1
|
Shin D, Gong J, Jeong SD, Cho Y, Kim H, Kim T, Cho K. Attractor Landscape Analysis Reveals a Reversion Switch in the Transition of Colorectal Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412503. [PMID: 39840939 PMCID: PMC11848608 DOI: 10.1002/advs.202412503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Indexed: 01/23/2025]
Abstract
A cell fate change such as tumorigenesis incurs critical transition. It remains a longstanding challenge whether the underlying mechanism can be unraveled and a molecular switch that can reverse such transition is found. Here a systems framework, REVERT, is presented with which can reconstruct the core molecular regulatory network model and a reversion switch based on single-cell transcriptome data over the transition process is identified. The usefulness of REVERT is demonstrated by applying it to single-cell transcriptome of patient-derived matched organoids of colon cancer and normal colon. REVERT is a generic framework that can be applied to investigate various cell fate transition phenomena.
Collapse
Affiliation(s)
- Dongkwan Shin
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Research InstituteNational Cancer CenterGoyang10408Republic of Korea
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyang10408Republic of Korea
| | - Jeong‐Ryeol Gong
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seoyoon D. Jeong
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Youngwon Cho
- Department of Molecular Medicine and Biopharmaceutical SciencesGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul03080Republic of Korea
| | - Hwang‐Phill Kim
- Department of Molecular Medicine and Biopharmaceutical SciencesGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul03080Republic of Korea
| | - Tae‐You Kim
- Department of Molecular Medicine and Biopharmaceutical SciencesGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul03080Republic of Korea
| | - Kwang‐Hyun Cho
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
2
|
Koenderman L, Vrisekoop N. Neutrophils in cancer: from biology to therapy. Cell Mol Immunol 2025; 22:4-23. [PMID: 39653768 PMCID: PMC11686117 DOI: 10.1038/s41423-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
The view of neutrophils has shifted from simple phagocytic cells, whose main function is to kill pathogens, to very complex cells that are also involved in immune regulation and tissue repair. These cells are essential for maintaining and regaining tissue homeostasis. Neutrophils can be viewed as double-edged swords in a range of situations. The potent killing machinery necessary for immune responses to pathogens can easily lead to collateral damage to host tissues when inappropriately controlled. Furthermore, some subtypes of neutrophils are potent pathogen killers, whereas others are immunosuppressive or can aid in tissue healing. Finally, in tumor immunology, many examples of both protumorigenic and antitumorigenic properties of neutrophils have been described. This has important consequences for cancer therapy, as targeting neutrophils can lead to either suppressed or stimulated antitumor responses. This review will discuss the current knowledge regarding the pro- and antitumorigenic roles of neutrophils, leading to the concept of a confused state of neutrophil-driven pro-/antitumor responses.
Collapse
Affiliation(s)
- Leo Koenderman
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nienke Vrisekoop
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Kobrossy L, Xu W, Zhang C, Feng W, Turner CE, Cosgrove MS. Unraveling MLL1-fusion leukemia: Epigenetic revelations from an iPS cell point mutation. J Biol Chem 2024; 300:107825. [PMID: 39342993 PMCID: PMC11541820 DOI: 10.1016/j.jbc.2024.107825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Our understanding of acute leukemia pathology is heavily dependent on 11q23 chromosomal translocations involving the mixed lineage leukemia-1 (MLL1) gene, a key player in histone H3 lysine 4 (H3K4) methylation. These translocations result in MLL1-fusion (MLL1F) proteins that are thought to drive leukemogenesis. However, the mechanism behind increased H3K4 trimethylation in MLL1F-leukemic stem cells (MLL1F-LSCs), following loss of the catalytic SET domain of MLL1 (known for H3K4 monomethylation and dimethylation) remains unclear. In our investigation, we introduced a homozygous loss-of-function point mutation in MLL1 within human-induced pluripotent stem cells. This mutation mimics the histone methylation, gene expression, and epithelial-mesenchymal transition phenotypes of MLL1F-LSCs-without requiring a translocation or functional WT MLL1. The mutation caused a genome-wide redistribution of the H3K4 trimethyl mark and upregulated LSC-maintenance genes like HoxA9-A13, Meis1, and the HOTTIP long noncoding RNA. Epithelial-mesenchymal transition markers such as ZEB1, SNAI2, and HIC-5 were also increased leading to enhanced cellular migration and invasiveness. These observations underscore the essential role of MLL1's enzymatic activity in restraining the cascade of epigenetic changes associated with the gene-activating H3K4 trimethylation mark, which we show may be catalyzed by mislocalized SETd1a H3K4 trimethyltransferase in the absence of MLL1's enzymatic activity. Challenging existing models, our findings imply that MLL1F-induced leukemias arise from a dominant-negative impact on MLL1's histone methyltransferase activity. We propose targeting SETd1a in precision medicine as a new therapeutic approach for MLL1-associated leukemias.
Collapse
Affiliation(s)
- Laila Kobrossy
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Weiyi Xu
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Chunling Zhang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Christopher E Turner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Michael S Cosgrove
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States.
| |
Collapse
|
4
|
Medina S, Ihrie RA, Irish JM. Learning cell identity in immunology, neuroscience, and cancer. Semin Immunopathol 2023; 45:3-16. [PMID: 36534139 PMCID: PMC9762661 DOI: 10.1007/s00281-022-00976-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
Suspension and imaging cytometry techniques that simultaneously measure hundreds of cellular features are powering a new era of cell biology and transforming our understanding of human tissues and tumors. However, a central challenge remains in learning the identities of unexpected or novel cell types. Cell identification rubrics that could assist trainees, whether human or machine, are not always rigorously defined, vary greatly by field, and differentially rely on cell intrinsic measurements, cell extrinsic tissue measurements, or external contextual information such as clinical outcomes. This challenge is especially acute in the context of tumors, where cells aberrantly express developmental programs that are normally time, location, or cell-type restricted. Well-established fields have contrasting practices for cell identity that have emerged from convention and convenience as much as design. For example, early immunology focused on identifying minimal sets of protein features that mark individual, functionally distinct cells. In neuroscience, features including morphology, development, and anatomical location were typical starting points for defining cell types. Both immunology and neuroscience now aim to link standardized measurements of protein or RNA to informative cell functions such as electrophysiology, connectivity, lineage potential, phospho-protein signaling, cell suppression, and tumor cell killing ability. The expansion of automated, machine-driven methods for learning cell identity has further created an urgent need for a harmonized framework for distinguishing cell identity across fields and technology platforms. Here, we compare practices in the fields of immunology and neuroscience, highlight concepts from each that might work well in the other, and propose ways to implement these ideas to study neural and immune cell interactions in brain tumors and associated model systems.
Collapse
Affiliation(s)
- Stephanie Medina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Franklin R, Guo Y, He S, Chen M, Ji F, Zhou X, Frankhouser D, Do BT, Chiem C, Jang M, Blanco MA, Vander Heiden MG, Rockne RC, Ninova M, Sykes DB, Hochedlinger K, Lu R, Sadreyev RI, Murn J, Volk A, Cheloufi S. Regulation of chromatin accessibility by the histone chaperone CAF-1 sustains lineage fidelity. Nat Commun 2022; 13:2350. [PMID: 35487911 PMCID: PMC9054786 DOI: 10.1038/s41467-022-29730-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Cell fate commitment is driven by dynamic changes in chromatin architecture and activity of lineage-specific transcription factors (TFs). The chromatin assembly factor-1 (CAF-1) is a histone chaperone that regulates chromatin architecture by facilitating nucleosome assembly during DNA replication. Accumulating evidence supports a substantial role of CAF-1 in cell fate maintenance, but the mechanisms by which CAF-1 restricts lineage choice remain poorly understood. Here, we investigate how CAF-1 influences chromatin dynamics and TF activity during lineage differentiation. We show that CAF-1 suppression triggers rapid differentiation of myeloid stem and progenitor cells into a mixed lineage state. We find that CAF-1 sustains lineage fidelity by controlling chromatin accessibility at specific loci, and limiting the binding of ELF1 TF at newly-accessible diverging regulatory elements. Together, our findings decipher key traits of chromatin accessibility that sustain lineage integrity and point to a powerful strategy for dissecting transcriptional circuits central to cell fate commitment.
Collapse
Affiliation(s)
- Reuben Franklin
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, United States
| | - Yiming Guo
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, United States
| | - Shiyang He
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
| | - Meijuan Chen
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, United States
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, United States
| | - Xinyue Zhou
- Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David Frankhouser
- Department of Population Sciences City of Hope National Medical Center, Duarte, CA, United States
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, United States
| | - Carmen Chiem
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, United States
| | - Mihyun Jang
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - M Andres Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, United States
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Maria Ninova
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, United States
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, United States
- Department of Genetics, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, United States
- Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA, 02138, United States
- Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, United States
| | - Rui Lu
- Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, United States
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States.
| | - Andrew Volk
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States.
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, United States.
| |
Collapse
|
6
|
Jensen TI, Mikkelsen NS, Gao Z, Foßelteder J, Pabst G, Axelgaard E, Laustsen A, König S, Reinisch A, Bak RO. Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi. Genome Res 2021; 31:2120-2130. [PMID: 34407984 PMCID: PMC8559706 DOI: 10.1101/gr.275607.121] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/09/2021] [Indexed: 01/22/2023]
Abstract
Targeted transcriptional activation or interference can be induced with the CRISPR-Cas9 system (CRISPRa/CRISPRi) using nuclease-deactivated Cas9 fused to transcriptional effector molecules. These technologies have been used in cancer cell lines, particularly for genome-wide functional genetic screens using lentiviral vectors. However, CRISPRa and CRISPRi have not yet been widely applied to ex vivo cultured primary cells with therapeutic relevance owing to a lack of effective and nontoxic delivery modalities. Here we develop CRISPRa and CRISPRi platforms based on RNA or ribonucleoprotein (RNP) delivery by electroporation and show transient, programmable gene regulation in primary cells, including human CD34+ hematopoietic stem and progenitor cells (HSPCs) and human CD3+ T cells. We show multiplex and orthogonal gene modulation using multiple sgRNAs and CRISPR systems from different bacterial species, and we show that CRISPRa can be applied to manipulate differentiation trajectories of HSPCs. These platforms constitute simple and effective means to transiently control transcription and are easily adopted and reprogrammed to new target genes by synthetic sgRNAs. We believe these technologies will find wide use in engineering the transcriptome for studies of stem cell biology and gene function, and we foresee that they will be implemented to develop and enhance cellular therapeutics.
Collapse
Affiliation(s)
- Trine I Jensen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
| | - Nanna S Mikkelsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
| | - Zongliang Gao
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
| | - Johannes Foßelteder
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Gabriel Pabst
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Esben Axelgaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
| | - Anders Laustsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
| | - Saskia König
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
| | - Andreas Reinisch
- Division of Hematology, Department of Internal Medicine and Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C., Denmark
| |
Collapse
|
7
|
Wei C, Yu P, Cheng L. Hematopoietic Reprogramming Entangles with Hematopoiesis. Trends Cell Biol 2020; 30:752-763. [PMID: 32861580 DOI: 10.1016/j.tcb.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Hematopoiesis generally refers to hematopoietic development in fetuses and adults, as well as to hematopoietic stem cell differentiation into progeny lineages. The multiple processes that generate diverse hematopoietic cells have been considered to be unidirectional. However, many reports have recently demonstrated that these processes are not only reversible but also interconvertible via cell reprogramming. The cell reprogramming that occurs in hematopoietic cells is termed hematopoietic reprogramming. We focus on both autogenous and artificial hematopoietic reprogramming under physiological and pathological conditions that is mainly directed by the actions of transcription factors (TFs), chemical compounds, or extracellular cytokines. A comprehensive understanding of hematopoietic reprogramming will help us not only to generate desirable cells for cell therapy but also to further analyze normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Chuijin Wei
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pei Yu
- Department of Orthopaedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
8
|
Loughran SJ, Haas S, Wilkinson AC, Klein AM, Brand M. Lineage commitment of hematopoietic stem cells and progenitors: insights from recent single cell and lineage tracing technologies. Exp Hematol 2020; 88:1-6. [PMID: 32653531 DOI: 10.1016/j.exphem.2020.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Blood production is essential to maintain human health, and even small perturbations in hematopoiesis can cause disease. Hematopoiesis has therefore been the focus of much research for many years. Experiments determining the lineage potentials of hematopoietic stem and progenitor cells (HSPCs) in vitro and after transplantation revealed a hierarchy of progenitor cell states, where differentiating cells undergo lineage commitment-a series of irreversible changes that progressively restrict their potential. New technologies have recently been developed that allow for a more detailed analysis of the molecular states and fates of differentiating HSPCs. Proteomic and lineage-tracing approaches, alongside single-cell transcriptomic analyses, have recently helped to reveal the biological complexity underlying lineage commitment during hematopoiesis. Recent insights from these new technologies were presented by Dr. Marjorie Brand and Dr. Allon Klein in the Summer 2019 ISEH Webinar, and are discussed in this Perspective.
Collapse
Affiliation(s)
- Stephen J Loughran
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, United Kingdom.
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine and Division of Stem Cells and Cancer, DKFZ German Cancer Research Centre, Heidelberg, Germany
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA; Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
9
|
Pires CF, Rosa FF, Kurochkin I, Pereira CF. Understanding and Modulating Immunity With Cell Reprogramming. Front Immunol 2019; 10:2809. [PMID: 31921109 PMCID: PMC6917620 DOI: 10.3389/fimmu.2019.02809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022] Open
Abstract
Cell reprogramming concepts have been classically developed in the fields of developmental and stem cell biology and are currently being explored for regenerative medicine, given its potential to generate desired cell types for replacement therapy. Cell fate can be experimentally reversed or modified by enforced expression of lineage specific transcription factors leading to pluripotency or attainment of another somatic cell type identity. The possibility to reprogram fibroblasts into induced dendritic cells (DC) competent for antigen presentation creates a paradigm shift for understanding and modulating the immune system with direct cell reprogramming. PU.1, IRF8, and BATF3 were identified as sufficient and necessary to impose DC fate in unrelated cell types, taking advantage of Clec9a, a C-type lectin receptor with restricted expression in conventional DC type 1. The identification of such minimal gene regulatory networks helps to elucidate the molecular mechanisms governing development and lineage heterogeneity along the hematopoietic hierarchy. Furthermore, the generation of patient-tailored reprogrammed immune cells provides new and exciting tools for the expanding field of cancer immunotherapy. Here, we summarize cell reprogramming concepts and experimental approaches, review current knowledge at the intersection of cell reprogramming with hematopoiesis, and propose how cell fate engineering can be merged to immunology, opening new opportunities to understand the immune system in health and disease.
Collapse
Affiliation(s)
- Cristiana F. Pires
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Fábio F. Rosa
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ilia Kurochkin
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Carlos-Filipe Pereira
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Kato H, Igarashi K. To be red or white: lineage commitment and maintenance of the hematopoietic system by the "inner myeloid". Haematologica 2019; 104:1919-1927. [PMID: 31515352 PMCID: PMC6886412 DOI: 10.3324/haematol.2019.216861] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Differentiation of hematopoietic stem and progenitor cells is tightly regulated depending on environmental changes in order to maintain homeostasis. Transcription factors direct the development of hematopoietic cells, such as GATA-1 for erythropoiesis and PU.1 for myelopoiesis. However, recent findings obtained from single-cell analyses raise the question of whether these transcription factors are "initiators" or just "executors" of differentiation, leaving the initiation of hematopoietic stem and progenitor cell differentiation (i.e. lineage commitment) unclear. While a stochastic process is likely involved in commitment, it cannot fully explain the homeostasis of hematopoiesis nor "on-demand" hematopoiesis in response to environmental changes. Transcription factors BACH1 and BACH2 may regulate both commitment and on-demand hematopoiesis because they control erythroid-myeloid and lymphoid-myeloid differentiation by repressing the myeloid program, and their activities are repressed in response to infectious and inflammatory conditions. We summarize possible mechanisms of lineage commitment of hematopoietic stem and progenitor cells suggested by recent findings and discuss the erythroid and lymphoid commitment of hematopoietic stem and progenitor cells, focusing on the gene regulatory network composed of genes encoding key transcription factors. Surprising similarity exists between commitment to erythroid and lymphoid lineages, including repression of the myeloid program by BACH factors. The suggested gene regulatory network of BACH factors sheds light on the myeloid-based model of hematopoiesis. This model will help to understand the tuning of hematopoiesis in higher eukaryotes in the steady-state condition as well as in emergency conditions, the evolutional history of the system, aging and hematopoietic disorders.
Collapse
Affiliation(s)
- Hiroki Kato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Present address, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Transcription factor Hoxb5 reprograms B cells into functional T lymphocytes. Nat Immunol 2018; 19:279-290. [PMID: 29434353 DOI: 10.1038/s41590-018-0046-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 01/08/2018] [Indexed: 02/02/2023]
Abstract
Deletion of master regulators of the B cell lineage reprograms B cells into T cells. Here we found that the transcription factor Hoxb5, which is expressed in uncommitted hematopoietic progenitor cells but is not present in cells committed to the B cell or T cell lineage, was able to reprogram pro-pre-B cells into functional early T cell lineage progenitors. This reprogramming started in the bone marrow and was completed in the thymus and gave rise to T lymphocytes with transcriptomes, hierarchical differentiation, tissue distribution and immunological functions that closely resembled those of their natural counterparts. Hoxb5 repressed B cell 'master genes', activated regulators of T cells and regulated crucial chromatin modifiers in pro-pre-B cells and ultimately drove the B cell fate-to-T cell fate conversion. Our results provide a de novo paradigm for the generation of functional T cells through reprogramming in vivo.
Collapse
|
12
|
Khoramian Tusi B, Socolovsky M. High-throughput single-cell fate potential assay of murine hematopoietic progenitors in vitro. Exp Hematol 2018; 60:21-29.e3. [PMID: 29410050 DOI: 10.1016/j.exphem.2018.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/06/2018] [Accepted: 01/18/2018] [Indexed: 02/02/2023]
Abstract
The advent of single-cell transcriptomics has led to the proposal of a number of novel high-resolution models for the hematopoietic system. Testing the predictions generated by such models requires cell fate potential assays of matching, single-cell resolution. Here we detail the development of an in vitro high-throughput single-cell culture assay using flow cytometrically sorted single murine bone marrow progenitors, which measures their differentiation into any of five myeloid lineages. We identify critical parameters for single-cell culture outcome, including the choice of sorter nozzle size and pressure, culture media, and the coating of culture dishes with extracellular matrix proteins. Further, we find that accurate assay readout requires the titration of antibodies specifically for their use under low-cell-number conditions. Our approach may be used as a template for the development of single-cell fate potential assays for a variety of blood cell progenitors.
Collapse
Affiliation(s)
- Betsabeh Khoramian Tusi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Pediatrics, Hematology/Oncology Division, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
13
|
Li JR, Suzuki T, Nishimura H, Kishima M, Maeda S, Suzuki H. Asymmetric Regulation of Peripheral Genes by Two Transcriptional Regulatory Networks. PLoS One 2016; 11:e0160459. [PMID: 27483142 PMCID: PMC4970704 DOI: 10.1371/journal.pone.0160459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional regulatory network (TRN) reconstitution and deconstruction occur simultaneously during reprogramming; however, it remains unclear how the starting and targeting TRNs regulate the induction and suppression of peripheral genes. Here we analyzed the regulation using direct cell reprogramming from human dermal fibroblasts to monocytes as the platform. We simultaneously deconstructed fibroblastic TRN and reconstituted monocytic TRN; monocytic and fibroblastic gene expression were analyzed in comparison with that of fibroblastic TRN deconstruction only or monocytic TRN reconstitution only. Global gene expression analysis showed cross-regulation of TRNs. Detailed analysis revealed that knocking down fibroblastic TRN positively affected half of the upregulated monocytic genes, indicating that intrinsic fibroblastic TRN interfered with the expression of induced genes. In contrast, reconstitution of monocytic TRN showed neutral effects on the majority of fibroblastic gene downregulation. This study provides an explicit example that demonstrates how two networks together regulate gene expression during cell reprogramming processes and contributes to the elaborate exploration of TRNs.
Collapse
Affiliation(s)
- Jing-Ru Li
- Division of Genomic Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230–0045, Kanagawa, Japan
| | - Takahiro Suzuki
- Division of Genomic Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230–0045, Kanagawa, Japan
| | - Hajime Nishimura
- Division of Genomic Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230–0045, Kanagawa, Japan
| | - Mami Kishima
- Division of Genomic Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230–0045, Kanagawa, Japan
| | - Shiori Maeda
- Division of Genomic Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230–0045, Kanagawa, Japan
| | - Harukazu Suzuki
- Division of Genomic Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230–0045, Kanagawa, Japan
| |
Collapse
|
14
|
Hoppe PS, Schwarzfischer M, Loeffler D, Kokkaliaris KD, Hilsenbeck O, Moritz N, Endele M, Filipczyk A, Gambardella A, Ahmed N, Etzrodt M, Coutu DL, Rieger MA, Marr C, Strasser MK, Schauberger B, Burtscher I, Ermakova O, Bürger A, Lickert H, Nerlov C, Theis FJ, Schroeder T. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature 2016; 535:299-302. [DOI: 10.1038/nature18320] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 05/13/2016] [Indexed: 12/20/2022]
|
15
|
Pfeiffer M, Betizeau M, Waltispurger J, Pfister SS, Douglas RJ, Kennedy H, Dehay C. Unsupervised lineage-based characterization of primate precursors reveals high proliferative and morphological diversity in the OSVZ. J Comp Neurol 2016; 524:535-63. [PMID: 26053631 PMCID: PMC4758405 DOI: 10.1002/cne.23820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/19/2015] [Accepted: 05/30/2015] [Indexed: 01/22/2023]
Abstract
Generation of the primate cortex is characterized by the diversity of cortical precursors and the complexity of their lineage relationships. Recent studies have reported miscellaneous precursor types based on observer classification of cell biology features including morphology, stemness, and proliferative behavior. Here we use an unsupervised machine learning method for Hidden Markov Trees (HMTs), which can be applied to large datasets to classify precursors on the basis of morphology, cell-cycle length, and behavior during mitosis. The unbiased lineage analysis automatically identifies cell types by applying a lineage-based clustering and model-learning algorithm to a macaque corticogenesis dataset. The algorithmic results validate previously reported observer classification of precursor types and show numerous advantages: It predicts a higher diversity of progenitors and numerous potential transitions between precursor types. The HMT model can be initialized to learn a user-defined number of distinct classes of precursors. This makes it possible to 1) reveal as yet undetected precursor types in view of exploring the significant features of precursors with respect to specific cellular processes; and 2) explore specific lineage features. For example, most precursors in the experimental dataset exhibit bidirectional transitions. Constraining the directionality in the HMT model leads to a reduction in precursor diversity following multiple divisions, thereby suggesting that one impact of bidirectionality in corticogenesis is to maintain precursor diversity. In this way we show that unsupervised lineage analysis provides a valuable methodology for investigating fundamental features of corticogenesis.
Collapse
Affiliation(s)
- Michael Pfeiffer
- Institute of NeuroinformaticsUniversity of Zurich and ETH Zurich8057ZurichSwitzerland
| | - Marion Betizeau
- Stem Cell and Brain Research InstituteINSERM U84669500BronFrance
- University of LyonUniversity of Lyon I69003LyonFrance
- Department of Biosystems Science and Engineering (D‐BSSE)ETH Zurich4058BaselSwitzerland
| | - Julie Waltispurger
- Stem Cell and Brain Research InstituteINSERM U84669500BronFrance
- University of LyonUniversity of Lyon I69003LyonFrance
| | - Sabina Sara Pfister
- Institute of NeuroinformaticsUniversity of Zurich and ETH Zurich8057ZurichSwitzerland
- Stem Cell and Brain Research InstituteINSERM U84669500BronFrance
- University of LyonUniversity of Lyon I69003LyonFrance
| | - Rodney J. Douglas
- Institute of NeuroinformaticsUniversity of Zurich and ETH Zurich8057ZurichSwitzerland
| | - Henry Kennedy
- Stem Cell and Brain Research InstituteINSERM U84669500BronFrance
- University of LyonUniversity of Lyon I69003LyonFrance
| | - Colette Dehay
- Stem Cell and Brain Research InstituteINSERM U84669500BronFrance
- University of LyonUniversity of Lyon I69003LyonFrance
| |
Collapse
|
16
|
PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun 2016; 7:10633. [PMID: 26843124 PMCID: PMC4743006 DOI: 10.1038/ncomms10633] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to tumour heterogeneity, therapy resistance and metastasis. However, the regulatory mechanisms of cancer cell stemness remain elusive. Here we identify PCNA-associated factor (PAF) as a key molecule that controls cancer cell stemness. PAF is highly expressed in breast cancer cells but not in mammary epithelial cells (MECs). In MECs, ectopic expression of PAF induces anchorage-independent cell growth and breast CSC marker expression. In mouse models, conditional PAF expression induces mammary ductal hyperplasia. Moreover, PAF expression endows MECs with a self-renewing capacity and cell heterogeneity generation via Wnt signalling. Conversely, ablation of endogenous PAF induces the loss of breast cancer cell stemness. Further cancer drug repurposing approaches reveal that NVP-AUY922 downregulates PAF and decreases breast cancer cell stemness. Our results unveil an unsuspected role of the PAF-Wnt signalling axis in modulating cell plasticity, which is required for the maintenance of breast cancer cell stemness. Stem cells are found in many tumour types and are thought to be partially responsible for cell survival following therapy. Here, the authors show that PCNA-associated factor, PAF, contributes to stemness in breast cancer cells and pharmacological targeting of PAF reduces mammosphere formation.
Collapse
|
17
|
Nouri M, Deezagi A, Ebrahimi M. Reprogramming of human peripheral blood monocytes to erythroid lineage by blocking of the PU-1 gene expression. Ann Hematol 2016; 95:549-56. [PMID: 26758270 DOI: 10.1007/s00277-015-2583-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/23/2015] [Indexed: 11/26/2022]
Abstract
In hematopoietic system development, PU.1 and GATA-1 as lineage-specific transcription factors (TF) are expressed in common myeloid progenitors. The cross antagonism between them ascertains gene expression programs of monocytic and erythroid cells, respectively. This concept in transdifferentiation approaches has not been well considered yet, especially in intralineage conversion systems. To demonstrate whether PU.1 suppression induces monocyte lineage conversion into red blood cells, a combination of three PU.1-specific siRNAs was implemented to knock down PU.1 gene expression and generate the balance in favor of GATA-1 expression to induce erythroid differentiation. For this purpose, monocytes were isolated from human peripheral blood and transfected by PU.1 siRNAs. In transfected monocytes, the rate of PU.1 expression in mRNA level was significantly decreased until 0.38 ± 0.118 when compared to untreated monocytes at 72 h (p value ≤0.05) which resulted in significant overexpression of GATA1 of 16.1 ± 0.343-fold compared to the untreated group (p value ≤0.01). Subsequently, overexpression of hemoglobin (α 13.26 ± 1.34-fold; p value≤0.0001) and β-globin (37.55 ± 16.56-fold; p value≤0.0001) was observed when compared to control groups. The results of western immunoblotting confirm those findings too. While, reduced expression of monocyte, CD14 gene, was observed in qRT-PCR and flow cytometry results. Our results suggest that manipulating the ratio of the two TFs in bifurcation differentiation pathways via applying siRNA technology can possibly change the cells' fate as a safe way for therapeutics application.
Collapse
Affiliation(s)
- Masoumeh Nouri
- Department of Molecular Medicine and Biochemistry, National Institute of Genetic Engineering and Biotechnology Km. 17, Karaj-Tehran freeway Pajouhesh Blvd., P.O.Box 14155-6343, Tehran, Iran
| | - Abdolkhalegh Deezagi
- Department of Molecular Medicine and Biochemistry, National Institute of Genetic Engineering and Biotechnology Km. 17, Karaj-Tehran freeway Pajouhesh Blvd., P.O.Box 14155-6343, Tehran, Iran.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
18
|
Abstract
The direct lineage reprogramming of one specialized cell type into another using defined factors has fundamentally re-shaped traditional concepts regarding the epigenetic stability of differentiated cells. With the rapid increase in cell types generated through direct conversion in recent years, this strategy has become a promising approach for producing functional cells. Here, we review recent advances in lineage reprogramming, including the identification of novel reprogramming factors, underlying molecular mechanisms, strategies for generating functionally mature cells, and assays for characterizing induced cells. We also discuss progress toward the application of lineage reprogramming and the major future challenges for this strategy.
Collapse
|
19
|
Rim JS, Lewis P, Dave A, Rim J, Szuszka K, Acosta C, Kim J, Kim JD, Staszkiewicz J, Gao R, Harkins L, Eilertsen KJ. Direct Conversion of Human Preadipocytes into Hematopoietic, Neuronal, and Pancreatic α Cells by Oct4 and Klf4 Overexpression. Biores Open Access 2015. [DOI: 10.1089/biores.2015.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | | | - Atman Dave
- NuPotential, Inc., Baton Rouge, Louisiana
| | | | | | | | - Joohyun Kim
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana
| | | | | | - Ru Gao
- NuPotential, Inc., Baton Rouge, Louisiana
| | | | - Kenneth J. Eilertsen
- NuPotential, Inc., Baton Rouge, Louisiana
- Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana
| |
Collapse
|
20
|
Affiliation(s)
- Suzanne Cory
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| |
Collapse
|
21
|
Pina C, Teles J, Fugazza C, May G, Wang D, Guo Y, Soneji S, Brown J, Edén P, Ohlsson M, Peterson C, Enver T. Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis. Cell Rep 2015; 11:1503-10. [PMID: 26051941 PMCID: PMC4528262 DOI: 10.1016/j.celrep.2015.05.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 04/02/2015] [Accepted: 05/10/2015] [Indexed: 10/29/2022] Open
Abstract
We explore cell heterogeneity during spontaneous and transcription-factor-driven commitment for network inference in hematopoiesis. Since individual genes display discrete OFF states or a distribution of ON levels, we compute and combine pairwise gene associations from binary and continuous components of gene expression in single cells. Ddit3 emerges as a regulatory node with positive linkage to erythroid regulators and negative association with myeloid determinants. Ddit3 loss impairs erythroid colony output from multipotent cells, while forcing Ddit3 in granulo-monocytic progenitors (GMPs) enhances self-renewal and impedes differentiation. Network analysis of Ddit3-transduced GMPs reveals uncoupling of myeloid networks and strengthening of erythroid linkages. RNA sequencing suggests that Ddit3 acts through development or stabilization of a precursor upstream of GMPs with inherent Meg-E potential. The enrichment of Gata2 target genes in Ddit3-dependent transcriptional responses suggests that Ddit3 functions in an erythroid transcriptional network nucleated by Gata2.
Collapse
Affiliation(s)
- Cristina Pina
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - José Teles
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK; Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62 Lund, Sweden
| | - Cristina Fugazza
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - Gillian May
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - Dapeng Wang
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - Yanping Guo
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - Shamit Soneji
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - John Brown
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - Patrik Edén
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62 Lund, Sweden
| | - Mattias Ohlsson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62 Lund, Sweden
| | - Carsten Peterson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62 Lund, Sweden
| | - Tariq Enver
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK.
| |
Collapse
|
22
|
Ebina W, Rossi DJ. Transcription factor-mediated reprogramming toward hematopoietic stem cells. EMBO J 2015; 34:694-709. [PMID: 25712209 DOI: 10.15252/embj.201490804] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs.
Collapse
Affiliation(s)
- Wataru Ebina
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA Department of Pediatrics, Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
23
|
Byrska-Bishop M, VanDorn D, Campbell AE, Betensky M, Arca PR, Yao Y, Gadue P, Costa FF, Nemiroff RL, Blobel GA, French DL, Hardison RC, Weiss MJ, Chou ST. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J Clin Invest 2015; 125:993-1005. [PMID: 25621499 DOI: 10.1172/jci75714] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 12/15/2014] [Indexed: 01/13/2023] Open
Abstract
Germline GATA1 mutations that result in the production of an amino-truncated protein termed GATA1s (where s indicates short) cause congenital hypoplastic anemia. In patients with trisomy 21, similar somatic GATA1s-producing mutations promote transient myeloproliferative disease and acute megakaryoblastic leukemia. Here, we demonstrate that induced pluripotent stem cells (iPSCs) from patients with GATA1-truncating mutations exhibit impaired erythroid potential, but enhanced megakaryopoiesis and myelopoiesis, recapitulating the major phenotypes of the associated diseases. Similarly, in developmentally arrested GATA1-deficient murine megakaryocyte-erythroid progenitors derived from murine embryonic stem cells (ESCs), expression of GATA1s promoted megakaryopoiesis, but not erythropoiesis. Transcriptome analysis revealed a selective deficiency in the ability of GATA1s to activate erythroid-specific genes within populations of hematopoietic progenitors. Although its DNA-binding domain was intact, chromatin immunoprecipitation studies showed that GATA1s binding at specific erythroid regulatory regions was impaired, while binding at many nonerythroid sites, including megakaryocytic and myeloid target genes, was normal. Together, these observations indicate that lineage-specific GATA1 cofactor associations are essential for normal chromatin occupancy and provide mechanistic insights into how GATA1s mutations cause human disease. More broadly, our studies underscore the value of ESCs and iPSCs to recapitulate and study disease phenotypes.
Collapse
|
24
|
Cassady JP, D'Alessio AC, Sarkar S, Dani VS, Fan ZP, Ganz K, Roessler R, Sur M, Young RA, Jaenisch R. Direct lineage conversion of adult mouse liver cells and B lymphocytes to neural stem cells. Stem Cell Reports 2014; 3:948-56. [PMID: 25454632 PMCID: PMC4264067 DOI: 10.1016/j.stemcr.2014.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 10/01/2014] [Accepted: 10/01/2014] [Indexed: 12/31/2022] Open
Abstract
Overexpression of transcription factors has been used to directly reprogram somatic cells into a range of other differentiated cell types, including multipotent neural stem cells (NSCs), that can be used to generate neurons and glia. However, the ability to maintain the NSC state independent of the inducing factors and the identity of the somatic donor cells remain two important unresolved issues in transdifferentiation. Here we used transduction of doxycycline-inducible transcription factors to generate stable tripotent NSCs. The induced NSCs (iNSCs) maintained their characteristics in the absence of exogenous factor expression and were transcriptionally, epigenetically, and functionally similar to primary brain-derived NSCs. Importantly, we also generated tripotent iNSCs from multiple adult cell types, including mature liver and B cells. Our results show that self-maintaining proliferative neural cells can be induced from nonectodermal cells by expressing specific combinations of transcription factors. Transgene-independent tripotent neural stem cells are induced from somatic cells H3K27ac enhancer profiling shows iNSCs are epigenetically reprogrammed genome-wide Adult liver and B cells are lineage converted to iNSCs using a “secondary” system iNSCs derived from B lymphocytes have immuloglobulin loci rearrangements
Collapse
Affiliation(s)
- John P Cassady
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ana C D'Alessio
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sovan Sarkar
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Vardhan S Dani
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zi Peng Fan
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kibibi Ganz
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Reinhard Roessler
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard A Young
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rudolf Jaenisch
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Luyten A, Zang C, Liu XS, Shivdasani RA. Active enhancers are delineated de novo during hematopoiesis, with limited lineage fidelity among specified primary blood cells. Genes Dev 2014; 28:1827-39. [PMID: 25128499 PMCID: PMC4197967 DOI: 10.1101/gad.240101.114] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tissues may adopt diverse strategies to establish specific transcriptional programs in daughter lineages. In blood, it is unclear when chromatin becomes permissive for transcription of genes expressed in distinct lineages. Luyten et al. present genome-wide analyses on chromatin dynamics and transcription factor binding at successive stages in primary mouse blood cell differentiation. The results reveal surprising features of enhancer delineation in a self-renewing tissue, distinct from the strategy applied in self-renewing intestinal crypts. This study provides a useful foundation to consider classical observations on cellular reprogramming and lineage plasticity in hematopoiesis. Tissues may adopt diverse strategies to establish specific transcriptional programs in daughter lineages. In intestinal crypts, enhancers for genes expressed in both major cell types appear broadly permissive in stem and specified progenitor cells. In blood, another self-renewing tissue, it is unclear when chromatin becomes permissive for transcription of genes expressed in distinct terminal lineages. Using chromatin immunoprecipitation (ChIP) combined with deep sequencing (ChIP-seq) to profile activating histone marks, we studied enhancer dynamics in primary mouse blood stem, progenitor, and specified cells. Stem and multipotent progenitor cells show scant H3K4me2 marking at enhancers bound by specific transcription factors in their committed progeny. Rather, enhancers are modulated dynamically and serially, with substantial loss and gain of H3K4me2, at each cellular transition. Quantitative analysis of these dynamics accurately modeled hematopoiesis according to Waddington’s notion of epigenotypes. Delineation of enhancers in terminal blood lineages coincides with cell specification, and enhancers active in single lineages show well-positioned H3K4me2- and H3K27ac-marked nucleosomes and DNaseI hypersensitivity in other cell types, revealing limited lineage fidelity. These findings demonstrate that enhancer chronology in blood cells differs markedly from that in intestinal crypts. Chromatin dynamics in hematopoiesis provide a useful foundation to consider classical observations such as cellular reprogramming and multilineage locus priming.
Collapse
Affiliation(s)
- Annouck Luyten
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Chongzhi Zang
- Department of Biostatistics and Computational Biology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts 02215, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts 02215, USA;
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
26
|
Chin MT. Reprogramming cell fate: a changing story. Front Cell Dev Biol 2014; 2:46. [PMID: 25364753 PMCID: PMC4206992 DOI: 10.3389/fcell.2014.00046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/11/2014] [Indexed: 01/14/2023] Open
Abstract
Direct reprogramming of adult, lineage-determined cells from one cell fate to another has long been an elusive goal in developmental biology. Recent studies have demonstrated that forced expression of lineage-specific transcription factors in various differentiated cell types can promote the adoption of different lineages. These seminal findings have the potential to revolutionize the field of regenerative medicine by providing replacement cells for various degenerative disorders. Current reprogramming protocols, however, are inefficient in that relatively few cells in a given population can be made to undergo reprogramming and the completeness and extent of reprogramming that occurs has been questioned. At present, the fundamental molecular mechanisms involved are still being elucidated. Although the potential clinical applications are extensive, these issues will need to be addressed before direct reprogramming may be used clinically. This review will give an overview of pioneering studies in the field, will describe what is known about direct reprogramming to specific lineage types, will summarize what is known about the molecular mechanisms involved in reprogramming and will discuss challenges for the future.
Collapse
Affiliation(s)
- Michael T Chin
- Division of Cardiology, Department of Medicine, University of Washington Seattle, WA, USA
| |
Collapse
|
27
|
Sive JI, Göttgens B. Transcriptional network control of normal and leukaemic haematopoiesis. Exp Cell Res 2014; 329:255-64. [PMID: 25014893 PMCID: PMC4261078 DOI: 10.1016/j.yexcr.2014.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 12/23/2022]
Abstract
Transcription factors (TFs) play a key role in determining the gene expression profiles of stem/progenitor cells, and defining their potential to differentiate into mature cell lineages. TF interactions within gene-regulatory networks are vital to these processes, and dysregulation of these networks by TF overexpression, deletion or abnormal gene fusions have been shown to cause malignancy. While investigation of these processes remains a challenge, advances in genome-wide technologies and growing interactions between laboratory and computational science are starting to produce increasingly accurate network models. The haematopoietic system provides an attractive experimental system to elucidate gene regulatory mechanisms, and allows experimental investigation of both normal and dysregulated networks. In this review we examine the principles of TF-controlled gene regulatory networks and the key experimental techniques used to investigate them. We look in detail at examples of how these approaches can be used to dissect out the regulatory mechanisms controlling normal haematopoiesis, as well as the dysregulated networks associated with haematological malignancies.
Collapse
Affiliation(s)
- Jonathan I Sive
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
Crespo I, Del Sol A. A general strategy for cellular reprogramming: the importance of transcription factor cross-repression. Stem Cells 2014; 31:2127-35. [PMID: 23873656 DOI: 10.1002/stem.1473] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/01/2013] [Accepted: 06/08/2013] [Indexed: 02/06/2023]
Abstract
Transcription factor cross-repression is an important concept in cellular differentiation. A bistable toggle switch constitutes a molecular mechanism that determines cellular commitment and provides stability to transcriptional programs of binary cell fate choices. Experiments support that perturbations of these toggle switches can interconvert these binary cell fate choices, suggesting potential reprogramming strategies. However, more complex types of cellular transitions could involve perturbations of combinations of different types of multistable motifs. Here, we introduce a method that generalizes the concept of transcription factor cross-repression to systematically predict sets of genes, whose perturbations induce cellular transitions between any given pair of cell types. Furthermore, to our knowledge, this is the first method that systematically makes these predictions without prior knowledge of potential candidate genes and pathways involved, providing guidance on systems where little is known. Given the increasing interest of cellular reprogramming in medicine and basic research, our method represents a useful computational methodology to assist researchers in the field in designing experimental strategies.
Collapse
Affiliation(s)
- Isaac Crespo
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-Belval, University of Luxembourg, L-1511, Luxembourg, Luxembourg
| | | |
Collapse
|
29
|
Wolff L, Humeniuk R. Concise review: erythroid versus myeloid lineage commitment: regulating the master regulators. Stem Cells 2014; 31:1237-44. [PMID: 23559316 DOI: 10.1002/stem.1379] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/18/2013] [Indexed: 12/26/2022]
Abstract
Developmental processes, like blood formation, are orchestrated by transcriptional networks. Those transcriptional networks are highly responsive to various environmental stimuli and affect common precursors resulting in increased production of cells of the erythroid lineage or myeloid lineage (granulocytes, neutrophils, and macrophages). A significant body of knowledge has accumulated describing transcription factors that drive differentiation of these two major cellular pathways, in particular the antagonistic master regulators such as GATA-1 and PU.1. However, little is known about factors that work upstream of master regulators to enhance differentiation toward one lineage. These functions become especially important under various stress conditions like sudden loss of red blood cells or pathogen infection. This review describes recent studies that begin to provide evidence for such factors. An increased understanding of factors regulating cellular commitment will advance our understanding of the etiology of diseases like anemia, cancer, and possibly other blood related disorders.
Collapse
Affiliation(s)
- Linda Wolff
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | |
Collapse
|
30
|
Bonzanni N, Garg A, Feenstra KA, Schütte J, Kinston S, Miranda-Saavedra D, Heringa J, Xenarios I, Göttgens B. Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model. Bioinformatics 2013; 29:i80-8. [PMID: 23813012 PMCID: PMC3694641 DOI: 10.1093/bioinformatics/btt243] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Motivation: Combinatorial interactions of transcription factors with cis-regulatory elements control the dynamic progression through successive cellular states and thus underpin all metazoan development. The construction of network models of cis-regulatory elements, therefore, has the potential to generate fundamental insights into cellular fate and differentiation. Haematopoiesis has long served as a model system to study mammalian differentiation, yet modelling based on experimentally informed cis-regulatory interactions has so far been restricted to pairs of interacting factors. Here, we have generated a Boolean network model based on detailed cis-regulatory functional data connecting 11 haematopoietic stem/progenitor cell (HSPC) regulator genes. Results: Despite its apparent simplicity, the model exhibits surprisingly complex behaviour that we charted using strongly connected components and shortest-path analysis in its Boolean state space. This analysis of our model predicts that HSPCs display heterogeneous expression patterns and possess many intermediate states that can act as ‘stepping stones’ for the HSPC to achieve a final differentiated state. Importantly, an external perturbation or ‘trigger’ is required to exit the stem cell state, with distinct triggers characterizing maturation into the various different lineages. By focusing on intermediate states occurring during erythrocyte differentiation, from our model we predicted a novel negative regulation of Fli1 by Gata1, which we confirmed experimentally thus validating our model. In conclusion, we demonstrate that an advanced mammalian regulatory network model based on experimentally validated cis-regulatory interactions has allowed us to make novel, experimentally testable hypotheses about transcriptional mechanisms that control differentiation of mammalian stem cells. Contact:j.heringa@vu.nl or ioannis.xenarios@isb-sib.ch or bg200@cam.ac.uk Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nicola Bonzanni
- IBIVU Centre for Integrative Bioinformatics, VU University Amsterdam, AIMMS Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, De Boelelaan 1081, NKI-AVL The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Maroz A, Stachorski L, Emmrich S, Reinhardt K, Xu J, Shao Z, Käbler S, Dertmann T, Hitzler J, Roberts I, Vyas P, Juban G, Hennig C, Hansen G, Li Z, Orkin S, Reinhardt D, Klusmann JH. GATA1s induces hyperproliferation of eosinophil precursors in Down syndrome transient leukemia. Leukemia 2013; 28:1259-70. [PMID: 24336126 PMCID: PMC4047213 DOI: 10.1038/leu.2013.373] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023]
Abstract
Transient leukemia (TL) is evident in 5–10% of all neonates with Down syndrome (DS) and associated with N-terminal truncating GATA1-mutations (GATA1s). Here we report that TL cell clones generate abundant eosinophils in a substantial fraction of patients. Sorted eosinophils from patients with TL and eosinophilia carried the same GATA1s-mutation as sorted TL-blasts, consistent with their clonal origin. TL-blasts exhibited a genetic program characteristic of eosinophils and differentiated along the eosinophil lineage in vitro. Similarly, ectopic expression of Gata1s, but not Gata1, in wild-type CD34+-hematopoietic stem and progenitor cells induced hyperproliferation of eosinophil promyelocytes in vitro. While GATA1s retained the function of GATA1 to induce eosinophil genes by occupying their promoter regions, GATA1s was impaired in its ability to repress oncogenic MYC and the pro-proliferative E2F transcription network. ChIP-seq indicated reduced GATA1s occupancy at the MYC promoter. Knockdown of MYC, or the obligate E2F-cooperation partner DP1, rescued the GATA1s-induced hyperproliferative phenotype. In agreement, terminal eosinophil maturation was blocked in Gata1Δe2 knockin mice, exclusively expressing Gata1s, leading to accumulation of eosinophil precursors in blood and bone marrow. These data suggest a direct relationship between the N-terminal truncating mutations of GATA1 and clonal eosinophilia in DS patients.
Collapse
Affiliation(s)
- A Maroz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - L Stachorski
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - S Emmrich
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - K Reinhardt
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - J Xu
- 1] Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA [2] Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA [3] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Z Shao
- 1] Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA [2] Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA [3] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Käbler
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - T Dertmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - J Hitzler
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - I Roberts
- Oxford University Department of Paediatrics, Childrens Hospital and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, UK
| | - P Vyas
- 1] MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK [2] Department of Haematology, Oxford University Hospital, NHS Trust, Oxford, UK
| | - G Juban
- 1] MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK [2] Department of Haematology, Oxford University Hospital, NHS Trust, Oxford, UK
| | - C Hennig
- Department of Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - G Hansen
- Department of Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - Z Li
- Division of Genetics, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Orkin
- 1] Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA [2] Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA [3] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Reinhardt
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - J-H Klusmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Copley MR, Eaves CJ. Developmental changes in hematopoietic stem cell properties. Exp Mol Med 2013; 45:e55. [PMID: 24232254 PMCID: PMC3849580 DOI: 10.1038/emm.2013.98] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 01/18/2023] Open
Abstract
Hematopoietic stem cells (HSCs) comprise a rare population of cells that can regenerate and maintain lifelong blood cell production. This functionality is achieved through their ability to undergo many divisions without activating a poised, but latent, capacity for differentiation into multiple blood cell types. Throughout life, HSCs undergo sequential changes in several key properties. These affect mechanisms that regulate the self-renewal, turnover and differentiation of HSCs as well as the properties of the committed progenitors and terminally differentiated cells derived from them. Recent findings point to the Lin28b-let-7 pathway as a master regulator of many of these changes with important implications for the clinical use of HSCs for marrow rescue and gene therapy, as well as furthering our understanding of the different pathogenesis of childhood and adult-onset leukemia.
Collapse
|
33
|
Ouboussad L, Kreuz S, Lefevre PF. CTCF depletion alters chromatin structure and transcription of myeloid-specific factors. J Mol Cell Biol 2013; 5:308-22. [PMID: 23933634 DOI: 10.1093/jmcb/mjt023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Differentiation is a multistep process tightly regulated and controlled by complex transcription factor networks. Here, we show that the rate of differentiation of common myeloid precursor cells increases after depletion of CTCF, a protein emerging as a potential key factor regulating higher-order chromatin structure. We identified CTCF binding in the vicinity of important transcription factors regulating myeloid differentiation and showed that CTCF depletion impacts on the expression of these genes in concordance with the observed acceleration of the myeloid commitment. Furthermore, we observed a loss of the histone variant H2A.Z within the selected promoter regions and an increase in non-coding RNA transcription upstream of these genes. Both abnormalities suggest a global chromatin structure destabilization and an associated increase of non-productive transcription in response to CTCF depletion but do not drive the CTCF-mediated transcription alterations of the neighbouring genes. Finally, we detected a transient eviction of CTCF at the Egr1 locus in correlation with Egr1 peak of expression in response to lipopolysaccharide (LPS) treatment in macrophages. This eviction is also correlated with the expression of an antisense non-coding RNA transcribing through the CTCF-binding region indicating that non-coding RNA transcription could be the cause and the consequence of CTCF eviction.
Collapse
Affiliation(s)
- Lylia Ouboussad
- Section of Experimental Haematology, Leeds Institute of Cancer Studies and Pathology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
34
|
Abstract
Heart disease is a major cause of morbidity and mortality worldwide. The low regenerative capacity of adult human hearts has thus far limited the available therapeutic approaches for heart failure. Therefore, new therapies that can regenerate damaged myocardium and improve heart function are urgently needed. Although cell transplantation-based therapies may hold great potential, direct reprogramming of endogenous cardiac fibroblasts, which represent more than half of the cells in the heart, into functional cardiomyocytes in situ may be an alternative strategy by which to regenerate the heart. We and others demonstrated that functional cardiomyocytes can be directly generated from fibroblasts by using several combinations of cardiac-enriched factors in mouse and human. In vivo gene delivery of cardiac reprogramming factors generates new cardiac muscle and improved heart function after myocardial infarction in mouse. This article reviews recent progress in cardiac reprogramming research and discusses the perspectives and challenges of this new technology for future regenerative therapy.
Collapse
Affiliation(s)
- Naoto Muraoka
- Department of Clinical and Molecular Cardiovascular Research
| | | |
Collapse
|
35
|
Teles J, Pina C, Edén P, Ohlsson M, Enver T, Peterson C. Transcriptional regulation of lineage commitment--a stochastic model of cell fate decisions. PLoS Comput Biol 2013; 9:e1003197. [PMID: 23990771 PMCID: PMC3749951 DOI: 10.1371/journal.pcbi.1003197] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
Molecular mechanisms employed by individual multipotent cells at the point of lineage commitment remain largely uncharacterized. Current paradigms span from instructive to noise-driven mechanisms. Of considerable interest is also whether commitment involves a limited set of genes or the entire transcriptional program, and to what extent gene expression configures multiple trajectories into commitment. Importantly, the transient nature of the commitment transition confounds the experimental capture of committing cells. We develop a computational framework that simulates stochastic commitment events, and affords mechanistic exploration of the fate transition. We use a combined modeling approach guided by gene expression classifier methods that infers a time-series of stochastic commitment events from experimental growth characteristics and gene expression profiling of individual hematopoietic cells captured immediately before and after commitment. We define putative regulators of commitment and probabilistic rules of transition through machine learning methods, and employ clustering and correlation analyses to interrogate gene regulatory interactions in multipotent cells. Against this background, we develop a Monte Carlo time-series stochastic model of transcription where the parameters governing promoter status, mRNA production and mRNA decay in multipotent cells are fitted to experimental static gene expression distributions. Monte Carlo time is converted to physical time using cell culture kinetic data. Probability of commitment in time is a function of gene expression as defined by a logistic regression model obtained from experimental single-cell expression data. Our approach should be applicable to similar differentiating systems where single cell data is available. Within our system, we identify robust model solutions for the multipotent population within physiologically reasonable values and explore model predictions with regard to molecular scenarios of entry into commitment. The model suggests distinct dependencies of different commitment-associated genes on mRNA dynamics and promoter activity, which globally influence the probability of lineage commitment.
Collapse
Affiliation(s)
- Jose Teles
- Computational Biology & Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Cristina Pina
- Stem Cell Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Patrik Edén
- Computational Biology & Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Mattias Ohlsson
- Computational Biology & Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Tariq Enver
- Stem Cell Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Carsten Peterson
- Computational Biology & Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| |
Collapse
|
36
|
Papadopoulos GL, Karkoulia E, Tsamardinos I, Porcher C, Ragoussis J, Bungert J, Strouboulis J. GATA-1 genome-wide occupancy associates with distinct epigenetic profiles in mouse fetal liver erythropoiesis. Nucleic Acids Res 2013; 41:4938-48. [PMID: 23519611 PMCID: PMC3643580 DOI: 10.1093/nar/gkt167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We report the genomic occupancy profiles of the key hematopoietic transcription factor GATA-1 in pro-erythroblasts and mature erythroid cells fractionated from day E12.5 mouse fetal liver cells. Integration of GATA-1 occupancy profiles with available genome-wide transcription factor and epigenetic profiles assayed in fetal liver cells enabled as to evaluate GATA-1 involvement in modulating local chromatin structure of target genes during erythroid differentiation. Our results suggest that GATA-1 associates preferentially with changes of specific epigenetic modifications, such as H4K16, H3K27 acetylation and H3K4 di-methylation. Furthermore, we used random forest (RF) non-linear regression to predict changes in the expression levels of GATA-1 target genes based on the genomic features available for pro-erythroblasts and mature fetal liver-derived erythroid cells. Remarkably, our prediction model explained a high proportion of 62% of variation in gene expression. Hierarchical clustering of the proximity values calculated by the RF model produced a clear separation of upregulated versus downregulated genes and a further separation of downregulated genes in two distinct groups. Thus, our study of GATA-1 genome-wide occupancy profiles in mouse primary erythroid cells and their integration with global epigenetic marks reveals three clusters of GATA-1 gene targets that are associated with specific epigenetic signatures and functional characteristics.
Collapse
Affiliation(s)
- Giorgio L Papadopoulos
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari GR16672, Greece
| | | | | | | | | | | | | |
Collapse
|
37
|
Ladewig J, Koch P, Brüstle O. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nat Rev Mol Cell Biol 2013; 14:225-36. [PMID: 23486282 DOI: 10.1038/nrm3543] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For decades, Waddington's concept of the 'epigenetic landscape' has served as an educative hierarchical model to illustrate the progressive restriction of cell differentiation potential during normal development. While still being highly valuable in the context of normal development, the Waddington model falls short of accommodating recent breakthroughs in cell programming. The advent of induced pluripotent stem (iPS) cells and advances in direct cell fate conversion (also known as transdifferentiation) suggest that somatic and pluripotent cell fates can be interconverted without transiting through distinct hierarchies. We propose a non-hierarchical 'epigenetic disc' model to explain such cell fate transitions, which provides an alternative landscape for modelling cell programming and reprogramming.
Collapse
Affiliation(s)
- Julia Ladewig
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, Sigmund Freud Straße 25, 53127 Bonn, Germany
| | | | | |
Collapse
|
38
|
Morris SA, Daley GQ. A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res 2013; 23:33-48. [PMID: 23277278 DOI: 10.1038/cr.2013.1] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human diseases such as heart failure, diabetes, neurodegenerative disorders, and many others result from the deficiency or dysfunction of critical cell types. Strategies for therapeutic tissue repair or regeneration require the in vitro manufacture of clinically relevant quantities of defined cell types. In addition to transplantation therapy, the generation of otherwise inaccessible cells also permits disease modeling, toxicology testing and drug discovery in vitro. In this review, we discuss current strategies to manipulate the identity of abundant and accessible cells by differentiation from an induced pluripotent state or direct conversion between differentiated states. We contrast these approaches with recent advances employing partial reprogramming to facilitate lineage switching, and discuss the mechanisms underlying the engineering of cell fate. Finally, we address the current limitations of the field and how the resulting cell types can be assessed to ensure the production of medically relevant populations.
Collapse
Affiliation(s)
- Samantha A Morris
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
39
|
Ieda M. Direct cardiac reprogramming by defined factors. Inflamm Regen 2013. [DOI: 10.2492/inflammregen.33.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
40
|
|
41
|
Abstract
Enormous numbers of adult blood cells are constantly regenerated throughout life from hematopoietic stem cells through a series of progenitor stages. Accessibility, robust functional assays, well-established prospective isolation, and successful clinical application made hematopoiesis the classical mammalian stem cell system. Most of the basic concepts of stem cell biology have been defined in this system. At the same time, many long-standing disputes in hematopoiesis research illustrate our still limited understanding. Here we discuss the embryonic development and lifelong maintenance of the hematopoietic system, its cellular components, and some of the hypotheses about the molecular mechanisms involved in controlling hematopoietic cell fates.
Collapse
Affiliation(s)
- Michael A Rieger
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt (Main), Germany
| | | |
Collapse
|
42
|
Direct reprogramming of mouse fibroblasts into cardiac myocytes. J Cardiovasc Transl Res 2012; 6:37-45. [PMID: 23054660 DOI: 10.1007/s12265-012-9412-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/20/2012] [Indexed: 12/13/2022]
Abstract
The potency of specific transcription factors as cell fate determinants was first demonstrated by the discovery of MyoD, a master gene for skeletal muscle transdifferentiation. More recently, the induction of pluripotency in somatic cells using a combination of stem cell-specific transcription factors has been reported. That elegant study altered the approach to regenerative medicine and inspired new strategies for generating specific cell types by introducing combinations of lineage-specific transcription factors. A diverse range of cell types, such as pancreatic β-cells, neurons, chondrocytes, and hepatocytes, can be induced from heterologous cells using lineage-specific reprogramming factors. Furthermore, functional cardiomyocytes can be generated directly from differentiated somatic cells using several combinations of cardiac-enriched defined factors in the mouse. The present article reviews the pioneering and recent studies in cellular reprogramming and discusses the perspectives and challenges of direct cardiac reprogramming in regenerative therapy.
Collapse
|
43
|
Sindhu C, Samavarchi-Tehrani P, Meissner A. Transcription factor-mediated epigenetic reprogramming. J Biol Chem 2012; 287:30922-31. [PMID: 22952239 DOI: 10.1074/jbc.r111.319046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Input from various signaling pathways in conjunction with specific transcription factors (TFs), noncoding RNAs, and epigenetic modifiers governs the maintenance of cellular identity. Endogenous or exogenous TFs operate within certain boundaries, which are set, in part, by the cell type-specific epigenetic landscape. Ectopic expression of selected TFs can override the cellular identity and induce reprogramming to alternative fates. In this minireview, we summarize many of the classic examples and a large number of recent studies that have taken advantage of TF-mediated reprogramming to produce cell types of biomedical relevance.
Collapse
Affiliation(s)
- Camille Sindhu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
44
|
Abstract
Transcription factor-induced reprogramming of specialized cells into other cell types and to pluripotency has revolutionized our thinking about cell plasticity, differentiation, and stem cells. The recent advances in this area were enabled by the confluence of a number of experimental breakthroughs that took place over the past 60 years. In this article, I give a historical and personal perspective of the events that set the stage for our current understanding of cellular reprogramming.
Collapse
Affiliation(s)
- Thomas Graf
- ICREA Professor, Center for Genomic Regulation and Pompeu Fabra University, 08003 Barcelona, Spain.
| |
Collapse
|
45
|
Park MR, Hwang KC, Bui HT, Cho SG, Park C, Song H, Oh JW, Kim JH. Altered gene expression profiles in mouse tetraploid blastocysts. J Reprod Dev 2012; 58:344-52. [PMID: 22362217 DOI: 10.1262/jrd.11-110m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, it was demonstrated that tetraploid-derived blastocyst embryos had very few Oct4-positive cells at the mid-blastocyst stage and that the inner cell mass at biomarkers Oct4, Sox2 and Klf4 was expressed at less than 10% of the level observed in diploid blastocysts. In contrast, trophectoderm-related gene transcripts showed an approximately 10 to 40% increase. Of 32,996 individual mouse genes evaluated by microarray, 50 genes were differentially expressed between tetraploid or diploid and parthenote embryos at the blastocyst stage (P<0.05). Of these 50 genes, 28 were more highly expressed in tetraploid-derived blastocysts, whereas 22 were more highly downregulated. However, some genes involved in receptor activity, cell adhesion molecule, calcium ion binding, protein biosynthesis, redox processes, transport, and transcription showed a significant decrease or increase in gene expression in the tetraploid-derived blastocyst embryos. Thus, microarray analysis can be used as a tool to screen for underlying defects responsible for the development of tetraploid-derived embryos.
Collapse
Affiliation(s)
- Mi-Ryung Park
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Inferring rules of lineage commitment in haematopoiesis. Nat Cell Biol 2012; 14:287-94. [PMID: 22344032 DOI: 10.1038/ncb2442] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/12/2012] [Indexed: 12/15/2022]
Abstract
How the molecular programs of differentiated cells develop as cells transit from multipotency through lineage commitment remains unexplored. This reflects the inability to access cells undergoing commitment or located in the immediate vicinity of commitment boundaries. It remains unclear whether commitment constitutes a gradual process, or else represents a discrete transition. Analyses of in vitro self-renewing multipotent systems have revealed cellular heterogeneity with individual cells transiently exhibiting distinct biases for lineage commitment. Such systems can be used to molecularly interrogate early stages of lineage affiliation and infer rules of lineage commitment. In haematopoiesis, population-based studies have indicated that lineage choice is governed by global transcriptional noise, with self-renewing multipotent cells reversibly activating transcriptome-wide lineage-affiliated programs. We examine this hypothesis through functional and molecular analysis of individual blood cells captured from self-renewal cultures, during cytokine-driven differentiation and from primary stem and progenitor bone marrow compartments. We show dissociation between self-renewal potential and transcriptome-wide activation of lineage programs, and instead suggest that multipotent cells experience independent activation of individual regulators resulting in a low probability of transition to the committed state.
Collapse
|
47
|
Schütte J, Moignard V, Göttgens B. Establishing the stem cell state: insights from regulatory network analysis of blood stem cell development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:285-95. [PMID: 22334489 DOI: 10.1002/wsbm.1163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transcription factors (TFs) have long been recognized as powerful regulators of cell-type identity and differentiation. As TFs function as constituents of regulatory networks, identification and functional characterization of key interactions within these wider networks will be required to understand how TFs exert their powerful biological functions. The formation of blood cells (hematopoiesis) represents a widely used model system for the study of cellular differentiation. Moreover, specific TFs or groups of TFs have been identified to control the various cell fate choices that must be made when blood stem cells differentiate into more than a dozen distinct mature blood lineages. Because of the relative ease of accessibility, the hematopoietic system represents an attractive experimental system for the development of regulatory network models. Here, we review the modeling efforts carried out to date, which have already provided new insights into the molecular control of blood cell development. We also explore potential areas of future study such as the need for new high-throughput technologies and a focus on studying dynamic cellular systems. Many leukemias arise as the result of mutations that cause transcriptional dysregulation, thus suggesting that a better understanding of transcriptional control mechanisms in hematopoiesis is of substantial biomedical relevance. Moreover, lessons learned from regulatory network analysis in the hematopoietic system are likely to inform research on less experimentally tractable tissues.
Collapse
Affiliation(s)
- Judith Schütte
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
48
|
Abstract
Classic experiments such as somatic cell nuclear transfer into oocytes and cell fusion demonstrated that differentiated cells are not irreversibly committed to their fate. More recent work has built on these conclusions and discovered defined factors that directly induce one specific cell type from another, which may be as distantly related as cells from different germ layers. This suggests the possibility that any specific cell type may be directly converted into any other if the appropriate reprogramming factors are known. Direct lineage conversion could provide important new sources of human cells for modeling disease processes or for cellular-replacement therapies. For future applications, it will be critical to carefully determine the fidelity of reprogramming and to develop methods for robustly and efficiently generating human cell types of interest.
Collapse
Affiliation(s)
- Thomas Vierbuchen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
49
|
Abstract
Heterogeneity is an omnipresent feature of mammalian cells in vitro and in vivo. It has been recently realized that even mouse and human embryonic stem cells under the best culture conditions are heterogeneous containing pluripotent as well as partially committed cells. Somatic stem cells in adult organs are also heterogeneous, containing many subpopulations of self-renewing cells with distinct regenerative capacity. The differentiated progeny of adult stem cells also retain significant developmental plasticity that can be induced by a wide variety of experimental approaches. Like normal stem cells, recent data suggest that cancer stem cells (CSCs) similarly display significant phenotypic and functional heterogeneity, and that the CSC progeny can manifest diverse plasticity. Here, I discuss CSC heterogeneity and plasticity in the context of tumor development and progression, and by comparing with normal stem cell development. Appreciation of cancer cell plasticity entails a revision to the earlier concept that only the tumorigenic subset in the tumor needs to be targeted. By understanding the interrelationship between CSCs and their differentiated progeny, we can hope to develop better therapeutic regimens that can prevent the emergence of tumor cell variants that are able to found a new tumor and distant metastases.
Collapse
|
50
|
Strasser M, Theis FJ, Marr C. Stability and multiattractor dynamics of a toggle switch based on a two-stage model of stochastic gene expression. Biophys J 2012; 102:19-29. [PMID: 22225794 DOI: 10.1016/j.bpj.2011.11.4000] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/14/2011] [Accepted: 11/22/2011] [Indexed: 11/30/2022] Open
Abstract
A toggle switch consists of two genes that mutually repress each other. This regulatory motif is active during cell differentiation and is thought to act as a memory device, being able to choose and maintain cell fate decisions. Commonly, this switch has been modeled in a deterministic framework where transcription and translation are lumped together. In this description, bistability occurs for transcription factor cooperativity, whereas autoactivation leads to a tristable system with an additional undecided state. In this contribution, we study the stability and dynamics of a two-stage gene expression switch within a probabilistic framework inspired by the properties of the Pu/Gata toggle switch in myeloid progenitor cells. We focus on low mRNA numbers, high protein abundance, and monomeric transcription-factor binding. Contrary to the expectation from a deterministic description, this switch shows complex multiattractor dynamics without autoactivation and cooperativity. Most importantly, the four attractors of the system, which only emerge in a probabilistic two-stage description, can be identified with committed and primed states in cell differentiation. To begin, we study the dynamics of the system and infer the mechanisms that move the system between attractors using both the quasipotential and the probability flux of the system. Next, we show that the residence times of the system in one of the committed attractors are geometrically distributed. We derive an analytical expression for the parameter of the geometric distribution, therefore completely describing the statistics of the switching process and elucidate the influence of the system parameters on the residence time. Moreover, we find that the mean residence time increases linearly with the mean protein level. This scaling also holds for a one-stage scenario and for autoactivation. Finally, we study the implications of this distribution for the stability of a switch and discuss the influence of the stability on a specific cell differentiation mechanism. Our model explains lineage priming and proposes the need of either high protein numbers or long-term modifications such as chromatin remodeling to achieve stable cell fate decisions. Notably, we present a system with high protein abundance that nevertheless requires a probabilistic description to exhibit multistability, complex switching dynamics, and lineage priming.
Collapse
Affiliation(s)
- Michael Strasser
- Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | | |
Collapse
|