 show similar lipid raft dependent biphasic regulation of tumor angiogenesis and metastasis. J Exp Clin Cancer Res 2019; 38:381. [PMID: 31462260 PMCID: PMC6714448 DOI: 10.1186/s13046-019-1324-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/14/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Anti-angiogenesis remains an attractive strategy for cancer therapy. Some anti-angiogenic reagents have bell-shape dose-response curves with higher than the effective doses yielding lower anti-angiogenic effects. In this study, two different types of anti-angiogenic reagents, a receptor tyrosine kinase inhibitor Sunitinib and an integrin antagonist peptide HM-3, were selected and their effects on tumor angiogenesis and metastasis were compared. The involved molecular mechanisms were investigated. METHODS The effect of high dose Sunitinib and HM-3 on tumor angiogenesis and metastasis was investigated with two animal models: metastasis of B16F10 cells in syngeneic mice and metastasis of human MDA-MB-231 cells in nude mice. Furthermore, mechanistic studies were performed with cell migration and invasion assays and with biochemical pull-down assays of intracellular RhoGTPases. Distribution of integrin αvβ3, α5β1, VEGFR2 and the complex of integrin αvβ3 and VEGFR2 inside or outside of lipid rafts was detected with lipid raft isolation and Western-blot analysis. RESULTS Both Sunitinib and HM-3 showed a bell-shape dose-response curve on tumor angiogenesis and metastasis in both animal models. The effects of Sunitinib and HM-3 on endothelial cell and tumor cell proliferation and migration were characterized. Activation of intracellular RhoGTPases and actin stress fiber formation in endothelial and cancer cells following Sunitinib and HM-3 treatment correlated with cell migration analysis. Mechanistic studies confirmed that HM-3 and Sunitinib regulated distribution of integrin αvβ3, α5β1, VEGFR2 and αvβ3-VEGFR2 complexes, both inside and outside of the lipid raft regions to regulate endothelial cell migration and intracellular RhoGTPase activities. CONCLUSIONS These data confirmed that a general non-linear dose-effect relationship for these anti-angiogenic drugs exists and their mechanisms are correlative. It also suggests that the effective dose of an anti-angiogenic drug may have to be strictly defined to achieve its optimal clinical effects.
Collapse
Affiliation(s)
- Jialiang Hu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Nanjing, 211198 People’s Republic of China
| | - Wenjing Wang
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
| | - Chen Liu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Nanjing, 211198 People’s Republic of China
| | - Mengwei Li
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Nanjing, 211198 People’s Republic of China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Hanmei Xu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Nanjing, 211198 People’s Republic of China
| |
Collapse
|
29
|
Tripathi BK, Anderman MF, Qian X, Zhou M, Wang D, Papageorge AG, Lowy DR. SRC and ERK cooperatively phosphorylate DLC1 and attenuate its Rho-GAP and tumor suppressor functions. J Cell Biol 2019; 218:3060-3076. [PMID: 31308216 PMCID: PMC6719442 DOI: 10.1083/jcb.201810098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/24/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
DLC1 controls focal adhesion dynamics and other processes that suppress tumorigenesis; therefore, it is unclear why some cancers maintain high levels of DLC1. Tripathi et al. show that phosphorylation of DLC1 by SRC and ERK mitigates DLC1’s tumor suppressor activities but these can be reactivated by kinase inhibition as a potential cancer treatment. SRC and ERK kinases control many cell biological processes that promote tumorigenesis by altering the activity of oncogenic and tumor suppressor proteins. We identify here a physiological interaction between DLC1, a focal adhesion protein and tumor suppressor, with SRC and ERK. The tumor suppressor function of DLC1 is attenuated by phosphorylation of tyrosines Y451 and Y701 by SRC, which down-regulates DLC1’s tensin-binding and Rho-GAP activities. ERK1/2 phosphorylate DLC1 on serine S129, which increases both the binding of SRC to DLC1 and SRC-dependent phosphorylation of DLC1. SRC inhibitors exhibit potent antitumor activity in a DLC1-positive transgenic cancer model and a DLC1-positive tumor xenograft model, due to reactivation of the tumor suppressor activities of DLC1. Combined treatment of DLC1-positive tumors with SRC plus AKT inhibitors has even greater antitumor activity. Together, these findings indicate cooperation between the SRC, ERK1/2, and AKT kinases to reduce DLC1 Rho-GAP and tumor suppressor activities in cancer cells, which can be reactivated by the kinase inhibitors.
Collapse
Affiliation(s)
- Brajendra K Tripathi
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Meghan F Anderman
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Xiaolan Qian
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Dunrui Wang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alex G Papageorge
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
30
|
Singh BN, Gong W, Das S, Theisen JWM, Sierra-Pagan JE, Yannopoulos D, Skie E, Shah P, Garry MG, Garry DJ. Etv2 transcriptionally regulates Yes1 and promotes cell proliferation during embryogenesis. Sci Rep 2019; 9:9736. [PMID: 31278282 PMCID: PMC6611806 DOI: 10.1038/s41598-019-45841-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Etv2, an Ets-transcription factor, governs the specification of the earliest hemato-endothelial progenitors during embryogenesis. While the transcriptional networks during hemato-endothelial development have been well described, the mechanistic details are incompletely defined. In the present study, we described a new role for Etv2 as a regulator of cellular proliferation via Yes1 in mesodermal lineages. Analysis of an Etv2-ChIPseq dataset revealed significant enrichment of Etv2 peaks in the upstream regions of cell cycle regulatory genes relative to non-cell cycle genes. Our bulk-RNAseq analysis using the doxycycline-inducible Etv2 ES/EB system showed increased levels of cell cycle genes including E2f4 and Ccne1 as early as 6 h following Etv2 induction. Further, EdU-incorporation studies demonstrated that the induction of Etv2 resulted in a ~2.5-fold increase in cellular proliferation, supporting a proliferative role for Etv2 during differentiation. Next, we identified Yes1 as the top-ranked candidate that was expressed in Etv2-EYFP+ cells at E7.75 and E8.25 using single cell RNA-seq analysis. Doxycycline-mediated induction of Etv2 led to an increase in Yes1 transcripts in a dose-dependent fashion. In contrast, the level of Yes1 was reduced in Etv2 null embryoid bodies. Using bioinformatics algorithms, biochemical, and molecular biology techniques, we show that Etv2 binds to the promoter region of Yes1 and functions as a direct upstream transcriptional regulator of Yes1 during embryogenesis. These studies enhance our understanding of the mechanisms whereby Etv2 governs mesodermal fate decisions early during embryogenesis.
Collapse
Affiliation(s)
- Bhairab N Singh
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wuming Gong
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Satyabrata Das
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua W M Theisen
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Javier E Sierra-Pagan
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Demetris Yannopoulos
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Erik Skie
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Pruthvi Shah
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary G Garry
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel J Garry
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA. .,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, 55455, USA. .,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
31
|
A Combined Approach Reveals a Regulatory Mechanism Coupling Src's Kinase Activity, Localization, and Phosphotransferase-Independent Functions. Mol Cell 2019; 74:393-408.e20. [PMID: 30956043 DOI: 10.1016/j.molcel.2019.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/20/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Multiple layers of regulation modulate the activity and localization of protein kinases. However, many details of kinase regulation remain incompletely understood. Here, we apply saturation mutagenesis and a chemical genetic method for allosterically modulating kinase global conformation to Src kinase, providing insight into known regulatory mechanisms and revealing a previously undiscovered interaction between Src's SH4 and catalytic domains. Abrogation of this interaction increased phosphotransferase activity, promoted membrane association, and provoked phosphotransferase-independent alterations in cell morphology. Thus, Src's SH4 domain serves as an intramolecular regulator coupling catalytic activity, global conformation, and localization, as well as mediating a phosphotransferase-independent function. Sequence conservation suggests that the SH4 domain regulatory interaction exists in other Src-family kinases. Our combined approach's ability to reveal a regulatory mechanism in one of the best-studied kinases suggests that it could be applied broadly to provide insight into kinase structure, regulation, and function.
Collapse
|
32
|
Src Family Kinase Inhibitors Block Translation of Alphavirus Subgenomic mRNAs. Antimicrob Agents Chemother 2019; 63:AAC.02325-18. [PMID: 30917980 PMCID: PMC6496153 DOI: 10.1128/aac.02325-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Alphaviruses are arthropod-transmitted RNA viruses that can cause arthralgia, myalgia, and encephalitis in humans. Since the role of cellular kinases in alphavirus replication is unknown, we profiled kinetic changes in host kinase abundance and phosphorylation following chikungunya virus (CHIKV) infection of fibroblasts. Alphaviruses are arthropod-transmitted RNA viruses that can cause arthralgia, myalgia, and encephalitis in humans. Since the role of cellular kinases in alphavirus replication is unknown, we profiled kinetic changes in host kinase abundance and phosphorylation following chikungunya virus (CHIKV) infection of fibroblasts. Based upon the results of this study, we treated CHIKV-infected cells with kinase inhibitors targeting the Src family kinase (SFK)–phosphatidylinositol 3-kinase (PI3K)–AKT–mTORC signaling pathways. Treatment of cells with SFK inhibitors blocked the replication of CHIKV as well as multiple other alphaviruses, including Mayaro virus, O’nyong-nyong virus, Ross River virus, and Venezuelan equine encephalitis virus. Dissecting the effect of SFK inhibition on alphavirus replication, we found that viral structural protein levels were significantly reduced, but synthesis of viral genomic and subgenomic RNAs was unaffected. By measuring the association of viral RNA with polyribosomes, we found that the SFK inhibitor dasatinib blocks alphavirus subgenomic RNA translation. Our results demonstrate a role for SFK signaling in alphavirus subgenomic RNA translation and replication. Targeting host factors involved in alphavirus replication represents an innovative, perhaps paradigm-shifting, strategy for exploring the replication of CHIKV and other alphaviruses while promoting antiviral therapeutic development.
Collapse
|
33
|
Koudelková L, Pataki AC, Tolde O, Pavlik V, Nobis M, Gemperle J, Anderson K, Brábek J, Rosel D. Novel FRET-Based Src Biosensor Reveals Mechanisms of Src Activation and Its Dynamics in Focal Adhesions. Cell Chem Biol 2019; 26:255-268.e4. [DOI: 10.1016/j.chembiol.2018.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
|
34
|
Roth L, Wakim J, Wasserman E, Shalev M, Arman E, Stein M, Brumfeld V, Sagum CA, Bedford MT, Tuckermann J, Elson A. Phosphorylation of the phosphatase PTPROt at Tyr 399 is a molecular switch that controls osteoclast activity and bone mass in vivo. Sci Signal 2019; 12:12/563/eaau0240. [PMID: 30622194 DOI: 10.1126/scisignal.aau0240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bone resorption by osteoclasts is essential for bone homeostasis. The kinase Src promotes osteoclast activity and is activated in osteoclasts by the receptor-type tyrosine phosphatase PTPROt. In other contexts, however, PTPROt can inhibit Src activity. Through in vivo and in vitro experiments, we show that PTPROt is bifunctional and can dephosphorylate Src both at its inhibitory residue Tyr527 and its activating residue Tyr416 Whereas wild-type and PTPROt knockout mice exhibited similar bone masses, mice in which a putative C-terminal phosphorylation site, Tyr399, in endogenous PTPROt was replaced with phenylalanine had increased bone mass and reduced osteoclast activity. Osteoclasts from the knock-in mice also showed reduced Src activity. Experiments in cultured cells and in osteoclasts derived from both mouse strains demonstrated that the absence of phosphorylation at Tyr399 caused PTPROt to dephosphorylate Src at the activating site pTyr416 In contrast, phosphorylation of PTPROt at Tyr399 enabled PTPROt to recruit Src through Grb2 and to dephosphorylate Src at the inhibitory site Tyr527, thus stimulating Src activity. We conclude that reversible phosphorylation of PTPROt at Tyr399 is a molecular switch that selects between its opposing activities toward Src and maintains a coherent signaling output, and that blocking this phosphorylation event can induce physiological effects in vivo. Because most receptor-type tyrosine phosphatases contain potential phosphorylation sites at their C termini, we propose that preventing phosphorylation at these sites or its consequences may offer an alternative to inhibiting their catalytic activity to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Lee Roth
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jean Wakim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elad Wasserman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moran Shalev
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Ari Elson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
35
|
Nah AS, Chay KO. Roles of paxillin phosphorylation in IL-3 withdrawal-induced Ba/F3 cell apoptosis. Genes Genomics 2019; 41:241-248. [PMID: 30604146 DOI: 10.1007/s13258-018-00779-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Ba/F3, a mouse pro-B cell line, is dependent on IL-3 for its survival and proliferation. IL-3 withdrawal causes cells to round, stop in G1 phase, then undergo apoptosis. Additionally, IL-3 is known to induce tyrosine phosphorylation of paxillin, a scaffold and signaling protein. We previously determined that overexpression of paxillin prohibited Ba/F3 cell apoptosis induced by IL-3 withdrawal. OBJECTIVE Address whether phosphorylation is essential for the anti-apoptotic effect of overexpressed paxillin. METHODS Mutations were introduced into paxillin cDNA at five phosphorylation sites-Y31F, Y40F, Y118F, Y181F, S273A, or S273D. After overexpression of paxillin mutants in Ba/F3 cells, the apoptotic proportions of cell populations were measured by an annexin V conjugation assay while cells were undergoing IL-3 withdrawal. RESULTS The anti-apoptotic effect of paxillin overexpression was abolished by site-directed mutagenesis replacing Y31, Y40, Y118, and Y181 with phenylalanine, and S273 with aspartic acid. In contrast, the mutation replacing S273 with alanine had no effect on the anti-apoptotic effect. CONCLUSION The above results suggest that paxillin-mediated phosphorylation at Y31, Y40, Y118, and Y181 is essential for the anti-apoptotic effect of paxillin overexpression in Ba/F3 cells and contributes to the cell survival signaling pathway triggered by IL-3. Conversely, phosphorylation at S273 is involved in the negative regulation of the anti-apoptotic action of overexpressed paxillin.
Collapse
Affiliation(s)
- Ae Sun Nah
- Department of Biochemistry, Medical School, Chonnam National University, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Kee Oh Chay
- Department of Biochemistry, Medical School, Chonnam National University, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
36
|
Horiuchi M, Kuga T, Saito Y, Nagano M, Adachi J, Tomonaga T, Yamaguchi N, Nakayama Y. The tyrosine kinase v-Src causes mitotic slippage by phosphorylating an inhibitory tyrosine residue of Cdk1. J Biol Chem 2018; 293:15524-15537. [PMID: 30135207 DOI: 10.1074/jbc.ra118.002784] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/17/2018] [Indexed: 11/06/2022] Open
Abstract
The nonreceptor tyrosine kinase v-Src is an oncogene first identified in Rous sarcoma virus. The oncogenic effects of v-Src have been intensively studied; however, its effects on chromosomal integrity are not fully understood. Here, using HeLa S3/v-Src cells having inducible v-Src expression, we found that v-Src causes mitotic slippage in addition to cytokinesis failure, even when the spindle assembly checkpoint is not satisfied because of the presence of microtubule-targeting agents. v-Src's effect on mitotic slippage was also observed in cells after a knockdown of C-terminal Src kinase (Csk), a protein-tyrosine kinase that inhibits Src-family kinases and was partially inhibited by PP2, an Src-family kinase inhibitor. Proteomic analysis and in vitro kinase assay revealed that v-Src phosphorylates cyclin-dependent kinase 1 (Cdk1) at Tyr-15. This phosphorylation attenuated Cdk1 kinase activity, resulting in a decrease in the phosphorylation of Cdk1 substrates. Furthermore, v-Src-induced mitotic slippage reduced the sensitivity of the cells to microtubule-targeting agents, and cells that survived the microtubule-targeting agents exhibited polyploidy. These results suggest that v-Src causes mitotic slippage by attenuating Cdk1 kinase activity via direct phosphorylation of Cdk1 at Tyr-15. On the basis of these findings, we propose a model for v-Src-induced oncogenesis, in which v-Src-promoted mitotic slippage due to Cdk1 phosphorylation generates genetic diversity via abnormal cell division of polyploid cells and also increases the tolerance of cancer cells to microtubule-targeting agents.
Collapse
Affiliation(s)
- Maria Horiuchi
- From the Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414
| | - Takahisa Kuga
- From the Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414
| | - Youhei Saito
- From the Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414
| | - Maiko Nagano
- the Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, and
| | - Jun Adachi
- the Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, and
| | - Takeshi Tomonaga
- the Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, and
| | - Naoto Yamaguchi
- the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yuji Nakayama
- From the Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414,
| |
Collapse
|
37
|
Banerjee M, Cui X, Li Z, Yu H, Cai L, Jia X, He D, Wang C, Gao T, Xie Z. Na/K-ATPase Y260 Phosphorylation-mediated Src Regulation in Control of Aerobic Glycolysis and Tumor Growth. Sci Rep 2018; 8:12322. [PMID: 30120256 PMCID: PMC6098021 DOI: 10.1038/s41598-018-29995-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
We report here the identification of α1 Na/K-ATPase as a major regulator of the proto-oncogene Src kinase and the role of this regulation in control of Warburg effect and tumor growth. Specifically, we discovered Y260 in α1 Na/K-ATPase as a Src-specific phosphorylation and binding site and that Y260 phosphorylation is required for Src-mediated signal transduction in response to a number of stimuli including EGF. As such, it enables a dynamic control of aerobic glycolysis. However, such regulation appears to be lost or attenuated in human cancers as the expression of Na/K-ATPase α1 was significantly decreased in prostate, breast and kidney cancers, and further reduced in corresponding metastatic lesions in patient samples. Consistently, knockdown of α1 Na/K-ATPase led to a further increase in lactate production and the growth of tumor xenograft. These findings suggest that α1 Na/K-ATPase works as a tumor suppressor and that a loss of Na/K-ATPase-mediated Src regulation may lead to Warburg phenotype in cancer.
Collapse
Affiliation(s)
- Moumita Banerjee
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Zhichuan Li
- Department of Physiology and Pharmacology and Medicine, University of Toledo College of Medicine, Toledo, Ohio, 43614, USA
| | - Hui Yu
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Xuelian Jia
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Daheng He
- Department of Cancer Biostatistics, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Chi Wang
- Department of Cancer Biostatistics, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA.
| |
Collapse
|
38
|
Drummond ML, Li M, Tarapore E, Nguyen TTL, Barouni BJ, Cruz S, Tan KC, Oro AE, Atwood SX. Actin polymerization controls cilia-mediated signaling. J Cell Biol 2018; 217:3255-3266. [PMID: 29945904 PMCID: PMC6122990 DOI: 10.1083/jcb.201703196] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 03/29/2018] [Accepted: 05/31/2018] [Indexed: 01/20/2023] Open
Abstract
Actin polymerization is important to generate primary cilia. Drummond et al. show that upstream actin regulators are necessary for this process by controlling aPKC and Src kinase activity to promote Hedgehog signaling and restrict primary cilia. Primary cilia are polarized organelles that allow detection of extracellular signals such as Hedgehog (Hh). How the cytoskeleton supporting the cilium generates and maintains a structure that finely tunes cellular response remains unclear. Here, we find that regulation of actin polymerization controls primary cilia and Hh signaling. Disrupting actin polymerization, or knockdown of N-WASp/Arp3, increases ciliation frequency, axoneme length, and Hh signaling. Cdc42, a potent actin regulator, recruits both atypical protein pinase C iota/lambda (aPKC) and Missing-in-Metastasis (MIM) to the basal body to maintain actin polymerization and restrict axoneme length. Transcriptome analysis implicates the Src pathway as a major aPKC effector. aPKC promotes whereas MIM antagonizes Src activity to maintain proper levels of primary cilia, actin polymerization, and Hh signaling. Hh pathway activation requires Smoothened-, Gli-, and Gli1-specific activation by aPKC. Surprisingly, longer axonemes can amplify Hh signaling, except when aPKC is disrupted, reinforcing the importance of the Cdc42–aPKC–Gli axis in actin-dependent regulation of primary cilia signaling.
Collapse
Affiliation(s)
- Michael L Drummond
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Mischa Li
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA
| | - Eric Tarapore
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Tuyen T L Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Baina J Barouni
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Shaun Cruz
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Kevin C Tan
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Anthony E Oro
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA .,Department of Dermatology, University of California, Irvine, Irvine, CA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA
| |
Collapse
|
39
|
Kant S, Standen CL, Morel C, Jung DY, Kim JK, Swat W, Flavell RA, Davis RJ. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress. Cell Rep 2018; 20:2775-2783. [PMID: 28930674 DOI: 10.1016/j.celrep.2017.08.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/30/2017] [Accepted: 07/29/2017] [Indexed: 01/25/2023] Open
Abstract
Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH2-terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway.
Collapse
Affiliation(s)
- Shashi Kant
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Claire L Standen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Caroline Morel
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dae Young Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wojciech Swat
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard A Flavell
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA.
| |
Collapse
|
40
|
Knüppel L, Heinzelmann K, Lindner M, Hatz R, Behr J, Eickelberg O, Staab-Weijnitz CA. FK506-binding protein 10 (FKBP10) regulates lung fibroblast migration via collagen VI synthesis. Respir Res 2018; 19:67. [PMID: 29673351 PMCID: PMC5909279 DOI: 10.1186/s12931-018-0768-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Background In idiopathic pulmonary fibrosis (IPF), fibroblasts gain a more migratory phenotype and excessively secrete extracellular matrix (ECM), ultimately leading to alveolar scarring and progressive dyspnea. Here, we analyzed the effects of deficiency of FK506-binding protein 10 (FKBP10), a potential IPF drug target, on primary human lung fibroblast (phLF) adhesion and migration. Methods Using siRNA, FKBP10 expression was inhibited in phLF in absence or presence of 2ng/ml transforming growth factor-β1 (TGF-β1) and 0.1mM 2-phosphoascorbate. Effects on cell adhesion and migration were monitored by an immunofluorescence (IF)-based attachment assay, a conventional scratch assay, and single cell tracking by time-lapse microscopy. Effects on expression of key players in adhesion dynamics and migration were analyzed by qPCR and Western Blot. Colocalization was evaluated by IF microscopy and by proximity ligation assays. Results FKBP10 knockdown significantly attenuated adhesion and migration of phLF. Expression of collagen VI was decreased, while expression of key components of the focal adhesion complex was mostly upregulated. The effects on migration were 2-phosphoascorbate-dependent, suggesting collagen synthesis as the underlying mechanism. FKBP10 colocalized with collagen VI and coating culture dishes with collagen VI, and to a lesser extent with collagen I, abolished the effect of FKBP10 deficiency on migration. Conclusions These findings show, to our knowledge for the first time, that FKBP10 interacts with collagen VI and that deficiency of FKBP10 reduces phLF migration mainly by downregulation of collagen VI synthesis. The results strengthen FKBP10 as an important intracellular regulator of ECM remodeling and support the concept of FKBP10 as drug target in IPF.
Collapse
Affiliation(s)
- Larissa Knüppel
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität and Helmholtz Zentrum Munich, Max-Lebsche-Platz 31, 81377, Munich, Germany.,Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Katharina Heinzelmann
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität and Helmholtz Zentrum Munich, Max-Lebsche-Platz 31, 81377, Munich, Germany.,Member of the German Center of Lung Research (DZL), Munich, Germany
| | | | - Rudolf Hatz
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany.,Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jürgen Behr
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany.,Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität and Helmholtz Zentrum Munich, Max-Lebsche-Platz 31, 81377, Munich, Germany.,Member of the German Center of Lung Research (DZL), Munich, Germany.,Colorado Anschutz Medical Campus, Pulmonary and Critical Care Medicine University, Denver, Colorado, USA
| | - Claudia A Staab-Weijnitz
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität and Helmholtz Zentrum Munich, Max-Lebsche-Platz 31, 81377, Munich, Germany. .,Member of the German Center of Lung Research (DZL), Munich, Germany.
| |
Collapse
|
41
|
Flores APC, Dias KB, Hildebrand LC, Oliveira MG, Lamers ML, Sant'Ana Filho M. Focal adhesion kinases in head and neck squamous cell carcinoma. J Oral Pathol Med 2018; 47:246-252. [PMID: 29292531 DOI: 10.1111/jop.12674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Focal adhesion kinase (FAK) phosphorylation contributes to the regulation of growth factors that promote cellular adhesion, mobility, and survival, being a key factor in tumor development. The objective of this study was to evaluate the immunohistochemical expression patterns of FAK and its phosphorylated forms, FAK Tyr-576 and FAK Tyr-925, in head and neck squamous cell carcinoma and non-neoplastic adjacent epithelial tissue (AE). METHODS The percentage of immunohistochemistry stained cells and its correlation with clinicopathological variables and prognosis were determined using samples from 54 patients. RESULTS FAK, FAK Tyr-576, and FAK Tyr-925 overexpression was observed in tumor zones and AE. FAK Tyr-576 immunostaining showed a relationship with tumor clinicopathological parameters. Moreover, positive immunostaining of FAK Tyr-576 in AEsue was associated with patients prognoses. CONCLUSIONS Increased expression of FAK Tyr-576 could enable identification of tumors with a more aggressive behavior and epithelial alterations before the appearance of clinical or histological manifestations.
Collapse
Affiliation(s)
- Anacláudia P C Flores
- Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kelly B Dias
- Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Campos Hildebrand
- Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Márcia Gaiger Oliveira
- Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Lazzaron Lamers
- Basic Research Center, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Manoel Sant'Ana Filho
- Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
42
|
The Actin-Binding Protein PPP1r18 Regulates Maturation, Actin Organization, and Bone Resorption Activity of Osteoclasts. Mol Cell Biol 2018; 38:MCB.00425-17. [PMID: 29158294 DOI: 10.1128/mcb.00425-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/11/2017] [Indexed: 01/21/2023] Open
Abstract
Osteoclasts resorb bone by attaching on the bone matrix and forming a sealing zone. In Src-deficient mice, osteoclasts cannot form the actin ring, a characteristic actin structure that seals the resorbed area, and resorb hardly any bone as a result. However, the molecular mechanism underlying the role of Src in the regulation and organization of the actin ring is still unclear. We identified an actin-regulatory protein, protein phosphatase 1 regulatory subunit 18 (PPP1r18), as an Src-binding protein in an Src-, Yes-, and Fyn-deficient fibroblast (SYF) cell line overexpressing a constitutively active form of Src. PPP1r18 was localized in the nucleus and actin ring. PPP1r18 overexpression in osteoclasts inhibited terminal differentiation, actin ring formation, and bone-resorbing activity. A mutation of the protein phosphatase 1 (PP1)-binding domain of PPP1r18 rescued these phenotypes. In contrast, PPP1r18 knockdown promoted terminal differentiation and actin ring formation. In summary, we showed that PPP1r18 likely plays a role in podosome organization and bone resorption.
Collapse
|
43
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
44
|
Montone R, Romanelli MG, Baruzzi A, Ferrarini F, Liboi E, Lievens PMJ. Mutant FGFR3 associated with SADDAN disease causes cytoskeleton disorganization through PLCγ1/Src-mediated paxillin hyperphosphorylation. Int J Biochem Cell Biol 2017; 95:17-26. [PMID: 29242050 DOI: 10.1016/j.biocel.2017.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/15/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
K650M/E substitutions in the Fibroblast growth factor receptor 3 (FGFR3) are associated with Severe Achondroplasia with Developmental Delay and Acanthosis Nigricans (SADDAN) and Thanatophoric Dysplasia type II (TDII), respectively. Both SADDAN and TDII present with affected endochondral ossification marked by impaired chondrocyte functions and growth plate disorganization. In vitro, K650M/E substitutions confer FGFR3 constitutive kinase activity leading to impaired biosynthesis and accumulation of immature receptors in endoplasmic reticulum (ER)/Golgi. From those compartments, both SADDAN-FGFR3 and TDII-FGFR3 receptors engender uncontrolled signalling, activating PLCγ1, signal transducer and activator of transcription 1, 3 and 5 (STAT1/3/5) and ERK1/2 effectors. Here, we investigated the impact of SADDAN-FGFR3 and TDII-FGFR3 signalling on cytoskeletal organization. We report that SADDAN-FGFR3, but not TDII-FGFR3, affects F-actin organization by inducing tyrosine hyperphosphorylation of paxillin, a key regulator of focal adhesions and actin dynamics. Paxillin phosphorylation was upregulated at tyrosine 118, a functional target of Src and FAK kinases. By using Src-deficient cells and a Src kinase inhibitor, we established a role played by Src activation in paxillin hyperphosphorylation. Moreover, we found that SADDAN-FGFR3 induced FAK phosphorylation at tyrosines 576/577, suggesting its involvement as a Src co-activator in paxillin phosphorylation. Interestingly, paxillin hyperphosphorylation by SADDAN-FGFR3 caused paxillin mislocalization and partial co-localization with the mutant receptor. Finally, the SADDAN-FGFR3 double mutant unable to bind PLCγ1 failed to promote paxillin hyperphosphorylation, pointing to PLCγ1 as an early player in mediating paxillin alterations. Overall, our findings contribute to elucidate the molecular mechanism leading to cell dysfunctions caused by SADDAN-FGFR3 signalling.
Collapse
Affiliation(s)
- R Montone
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - M G Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - A Baruzzi
- Department of Pathology and Diagnostics, University of Verona Medical School, Verona, Italy
| | - F Ferrarini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - E Liboi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - P M-J Lievens
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy.
| |
Collapse
|
45
|
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer. Oncotarget 2017; 7:11033-55. [PMID: 26788993 PMCID: PMC4905456 DOI: 10.18632/oncotarget.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.
Collapse
Affiliation(s)
- Cécile Naudin
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Clément Chevalier
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: SFR Biosit (UMS CNRS 3480/US INSERM 018), MRic Photonics Platform, University Rennes, Rennes, France
| | - Serge Roche
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Equipe Labellisée LIGUE 2014, Ligue Contre le Cancer, Paris, France
| |
Collapse
|
46
|
Deficiency in VHR/DUSP3, a suppressor of focal adhesion kinase, reveals its role in regulating cell adhesion and migration. Oncogene 2017; 36:6509-6517. [DOI: 10.1038/onc.2017.255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022]
|
47
|
Ross FA, Hawley SA, Auciello FR, Gowans GJ, Atrih A, Lamont DJ, Hardie DG. Mechanisms of Paradoxical Activation of AMPK by the Kinase Inhibitors SU6656 and Sorafenib. Cell Chem Biol 2017; 24:813-824.e4. [PMID: 28625738 PMCID: PMC5522529 DOI: 10.1016/j.chembiol.2017.05.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/28/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
SU6656, a Src kinase inhibitor, was reported to increase fat oxidation and reduce body weight in mice, with proposed mechanisms involving AMP-activated protein kinase (AMPK) activation via inhibition of phosphorylation of either LKB1 or AMPK by the Src kinase, Fyn. However, we report that AMPK activation by SU6656 is independent of Src kinases or tyrosine phosphorylation of LKB1 or AMPK and is not due to decreased cellular energy status or binding at the ADaM site on AMPK. SU6656 is a potent AMPK inhibitor, yet binding at the catalytic site paradoxically promotes phosphorylation of Thr172 by LKB1. This would enhance phosphorylation of downstream targets provided the lifetime of Thr172 phosphorylation was sufficient to allow dissociation of the inhibitor and subsequent catalysis prior to its dephosphorylation. By contrast, sorafenib, a kinase inhibitor in clinical use, activates AMPK indirectly by inhibiting mitochondrial metabolism and increasing cellular AMP:ADP and/or ADP:ATP ratios.
Collapse
Affiliation(s)
- Fiona A Ross
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Simon A Hawley
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - F Romana Auciello
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Graeme J Gowans
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Abdelmadjid Atrih
- Fingerprints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Douglas J Lamont
- Fingerprints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
48
|
Luo W, Janoštiak R, Tolde O, Ryzhova LM, Koudelková L, Dibus M, Brábek J, Hanks SK, Rosel D. ARHGAP42 is activated by Src-mediated tyrosine phosphorylation to promote cell motility. J Cell Sci 2017; 130:2382-2393. [PMID: 28584191 PMCID: PMC5536916 DOI: 10.1242/jcs.197434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
The tyrosine kinase Src acts as a key regulator of cell motility by phosphorylating multiple protein substrates that control cytoskeletal and adhesion dynamics. In an earlier phosphotyrosine proteomics study, we identified a novel Rho-GTPase activating protein, now known as ARHGAP42, as a likely biologically relevant Src substrate. ARHGAP42 is a member of a family of RhoGAPs distinguished by tandem BAR-PH domains lying N-terminal to the GAP domain. Like other family members, ARHGAP42 acts preferentially as a GAP for RhoA. We show that Src principally phosphorylates ARHGAP42 on tyrosine 376 (Tyr-376) in the short linker between the BAR-PH and GAP domains. The expression of ARHGAP42 variants in mammalian cells was used to elucidate its regulation. We found that the BAR domain is inhibitory toward the GAP activity of ARHGAP42, such that BAR domain deletion resulted in decreased active GTP-bound RhoA and increased cell motility. With the BAR domain intact, ARHGAP42 GAP activity could be activated by phosphorylation of Tyr-376 to promote motile cell behavior. Thus, phosphorylation of ARHGAP42 Tyr-376 is revealed as a novel regulatory event by which Src can affect actin dynamics through RhoA inhibition.
Collapse
Affiliation(s)
- Weifeng Luo
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
| | - Radoslav Janoštiak
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
| | - Ondřej Tolde
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy 25242, Czech Republic
| | - Larisa M Ryzhova
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lenka Koudelková
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy 25242, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy 25242, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy 25242, Czech Republic
| | - Steven K Hanks
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Daniel Rosel
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy 25242, Czech Republic
| |
Collapse
|
49
|
Jaraíz-Rodríguez M, Tabernero MD, González-Tablas M, Otero A, Orfao A, Medina JM, Tabernero A. A Short Region of Connexin43 Reduces Human Glioma Stem Cell Migration, Invasion, and Survival through Src, PTEN, and FAK. Stem Cell Reports 2017; 9:451-463. [PMID: 28712848 PMCID: PMC5549880 DOI: 10.1016/j.stemcr.2017.06.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022] Open
Abstract
Connexin43 (CX43), a protein that forms gap junction channels and hemichannels in astrocytes, is downregulated in high-grade gliomas. Its relevance for glioma therapy has been thoroughly explored; however, its positive effects on proliferation are counterbalanced by its effects on migration and invasion. Here, we show that a cell-penetrating peptide based on CX43 (TAT-Cx43266-283) inhibited c-Src and focal adhesion kinase (FAK) and upregulated phosphatase and tensin homolog in glioma stem cells (GSCs) derived from patients. Consequently, TAT-Cx43266-283 reduced GSC motility, as analyzed by time-lapse microscopy, and strongly reduced their invasive ability. Interestingly, we investigated the effects of TAT-Cx43266-283 on freshly removed surgical specimens as undissociated glioblastoma blocks, which revealed a dramatic reduction in the growth, migration, and survival of these cells. In conclusion, a region of CX43 (amino acids 266–283) exerts an important anti-tumor effect in patient-derived glioblastoma models that includes impairment of GSC migration and invasion. TAT-Cx43266-283 exerts anti-tumor effects in patient-derived glioblastoma models TAT-Cx43266-283 targets Src, PTEN, and FAK TAT-Cx43266-283 inhibits glioma stem cell migration and invasion
Collapse
Affiliation(s)
- Myriam Jaraíz-Rodríguez
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Ma Dolores Tabernero
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL), Departamento de Medicina Universidad de Salamanca, 37007 Salamanca, Spain
| | - María González-Tablas
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL), Departamento de Medicina Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alvaro Otero
- Neurosurgery Service, Hospital Universitario de Salamanca and IBSAL, 37007 Salamanca, Spain
| | - Alberto Orfao
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL), Departamento de Medicina Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jose M Medina
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007 Salamanca, Spain.
| |
Collapse
|
50
|
Regulatory mechanisms of phosphatase of regenerating liver (PRL)-3. Biochem Soc Trans 2017; 44:1305-1312. [PMID: 27911713 PMCID: PMC5095905 DOI: 10.1042/bst20160146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
The phosphatase of regenerating liver (PRL)-3 is overexpressed in many human cancer types and tumor metastases when compared with healthy tissues. Different pathways and mechanisms have been suggested to modulate PRL-3 expression levels and activity, giving some valuable insights but still leaving an incomplete picture. Investigating these mechanisms could provide new targets for therapeutic drug development. Here, we present an updated overview and summarize recent findings concerning the different PRL-3 expression regulatory mechanisms and posttranslational modifications suggested to modulate the activity, localization, or stability of this phosphatase.
Collapse
|