1
|
Li Y, Zhang Y, Wang M, Su J, Dong X, Yang Y, Wang H, Li Q. The mammalian actin elongation factor ENAH/MENA contributes to autophagosome formation via its actin regulatory function. Autophagy 2024; 20:1798-1814. [PMID: 38705725 PMCID: PMC11262208 DOI: 10.1080/15548627.2024.2347105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Macroautophagy/autophagy is a catabolic process crucial for degrading cytosolic components and damaged organelles to maintain cellular homeostasis, enabling cells to survive in extreme extracellular environments. ENAH/MENA, a member of the Ena/VASP protein family, functions as a highly efficient actin elongation factor. In this study, our objective was to explore the role of ENAH in the autophagy process. Initially, we demonstrated that depleting ENAH in cancer cells inhibits autophagosome formation. Subsequently, we observed ENAH's colocalization with MAP1LC3/LC3 during tumor cell starvation, dependent on actin cytoskeleton polymerization and the interaction between ENAH and BECN1 (beclin 1). Additionally, mammalian ATG9A formed a ring-like structure around ENAH-LC3 puncta during starvation, relying on actin cytoskeleton polymerization. Furthermore, ENAH's EVH1 and EVH2 domains were found to be indispensable for its colocalization with LC3 and BECN1, while the PRD domain played a crucial role in the formation of the ATG9A ring. Finally, our study revealed ENAH-led actin comet tails in autophagosome trafficking. In conclusion, our findings provide initial insights into the regulatory role of the mammalian actin elongation factor ENAH in autophagy.Abbreviations: 3-MA 3-methyladenine; ABPs actin-binding proteins; ATG autophagy related; ATG9A autophagy related 9A; Baf A1 bafilomycin A1; CM complete medium; CytERM endoplasmic reticulum signal-anchor membrane protein; Cyto D cytochalasin D; EBSS Earl's balanced salt solution; ENAH/MENA ENAH actin regulator; EVH1 Ena/VASP homology 1 domain; EVH2 Ena/VASP homology 2 domain; GAPDH glyceraldehyde-3-phosphate dehydrogenase; Lat B latrunculin B; LC3-I unlipidated form of LC3; LC3-II phosphatidylethanolamine-conjugated form of LC3; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; mEGFP monomeric enhanced green fluorescent protein; mTagBFP2 monomeric Tag blue fluorescent protein 2; OSER organized smooth endoplasmic reticulum; PRD proline-rich domain; PtdIns3K class III phosphatidylinositol 3-kinase; WM wortmannin.
Collapse
Affiliation(s)
- Yueheng Li
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yafei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui province, China
| | - Menghui Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Junhui Su
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinjue Dong
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuqi Yang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongshan Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - QingQuan Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui province, China
| |
Collapse
|
2
|
Nowak J, Lenartowski R, Kalita K, Lehka L, Karatsai O, Lenartowska M, Rędowicz MJ. Myosin VI in the nucleolus of neurosecretory PC12 cells: its involvement in the maintenance of nucleolar structure and ribosome organization. Front Physiol 2024; 15:1368416. [PMID: 38774650 PMCID: PMC11106421 DOI: 10.3389/fphys.2024.1368416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
We have previously shown that unconventional myosin VI (MVI), a unique actin-based motor protein, shuttles between the cytoplasm and nucleus in neurosecretory PC12 cells in a stimulation-dependent manner and interacts with numerous proteins involved in nuclear processes. Among the identified potential MVI partners was nucleolin, a major nucleolar protein implicated in rRNA processing and ribosome assembly. Several other nucleolar proteins such as fibrillarin, UBF (upstream binding factor), and B23 (also termed nucleophosmin) have been shown to interact with MVI. A bioinformatics tool predicted the presence of the nucleolar localization signal (NoLS) within the MVI globular tail domain, and immunostaining confirmed the presence of MVI within the nucleolus. Depletion of MVI, previously shown to impair PC12 cell proliferation and motility, caused disorganization of the nucleolus and rough endoplasmic reticulum (rER). However, lack of MVI does not affect nucleolar transcription. In light of these data, we propose that MVI is important for nucleolar and ribosome maintenance but not for RNA polymerase 1-related transcription.
Collapse
Affiliation(s)
- Jolanta Nowak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Lenartowski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders—BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Lilya Lehka
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Lenartowska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Behbehani R, Johnson C, Holmes AJ, Gratian MJ, Mulvihill DP, Buss F. The two C. elegans class VI myosins, SPE-15/HUM-3 and HUM-8, share similar motor properties, but have distinct developmental and tissue expression patterns. Front Physiol 2024; 15:1368054. [PMID: 38660538 PMCID: PMC11040104 DOI: 10.3389/fphys.2024.1368054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Myosins of class VI move toward the minus-end of actin filaments and play vital roles in cellular processes such as endocytosis, autophagy, protein secretion, and the regulation of actin filament dynamics. In contrast to the majority of metazoan organisms examined to date which contain a single MYO6 gene, C. elegans, possesses two MYO6 homologues, SPE-15/HUM-3 and HUM-8. Through a combination of in vitro biochemical/biophysical analysis and cellular assays, we confirmed that both SPE-15/HUM-3 and HUM-8 exhibit reverse directionality, velocities, and ATPase activity similar to human MYO6. Our characterization also revealed that unlike SPE-15/HUM-3, HUM-8 is expressed as two distinct splice isoforms, one with an additional unique 14 amino acid insert in the cargo-binding domain. While lipid and adaptor binding sites are conserved in SPE-15/HUM-3 and HUM-8, this conservation does not enable recruitment to endosomes in mammalian cells. Finally, we performed super-resolution confocal imaging on transgenic worms expressing either mNeonGreen SPE-15/HUM-3 or wrmScarlet HUM-8. Our results show a clear distinction in tissue distribution between SPE-15/HUM-3 and HUM-8. While SPE-15/HUM-3 exhibited specific expression in the gonads and neuronal tissue in the head, HUM-8 was exclusively localized in the intestinal epithelium. Overall, these findings align with the established tissue distributions and localizations of human MYO6.
Collapse
Affiliation(s)
- Ranya Behbehani
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Chloe Johnson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Alexander J. Holmes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Matthew J. Gratian
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Nambiar A, Manjithaya R. Driving autophagy - the role of molecular motors. J Cell Sci 2024; 137:jcs260481. [PMID: 38329417 DOI: 10.1242/jcs.260481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Most of the vesicular transport pathways inside the cell are facilitated by molecular motors that move along cytoskeletal networks. Autophagy is a well-explored catabolic pathway that is initiated by the formation of an isolation membrane known as the phagophore, which expands to form a double-membraned structure that captures its cargo and eventually moves towards the lysosomes for fusion. Molecular motors and cytoskeletal elements have been suggested to participate at different stages of the process as the autophagic vesicles move along cytoskeletal tracks. Dynein and kinesins govern autophagosome trafficking on microtubules through the sequential recruitment of their effector proteins, post-translational modifications and interactions with LC3-interacting regions (LIRs). In contrast, myosins are actin-based motors that participate in various stages of the autophagic flux, as well as in selective autophagy pathways. However, several outstanding questions remain with regard to how the dominance of a particular motor protein over another is controlled, and to the molecular mechanisms that underlie specific disease variants in motor proteins. In this Review, we aim to provide an overview of the role of molecular motors in autophagic flux, as well as highlight their dysregulation in diseases, such as neurodegenerative disorders and pathogenic infections, and ageing.
Collapse
Affiliation(s)
- Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
5
|
Johnson CA, Behbehani R, Buss F. Unconventional Myosins from Caenorhabditis elegans as a Probe to Study Human Orthologues. Biomolecules 2022; 12:biom12121889. [PMID: 36551317 PMCID: PMC9775386 DOI: 10.3390/biom12121889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Unconventional myosins are a superfamily of actin-based motor proteins that perform a number of roles in fundamental cellular processes, including (but not limited to) intracellular trafficking, cell motility, endocytosis, exocytosis and cytokinesis. 40 myosins genes have been identified in humans, which belong to different 12 classes based on their domain structure and organisation. These genes are widely expressed in different tissues, and mutations leading to loss of function are associated with a wide variety of pathologies while over-expression often results in cancer. Caenorhabditis elegans (C. elegans) is a small, free-living, non-parasitic nematode. ~38% of the genome of C. elegans has predicted orthologues in the human genome, making it a valuable tool to study the function of human counterparts and human diseases. To date, 8 unconventional myosin genes have been identified in the nematode, from 6 different classes with high homology to human paralogues. The hum-1 and hum-5 (heavy chain of an unconventional myosin) genes encode myosin of class I, hum-2 of class V, hum-3 and hum-8 of class VI, hum-6 of class VII and hum-7 of class IX. The hum-4 gene encodes a high molecular mass myosin (307 kDa) that is one of the most highly divergent myosins and is a member of class XII. Mutations in many of the human orthologues are lethal, indicating their essential properties. However, a functional characterisation for many of these genes in C. elegans has not yet been performed. This article reviews the current knowledge of unconventional myosin genes in C. elegans and explores the potential use of the nematode to study the function and regulation of myosin motors to provide valuable insights into their role in diseases.
Collapse
|
6
|
Pillon M, Doublet P. Myosins, an Underestimated Player in the Infectious Cycle of Pathogenic Bacteria. Int J Mol Sci 2021; 22:ijms22020615. [PMID: 33435466 PMCID: PMC7826972 DOI: 10.3390/ijms22020615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Myosins play a key role in many cellular processes such as cell migration, adhesion, intracellular trafficking and internalization processes, making them ideal targets for bacteria. Through selected examples, such as enteropathogenic E. coli (EPEC), Neisseria, Salmonella, Shigella, Listeria or Chlamydia, this review aims to illustrate how bacteria target and hijack host cell myosins in order to adhere to the cell, to enter the cell by triggering their internalization, to evade from the cytosolic autonomous cell defense, to promote the biogenesis of intracellular replicative niche, to disseminate in tissues by cell-to-cell spreading, to exit out the host cell, and also to evade from macrophage phagocytosis. It highlights the diversity and sophistication of the strategy evolved by bacteria to manipulate one of their privileged targets, the actin cytoskeleton.
Collapse
Affiliation(s)
- Margaux Pillon
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, Université de Lyon, 69007 Lyon, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, 69007 Lyon, France
- Centre National de la Recherche Scientifique, UMR5308, 69007 Lyon, France
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, Université de Lyon, 69007 Lyon, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, 69007 Lyon, France
- Centre National de la Recherche Scientifique, UMR5308, 69007 Lyon, France
- Correspondence:
| |
Collapse
|
7
|
Zakrzewski P, Lenartowska M, Buss F. Diverse functions of myosin VI in spermiogenesis. Histochem Cell Biol 2021; 155:323-340. [PMID: 33386429 PMCID: PMC8021524 DOI: 10.1007/s00418-020-01954-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Spermiogenesis is the final stage of spermatogenesis, a differentiation process during which unpolarized spermatids undergo excessive remodeling that results in the formation of sperm. The actin cytoskeleton and associated actin-binding proteins play crucial roles during this process regulating organelle or vesicle delivery/segregation and forming unique testicular structures involved in spermatid remodeling. In addition, several myosin motor proteins including MYO6 generate force and movement during sperm differentiation. MYO6 is highly unusual as it moves towards the minus end of actin filaments in the opposite direction to other myosin motors. This specialized feature of MYO6 may explain the many proposed functions of this myosin in a wide array of cellular processes in animal cells, including endocytosis, secretion, stabilization of the Golgi complex, and regulation of actin dynamics. These diverse roles of MYO6 are mediated by a range of specialized cargo-adaptor proteins that link this myosin to distinct cellular compartments and processes. During sperm development in a number of different organisms, MYO6 carries out pivotal functions. In Drosophila, the MYO6 ortholog regulates actin reorganization during spermatid individualization and male KO flies are sterile. In C. elegans, the MYO6 ortholog mediates asymmetric segregation of cytosolic material and spermatid budding through cytokinesis, whereas in mice, this myosin regulates assembly of highly specialized actin-rich structures and formation of membrane compartments to allow the formation of fully differentiated sperm. In this review, we will present an overview and compare the diverse function of MYO6 in the specialized adaptations of spermiogenesis in flies, worms, and mammals.
Collapse
Affiliation(s)
- Przemysław Zakrzewski
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Torun, Poland.,Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Marta Lenartowska
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Torun, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Torun, Poland
| | - Folma Buss
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
8
|
Pleuger C, Lehti MS, Dunleavy JE, Fietz D, O'Bryan MK. Haploid male germ cells-the Grand Central Station of protein transport. Hum Reprod Update 2020; 26:474-500. [PMID: 32318721 DOI: 10.1093/humupd/dmaa004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The precise movement of proteins and vesicles is an essential ability for all eukaryotic cells. Nowhere is this more evident than during the remarkable transformation that occurs in spermiogenesis-the transformation of haploid round spermatids into sperm. These transformations are critically dependent upon both the microtubule and the actin cytoskeleton, and defects in these processes are thought to underpin a significant percentage of human male infertility. OBJECTIVE AND RATIONALE This review is aimed at summarising and synthesising the current state of knowledge around protein/vesicle transport during haploid male germ cell development and identifying knowledge gaps and challenges for future research. To achieve this, we summarise the key discoveries related to protein transport using the mouse as a model system. Where relevant, we anchored these insights to knowledge in the field of human spermiogenesis and the causality of human male infertility. SEARCH METHODS Relevant studies published in English were identified using PubMed using a range of search terms related to the core focus of the review-protein/vesicle transport, intra-flagellar transport, intra-manchette transport, Golgi, acrosome, manchette, axoneme, outer dense fibres and fibrous sheath. Searches were not restricted to a particular time frame or species although the emphasis within the review is on mammalian spermiogenesis. OUTCOMES Spermiogenesis is the final phase of sperm development. It results in the transformation of a round cell into a highly polarised sperm with the capacity for fertility. It is critically dependent on the cytoskeleton and its ability to transport protein complexes and vesicles over long distances and often between distinct cytoplasmic compartments. The development of the acrosome covering the sperm head, the sperm tail within the ciliary lobe, the manchette and its role in sperm head shaping and protein transport into the tail, and the assembly of mitochondria into the mid-piece of sperm, may all be viewed as a series of overlapping and interconnected train tracks. Defects in this redistribution network lead to male infertility characterised by abnormal sperm morphology (teratozoospermia) and/or abnormal sperm motility (asthenozoospermia) and are likely to be causal of, or contribute to, a significant percentage of human male infertility. WIDER IMPLICATIONS A greater understanding of the mechanisms of protein transport in spermiogenesis offers the potential to precisely diagnose cases of male infertility and to forecast implications for children conceived using gametes containing these mutations. The manipulation of these processes will offer opportunities for male-based contraceptive development. Further, as increasingly evidenced in the literature, we believe that the continuous and spatiotemporally restrained nature of spermiogenesis provides an outstanding model system to identify, and de-code, cytoskeletal elements and transport mechanisms of relevance to multiple tissues.
Collapse
Affiliation(s)
- Christiane Pleuger
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Mari S Lehti
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | | | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| |
Collapse
|
9
|
Nguyen V, Smothers J, Ballhorn P, Kottapalli S, Ly A, Villarreal J, Kim K. Myosin V-mediated transport of Snc1 and Vps10 toward the trans-Golgi network. Eur J Cell Biol 2020; 100:151143. [PMID: 33277053 DOI: 10.1016/j.ejcb.2020.151143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 10/30/2020] [Accepted: 11/27/2020] [Indexed: 12/23/2022] Open
Abstract
Retrieval of cargo proteins from the endosome towards the trans-Golgi network (TGN) is a crucial intracellular process for cellular homeostasis. Its dysfunction is associated with pathogenesis of Alzheimer and Parkinson's diseases. Myosin family proteins are cellular motors walking along actin filaments by utilizing the chemical energy from ATP hydrolysis, known to involve in pleiotropic cellular trafficking pathways. However, the question of whether myosins play a role in the trafficking of Snc1 and Vps10 has not been addressed yet. The present study assesses the potential roles of all five yeast myosins in the recycling of two membrane cargo, Snc1 and Vps10. It appears that all myosins except Myo2 are not required for the Snc1 traffic, while it was found that Myo1 and 2 play important roles for Vps10 retrieval from the endosome and the vacuole. Multiple myo2 mutants harboring a point mutation in the actin binding or the cargo binding tail domain were characterized to demonstrate abnormal Vps10-GFP and GFP-Snc1 distribution phenotypes, suggesting a severe defect in their sorting and trafficking at the endosome. Furthermore, Vps10-GFP patches in all tested myo2 mutants were found to be near stationary with quantitative live cell imaging. Finally, we found that actin cables in the myo2 mutant cells were considerably disrupted, which may aggravate the trafficking of Vps10 from the endosome. Together, our results provide novel insights into the function of Myo-family proteins in the recycling traffic of Vps10 and Snc1 destined for the TGN.
Collapse
Affiliation(s)
- Vy Nguyen
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Jared Smothers
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA; Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75235-8816, USA
| | - Paul Ballhorn
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Sravya Kottapalli
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Anh Ly
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Julia Villarreal
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA.
| |
Collapse
|
10
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
11
|
Zakrzewski P, Rędowicz MJ, Buss F, Lenartowska M. Loss of myosin VI expression affects acrosome/acroplaxome complex morphology during mouse spermiogenesis†. Biol Reprod 2020; 103:521-533. [PMID: 32412041 PMCID: PMC7442776 DOI: 10.1093/biolre/ioaa071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/24/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
During spermiogenesis in mammals, actin filaments and a variety of actin-binding proteins are involved in the formation and function of highly specialized testis-specific structures. Actin-based motor proteins, such as myosin Va and VIIa, play a key role in this complex process of spermatid transformation into mature sperm. We have previously demonstrated that myosin VI (MYO6) is also expressed in mouse testes. It is present in actin-rich structures important for spermatid development, including one of the earliest events in spermiogenesis—acrosome formation. Here, we demonstrate using immunofluorescence, cytochemical, and ultrastructural approaches that MYO6 is involved in maintaining the structural integrity of these specialized actin-rich structures during acrosome biogenesis in mouse. We show that MYO6 together with its binding partner TOM1/L2 is present at/around the spermatid Golgi complex and the nascent acrosome. Depletion of MYO6 in Snell’s waltzer mice causes structural disruptions of the Golgi complex and affects the acrosomal granule positioning within the developing acrosome. In summary, our results suggest that MYO6 plays an anchoring role during the acrosome biogenesis mainly by tethering of different cargo/membranes to highly specialized actin-related structures.
Collapse
Affiliation(s)
- Przemysław Zakrzewski
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Torun, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Folma Buss
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Marta Lenartowska
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Torun, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Torun, Poland
| |
Collapse
|
12
|
O'Loughlin T, Kendrick-Jones J, Buss F. Approaches to Identify and Characterise MYO6-Cargo Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:355-380. [PMID: 32451866 DOI: 10.1007/978-3-030-38062-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the prevalence and importance of the actin cytoskeleton and the host of associated myosin motors, it comes as no surprise to find that they are linked to a plethora of cellular functions and pathologies. Although our understanding of the biophysical properties of myosin motors has been aided by the high levels of conservation in their motor domains and the extensive work on myosin in skeletal muscle contraction, our understanding of how the nonmuscle myosins participate in such a wide variety of cellular processes is less clear. It is now well established that the highly variable myosin tails are responsible for targeting these myosins to distinct cellular sites for specific functions, and although a number of adaptor proteins have been identified, our current understanding of the cellular processes involved is rather limited. Furthermore, as more adaptor proteins, cargoes and complexes are identified, the importance of elucidating the regulatory mechanisms involved is essential. Ca2+, and now phosphorylation and ubiquitination, are emerging as important regulators of cargo binding, and it is likely that other post-translational modifications are also involved. In the case of myosin VI (MYO6), a number of immediate binding partners have been identified using traditional approaches such as yeast two-hybrid screens and affinity-based pull-downs. However, these methods have only been successful in identifying the cargo adaptors, but not the cargoes themselves, which may often comprise multi-protein complexes. Furthermore, motor-adaptor-cargo interactions are dynamic by nature and often weak, transient and highly regulated and therefore difficult to capture using traditional affinity-based methods. In this chapter we will discuss the various approaches including functional proteomics that have been used to uncover and characterise novel MYO6-associated proteins and complexes and how this work contributes to a fuller understanding of the targeting and function(s) of this unique myosin motor.
Collapse
Affiliation(s)
- Thomas O'Loughlin
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK.
| |
Collapse
|
13
|
de Jonge JJ, Batters C, O'Loughlin T, Arden SD, Buss F. The MYO6 interactome: selective motor-cargo complexes for diverse cellular processes. FEBS Lett 2019; 593:1494-1507. [PMID: 31206648 DOI: 10.1002/1873-3468.13486] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
Myosins of class VI (MYO6) are unique actin-based motor proteins that move cargo towards the minus ends of actin filaments. As the sole myosin with this directionality, it is critically important in a number of biological processes. Indeed, loss or overexpression of MYO6 in humans is linked to a variety of pathologies including deafness, cardiomyopathy, neurodegenerative diseases as well as cancer. This myosin interacts with a wide variety of direct binding partners such as for example the selective autophagy receptors optineurin, TAX1BP1 and NDP52 and also Dab2, GIPC, TOM1 and LMTK2, which mediate distinct functions of different MYO6 isoforms along the endocytic pathway. Functional proteomics has recently been used to identify the wider MYO6 interactome including several large functionally distinct multi-protein complexes, which highlight the importance of this myosin in regulating the actin and septin cytoskeleton. Interestingly, adaptor-binding not only triggers cargo attachment, but also controls the inactive folded conformation and dimerisation of MYO6. Thus, the C-terminal tail domain mediates cargo recognition and binding, but is also crucial for modulating motor activity and regulating cytoskeletal track dynamics.
Collapse
Affiliation(s)
| | | | - Thomas O'Loughlin
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Susan D Arden
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, UK
| |
Collapse
|
14
|
Capmany A, Yoshimura A, Kerdous R, Caorsi V, Lescure A, Nery ED, Coudrier E, Goud B, Schauer K. MYO1C stabilizes actin and facilitates arrival of transport carriers at the Golgi apparatus. J Cell Sci 2019; 132:jcs.225029. [DOI: 10.1242/jcs.225029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/01/2019] [Indexed: 12/22/2022] Open
Abstract
We aim to identify the myosin motor proteins that control trafficking at the Golgi apparatus. In addition to the known Golgi-associated myosins MYO6, MYO18A and MYH9 (myosin IIA), we identify MYO1C as a novel player at the Golgi. We demonstrate that depletion of MYO1C induces Golgi apparatus fragmentation and decompaction. MYO1C accumulates at dynamic structures around the Golgi apparatus that colocalize with Golgi-associated actin dots. MYO1C depletion leads to loss of cellular F-actin, and Golgi apparatus decompaction is also observed after the inhibition or loss of the Arp2/3 complex. We show that the functional consequences of MYO1C depletion is a delay in the arrival of incoming transport carriers, both from the anterograde and retrograde routes. We propose that MYO1C stabilizes actin at the Golgi apparatus facilitating the arrival of incoming transport carriers at the Golgi.
Collapse
Affiliation(s)
- Anahi Capmany
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche144, 75005 Paris, France
| | - Azumi Yoshimura
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche144, 75005 Paris, France
| | - Rachid Kerdous
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche144, 75005 Paris, France
| | | | - Aurianne Lescure
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Department of Translational Research, BioPhenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Department of Translational Research, BioPhenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Evelyne Coudrier
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche144, 75005 Paris, France
| | - Bruno Goud
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche144, 75005 Paris, France
| | - Kristine Schauer
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche144, 75005 Paris, France
| |
Collapse
|
15
|
Ripoll L, Heiligenstein X, Hurbain I, Domingues L, Figon F, Petersen KJ, Dennis MK, Houdusse A, Marks MS, Raposo G, Delevoye C. Myosin VI and branched actin filaments mediate membrane constriction and fission of melanosomal tubule carriers. J Cell Biol 2018; 217:2709-2726. [PMID: 29875258 PMCID: PMC6080934 DOI: 10.1083/jcb.201709055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/16/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023] Open
Abstract
Vesicular and tubular transport intermediates regulate organellar cargo dynamics. Transport carrier release involves local and profound membrane remodeling before fission. Pinching the neck of a budding tubule or vesicle requires mechanical forces, likely exerted by the action of molecular motors on the cytoskeleton. Here, we show that myosin VI, together with branched actin filaments, constricts the membrane of tubular carriers that are then released from melanosomes, the pigment containing lysosome-related organelles of melanocytes. By combining superresolution fluorescence microscopy, correlative light and electron microscopy, and biochemical analyses, we find that myosin VI motor activity mediates severing by constricting the neck of the tubule at specific melanosomal subdomains. Pinching of the tubules involves the cooperation of the myosin adaptor optineurin and the activity of actin nucleation machineries, including the WASH and Arp2/3 complexes. The fission and release of these tubules allows for the export of components from melanosomes, such as the SNARE VAMP7, and promotes melanosome maturation and transfer to keratinocytes. Our data reveal a new myosin VI- and actin-dependent membrane fission mechanism required for organelle function.
Collapse
Affiliation(s)
- Léa Ripoll
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Xavier Heiligenstein
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Ilse Hurbain
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Lia Domingues
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Florent Figon
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France.,Master BioSciences, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Karl J Petersen
- Structural Motility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Megan K Dennis
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Departments of Pathology and Laboratory Medicine and Physiology, University of Pennsylvania, Philadelphia, PA
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Departments of Pathology and Laboratory Medicine and Physiology, University of Pennsylvania, Philadelphia, PA
| | - Graça Raposo
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Cédric Delevoye
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France .,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| |
Collapse
|
16
|
Ryan TA, Tumbarello DA. Optineurin: A Coordinator of Membrane-Associated Cargo Trafficking and Autophagy. Front Immunol 2018; 9:1024. [PMID: 29867991 PMCID: PMC5962687 DOI: 10.3389/fimmu.2018.01024] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Optineurin is a multifunctional adaptor protein intimately involved in various vesicular trafficking pathways. Through interactions with an array of proteins, such as myosin VI, huntingtin, Rab8, and Tank-binding kinase 1, as well as via its oligomerisation, optineurin has the ability to act as an adaptor, scaffold, or signal regulator to coordinate many cellular processes associated with the trafficking of membrane-delivered cargo. Due to its diverse interactions and its distinct functions, optineurin is an essential component in a number of homeostatic pathways, such as protein trafficking and organelle maintenance. Through the binding of polyubiquitinated cargoes via its ubiquitin-binding domain, optineurin also serves as a selective autophagic receptor for the removal of a wide range of substrates. Alternatively, it can act in an ubiquitin-independent manner to mediate the clearance of protein aggregates. Regarding its disease associations, mutations in the optineurin gene are associated with glaucoma and have more recently been found to correlate with Paget’s disease of bone and amyotrophic lateral sclerosis (ALS). Indeed, ALS-associated mutations in optineurin result in defects in neuronal vesicular localisation, autophagosome–lysosome fusion, and secretory pathway function. More recent molecular and functional analysis has shown that it also plays a role in mitophagy, thus linking it to a number of other neurodegenerative conditions, such as Parkinson’s. Here, we review the role of optineurin in intracellular membrane trafficking, with a focus on autophagy, and describe how upstream signalling cascades are critical to its regulation. Current data and contradicting reports would suggest that optineurin is an important and selective autophagy receptor under specific conditions, whereby interplay, synergy, and functional redundancy with other receptors occurs. We will also discuss how dysfunction in optineurin-mediated pathways may lead to perturbation of critical cellular processes, which can drive the pathologies of number of diseases. Therefore, further understanding of optineurin function, its target specificity, and its mechanism of action will be critical in fully delineating its role in human disease.
Collapse
Affiliation(s)
- Thomas A Ryan
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - David A Tumbarello
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
17
|
Masters TA, Tumbarello DA, Chibalina MV, Buss F. MYO6 Regulates Spatial Organization of Signaling Endosomes Driving AKT Activation and Actin Dynamics. Cell Rep 2018; 19:2088-2101. [PMID: 28591580 PMCID: PMC5469940 DOI: 10.1016/j.celrep.2017.05.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/05/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
Abstract
APPL1- and RAB5-positive signaling endosomes play a crucial role in the activation of AKT in response to extracellular stimuli. Myosin VI (MYO6) and two of its cargo adaptor proteins, GIPC and TOM1/TOM1L2, localize to these peripheral endosomes and mediate endosome association with cortical actin filaments. Loss of MYO6 leads to the displacement of these endosomes from the cell cortex and accumulation in the perinuclear space. Depletion of this myosin not only affects endosome positioning, but also induces actin and lipid remodeling consistent with endosome maturation, including accumulation of F-actin and the endosomal lipid PI(3)P. These processes acutely perturb endosome function, as both AKT phosphorylation and RAC-dependent membrane ruffling were markedly reduced by depletion of either APPL1 or MYO6. These results place MYO6 and its binding partners at a central nexus in cellular signaling linking actin dynamics at the cell surface and endosomal signaling in the cell cortex.
Collapse
Affiliation(s)
- Thomas A Masters
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - David A Tumbarello
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Margarita V Chibalina
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
18
|
Li YR, Yang WX. Myosins as fundamental components during tumorigenesis: diverse and indispensable. Oncotarget 2018; 7:46785-46812. [PMID: 27121062 PMCID: PMC5216836 DOI: 10.18632/oncotarget.8800] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/10/2016] [Indexed: 12/11/2022] Open
Abstract
Myosin is a kind of actin-based motor protein. As the crucial functions of myosin during tumorigenesis have become increasingly apparent, the profile of myosin in the field of cancer research has also been growing. Eighteen distinct classes of myosins have been discovered in the past twenty years and constitute a diverse superfamily. Various myosins share similar structures. They all convert energy from ATP hydrolysis to exert mechanical stress upon interactions with microfilaments. Ongoing research is increasingly suggesting that at least seven kinds of myosins participate in the formation and development of cancer. Myosins play essential roles in cytokinesis failure, chromosomal and centrosomal amplification, multipolar spindle formation and DNA microsatellite instability. These are all prerequisites of tumor formation. Subsequently, myosins activate various processes of tumor invasion and metastasis development including cell migration, adhesion, protrusion formation, loss of cell polarity and suppression of apoptosis. In this review, we summarize the current understanding of the roles of myosins during tumorigenesis and discuss the factors and mechanisms which may regulate myosins in tumor progression. Furthermore, we put forward a completely new concept of “chromomyosin” to demonstrate the pivotal functions of myosins during karyokinesis and how this acts to optimize the functions of the members of the myosin superfamily.
Collapse
Affiliation(s)
- Yan-Ruide Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Kruppa AJ, Kishi-Itakura C, Masters TA, Rorbach JE, Grice GL, Kendrick-Jones J, Nathan JA, Minczuk M, Buss F. Myosin VI-Dependent Actin Cages Encapsulate Parkin-Positive Damaged Mitochondria. Dev Cell 2018; 44:484-499.e6. [PMID: 29398621 PMCID: PMC5932465 DOI: 10.1016/j.devcel.2018.01.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 10/30/2017] [Accepted: 01/08/2018] [Indexed: 01/08/2023]
Abstract
Mitochondrial quality control is essential to maintain cellular homeostasis and is achieved by removing damaged, ubiquitinated mitochondria via Parkin-mediated mitophagy. Here, we demonstrate that MYO6 (myosin VI), a unique myosin that moves toward the minus end of actin filaments, forms a complex with Parkin and is selectively recruited to damaged mitochondria via its ubiquitin-binding domain. This myosin motor initiates the assembly of F-actin cages to encapsulate damaged mitochondria by forming a physical barrier that prevents refusion with neighboring populations. Loss of MYO6 results in an accumulation of mitophagosomes and an increase in mitochondrial mass. In addition, we observe downstream mitochondrial dysfunction manifesting as reduced respiratory capacity and decreased ability to rely on oxidative phosphorylation for energy production. Our work uncovers a crucial step in mitochondrial quality control: the formation of MYO6-dependent actin cages that ensure isolation of damaged mitochondria from the network.
Collapse
Affiliation(s)
- Antonina J Kruppa
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.
| | - Chieko Kishi-Itakura
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Thomas A Masters
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Joanna E Rorbach
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Guinevere L Grice
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - John Kendrick-Jones
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - James A Nathan
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
20
|
Majewski L, Nowak J, Sobczak M, Karatsai O, Havrylov S, Lenartowski R, Suszek M, Lenartowska M, Redowicz MJ. Myosin VI in the nucleus of neurosecretory PC12 cells: Stimulation-dependent nuclear translocation and interaction with nuclear proteins. Nucleus 2018; 9:125-141. [PMID: 29293066 PMCID: PMC5973263 DOI: 10.1080/19491034.2017.1421881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/23/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023] Open
Abstract
Myosin VI (MVI) is a unique actin-based motor protein moving towards the minus end of actin filaments, in the opposite direction than other known myosins. Besides well described functions of MVI in endocytosis and maintenance of Golgi apparatus, there are few reports showing its involvement in transcription. We previously demonstrated that in neurosecretory PC12 cells MVI was present in the cytoplasm and nucleus, and its depletion caused substantial inhibition of cell migration and proliferation. Here, we show an increase in nuclear localization of MVI upon cell stimulation, and identification of potential nuclear localization (NLS) and nuclear export (NES) signals within MVI heavy chain. These signals seem to be functional as the MVI nuclear presence was affected by the inhibitors of nuclear import (ivermectin) and export (leptomycin B). In nuclei of stimulated cells, MVI colocalized with active RNA polymerase II, BrUTP-containing transcription sites and transcription factor SP1 as well as SC35 and PML proteins, markers of nuclear speckles and PML bodies, respectively. Mass spectrometry analysis of samples of a GST-pull-down assay with the MVI tail domain as a "bait" identified several new potential MVI binding partners. Among them are proteins involved in transcription and post-transcriptional processes. We confirmed interaction of MVI with heterogeneous nuclear ribonucleoprotein U (hnRNPU) and nucleolin, proteins involved in pre-mRNA binding and transport, and nucleolar function, respectively. Our data provide an insight into mechanisms of involvement of MVI in nuclear processes via interaction with nuclear proteins and support a notion for important role(s) for MVI in gene expression.
Collapse
Affiliation(s)
- Lukasz Majewski
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jolanta Nowak
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Sobczak
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Serhiy Havrylov
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Lenartowski
- Laboratory of Isotope and Instrumental Analysis, Department of Cellular and Molecular Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Malgorzata Suszek
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Lenartowska
- Laboratory of Developmental Biology, Department of Cellular and Molecular Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maria Jolanta Redowicz
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
21
|
Abstract
Myosin VI (MVI) is a versatile actin-based motor protein that has been implicated in a variety of different cellular processes, including endo- and exocytic vesicle trafficking, Golgi morphology, and actin structure stabilization. A role for MVI in crucial actin-based processes involved in sperm maturation was demonstrated in Drosophila. Because of the prominence and importance of actin structures in mammalian spermiogenesis, we investigated whether MVI was associated with actin-mediated maturation events in mammals. Both immunofluorescence and ultrastructural analyses using immunogold labeling showed that MVI was strongly linked with key structures involved in sperm development and maturation. During the early stage of spermiogenesis, MVI is associated with the Golgi and with coated and uncoated vesicles, which fuse to form the acrosome. Later, as the acrosome spreads to form a cap covering the sperm nucleus, MVI is localized to the acroplaxome, an actin-rich structure that anchors the acrosome to the nucleus. Finally, during the elongation/maturation phase, MVI is associated with the actin-rich structures involved in nuclear shaping: the acroplaxome, manchette, and Sertoli cell actin hoops. Since this is the first report of MVI expression and localization during mouse spermiogenesis and MVI partners in developing sperm have not yet been identified, we discuss some probable roles for MVI in this process. During early stages, MVI is hypothesized to play a role in Golgi morphology and function as well as in actin dynamics regulation important for attachment of developing acrosome to the nuclear envelope. Next, the protein might also play anchoring roles to help generate forces needed for spermatid head elongation. Moreover, association of MVI with actin that accumulates in the Sertoli cell ectoplasmic specialization and other actin structures in surrounding cells suggests additional MVI functions in spermatid movement across the seminiferous epithelium and in sperm release.
Collapse
|
22
|
Investigations of human myosin VI targeting using optogenetically controlled cargo loading. Proc Natl Acad Sci U S A 2017; 114:E1607-E1616. [PMID: 28193860 DOI: 10.1073/pnas.1614716114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myosins play countless critical roles in the cell, each requiring it to be activated at a specific location and time. To control myosin VI with this specificity, we created an optogenetic tool for activating myosin VI by fusing the light-sensitive Avena sativa phototropin1 LOV2 domain to a peptide from Dab2 (LOVDab), a myosin VI cargo protein. Our approach harnesses the native targeting and activation mechanism of myosin VI, allowing direct inferences on myosin VI function. LOVDab robustly recruits human full-length myosin VI to various organelles in vivo and hinders peroxisome motion in a light-controllable manner. LOVDab also activates myosin VI in an in vitro gliding filament assay. Our data suggest that protein and lipid cargoes cooperate to activate myosin VI, allowing myosin VI to integrate Ca2+, lipid, and protein cargo signals in the cell to deploy in a site-specific manner.
Collapse
|
23
|
Masters TA, Kendrick-Jones J, Buss F. Myosins: Domain Organisation, Motor Properties, Physiological Roles and Cellular Functions. Handb Exp Pharmacol 2017; 235:77-122. [PMID: 27757761 DOI: 10.1007/164_2016_29] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myosins are cytoskeletal motor proteins that use energy derived from ATP hydrolysis to generate force and movement along actin filaments. Humans express 38 myosin genes belonging to 12 classes that participate in a diverse range of crucial activities, including muscle contraction, intracellular trafficking, cell division, motility, actin cytoskeletal organisation and cell signalling. Myosin malfunction has been implicated a variety of disorders including deafness, hypertrophic cardiomyopathy, Usher syndrome, Griscelli syndrome and cancer. In this chapter, we will first discuss the key structural and kinetic features that are conserved across the myosin family. Thereafter, we summarise for each member in turn its unique functional and structural adaptations, cellular roles and associated pathologies. Finally, we address the broad therapeutic potential for pharmacological interventions that target myosin family members.
Collapse
Affiliation(s)
- Thomas A Masters
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| |
Collapse
|
24
|
A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads. Nat Commun 2016; 7:13715. [PMID: 27941751 PMCID: PMC5159853 DOI: 10.1038/ncomms13715] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
Abstract
Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes.
Characterizing the mechanical response of molecular motors involves the use of methods such as optical trapping to apply force. Here the authors develop a DNA origami nanospring to apply progressive force to human myosin VI, and discover that it adopts different stepping modes when subjected to low load or high load.
Collapse
|
25
|
Hariadi RF, Appukutty AJ, Sivaramakrishnan S. Engineering Circular Gliding of Actin Filaments Along Myosin-Patterned DNA Nanotube Rings To Study Long-Term Actin-Myosin Behaviors. ACS NANO 2016; 10:8281-8. [PMID: 27571140 PMCID: PMC5450935 DOI: 10.1021/acsnano.6b01294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nature has evolved molecular motors that are critical in cellular processes occurring over broad time scales, ranging from seconds to years. Despite the importance of the long-term behavior of molecular machines, topics such as enzymatic lifetime are underexplored due to the lack of a suitable approach for monitoring motor activity over long time periods. Here, we developed an "O"-shaped Myosin Empowered Gliding Assay (OMEGA) that utilizes engineered micron-scale DNA nanotube rings with precise arrangements of myosin VI to trap gliding actin filaments. This circular gliding assay platform allows the same individual actin filament to glide over the same myosin ensemble (50-1000 motors per ring) multiple times. First, we systematically characterized the formation of DNA nanotubes rings with 4, 6, 8, and 10 helix circumferences. Individual actin filaments glide along the nanotube rings with high processivity for up to 12.8 revolutions or 11 min in run time. We then show actin gliding speed is robust to variation in motor number and independent of ring curvature within our sample space (ring diameter of 0.5-4 μm). As a model application of OMEGA, we then analyze motor-based mechanical influence on "stop-and-go" gliding behavior of actin filaments, revealing that the stop-to-go transition probability is dependent on motor flexibility. Our circular gliding assay may provide a closed-loop platform for monitoring long-term behavior of broad classes of molecular motors and enable characterization of motor robustness and long time scale nanomechanical processes.
Collapse
Affiliation(s)
- Rizal F. Hariadi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
- To whom correspondence should be addressed: and
| | - Abhinav J. Appukutty
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
- To whom correspondence should be addressed: and
| |
Collapse
|
26
|
Loss of cargo binding in the human myosin VI deafness mutant (R1166X) leads to increased actin filament binding. Biochem J 2016; 473:3307-19. [PMID: 27474411 PMCID: PMC5074368 DOI: 10.1042/bcj20160571] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022]
Abstract
Mutations in myosin VI have been associated with autosomal-recessive (DFNB37) and autosomal-dominant (DFNA22) deafness in humans. Here, we characterise an myosin VI nonsense mutation (R1166X) that was identified in a family with hereditary hearing loss in Pakistan. This mutation leads to the deletion of the C-terminal 120 amino acids of the myosin VI cargo-binding domain, which includes the WWY-binding motif for the adaptor proteins LMTK2, Tom1 as well as Dab2. Interestingly, compromising myosin VI vesicle-binding ability by expressing myosin VI with the R1166X mutation or with single point mutations in the adaptor-binding sites leads to increased F-actin binding of this myosin in vitro and in vivo As our results highlight the importance of cargo attachment for regulating actin binding to the motor domain, we perform a detailed characterisation of adaptor protein binding and identify single amino acids within myosin VI required for binding to cargo adaptors. We not only show that the adaptor proteins can directly interact with the cargo-binding tail of myosin VI, but our in vitro studies also suggest that multiple adaptor proteins can bind simultaneously to non-overlapping sites in the myosin VI tail. In conclusion, our characterisation of the human myosin VI deafness mutant (R1166X) suggests that defects in cargo binding may leave myosin VI in a primed/activated state with an increased actin-binding ability.
Collapse
|
27
|
Sobczak M, Chumak V, Pomorski P, Wojtera E, Majewski Ł, Nowak J, Yamauchi J, Rędowicz MJ. Interaction of myosin VI and its binding partner DOCK7 plays an important role in NGF-stimulated protrusion formation in PC12 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1589-600. [PMID: 27018747 DOI: 10.1016/j.bbamcr.2016.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/05/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
DOCK7 (dedicator of cytokinesis 7) is a guanidine nucleotide exchange factor (GEF) for Rac1 GTPase that is involved in neuronal polarity and axon generation as well in Schwann cell differentiation and myelination. Recently, we identified DOCK7 as the binding partner of unconventional myosin VI (MVI) in neuronal-lineage PC12 cells and postulated that this interaction could be important in vivo [Majewski et al. (2012) Biochem Cell Biol., 90:565-574]. Herein, we found that MVI-DOCK7 interaction takes also place in other cell lines and demonstrated that MVI cargo domain via its RRL motif binds to DOCK7 C-terminal M2 and DHR2 domains. In MVI knockdown cells, lower Rac1 activity and a decrease of DOCK7 phosphorylation on Tyr1118 were observed, indicating that MVI could contribute to DOCK7 activity. MVI and DOCK7 co-localization was maintained during NGF-stimulated PC12 cell differentiation and observed also in the outgrowths. Also, during differentiation an increase in phosphorylation of DOCK7 as well as of its downstream effector JNK kinase was detected. Interestingly, overexpression of GFP-tagged MVI cargo domain (GFP-GT) impaired protrusion formation indicating that full length protein is important for this process. Moreover, a transient increase in Rac activity observed at 5min of NGF-stimulated differentiation of PC12 cells (overexpressing either GFP or GFP-MVI) was not detected in cells overexpressing the cargo domain. These data indicate that MVI-DOCK7 interaction could have functional implications in the protrusion outgrowth, and full length MVI seems to be important for delivery and maintenance of DOCK7 along the protrusions, and exerting its GEF activity.
Collapse
Affiliation(s)
- Magdalena Sobczak
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Vira Chumak
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland; Laboratory of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, 14-16 Drahomanov St., 79005 Lviv, Ukraine
| | - Paweł Pomorski
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Emilia Wojtera
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Łukasz Majewski
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Jolanta Nowak
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
28
|
Involvement of unconventional myosin VI in myoblast function and myotube formation. Histochem Cell Biol 2015; 144:21-38. [PMID: 25896210 PMCID: PMC4469105 DOI: 10.1007/s00418-015-1322-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2015] [Indexed: 01/01/2023]
Abstract
The important role of unconventional myosin VI (MVI) in skeletal and cardiac muscle has been recently postulated (Karolczak et al. in Histochem Cell Biol 139:873-885, 2013). Here, we addressed for the first time a role for this unique myosin motor in myogenic cells as well as during their differentiation into myotubes. During myoblast differentiation, the isoform expression pattern of MVI and its subcellular localization underwent changes. In undifferentiated myoblasts, MVI-stained puncti were seen throughout the cytoplasm and were in close proximity to actin filaments, Golgi apparatus, vinculin-, and talin-rich focal adhesion as well as endoplasmic reticulum. Colocalization of MVI with endoplasmic reticulum was enhanced during myotube formation, and differentiation-dependent association was also seen in sarcoplasmic reticulum of neonatal rat cardiomyocytes (NRCs). Moreover, we observed enrichment of MVI in myotube regions containing acetylcholine receptor-rich clusters, suggesting its involvement in the organization of the muscle postsynaptic machinery. Overexpression of the H246R MVI mutant (associated with hypertrophic cardiomyopathy) in myoblasts and NRCs caused the formation of abnormally large intracellular vesicles. MVI knockdown caused changes in myoblast morphology and inhibition of their migration. On the subcellular level, MVI-depleted myoblasts exhibited aberrations in the organization of actin cytoskeleton and adhesive structures as well as in integrity of Golgi apparatus and endoplasmic reticulum. Also, MVI depletion or overexpression of H246R mutant caused the formation of significantly wider or aberrant myotubes, respectively, indicative of involvement of MVI in myoblast differentiation. The presented results suggest an important role for MVI in myogenic cells and possibly in myoblast differentiation.
Collapse
|
29
|
Trip6 promotes dendritic morphogenesis through dephosphorylated GRIP1-dependent myosin VI and F-actin organization. J Neurosci 2015; 35:2559-71. [PMID: 25673849 DOI: 10.1523/jneurosci.2125-14.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thyroid receptor-interacting protein 6 (Trip6), a multifunctional protein belonging to the zyxin family of LIM proteins, is involved in various physiological and pathological processes, including cell migration and tumorigenesis. However, the role of Trip6 in neurons remains unknown. Here, we show that Trip6 is expressed in mouse hippocampal neurons and promotes dendritic morphogenesis. Through interaction with the glutamate receptor-interacting protein 1 (GRIP1) and myosin VI, Trip6 is crucial for the total dendritic length and the number of primary dendrites in cultured hippocampal neurons. Trip6 depletion reduces F-actin content and impairs dendritic morphology, and this phenocopies GRIP1 or myosin VI knockdown. Furthermore, phosphorylation of GRIP1(956T) by AKT1 inhibits the interaction between GRIP1 and myosin VI, but facilitates GRIP1 binding to 14-3-3 protein, which is required for regulating F-actin organization and dendritic morphogenesis. Thus, the Trip6-GRIP1-myosin VI interaction and its regulation on F-actin network play a significant role in dendritic morphogenesis.
Collapse
|
30
|
Myosin VI deafness mutation prevents the initiation of processive runs on actin. Proc Natl Acad Sci U S A 2015; 112:E1201-9. [PMID: 25751888 DOI: 10.1073/pnas.1420989112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations.
Collapse
|
31
|
Yu H, Zhu Z, Chang J, Wang J, Shen X. Lentivirus-Mediated Silencing of Myosin VI Inhibits Proliferation and Cell Cycle Progression in Human Lung Cancer Cells. Chem Biol Drug Des 2015; 86:606-13. [PMID: 25643992 DOI: 10.1111/cbdd.12528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/11/2014] [Accepted: 01/08/2015] [Indexed: 01/23/2023]
Abstract
Myosin VI (MYO6) is a unique actin motor, which moves toward the pointed ends of actin filaments. In this study, we found that MYO6 is overexpressed in lung cancer tissues and associated with lung cancer progression, particularly lymph node metastasis. To investigate its functions in lung cancer cells, we generated recombinant lentivirus taking shRNA of MYO6. Using two lung cancer cell lines, A549 and 95D, we found that Lv-shMYO6 could infect lung cancer cells with high efficiency and downregulate MYO6 on both mRNA and protein levels. After knockdown of MYO6, the proliferation rates of lung cancer cells were decreased significantly. The colony-formation ability of MYO6-silenced lung cancer cells was also impaired with reduced colony numbers and fewer cells per colony. Flow cytometry showed that cell cycle progression was stuck at the G0 /G1 phase, especially at the sub-G1 phase, which represents apoptotic cells. Moreover, knockdown of MYO6 downregulated the phosphorylation of ERK1/2. Further experiments using another shRNA of MYO6 confirmed the above results. These results suggest that MYO6 is crucial in maintaining cell cycle and cell growth of lung cancer cells. MYO6 may serve as a potential therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Hui Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Zhenghong Zhu
- Department of Thoracic Surgery, The Huadong Hospital, Fudan University, 221 Yan An Xi Road, Shanghai, 200040, China
| | - Jianhua Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Jialei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Xiaoyong Shen
- Department of Thoracic Surgery, The Huadong Hospital, Fudan University, 221 Yan An Xi Road, Shanghai, 200040, China
| |
Collapse
|
32
|
Mukherjea M, Ali MY, Kikuti C, Safer D, Yang Z, Sirkia H, Ropars V, Houdusse A, Warshaw DM, Sweeney HL. Myosin VI must dimerize and deploy its unusual lever arm in order to perform its cellular roles. Cell Rep 2014; 8:1522-32. [PMID: 25159143 DOI: 10.1016/j.celrep.2014.07.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/13/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022] Open
Abstract
It is unclear whether the reverse-direction myosin (myosin VI) functions as a monomer or dimer in cells and how it generates large movements on actin. We deleted a stable, single-α-helix (SAH) domain that has been proposed to function as part of a lever arm to amplify movements without impact on in vitro movement or in vivo functions. A myosin VI construct that used this SAH domain as part of its lever arm was able to take large steps in vitro but did not rescue in vivo functions. It was necessary for myosin VI to internally dimerize, triggering unfolding of a three-helix bundle and calmodulin binding in order to step normally in vitro and rescue endocytosis and Golgi morphology in myosin VI-null fibroblasts. A model for myosin VI emerges in which cargo binding triggers dimerization and unfolds the three-helix bundle to create a lever arm essential for in vivo functions.
Collapse
Affiliation(s)
- Monalisa Mukherjea
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, 700 CRB, Philadelphia, PA 19104-6085, USA
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | - Carlos Kikuti
- Structural Motility, Centre de Recherche, Institut Curie, 75248 Paris, France; CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Daniel Safer
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, 700 CRB, Philadelphia, PA 19104-6085, USA
| | - Zhaohui Yang
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, 700 CRB, Philadelphia, PA 19104-6085, USA
| | - Helena Sirkia
- Structural Motility, Centre de Recherche, Institut Curie, 75248 Paris, France; CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Virginie Ropars
- Structural Motility, Centre de Recherche, Institut Curie, 75248 Paris, France; CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Anne Houdusse
- Structural Motility, Centre de Recherche, Institut Curie, 75248 Paris, France; CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | - H Lee Sweeney
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, 700 CRB, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
33
|
Kolovskaya OS, Zamay TN, Zamay AS, Glazyrin YE, Spivak EA, Zubkova OA, Kadkina AV, Erkaev EN, Zamay GS, Savitskaya AG, Trufanova LV, Petrova LL, Berezovski MV. DNA-aptamer/protein interaction as a cause of apoptosis and arrest of proliferation in Ehrlich ascites adenocarcinoma cells. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2014. [DOI: 10.1134/s1990747813050061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Karagiannis P, Ishii Y, Yanagida T. Molecular machines like myosin use randomness to behave predictably. Chem Rev 2014; 114:3318-34. [PMID: 24484383 DOI: 10.1021/cr400344n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter Karagiannis
- Quantitative Biology Center, Riken (QBiC) , Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
| | | | | |
Collapse
|
35
|
Sarshad AA, Percipalle P. New Insight into Role of Myosin Motors for Activation of RNA Polymerases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:183-230. [DOI: 10.1016/b978-0-12-800179-0.00004-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Papadopulos A, Tomatis VM, Kasula R, Meunier FA. The cortical acto-Myosin network: from diffusion barrier to functional gateway in the transport of neurosecretory vesicles to the plasma membrane. Front Endocrinol (Lausanne) 2013; 4:153. [PMID: 24155741 PMCID: PMC3800816 DOI: 10.3389/fendo.2013.00153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/05/2013] [Indexed: 01/14/2023] Open
Abstract
Dysregulation of regulated exocytosis is linked to an array of pathological conditions, including neurodegenerative disorders, asthma, and diabetes. Understanding the molecular mechanisms underpinning neuroexocytosis including the processes that allow neurosecretory vesicles to access and fuse with the plasma membrane and to recycle post-fusion, is therefore critical to the design of future therapeutic drugs that will efficiently tackle these diseases. Despite considerable efforts to determine the principles of vesicular fusion, the mechanisms controlling the approach of vesicles to the plasma membrane in order to undergo tethering, docking, priming, and fusion remain poorly understood. All these steps involve the cortical actin network, a dense mesh of actin filaments localized beneath the plasma membrane. Recent work overturned the long-held belief that the cortical actin network only plays a passive constraining role in neuroexocytosis functioning as a physical barrier that partly breaks down upon entry of Ca(2+) to allow secretory vesicles to reach the plasma membrane. A multitude of new roles for the cortical actin network in regulated exocytosis have now emerged and point to highly dynamic novel functions of key myosin molecular motors. Myosins are not only believed to help bring about dynamic changes in the actin cytoskeleton, tethering and guiding vesicles to their fusion sites, but they also regulate the size and duration of the fusion pore, thereby directly contributing to the release of neurotransmitters and hormones. Here we discuss the functions of the cortical actin network, myosins, and their effectors in controlling the processes that lead to tethering, directed transport, docking, and fusion of exocytotic vesicles in regulated exocytosis.
Collapse
Affiliation(s)
- Andreas Papadopulos
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Vanesa M. Tomatis
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Ravikiran Kasula
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Frederic A. Meunier
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
- *Correspondence: Frederic A. Meunier, Queensland Brain Institute, The University of Queensland, St Lucia Campus, QBI Building #79, St Lucia, QLD 4072, Australia e-mail:
| |
Collapse
|
37
|
Grossman GH, Ebke LA, Beight CD, Jang GF, Crabb JW, Hagstrom SA. Protein partners of dynamin-1 in the retina. Vis Neurosci 2013; 30:129-39. [PMID: 23746204 PMCID: PMC3936680 DOI: 10.1017/s0952523813000138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dynamin proteins are involved in vesicle generation, providing mechanical force to excise newly formed vesicles from membranes of cellular compartments. In the brain, dynamin-1, dynamin-2, and dynamin-3 have been well studied; however, their function in the retina remains elusive. A retina-specific splice variant of dynamin-1 interacts with the photoreceptor-specific protein Tubby-like protein 1 (Tulp1), which when mutated causes an early onset form of autosomal recessive retinitis pigmentosa. Here, we investigated the role of the dynamins in the retina, using immunohistochemistry to localize dynamin-1, dynamin-2, and dynamin-3 and immunoprecipitation followed by mass spectrometry to explore dynamin-1 interacting proteins in mouse retina. Dynamin-2 is primarily confined to the inner segment compartment of photoreceptors, suggesting a role in outer segment protein transport. Dynamin-3 is present in the terminals of photoreceptors and dendrites of second-order neurons but is most pronounced in the inner plexiform layer where second-order neurons relay signals from photoreceptors. Dynamin-1 appears to be the dominant isoform in the retina and is present throughout the retina and in multiple compartments of the photoreceptor cell. This suggests that it may function in multiple cellular pathways. Surprisingly, dynamin-1 expression and localization did not appear to be disrupted in tulp1−/− mice. Immunoprecipitation experiments reveal that dynamin-1 associates primarily with proteins involved in cytoskeletal-based membrane dynamics. This finding is confirmed by western blot analysis. Results further implicate dynamin-1 in vesicular protein transport processes relevant to synaptic and post-Golgi pathways and indicate a possible role in photoreceptor stability.
Collapse
Affiliation(s)
- Gregory H Grossman
- Department of Ophthalmic Research, Cleveland Clinic Cole Eye Institute, Cleveland, Ohio
| | | | | | | | | | | |
Collapse
|
38
|
Egea G, Serra-Peinado C, Salcedo-Sicilia L, Gutiérrez-Martínez E. Actin acting at the Golgi. Histochem Cell Biol 2013; 140:347-60. [PMID: 23807268 DOI: 10.1007/s00418-013-1115-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 01/08/2023]
Abstract
The organization, assembly and remodeling of the actin cytoskeleton provide force and tracks for a variety of (endo)membrane-associated events such as membrane trafficking. This review illustrates in different cellular models how actin and many of its numerous binding and regulatory proteins (actin and co-workers) participate in the structural organization of the Golgi apparatus and in trafficking-associated processes such as sorting, biogenesis and motion of Golgi-derived transport carriers.
Collapse
Affiliation(s)
- Gustavo Egea
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, C/Casanova, 143, 08036, Barcelona, Spain.
| | | | | | | |
Collapse
|
39
|
Tumbarello DA, Kendrick-Jones J, Buss F. Myosin VI and its cargo adaptors - linking endocytosis and autophagy. J Cell Sci 2013; 126:2561-70. [PMID: 23781020 DOI: 10.1242/jcs.095554] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The coordinated trafficking and tethering of membrane cargo within cells relies on the function of distinct cytoskeletal motors that are targeted to specific subcellular compartments through interactions with protein adaptors and phospholipids. The unique actin motor myosin VI functions at distinct steps during clathrin-mediated endocytosis and the early endocytic pathway - both of which are involved in cargo trafficking and sorting - through interactions with Dab2, GIPC, Tom1 and LMTK2. This multifunctional ability of myosin VI can be attributed to its cargo-binding tail region that contains two protein-protein interaction interfaces, a ubiquitin-binding motif and a phospholipid binding domain. In addition, myosin VI has been shown to be a regulator of the autophagy pathway, because of its ability to link the endocytic and autophagic pathways through interactions with the ESCRT-0 protein Tom1 and the autophagy adaptor proteins T6BP, NDP52 and optineurin. This function has been attributed to facilitating autophagosome maturation and subsequent fusion with the lysosome. Therefore, in this Commentary, we discuss the relationship between myosin VI and the different myosin VI adaptor proteins, particularly with regards to the spatial and temporal regulation that is required for the sorting of cargo at the early endosome, and their impact on autophagy.
Collapse
Affiliation(s)
- David A Tumbarello
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
40
|
Philippe M, Léger T, Desvaux R, Walch L. Discs large 1 (Dlg1) scaffolding protein participates with clathrin and adaptator protein complex 1 (AP-1) in forming Weibel-Palade bodies of endothelial cells. J Biol Chem 2013; 288:13046-56. [PMID: 23532850 DOI: 10.1074/jbc.m112.441261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Weibel-Palade bodies (WPBs) are specific cigar-shaped granules that store von Willebrand factor (VWF) for its regulated secretion by endothelial cells. The first steps of the formation of these granules at the trans-Golgi network specifically require VWF aggregation and an external scaffolding complex that contains the adaptator protein complex 1 (AP-1) and clathrin. Discs large 1 (Dlg1) is generally considered to be a modular scaffolding protein implicated in the control of cell polarity in a large variety of cells by specific recruiting of receptors, channels, or signaling proteins to specialized zones of the plasma membrane. We propose here that in endothelial cells, Dlg1, in a complex with AP-1 and clathrin, participates in the biogenesis of WPBs. Supporting data show that Dlg1 colocalizes with microtubules, intermediate filaments, and Golgi markers. Tandem mass spectrometry experiments led to the identification of clathrin as an Dlg1-interacting partner. Interaction was confirmed by in situ proximity ligation assays. Furthermore, AP-1 and VWF immunoprecipitate and colocalize with Dlg1 in the juxtanuclear zone. Finally, Dlg1 depletion by siRNA duplexes disrupts trans-Golgi network morphology and WPB formation. Our results provide the first evidence for an unexpected role of Dlg1 in controlling the formation of specific secretory granules involved in VWF exocytosis in endothelial cells.
Collapse
Affiliation(s)
- Monique Philippe
- INSERM U698, Université Paris 7, Hemostasis, Bio-Engineering and Cardiovascular Remodeling, CHU X. Bichat, 75018 Paris, France
| | | | | | | |
Collapse
|
41
|
Kierdaszuk B, Berdynski M, Karolczak J, Redowicz MJ, Zekanowski C, Kaminska AM. A novel mutation in the DNM2 gene impairs dynamin 2 localization in skeletal muscle of a patient with late onset centronuclear myopathy. Neuromuscul Disord 2013; 23:219-28. [PMID: 23374900 DOI: 10.1016/j.nmd.2012.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/23/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
Centronuclear myopathies constitute a group of heterogeneous congenital myopathies characterized by the presence of abnormal, centrally located nuclei within muscle fibers. Centronuclear myopathies can be caused by mutations of several different genes, including DNM2, encoding dynamin 2 (DNM2) a large GTPase involved in membrane trafficking and endocytosis. We report a 52-year-old female with slowly progressive muscle weakness, and a family history of the disease. Clinical, morphological, biochemical and genetic analyses of the proband and her family members were performed, including analyses of the proband's muscle biopsy. A novel D614N mutation, located in the C-terminal region pleckstrin-homology (PH) domain of DNM2 was identified in the proband and four family members, who exhibited similar symptoms. The mutation was associated with profound changes in the localization of DNM2 in muscle fibers without significant changes in protein expression. Mutated DNM2 and proteins involved in the membrane trafficking or membrane compartments maintenance were dislocalized within the myofiber, and concentrated at centrally located nuclei. This novel causative mutation (D614N) within the DNM2 gene in a large Polish centronuclear myopathy family with a late age of overt clinical manifestation caused profound changes in DNM2 localization and impaired proper organization of myofibers, and skeletal muscle functioning.
Collapse
Affiliation(s)
- Biruta Kierdaszuk
- Department of Neurology, Medical University of Warsaw, 1a Banacha St., 02-097 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
42
|
Bond LM, Arden SD, Kendrick-Jones J, Buss F, Sellers JR. Dynamic exchange of myosin VI on endocytic structures. J Biol Chem 2012; 287:38637-46. [PMID: 22992744 PMCID: PMC3493908 DOI: 10.1074/jbc.m112.373969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The actin-based molecular motor myosin VI functions in the endocytic uptake pathway, both during the early stages of clathrin-mediated uptake and in later transport to/from early endosomes. This study uses fluorescence recovery after photobleaching (FRAP) to examine the turnover rate of myosin VI during endocytosis. The results demonstrate that myosin VI turns over dynamically on endocytic structures with a characteristic half-life common to both the large insert isoform of myosin VI on clathrin-coated structures and the no-insert isoform on early endosomes. This half-life is shared by the myosin VI-binding partner Dab2 and is identical for full-length myosin VI and the cargo-binding tail region. The 4-fold slower half-life of an artificially dimerized construct of myosin VI on clathrin-coated structures suggests that wild type myosin VI does not function as a stable dimer, but either as a monomer or in a monomer/dimer equilibrium. Taken together, these FRAP results offer insight into both the basic turnover dynamics and the monomer/dimer nature of myosin VI.
Collapse
Affiliation(s)
- Lisa M Bond
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
43
|
Kirkbride KC, Hong NH, French CL, Clark ES, Jerome WG, Weaver AM. Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology. Cytoskeleton (Hoboken) 2012; 69:625-43. [PMID: 22991200 PMCID: PMC3746372 DOI: 10.1002/cm.21051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 01/23/2023]
Abstract
Cortactin is a branched actin regulator and tumor-overexpressed protein that promotes vesicular trafficking at a variety of cellular sites, including endosomes and the trans-Golgi network. To better understand its role in secretory trafficking, we investigated its function in Golgi homeostasis. Here, we report that knockdown (KD) of cortactin leads to a dramatic change in Golgi morphology by light microscopy, dependent on binding the Arp2/3 actin-nucleating complex. Surprisingly, there was little effect of cortactin-KD on anterograde trafficking of the constitutive cargo vesicular stomatitis virus glycoprotein (VSVG), Golgi assembly from endoplasmic reticulum membranes upon Brefeldin A washout, or Golgi ultrastructure. Instead, electron microscopy studies revealed that cortactin-KD cells contained a large number of immature-appearing late endosomal/lysosomal (LE/Lys) hybrid organelles, similar to those found in lysosomal storage diseases. Consistent with a defect in LE/Lys trafficking, cortactin-KD cells also exhibited accumulation of free cholesterol and retention of the retrograde Golgi cargo mannose-6-phosphate receptor in LE. Inhibition of LE maturation by treatment of control cells with Rab7 siRNA or chloroquine led to a compact Golgi morphology similar to that observed in cortactin-KD cells. Furthermore, the Golgi morphology defects of cortactin-KD cells could be rescued by removal of cholesterol-containing lipids from the media, suggesting that buildup of cholesterol-rich membranes in immature LE/Lys induced disturbances in retrograde trafficking. Taken together, these data reveal that LE/Lys maturation and trafficking are highly sensitive to cortactin-regulated branched actin assembly and suggests that cytoskeletal-induced Golgi morphology changes can be a consequence of altered trafficking at late endosomes.
Collapse
Affiliation(s)
- Kellye C Kirkbride
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
44
|
Kachaner D, Génin P, Laplantine E, Weil R. Toward an integrative view of Optineurin functions. Cell Cycle 2012; 11:2808-18. [PMID: 22801549 DOI: 10.4161/cc.20946] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review highlights recent advances in our understanding of the mechanisms of Optineurin (Optn) action and its implication in diseases. Optn has emerged as a key player regulating various physiological processes, including membrane trafficking, protein secretion, cell division and host defense against pathogens. Furthermore, there is growing evidence for an association of Optn mutations with human diseases such as primary open-angle glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone. Optn functions depend on its precise subcellular localization and its interaction with other proteins. Here, we review the mechanisms that allow Optn to ensure a timely and spatially coordinated integration of different physiological processes and discuss how their deregulation may lead to different pathologies.
Collapse
Affiliation(s)
- David Kachaner
- Institut Pasteur, Unité de Signalisation Moléculaire et Activation Cellulaire, CNRS URA 2582, Paris, France
| | | | | | | |
Collapse
|
45
|
Majewski Ł, Sobczak M, Havrylov S, Jóźwiak J, Rędowicz MJ. Dock7: a GEF for Rho-family GTPases and a novel myosin VI-binding partner in neuronal PC12 cells. Biochem Cell Biol 2012; 90:565-74. [PMID: 22475431 DOI: 10.1139/o2012-009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Myosin VI (MVI), the only known myosin that walks towards the minus end of actin filaments, is involved in several processes such as endocytosis, cell migration, and cytokinesis. It may act as a transporting motor or a protein engaged in actin cytoskeleton remodelling via its binding partners, interacting with its C-terminal globular tail domain. By means of pull-down technique and mass spectrometry, we identified Dock7 (dedicator of cytokinesis 7) as a potential novel MVI-binding partner in neurosecretory PC12 cells. Dock7, expressed mainly in neuronal cells, is a guanine nucleotide exchange factor (GEF) for small GTPases, Rac1 and Cdc42, which are the major regulators of actin cytoskeleton. MVI-Dock7 interaction was further confirmed by co-immunoprecipitation of endogenous MVI complexed with Dock7. In addition, MVI and Dock7 colocalized in interphase and dividing cells. We conclude that in PC12 cells MVI-Dock7 complexes may function at different cellular locations during the entire cell cycle. Of note, MVI and Dock7 colocalized in primary culture hippocampal neurons also, predominantly in the outgrowths. We hypothesize that this newly identified interaction between MVI and Dock7 may help explain a mechanism for MVI-dependent regulation of actin cytoskeleton organization.
Collapse
Affiliation(s)
- Łukasz Majewski
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St, 02-093 Warsaw, Poland
| | | | | | | | | |
Collapse
|
46
|
Lenartowska M, Isaji M, Miller KG. A pre-embedding immunogold approach reveals localization of myosin VI at the ultrastructural level in the actin cones that mediate Drosophila spermatid individualization. PROTOPLASMA 2012; 249:337-346. [PMID: 21573935 DOI: 10.1007/s00709-011-0284-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/02/2011] [Indexed: 05/30/2023]
Abstract
Stable actin structures play important roles in the development and specialization of differentiated cells. How these structures form, are organized, and are used to mediate physiological processes is not well understood in most cases. In Drosophila testis, stable actin structures, called actin cones, mediate spermatid individualization, a large-scale cellular remodeling process. These actin cones are composed of two structural domains, a front meshwork and a rear region of parallel bundles. Myosin VI is an important player in proper actin cone organization and function. Myosin VI localizes to the cones' fronts and its specific localization is required for proper actin cone formation and function during individualization. To understand how these structures are organized and assembled, ultrastructural studies are important to reveal both organization of actin and the precise localization of actin regulators relative to regions with different filament organizations. In the present work, we have developed a novel pre-embedding immunogold-silver labeling method for high-resolution analysis of protein distribution in actin structures which allowed both satisfactory antibody labeling and good ultrastructural preservation. Electron microscopic studies revealed that myosin VI accumulated at the extreme leading edge of the actin cone and preferentially localized throughout the front meshwork of the cone where branched actin filaments were most concentrated. No myosin VI labeling was found adjacent to the membranes along the length of the cone or connecting neighboring cones. This method has potential to reveal important information about precise relationships between actin-binding proteins, membranes, and different types of actin structures.
Collapse
Affiliation(s)
- Marta Lenartowska
- Laboratory of Developmental Biology, Institute of General and Molecular Biology, Faculty of Biology and Earth Sciences, Nicolaus Copernicus University, Gagarina 9, 87-100, Toruń, Poland.
| | | | | |
Collapse
|
47
|
Loubéry S, Delevoye C, Louvard D, Raposo G, Coudrier E. Myosin VI regulates actin dynamics and melanosome biogenesis. Traffic 2012; 13:665-80. [PMID: 22321127 DOI: 10.1111/j.1600-0854.2012.01342.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/20/2022]
Abstract
Myosin VI has been implicated in various steps of organelle dynamics. However, the molecular mechanism by which this myosin contributes to membrane traffic is poorly understood. Here, we report that myosin VI is associated with a lysosome-related organelle, the melanosome. Using an actin-based motility assay and video microscopy, we observed that myosin VI does not contribute to melanosome movements. Myosin VI expression regulates instead the organization of actin networks in the cytoplasm. Using a cell-free assay, we showed that myosin VI recruited actin at the surface of isolated melanosomes. Myosin VI is involved in the endocytic-recycling pathway, and this pathway contributes to the transport of a melanogenic enzyme to maturing melanosomes. We showed that depletion of myosin VI accumulated a melanogenic enzyme in enlarged melanosomes and increased their melanin content. We confirmed the requirement of myosin VI to regulate melanosome biogenesis by analysing the morphology of melanosomes in choroid cells from of the Snell's waltzer mice that do not express myosin VI. Together, our results provide new evidence that myosin VI regulates the organization of actin dynamics at the surface of a specialized organelle and unravel a novel function of this myosin in regulating the biogenesis of this organelle.
Collapse
|
48
|
Hegan PS, Giral H, Levi M, Mooseker MS. Myosin VI is required for maintenance of brush border structure, composition, and membrane trafficking functions in the intestinal epithelial cell. Cytoskeleton (Hoboken) 2012; 69:235-51. [PMID: 22328452 DOI: 10.1002/cm.21018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/26/2012] [Accepted: 02/06/2012] [Indexed: 12/11/2022]
Abstract
Characterization of the intestinal epithelium of the Snell's waltzer (sv/sv) mouse revealed that myosin VI (Myo6) is required for proper brush border (BB) ultrastructure, composition and membrane traffic. The defects observed were distinct from that observed in the myosin Ia KO, even though Myo6 is lost from the BB in this KO. Myo6 is expressed throughout the length of the small and large intestine; it is localized to the subapical inter-microvillar (MV) domain and basolateral membrane. Defects in the BB include apparent lifting of the plasma membrane off of the actin cytoskeleton in the inter-MV region, fusion of MV, and disorganized morphology of the terminal web. The molecular composition of the sv/sv BB is altered. This includes increased expression of myosin Va, myosin Ie and the MV actin binding proteins espin and phosphorylated-ezrin; myosin Id is reduced. Changes in endocytic components include reduced clathrin and adaptin β, and increased disabled-2. Endocytic uptake of lumenal lactoferrin is inhibited in adult, but not neonatal intestinal epithelial cells. There is increased BB membrane-associated expression of both the Na(+)/H(+) exchanger, NHE3 and the Na(+)/phosphate transporter, NaPi2b. These results suggest that Myo6 is involved in the regulated trafficking of NHE3 and NaPi2b between the BB membrane and endosome.
Collapse
Affiliation(s)
- Peter S Hegan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
49
|
Ying H, Yue BYJT. Cellular and molecular biology of optineurin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:223-58. [PMID: 22364875 DOI: 10.1016/b978-0-12-394305-7.00005-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optineurin is a gene linked to glaucoma, amyotrophic lateral sclerosis, other neurodegenerative diseases, and Paget's disease of bone. This review describes the characteristics of optineurin and summarizes the cellular and molecular biology investigations conducted so far on optineurin. Data from a number of laboratories indicate that optineurin is a cytosolic protein containing 577 amino acid residues. Interacting with proteins such as myosin VI, Rab8, huntingtin, transferrin receptor, and TANK-binding kinase 1, optineurin is involved in basic cellular functions including protein trafficking, maintenance of the Golgi apparatus, as well as NF-κB pathway, antiviral, and antibacteria signaling. Mutation or alteration of homeostasis of optineurin (such as overexpression or knockdown) results in adverse consequences in the cells, leading to the development of neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
50
|
Liu Y, Hsin J, Kim H, Selvin PR, Schulten K. Extension of a three-helix bundle domain of myosin VI and key role of calmodulins. Biophys J 2011; 100:2964-73. [PMID: 21689530 DOI: 10.1016/j.bpj.2011.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022] Open
Abstract
The molecular motor protein myosin VI moves toward the minus-end of actin filaments with a step size of 30-36 nm. Such large step size either drastically limits the degree of complex formation between dimer subunits to leave enough length for the lever arms, or requires an extension of the lever arms' crystallographically observed structure. Recent experimental work proposed that myosin VI dimerization triggers the unfolding of the protein's proximal tail domain which could drive the needed lever-arm extension. Here, we demonstrate through steered molecular dynamics simulation the feasibility of sufficient extension arising from turning a three-helix bundle into a long α-helix. A key role is played by the known calmodulin binding that facilitates the extension by altering the strain path in myosin VI. Sequence analysis of the proximal tail domain suggests that further calmodulin binding sites open up when the domain's three-helix bundle is unfolded and that subsequent calmodulin binding stabilizes the extended lever arms.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | |
Collapse
|