1
|
Rivera-Toledo E, Fernández-Rojas MA, Santiago-Olivares C, Cruz-Rivera M, Hernández-Bautista V, Ávila-Horta F, Flisser A, Mendlovic F. Transcriptome profiling of macrophages persistently infected with human respiratory syncytial virus and effect of recombinant Taenia solium calreticulin on immune-related genes. Front Microbiol 2024; 15:1402589. [PMID: 39296294 PMCID: PMC11408361 DOI: 10.3389/fmicb.2024.1402589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Human respiratory syncytial virus (hRSV) is a main cause of bronchiolitis in infants and its persistence has been described in immunocompromised subjects. However, limited evidence has been reported on the gene expression triggered by the hRSV and the effect of recombinant Taenia solium-derived calreticulin (rTsCRT). Methods Using a comprehensive microarray approach, we analyzed the transcriptome profile of a macrophage cell line that has supported hRSV persistence for over 150 passages. We compared the gene expression of persistently infected and non-infected macrophages. We also evaluated the effect of rTsCRT on hRSV-infected macrophage gene transcription, as well as on cytokine production and number of copies of the persistent hRSV genome. Results Our analysis showed that hRSV long-term virus infection significantly alters mRNA expression of antiviral, inflammatory, as well as arginine and lipid metabolism-associated genes, revealing a transcriptional signature that suggests a mixed M1/M2 phenotype. The resulting host-virus equilibrium allows for the regulation of viral replication, while evading the antiviral and proinflammatory responses. Interestingly, rTsCRT stimulus upregulated Tnfα, Il6 and Nos2 mRNA. We found increased levels of both proinflammatory cytokines and nitrite levels in the conditioned media of persistent macrophages treated with rTsCRT. This increase was associated with a significant reduction in viral genome copies. Discussion hRSV persistently infected macrophages retain responsiveness to external stimuli and demonstrate that the profound changes induced by viral persistence are potentially reversible. Our observations contribute to the understanding of the mechanisms related to hRSV persistence in macrophages and have implications for the development of targeted therapies to eliminate persistent infections or reduce the negative effects related with chronic inflammatory diseases associated with hRSV infection.
Collapse
Affiliation(s)
- Evelyn Rivera-Toledo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Miguel A Fernández-Rojas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Carlos Santiago-Olivares
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Mayra Cruz-Rivera
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Vania Hernández-Bautista
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Fernanda Ávila-Horta
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ana Flisser
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan de Degollado, Mexico
| |
Collapse
|
2
|
Troise D, Infante B, Mercuri S, Catalano V, Ranieri E, Stallone G. Dendritic Cells: A Bridge between Tolerance Induction and Cancer Development in Transplantation Setting. Biomedicines 2024; 12:1240. [PMID: 38927447 PMCID: PMC11200833 DOI: 10.3390/biomedicines12061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Dendritic cells (DCs) are a heterogeneous group of antigen-presenting cells crucial for fostering allograft tolerance while simultaneously supporting host defense against infections and cancer. Within the tumor microenvironment, DCs can either mount an immune response against cancer cells or foster immunotolerance, presenting a dual role. In immunocompromised individuals, posttransplant malignancies pose a significant health concern, with DCs serving as vital players in immune responses against cancer cells. Both recipient- and donor-derived DCs play a critical role in the rejection process, infiltrating the transplanted organ and sustaining T-cell responses. The use of immunosuppressive drugs represents the predominant approach to control this immunological barrier in transplanted organs. Evidence has shed light on the immunopharmacology of these drugs and novel strategies for manipulating DCs to promote allograft survival. Therefore, comprehending the mechanisms underlying this intricate microenvironment and the effects of immunosuppressive therapy on DCs is crucial for developing targeted therapies to reduce graft failure rates. This review will delve into the fundamental immunobiology of DCs and provide a detailed exploration of their clinical significance concerning alloimmune responses and posttransplant malignancies.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Valeria Catalano
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
3
|
Zhang S, Zong Y, Chen L, Li Q, Li Z, Meng R. The immunomodulatory function and antitumor effect of disulfiram: paving the way for novel cancer therapeutics. Discov Oncol 2023; 14:103. [PMID: 37326784 DOI: 10.1007/s12672-023-00729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
More than 60 years ago, disulfiram (DSF) was employed for the management of alcohol addiction. This promising cancer therapeutic agent inhibits proliferation, migration, and invasion of malignant tumor cells. Furthermore, divalent copper ions can enhance the antitumor effects of DSF. Molecular structure, pharmacokinetics, signaling pathways, mechanisms of action and current clinical results of DSF are summarized here. Additionally, our attention is directed towards the immunomodulatory properties of DSF and we explore novel administration methods that may address the limitations associated with antitumor treatments based on DSF. Despite the promising potential of these various delivery methods for utilizing DSF as an effective anticancer agent, further investigation is essential in order to extensively evaluate the safety and efficacy of these delivery systems.
Collapse
Affiliation(s)
- Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Leichong Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Palanivelu L, Liu CH, Lin LT. Immunogenic cell death: The cornerstone of oncolytic viro-immunotherapy. Front Immunol 2023; 13:1038226. [PMID: 36755812 PMCID: PMC9899992 DOI: 10.3389/fimmu.2022.1038226] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 01/24/2023] Open
Abstract
According to the World Health Organization, cancer is one of the leading global health concerns, causing nearly 10 million deaths in 2020. While classical chemotherapeutics produce strong cytotoxicity on cancer cells, they carry limitations of drug resistance and off-target effects and sometimes fail to elicit adequate antitumor protection against tumor relapse. Additionally, most cancer cells have developed various ways to escape immune surveillance. Nevertheless, novel anticancer strategies such as oncolytic viro-immunotherapy can trigger immunogenic cell death (ICD), which can quickly grasp the attention of the host defense machinery, resulting in an ensuing antitumor immune response. Specifically, oncolytic viruses (OVs) can infect and destroy targeted cancer cells and stimulate the immune system by exposing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) to promote inflammatory reactions, and concomitantly prime and induce antitumor immunity by the release of neoantigens from the damaged cancer cells. Thus, OVs can serve as a novel system to sensitize tumor cells for promising immunotherapies. This review discusses the concept of ICD in cancer, centralizing ICD-associated danger signals and their consequence in antitumor responses and ICD induced by OVs. We also shed light on the potential strategies to enhance the immunogenicity of OVs, including the use of genetically modified OVs and their combination with ICD-enhancing agents, which are helpful as forthcoming anticancer regimens.
Collapse
Affiliation(s)
- Lalitha Palanivelu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan,Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan,*Correspondence: Liang-Tzung Lin,
| |
Collapse
|
5
|
Borges TJ, Murshid A, Theriault J, Calderwood SK. Molecular Chaperone Receptors: An Update. Methods Mol Biol 2023; 2693:193-208. [PMID: 37540436 DOI: 10.1007/978-1-0716-3342-7_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Extracellular heat shock proteins (HSP) play important roles in cell signaling and immunity. Many of these effects are mediated by surface receptors expressed on a wide range of cell types, including immune cells. We have investigated the nature of such proteins by cloning candidate receptors into cells (CHO-K1) with the rare property of being null for HSP binding. Using this approach, we have discovered that mammalian and eukaryotic Hsp70 binds avidly to at least three classes of receptor including: (1) c-type lectin receptors (CLR), (2) scavenger receptors (SR) and (3) lectins. However, the structural nature of the receptor-ligand interactions is not currently clear. Hsp70 can bind to LOX-1 (a member of both the CLR and SR), with the c-type lectin binding domain (CTLD), to the SR family members SREC-I and FEEL-1/CLEVER-1/STABILIN-1, which by contrast have arrays of EGF-like repeats in their extracellular domains as well. In this chapter, we will discuss: (1) methods for the discovery of HSP receptors, (2) approaches to the study of individual receptors in cells that contain multiple such receptors and (3) methods for investigating HSP receptor function in vivo.
Collapse
Affiliation(s)
- Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jimmy Theriault
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Gudgeon J, Marín-Rubio JL, Trost M. The role of macrophage scavenger receptor 1 (MSR1) in inflammatory disorders and cancer. Front Immunol 2022; 13:1012002. [PMID: 36325338 PMCID: PMC9618966 DOI: 10.3389/fimmu.2022.1012002] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Macrophage scavenger receptor 1 (MSR1), also named CD204, holds key inflammatory roles in multiple pathophysiologic processes. Present primarily on the surface of various types of macrophage, this receptor variably affects processes such as atherosclerosis, innate and adaptive immunity, lung and liver disease, and more recently, cancer. As highlighted throughout this review, the role of MSR1 is often dichotomous, being either host protective or detrimental to the pathogenesis of disease. We will discuss the role of MSR1 in health and disease with a focus on the molecular mechanisms influencing MSR1 expression, how altered expression affects disease process and macrophage function, the limited cell signalling pathways discovered thus far, the emerging role of MSR1 in tumour associated macrophages as well as the therapeutic potential of targeting MSR1.
Collapse
Affiliation(s)
| | - José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
7
|
Nayak DA, Binder RJ. Agents of cancer immunosurveillance: HSPs and dsDNA. Trends Immunol 2022; 43:404-413. [PMID: 35382994 PMCID: PMC9058224 DOI: 10.1016/j.it.2022.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Tumor immunosurveillance requires tumor cell-derived molecules to initiate responses through corresponding receptors on antigen presenting cells (APCs) and a specific effector response designed to eliminate the emerging tumor cells. This is supported by evidence from immunodeficient individuals and experimental animals. Recent discoveries suggest that adjuvanticity of tumor-derived heat shock proteins (HSPs) and double-stranded DNA (dsDNA) are necessary for tumor-specific immunity. There is also the obligatory early transfer of tumor antigens to APCs. We argue that tumor-derived HSPs deliver sufficient chaperoned antigen for cross-priming within the quantitative limits set by nascent tumors. In contrast to late-stage tumors, we are only just beginning to understand the unique interactions of the immune system with precancerous/nascent neoplastic cells, which is important for improved cancer prevention measures.
Collapse
|
8
|
Linares-Alcántara E, Mendlovic F. Scavenger Receptor A1 Signaling Pathways Affecting Macrophage Functions in Innate and Adaptive Immunity. Immunol Invest 2022; 51:1725-1755. [PMID: 34986758 DOI: 10.1080/08820139.2021.2020812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
First discovered on macrophages by Goldstein and Brown in 1979, Scavenger Receptors have since been shown to participate in a diverse number of cell functions; equally diverse are their structures and the ligands they bind. Macrophage activation is crucial in the outcome of an immune response. SR-A1 is highly abundant on macrophages and recognizes both host- and microorganism-derived molecules that impact processes that are initiated, perpetuated, or modified. This review summarizes the involvement of SR-A1 in both inflammatory and anti-inflammatory responses, the multiple-ligand internalization mechanisms and the diversity of signaling pathways that impact macrophage function and activation. Engagement of SR-A1 results in the stimulation of differential signaling pathways and patterns of cytokine expression, kinetics, magnitude of response and activation status. SR-A1 plays essential roles in phagocytosis and efferocytosis, interacting with other receptors and promoting tolerance in response to apoptotic cell uptake. In cell adhesion, tissue remodeling, and cell migration, SR-A1 signals through different pathways engaging different cytoplasmic motifs. We describe the role of SR-A1 during innate and adaptive immune responses, such as participation in macrophage polarization and interaction with other innate receptors, as well as in antigen uptake, processing, and presentation, regulating T and B cell activation. The dichotomous contribution of SR-A1 on macrophage functions is discussed. A better understanding of the role SR-A1 plays through molecular mechanisms and crosstalk with other receptors may provide insights into developing novel therapeutic strategies to modulate immune responses and immunopathologies.
Collapse
Affiliation(s)
- Elizabeth Linares-Alcántara
- Facultad de Ciencias, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico.,Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico.,Facultad de Ciencias de la Salud, Universidad Anahuac Mexico Norte, Huixquilucan, Mexico
| |
Collapse
|
9
|
Boagni DA, Ravirala D, Zhang SX. Current strategies in engaging oncolytic viruses with antitumor immunity. Mol Ther Oncolytics 2021; 22:98-113. [PMID: 34514092 PMCID: PMC8411207 DOI: 10.1016/j.omto.2021.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oncolytic virotherapy has produced promising yet limited results in preclinical and clinical studies. Besides direct oncolytic activity, a significant therapeutic mechanism of oncolytic virotherapy is the induction of tumor-specific immunity. Consequently, the efficacy of oncolytic viruses can be improved by the insertion of immune stimulator genes and rational combinatorial therapy with other immunotherapies. This article reviews recent efforts on arming oncolytic viruses with a variety of immune stimulator molecules, immune cell engagers, and other immune potentiating molecules. We outline what is known about the mechanisms of action and the corresponding results. The review also discusses recent preclinical and clinical studies of combining oncolytic virotherapy with immune-checkpoint inhibitors and the role of oncolytic virotherapy in changing the tumor microenvironment.
Collapse
Affiliation(s)
- Drew Ashton Boagni
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Divya Ravirala
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Shaun Xiaoliu Zhang
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
10
|
Kai K, Moriyama M, Haque ASMR, Hattori T, Chinju A, Hu C, Kubota K, Miyahara Y, Kakizoe-Ishiguro N, Kawano S, Nakamura S. Oral Squamous Cell Carcinoma Contributes to Differentiation of Monocyte-Derived Tumor-Associated Macrophages via PAI-1 and IL-8 Production. Int J Mol Sci 2021; 22:9475. [PMID: 34502382 PMCID: PMC8430735 DOI: 10.3390/ijms22179475] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/13/2023] Open
Abstract
Tumor-associated macrophages (TAMs) promote cancer cell proliferation and metastasis, as well as anti-tumor immune suppression. Recent studies have shown that tumors enhance the recruitment and differentiation of TAMs, but the detailed mechanisms have not been clarified. We thus examined the influence of cancer cells on the differentiation of monocytes to TAM subsets, including CD163+, CD204+, and CD206+ cells, in oral squamous cell carcinoma (OSCC) using immunohistochemistry, flow cytometry, and a cytokine array. Furthermore, we investigated the effect of OSCC cells (HSC-2, SQUU-A, and SQUU-B cells) on the differentiation of purified CD14+ cells to TAM subsets. The localization patterns of CD163+, CD204+, and CD206+ in OSCC sections were quite different. The expression of CD206 on CD14+ cells was significantly increased after the co-culture with OSCC cell lines, while the expressions of CD163 and CD204 on CD14+ cells showed no change. High concentrations of plasminogen activator inhibitor-1 (PAI-1) and interleukin-8 (IL-8) were detected in the conditioned medium of OSCC cell lines. PAI-1 and IL-8 stimulated CD14+ cells to express CD206. Moreover, there were positive correlations among the numbers of CD206+, PAI-1+, and IL-8+ cells in OSCC sections. These results suggest that PAI-1 and IL-8 produced by OSCC contribute to the differentiation of monocytes to CD206+ TAMs.
Collapse
Affiliation(s)
- Kazuki Kai
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - A. S. M. Rafiul Haque
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
- Department of Dental Anatomy, Udayan Dental College, House No: 1, Ward No: 7, Chondipur, GPO, Rajpara, Rajshahi 6000, Bangladesh
| | - Taichi Hattori
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Akira Chinju
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Chen Hu
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Keigo Kubota
- Department of Oral-Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Yuka Miyahara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Noriko Kakizoe-Ishiguro
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| |
Collapse
|
11
|
Multifaceted Roles of CD5L in Infectious and Sterile Inflammation. Int J Mol Sci 2021; 22:ijms22084076. [PMID: 33920819 PMCID: PMC8071174 DOI: 10.3390/ijms22084076] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
CD5L, a protein expressed and secreted mainly by macrophages, is emerging as a critical immune effector. In addition to its well-defined function as an anti-apoptotic protein, research over the last decade has uncovered additional roles that range from pattern recognition to autophagy, cell polarization, and the regulation of lipid metabolism. By modulating all these processes, CD5L plays a key role in highly prevalent diseases that develop by either acute or chronic inflammation, including several infectious, metabolic, and autoimmune conditions. In this review, we summarize the current knowledge of CD5L and focus on the relevance of this protein during infection- and sterile-driven inflammatory pathogenesis, highlighting its divergent roles in the modulation of inflammation.
Collapse
|
12
|
Corigliano MG, Sander VA, Sánchez López EF, Ramos Duarte VA, Mendoza Morales LF, Angel SO, Clemente M. Heat Shock Proteins 90 kDa: Immunomodulators and Adjuvants in Vaccine Design Against Infectious Diseases. Front Bioeng Biotechnol 2021; 8:622186. [PMID: 33553125 PMCID: PMC7855457 DOI: 10.3389/fbioe.2020.622186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 02/03/2023] Open
Abstract
Heat shock proteins 90 kDa (Hsp90s) were originally identified as stress-responsive proteins and described to participate in several homeostatic processes. Additionally, extracellular Hsp90s have the ability to bind to surface receptors and activate cellular functions related to immune response (cytokine secretion, cell maturation, and antigen presentation), making them very attractive to be studied as immunomodulators. In this context, Hsp90s are proposed as new adjuvants in the design of novel vaccine formulations that require the induction of a cell-mediated immune response to prevent infectious diseases. In this review, we summarized the adjuvant properties of Hsp90s when they are either alone, complexed, or fused to a peptide to add light to the knowledge of Hsp90s as carriers and adjuvants in the design of vaccines against infectious diseases. Besides, we also discuss the mechanisms by which Hsp90s activate and modulate professional antigen-presenting cells.
Collapse
Affiliation(s)
- Mariana G Corigliano
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Valeria A Sander
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Edwin F Sánchez López
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Víctor A Ramos Duarte
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Luisa F Mendoza Morales
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Sergio O Angel
- Unidad Biotecnológica 2-UB2, Laboratorio de Parasitología Molecular, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Marina Clemente
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| |
Collapse
|
13
|
Hosszu KK, Valentino A, Peerschke EI, Ghebrehiwet B. SLE: Novel Postulates for Therapeutic Options. Front Immunol 2020; 11:583853. [PMID: 33117397 PMCID: PMC7575694 DOI: 10.3389/fimmu.2020.583853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Genetic deficiency in C1q is a strong susceptibility factor for systemic lupus erythematosus (SLE). There are two major hypotheses that potentially explain the role of C1q in SLE. The first postulates that C1q deficiency abrogates apoptotic cell clearance, leading to persistently high loads of potentially immunogenic self-antigens that trigger autoimmune responses. While C1q undoubtedly plays an important role in apoptotic clearance, an essential biological process such as removal of self- waste is so critical for host survival that multiple ligand-receptor combinations do fortunately exist to ensure that proper disposal of apoptotic debris is accomplished even in the absence of C1q. The second hypothesis is based on the observation that locally synthesized C1q plays a critical role in regulating the earliest stages of monocyte to dendritic cell (DC) differentiation and function. Indeed, circulating C1q has been shown to keep monocytes in a pre-dendritic state by silencing key molecular players and ensuring that unwarranted DC-driven immune responses do not occur. Monocytes are also able to display macromolecular C1 on their surface, representing a novel mechanism for the recognition of circulating "danger." Translation of this danger signal in turn, provides the requisite "license" to trigger a differentiation pathway that leads to adaptive immune response. Based on this evidence, the second hypothesis proposes that deficiency in C1q dysregulates monocyte-to-DC differentiation and causes inefficient or defective maintenance of self-tolerance. The fact that C1q receptors (cC1qR and gC1qR) are also expressed on the surface of both monocytes and DCs, suggests that C1q/C1qR may regulate DC differentiation and function through specific cell-signaling pathways. While their primary ligand is C1q, C1qRs can also independently recognize a vast array of plasma proteins as well as pathogen-associated molecular ligands, indicating that these molecules may collaborate in antigen recognition and processing, and thus regulate DC-differentiation. This review will therefore focus on the role of C1q and C1qRs in SLE and explore the gC1qR/C1q axis as a potential target for therapy.
Collapse
Affiliation(s)
- Kinga K Hosszu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alisa Valentino
- Department of Lab Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ellinor I Peerschke
- Department of Lab Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Berhane Ghebrehiwet
- The Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
14
|
Kamata T, So TY, Ahmed Q, Giblett S, Patel B, Luo J, Reddel R, Pritchard C. Fibroblast-Derived STC-1 Modulates Tumor-Associated Macrophages and Lung Adenocarcinoma Development. Cell Rep 2020; 31:107802. [PMID: 32579928 PMCID: PMC7326292 DOI: 10.1016/j.celrep.2020.107802] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/20/2020] [Accepted: 06/01/2020] [Indexed: 11/25/2022] Open
Abstract
The tumor microenvironment (TME) consists of different cell types, including tumor-associated macrophages (TAMs) and tumor-associated fibroblasts (TAFs). How these cells interact and contribute to lung carcinogenesis remains elusive. Using G12DKRAS- and V600EBRAF-driven mouse lung models, we identify the pleiotropic glycoprotein stanniocalcin-1 (STC1) as a regulator of TAM-TAF interactions. STC1 is secreted by TAFs and suppresses TAM differentiation, at least in part, by sequestering the binding of GRP94, an autocrine macrophage-differentiation-inducing factor, to its cognate scavenger receptors. The accumulation of mature TAMs in the Stc1-deficient lung leads to enhanced secretion of TGF-β1 and, thus, TAF accumulation in the TME. Consistent with the mouse data, in human lung adenocarcinoma, STC1 expression is restricted to myofibroblasts, and a significant increase of naive macrophages is detected in STC1-high compared with STC1-low cases. This work increases our understanding of lung adenocarcinoma development and suggests new approaches for therapeutic targeting of the TME.
Collapse
Affiliation(s)
- Tamihiro Kamata
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Tsz Y So
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Qasim Ahmed
- Department of Molecular Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Susan Giblett
- Department of Molecular Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Bipin Patel
- Department of Molecular Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Jinli Luo
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Roger Reddel
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Catrin Pritchard
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| |
Collapse
|
15
|
Abstract
Calreticulin (CRT) is a pleiotropic and highly conserved molecule that is mainly localized in the endoplasmic reticulum. Recently, CRT has gained special interest for its functions outside the endoplasmic reticulum where it has immunomodulatory properties. CRT translocation to the cell membrane serves as an "eat me" signal and promotes efferocytosis of apoptotic cells and cancer cell removal with completely opposite outcomes. Efferocytosis results in a silenced immune response and homeostasis, while removal of dying cancer cells brought about by anthracycline treatment, ionizing-irradiation or photodynamic therapy results in immunogenic cell death with activation of the innate and adaptive immune responses. In addition, CRT impacts phagocyte activation and cytokine production. The effects of CRT on cytokine production depend on its conformation, species specificity, degree of oligomerization and/or glycosylation, as well as its cellular localization and the molecular partners involved. The controversial roles of CRT in cancer progression and the possible role of the CALR gene mutations in myeloproliferative neoplasms are also addressed. The release of CRT and its influence on the different cells involved during efferocytosis and immunogenic cell death points to additional roles of CRT besides merely acting as an "eat me" signal during apoptosis. Understanding the contribution of CRT in physiological and pathological processes could give us some insight into the potential of CRT as a therapeutic target.
Collapse
|
16
|
Schcolnik-Cabrera A, Juárez M, Oldak B, Cruz-Rivera M, Flisser A, Dueñas-González A, Buzoianu-Anguiano V, Orozco-Suarez S, Mendlovic F. In Vitro Employment of Recombinant Taenia solium Calreticulin as a Novel Strategy Against Breast and Ovarian Cancer Stem-like Cells. Arch Med Res 2020; 51:65-75. [PMID: 32097797 DOI: 10.1016/j.arcmed.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Calreticulin is a chaperone and master regulator of intracellular calcium homeostasis. Several additional functions have been discovered. Human and parasite calreticulin have been shown to suppress mammary tumor growth in vivo. Here, we explored the capacity of recombinant Taenia solium calreticulin (rTsCRT) to modulate cancer cell growth in vitro. METHODS We used different concentrations of rTsCRT to treat cancer cell lines and analyzed viability and colony formation capacity. We also tested the combination of the IC20 or IC50 doses of rTsCRT and of the chemotherapeutic drug 5-fluorouracil on MCF7 and SKOV3 cell lines. As a control, the non-tumorigenic cell line MCF10-A was employed. The effect of the drug combinations was also assessed in cancer stem-like cells. Additionally, scavenger receptor ligands were employed to identify the role of this receptor in the rTsCRT anti-tumoral effect. RESULTS rTsCRT has a dose-dependent in vitro anti-tumoral effect, being SKOV3 the most sensitive cell line followed by MCF7. When rTsCRT/5-fluorouracil were used, MCF7 and SKOV3 showed a 60% reduction in cell viability; colony formation capacity was also diminished. Treatment of cancer stem-like cells from MCF7 showed a higher reduction in cell viability, while those from SKOV3 were more sensitive to colony disaggregation. Finally, pharmacological inhibition of the scavenger receptor, abrogated the reduction in viability induced by rTsCRT in both the parental and stem-like cells. CONCLUSION Our data suggest that rTsCRT alone or in combination with 5-fluorouracil inhibits the growth of breast and ovarian cancer cell lines through its interaction with scavenger receptors.
Collapse
Affiliation(s)
| | - Mandy Juárez
- División de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Bernardo Oldak
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico
| | - Mayra Cruz-Rivera
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Flisser
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alfonso Dueñas-González
- División de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico; Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México/Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Vinnitsa Buzoianu-Anguiano
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades CMN Siglo XXI, Ciudad de México, Mexico
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades CMN Siglo XXI, Ciudad de México, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico.
| |
Collapse
|
17
|
Jiang W, Yin L, Chen H, Paschall AV, Zhang L, Fu W, Zhang W, Todd T, Yu KS, Zhou S, Zhen Z, Butler M, Yao L, Zhang F, Shen Y, Li Z, Yin A, Yin H, Wang X, Avci FY, Yu X, Xie J. NaCl Nanoparticles as a Cancer Therapeutic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904058. [PMID: 31553099 PMCID: PMC6886716 DOI: 10.1002/adma.201904058] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/18/2019] [Indexed: 05/23/2023]
Abstract
Many inorganic nanoparticles are prepared and their behaviors in living systems are investigated. Yet, common electrolytes such as NaCl are left out of this campaign. The underlying assumption is that electrolyte nanoparticles will quickly dissolve in water and behave similarly as their constituent salts. Herein, this preconception is challenged. The study shows that NaCl nanoparticles (SCNPs) but not salts are highly toxic to cancer cells. This is because SCNPs enter cells through endocytosis, bypassing cell regulations on ion transport. When dissolved inside cancer cells, SCNPs cause a surge of osmolarity and rapid cell lysis. Interestingly, normal cells are much more resistant to the treatment due to their relatively low sodium levels. Unlike conventional chemotherapeutics, SCNPs cause immunogenic cell death or ICD. In vivo studies show that SCNPs not only kill cancer cells, but also boost an anticancer immunity. The discovery opens up a new perspective on nanoparticle-based therapeutics.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Lei Yin
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, USA
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Amy Victoria Paschall
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Liuyang Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China
| | - Wenyan Fu
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Trever Todd
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Kevin Shengyang Yu
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, USA
| | - Shiyi Zhou
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zipeng Zhen
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Michael Butler
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Li Yao
- Science Education, Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Feng Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, 30602, USA
| | - Ye Shen
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, 30602, USA
| | - Zibo Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Amelia Yin
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Hang Yin
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Xianqiao Wang
- College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Fikri Y Avci
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Xiaozhong Yu
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
- Bio-Imaging Research Center, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
18
|
CD206 + tumor-associated macrophages promote proliferation and invasion in oral squamous cell carcinoma via EGF production. Sci Rep 2019; 9:14611. [PMID: 31601953 PMCID: PMC6787225 DOI: 10.1038/s41598-019-51149-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/25/2019] [Indexed: 01/09/2023] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor progression and inhibit anti-tumor immune response by producing various mediators and preferentially express CD163, CD204, and CD206. However, the role of these TAM subsets in oral squamous cell carcinoma (OSCC) remains unclear. Here we investigated the expression and function of TAM subsets in OSCC, especially in cancer cell proliferation. Biopsy sample from 44 patients with OSCC were examined for the expression of TAM markers and EGF by immunohistochemistry. EGF production of TAM subsets isolated from OSCC patients was assessed by flow cytometry. We also examined the effect of conditioned medium from TAM subsets on the proliferation of OSCC cells. CD163+ cells were detected diffusely all over the tumor and connective tissue area, while CD204+ and CD206+ cells were mainly detected in/around the tumors. Flow cytometric analysis found that CD206+ TAMs strongly produced EGF compared with CD163+ and CD204+ TAMs. Cell proliferation and invasion of OSCC cells cultured with conditioned medium of CD206+ TAMs were strongly enhanced and inhibited by anti-EGFR. The number of CD206+ TAMs positively correlated with worse clinical prognosis. Our results revealed differences in localization and EGF production among these TAM subsets. CD206+ TAMs might play a critical role in the proliferation of OSCC via EGF production.
Collapse
|
19
|
Berendam SJ, Koeppel AF, Godfrey NR, Rouhani SJ, Woods AN, Rodriguez AB, Peske JD, Cummings KL, Turner SD, Engelhard VH. Comparative Transcriptomic Analysis Identifies a Range of Immunologically Related Functional Elaborations of Lymph Node Associated Lymphatic and Blood Endothelial Cells. Front Immunol 2019; 10:816. [PMID: 31057546 PMCID: PMC6478037 DOI: 10.3389/fimmu.2019.00816] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Lymphatic and blood vessels are formed by specialized lymphatic endothelial cells (LEC) and blood endothelial cells (BEC), respectively. These endothelial populations not only form peripheral tissue vessels, but also critical supporting structures in secondary lymphoid organs, particularly the lymph node (LN). Lymph node LEC (LN-LEC) also have been shown to have important immunological functions that are not observed in LEC from tissue lymphatics. LN-LEC can maintain peripheral tolerance through direct presentation of self-antigen via MHC-I, leading to CD8 T cell deletion; and through transfer of self-antigen to dendritic cells for presentation via MHC-II, resulting in CD4 T cell anergy. LN-LEC also can capture and archive foreign antigens, transferring them to dendritic cells for maintenance of memory CD8 T cells. The molecular basis for these functional elaborations in LN-LEC remain largely unexplored, and it is also unclear whether blood endothelial cells in LN (LN-BEC) might express similar enhanced immunologic functionality. Here, we used RNA-Seq to compare the transcriptomic profiles of freshly isolated murine LEC and BEC from LN with one another and with freshly isolated LEC from the periphery (diaphragm). We show that LN-LEC, LN-BEC, and diaphragm LEC (D-LEC) are transcriptionally distinct from one another, demonstrating both lineage and tissue-specific functional specializations. Surprisingly, tissue microenvironment differences in gene expression profiles were more numerous than those determined by endothelial cell lineage specification. In this regard, both LN-localized endothelial cell populations show a variety of functional elaborations that suggest how they may function as antigen presenting cells, and also point to as yet unexplored roles in both positive and negative regulation of innate and adaptive immune responses. The present work has defined in depth gene expression differences that point to functional specializations of endothelial cell populations in different anatomical locations, but especially the LN. Beyond the analyses provided here, these data are a resource for future work to uncover mechanisms of endothelial cell functionality.
Collapse
Affiliation(s)
- Stella J. Berendam
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Alexander F. Koeppel
- Department of Public Health Sciences and Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Nicole R. Godfrey
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Sherin J. Rouhani
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Amber N. Woods
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Anthony B. Rodriguez
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - J. David Peske
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kara L. Cummings
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Stephen D. Turner
- Department of Public Health Sciences and Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Victor H. Engelhard
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- *Correspondence: Victor H. Engelhard
| |
Collapse
|
20
|
Shevtsov M, Multhoff G. Therapeutic Implications of Heat Shock Proteins in Cancer. HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-02254-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Patten DA, Shetty S. More Than Just a Removal Service: Scavenger Receptors in Leukocyte Trafficking. Front Immunol 2018; 9:2904. [PMID: 30631321 PMCID: PMC6315190 DOI: 10.3389/fimmu.2018.02904] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Scavenger receptors are a highly diverse superfamily of proteins which are grouped by their inherent ability to bind and internalize a wide array of structurally diverse ligands which can be either endogenous or exogenous in nature. Consequently, scavenger receptors are known to play important roles in host homeostasis, with common endogenous ligands including apoptotic cells, and modified low density lipoproteins (LDLs); additionally, scavenger receptors are key regulators of inflammatory diseases, such as atherosclerosis. Also, as a consequence of their affinity for a wide range of microbial products, their role in innate immunity is also being increasingly studied. However, in this review, a secondary function of a number of endothelial-expressed scavenger receptors is discussed. There is increasing evidence that some endothelial-expressed scavenger receptors are able to directly bind leukocyte-expressed ligands and subsequently act as adhesion molecules in the trafficking of leukocytes in lymphatic and vascular tissues. Here, we cover the current literature on this alternative role for endothelial-expressed scavenger receptors and also speculate on their therapeutic potential.
Collapse
Affiliation(s)
- Daniel A Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
van Vloten JP, Workenhe ST, Wootton SK, Mossman KL, Bridle BW. Critical Interactions between Immunogenic Cancer Cell Death, Oncolytic Viruses, and the Immune System Define the Rational Design of Combination Immunotherapies. THE JOURNAL OF IMMUNOLOGY 2018; 200:450-458. [PMID: 29311387 DOI: 10.4049/jimmunol.1701021] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Oncolytic viruses (OVs) are multimodal cancer therapeutics, with one of their dominant mechanisms being in situ vaccination. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. Immunogenic cell death (ICD) is a paradigm of cellular demise culminating in the spatiotemporal release of danger-associated molecular patterns that induce potent anticancer immunity. Alongside traditional ICD inducers like anthracycline chemotherapeutics and radiation, OVs have emerged as novel members of this class of therapeutics. OVs replicate in cancers and release tumor Ags, which are perceived as dangerous because of simultaneous expression of pathogen-associated molecular patterns that activate APCs. Therefore, OVs provide the target Ags and danger signals required to induce adaptive immune responses. This review discusses why OVs are attractive candidates for generating ICD, biological barriers limiting their success in the clinic, and groundbreaking strategies to potentiate ICD and antitumor immunity with rationally designed OV-based combination therapies.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Samuel T Workenhe
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and.,Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and.,Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
23
|
Komorowski M, Tisonczyk J, Kolakowska A, Drozdz R, Kozbor D. Modulation of the Tumor Microenvironment by CXCR4 Antagonist-Armed Viral Oncotherapy Enhances the Antitumor Efficacy of Dendritic Cell Vaccines against Neuroblastoma in Syngeneic Mice. Viruses 2018; 10:v10090455. [PMID: 30149659 PMCID: PMC6165252 DOI: 10.3390/v10090455] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
The induction of antitumor immune responses in tumor-bearing hosts depends on efficient uptake and processing of native or modified tumors/self-antigens by dendritic cells (DCs) to activate immune effector cells, as well as the extent of the immunosuppressive network in the tumor microenvironment (TME). Because the C-X-C motif chemokine receptor 4 (CXCR4) for the C-X-C motif chemokine 12 (CXCL12) is involved in signaling interactions between tumor cells and their TME, we used oncolytic virotherapy with a CXCR4 antagonist to investigate whether targeting of the CXCL12/CXCR4 signaling axis in murine neuroblastoma cells (NXS2)-bearing syngeneic mice affects the efficacy of bone marrow (BM)-derived DCs loaded with autologous tumor cells treated with doxorubicin for induction of immunogenic cell death. Here, we show that CXCR4 antagonist expression from an oncolytic vaccinia virus delivered intravenously to mice with neuroblastoma tumors augmented efficacy of the DC vaccines compared to treatments mediated by a soluble CXCR4 antagonist or oncolysis alone. This study is the first demonstration that modulating the tumor microenvironment by an armed oncolytic virus could have a significant impact on the efficacy of DC vaccines, leading to the generation of effective protection against neuroblastoma challenge.
Collapse
Affiliation(s)
- Marcin Komorowski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Joanna Tisonczyk
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical School, Medyczna 9, 30-688 Cracow, Poland.
| | - Agnieszka Kolakowska
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Ryszard Drozdz
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical School, Medyczna 9, 30-688 Cracow, Poland.
| | - Danuta Kozbor
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
24
|
Tumor-Associated CD204-Positive Macrophage Is a Prognostic Marker in Clinical Stage I Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8459193. [PMID: 29850577 PMCID: PMC5926519 DOI: 10.1155/2018/8459193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/11/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
Abstract
Objective Macrophages are the dominant leukocytes in the tumor microenvironment. Accumulating evidence revealed that CD204-positive (CD204+) tumor-associated macrophages (TAMs) are associated with the aggressive behavior of various cancers; however, the clinical, pathological, and prognostic associations of CD204+ TAMs with the subtype of lung adenocarcinoma have not been reported. Methods Tissue microarray and immunohistochemistry were constructed from clinical stage I lung adenocarcinomas with radical surgical resection. The intratumoral density of CD204+ cells was calculated using image analysis software for analyses. Survival analyses were performed using the Kaplan-Meier method and multivariate Cox proportional hazards regression models. Results The intratumoral density of CD204 was correlated with T stage, nodal involvement, lymphovascular invasion, and cancer relapse after the surgery, but not with age, gender, or smoking history. The density of CD204 in non-LPD was significantly higher than that in LPD. The 5-year disease-free survival (DFS) rate of CD204 high-density group was significantly worse than that of CD204 low-density group. Conclusions The expression of CD204 in TAMs is associated with the aggressiveness of lung adenocarcinoma. Our results suggest that a specific immune microenvironment may be associated with the biological behavior of lung adenocarcinoma.
Collapse
|
25
|
Jung NC, Lee JH, Chung KH, Kwak YS, Lim DS. Dendritic Cell-Based Immunotherapy for Solid Tumors. Transl Oncol 2018; 11:686-690. [PMID: 29627706 PMCID: PMC6154348 DOI: 10.1016/j.tranon.2018.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/19/2022] Open
Abstract
As a treatment for solid tumors, dendritic cell (DC)-based immunotherapy has not been as effective as expected. Here, we review the reasons underlying the limitations of DC-based immunotherapy for solid tumors and ask what can be done to improve immune cell-based cancer therapies. Several reports show that, rather than a lack of immune induction, the limited efficacy of DC-based immunotherapy in cases of renal cell carcinoma (RCC) likely results from inhibition of immune responses by tumor-secreted TGF-β and an increase in the number of regulatory T (Treg) cells in and around the solid tumor. Indeed, unlike DC therapy for solid tumors, cytotoxic T lymphocyte (CTL) responses induced by DC therapy inhibit tumor recurrence after surgery; CTL responses also limit tumor metastasis induced by additional tumor-challenge in RCC tumor-bearing mice. Here, we discuss the mechanisms underlying the poor efficacy of DC-based therapy for solid tumors and stress the need for new and improved DC immunotherapies and/or combination therapies with killer cells to treat resistant solid tumors.
Collapse
Affiliation(s)
- Nam-Chul Jung
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi-do 13488, Republic of Korea; Pharos Vaccine Inc., Seongnam, Gyeonggi-do 13215, Republic of Korea
| | - Jun-Ho Lee
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi-do 13488, Republic of Korea; Pharos Vaccine Inc., Seongnam, Gyeonggi-do 13215, Republic of Korea
| | - Kwang-Hoe Chung
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - Yi Sub Kwak
- Department of Physical Education, Dong-Eui University, College of Arts and Sports Science, Busan 47340, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
26
|
Guo C, Subjeck JR, Wang XY. Creation of Recombinant Chaperone Vaccine Using Large Heat Shock Protein for Antigen-Targeted Cancer Immunotherapy. Methods Mol Biol 2018; 1709:345-357. [PMID: 29177671 PMCID: PMC5812279 DOI: 10.1007/978-1-4939-7477-1_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Large heat shock proteins (HSPs) or stress proteins, including Hsp110 and Grp170, are unique molecular chaperones with superior capability of shuttling tumor protein antigens into professional antigen-presenting cells, such as dendritic cells, for highly efficient cross-presentation and T cell priming. Reconstituted chaperone complexes of large HSP and tumor protein antigen have been demonstrated to generate a robust antigen-specific T lymphocyte response with therapeutic potency against multiple cancer types in preclinical models. Here, we describe the methods for preparing this recombinant chaperone complex vaccine and analyzing the vaccine-induced activation of antigen-specific T cells using in vitro and in vivo systems.
Collapse
Affiliation(s)
- Chunqing Guo
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - John R Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Xiang-Yang Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
27
|
Abstract
Extracellular heat shock proteins (HSP) play important roles in cell signaling and immunity. Many of these effects are mediated by surface receptors expressed on a wide range of cell types. We have investigated the nature of such proteins by cloning candidate receptors into cells (CHO-K1) with the rare property of being null for HSP binding. Using this approach we have discovered that Hsp70 binds avidly to at least two classes of receptors including: (1) c-type lectin receptors (CLR) and (2) scavenger receptors (SR). However, the structural nature of the receptor-ligand interactions is not clear at this time. Hsp70 can bind to LOX-1 (a member of both the CLR and SR), with the c-type lectin binding domain (CTLD) as well as the SR family members SREC-I and FEEL-1/CLEVER-1/STABILIN-1, which by contrast have arrays of EGF-like repeats in their extracellular domains. In this chapter we will discuss: (1) methods for discovery of HSP receptors, (2) approaches to the study of individual receptors in cells that contain multiple such receptors, and (3) methods for investigating HSP receptor function in vivo.
Collapse
|
28
|
Endogenous DAMPs, Category I: Constitutively Expressed, Native Molecules (Cat. I DAMPs). DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7122936 DOI: 10.1007/978-3-319-78655-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This chapter provides the reader with a collection of endogenous DAMPs in terms of constitutively expressed native molecules. The first class of this category refers to DAMPs, which are passively released from necrotic cells, and includes the most prominent subclasses of high mobility group box I and heat shock proteins. Further subclasses of DAMPs that are passively released from necrotic cells include S100 proteins, nucleic acids, histones, pro-forms of interleukin-1-family members, mitochondria-derived N-formylated peptides, F-actin, and heme. A particular subclass of these passively released DAMPs are molecules, which indirectly activate the inflammasome, including adenosine-5′-triphosphate, monosodium urate crystals, cholesterol crystals, some lipolytic species, and beta-amyloid. All these passively released DAMPs are characterized by their capability to promote necroinflammatory responses. The second class of this Category I refers to molecules, which are exposed on the surface of stressed cells. They include the subclass of phagocytosis-facilitating molecules such as calreticulin, as well as the subclass of MHC-I-related molecules such as MHC-I-related molecule A and B. These DAMPs are capable of inducing the activation of innate lymphoid cells and unconventional T cells. One of these DAMPs, the major histocompatibility complex I-related molecule A, is shown to act as a bona fide transplantation antigen. In sum, the endogenous constitutively expressed native molecules represent an impressive category of DAMPs with extraordinary properties, which play a critical role in the pathogenesis of many human diseases.
Collapse
|
29
|
Kelly M, McNeel D, Fisch P, Malkovsky M. Immunological considerations underlying heat shock protein-mediated cancer vaccine strategies. Immunol Lett 2017; 193:1-10. [PMID: 29129721 DOI: 10.1016/j.imlet.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
Abstract
The success of active immunotherapies in the prevention of many infectious diseases over the course of over 200 years has lead scientists to wonder if the same principles could be applied to cancer. Antigen-specific active immunotherapies for the treatment of cancer have been researched for over two decades, however, the overwhelming majority of these studies have failed to stimulate robust clinical responses. It is clear that current active immunotherapy research should incorporate methods to increase the immunostimulatory capacity of these therapies. To directly address this need, we propose the addition of the immunostimulatory heat shock proteins (HSPs) to active immunotherapeutic strategies to augment their efficacy. Heat shock proteins are a family of highly conserved intracellular chaperone proteins, and are the most abundant family proteins inside cells. This ubiquity, and their robust immunostimulatory capacity, points to their importance in regulation of intracellular processes and, therefore, indicators of loss of cellular integrity if found extracellularly. Thus, we emphasize the importance of taking into consideration the location of vaccine-derived HSP/tumor-antigen complexes when designing active immunotheraputic strategies.
Collapse
Affiliation(s)
- Matthew Kelly
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Douglas McNeel
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Paul Fisch
- Universitätsklinikum Freiburg, Institut für Pathologie, Freiburg, Germany
| | - Miroslav Malkovsky
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
30
|
PrabhuDas MR, Baldwin CL, Bollyky PL, Bowdish DME, Drickamer K, Febbraio M, Herz J, Kobzik L, Krieger M, Loike J, McVicker B, Means TK, Moestrup SK, Post SR, Sawamura T, Silverstein S, Speth RC, Telfer JC, Thiele GM, Wang XY, Wright SD, El Khoury J. A Consensus Definitive Classification of Scavenger Receptors and Their Roles in Health and Disease. THE JOURNAL OF IMMUNOLOGY 2017; 198:3775-3789. [PMID: 28483986 DOI: 10.4049/jimmunol.1700373] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
Scavenger receptors constitute a large family of proteins that are structurally diverse and participate in a wide range of biological functions. These receptors are expressed predominantly by myeloid cells and recognize a diverse variety of ligands including endogenous and modified host-derived molecules and microbial pathogens. There are currently eight classes of scavenger receptors, many of which have multiple names, leading to inconsistencies and confusion in the literature. To address this problem, a workshop was organized by the United States National Institute of Allergy and Infectious Diseases, National Institutes of Health, to help develop a clear definition of scavenger receptors and a standardized nomenclature based on that definition. Fifteen experts in the scavenger receptor field attended the workshop and, after extensive discussion, reached a consensus regarding the definition of scavenger receptors and a proposed scavenger receptor nomenclature. Scavenger receptors were defined as cell surface receptors that typically bind multiple ligands and promote the removal of nonself or altered-self targets. They often function by mechanisms that include endocytosis, phagocytosis, adhesion, and signaling that ultimately lead to the elimination of degraded or harmful substances. Based on this definition, nomenclature and classification of these receptors into 10 classes were proposed. This classification was discussed at three national meetings and input from participants at these meetings was requested. The following manuscript is a consensus statement that combines the recommendations of the initial workshop and incorporates the input received from the participants at the three national meetings.
Collapse
Affiliation(s)
- Mercy R PrabhuDas
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| | - Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003.,Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Paul L Bollyky
- Department of Medicine, Stanford University, Stanford, CA 94305
| | - Dawn M E Bowdish
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, M.G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Maria Febbraio
- Department of Dentistry, Katz Group Centre for Pharmacy and Health Research, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Peter O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lester Kobzik
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - John Loike
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Benita McVicker
- University of Nebraska Medical Center, Omaha VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105
| | - Terry K Means
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Soren K Moestrup
- Department of Biomedicine, University of Aarhus, 8000 Aarhus C, Denmark
| | - Steven R Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Tatsuya Sawamura
- Department of Physiology, Research Institute, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Samuel Silverstein
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Robert C Speth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328
| | - Janice C Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Geoffrey M Thiele
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68105
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Samuel D Wright
- Cardiovascular Therapeutics, CSL Behring, King of Prussia, PA 19406; and
| | - Joseph El Khoury
- Infectious Disease Division, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| |
Collapse
|
31
|
Zhang K, Peng Z, Huang X, Qiao Z, Wang X, Wang N, Xi H, Cui J, Gao Y, Huang X, Gao H, Wei B, Chen L. Phase II Trial of Adjuvant Immunotherapy with Autologous Tumor-derived Gp96 Vaccination in Patients with Gastric Cancer. J Cancer 2017; 8:1826-1832. [PMID: 28819380 PMCID: PMC5556646 DOI: 10.7150/jca.18946] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
Background/Aims: Autologous, tumor-derived, heat shock protein gp96 peptide complexes have antitumor potential. We conducted the first Phase II trial to evaluate the safety and efficacy of gp96 vaccination in adjuvant settings for patients with gastric cancer. Methods: We enrolled 73 consecutive patients from October 2012 to December 2015. Thirty-eight patients received gp96 vaccination plus chemotherapy and 35 received chemotherapy alone. The primary endpoints were disease-free survival (DFS) and toxicity. The secondary endpoints were overall survival (OS) and tumor-specific immune responses. Results: There were comparable baseline characteristics between the two groups. Tumor-specific immune responses increased significantly after gp96 vaccination. gp96 vaccination plus chemotherapy was well tolerated and there were no gp96-related serious adverse events. Patients who received gp96 vaccination had improved DFS compared with those who did not [p = 0.045; hazard ratio (HR): 0.47; 95% confidence interval (CI): 0.23-0.96]. The 2-year OS rates were 81.9% and 67.9% for the gp96 vaccination and chemotherapy alone group, respectively (p = 0.123; HR: 0.42; 95% CI: 0.15-1.24). Conclusion: gp96 vaccination elicits tumor-specific immune responses and can be safely used in adjuvant settings combined with chemotherapy. Patients with less-aggressive diseases might benefit from gp96 therapy.
Collapse
Affiliation(s)
- Kecheng Zhang
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Zheng Peng
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Xiaohui Huang
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Zhi Qiao
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Xinxin Wang
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Ning Wang
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Hongqing Xi
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Jianxin Cui
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Yunhe Gao
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Xijian Huang
- Cure&Sure Biotech Co., LTD, Hi-tech Industrial Park, Shenzhen 518057, P.R. China
| | - Hua Gao
- Cure&Sure Biotech Co., LTD, Hi-tech Industrial Park, Shenzhen 518057, P.R. China
| | - Bo Wei
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| |
Collapse
|
32
|
Kubota K, Moriyama M, Furukawa S, Rafiul HASM, Maruse Y, Jinno T, Tanaka A, Ohta M, Ishiguro N, Yamauchi M, Sakamoto M, Maehara T, Hayashida JN, Kawano S, Kiyoshima T, Nakamura S. CD163 +CD204 + tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma. Sci Rep 2017; 7:1755. [PMID: 28496107 PMCID: PMC5431876 DOI: 10.1038/s41598-017-01661-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/31/2017] [Indexed: 01/22/2023] Open
Abstract
Tumor-associated macrophages (TAMs) promote cancer cell proliferation, invasion, and metastasis by producing various mediators. Although preclinical studies demonstrated that TAMs preferentially express CD163 and CD204, the TAM subsets in oral squamous cell carcinoma (OSCC) remain unknown. In this study, we examined the expression and role of TAM subsets in OSCC. Forty-six patients with OSCC were analyzed for expression of TAMs in biopsy samples by immunohistochemistry. We examined TAM subsets and their production of immune suppressive molecules (IL-10 and PD-L1) in peripheral blood mononuclear cells from three OSCC patients by flow cytometry. CD163 was detected around the tumor or connective tissue, while CD204 was detected in/around the tumors. Flow cytometric analysis revealed that CD163+CD204+ TAMs strongly produced IL-10 and PD-L1 in comparison with CD163+CD204- and CD163-CD204+ TAMs. Furthermore, the number of activated CD3+ T cells after co-culture with CD163+CD204+ TAMs was significantly lower than that after co-culture with other TAM subsets. In clinical findings, the number of CD163+CD204+ TAMs was negatively correlated with that of CD25+ cells and 5-year progression-free survival. These results suggest that CD163+CD204+ TAMs possibly play a key role in the invasion and metastasis of OSCC by T-cell regulation via IL-10 and PD-L1 production.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Apoptosis
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/metabolism
- CD3 Complex/metabolism
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Coculture Techniques
- Female
- Humans
- Immunosuppression Therapy
- Interleukin-10/metabolism
- Macrophages/metabolism
- Male
- Middle Aged
- Mouth Neoplasms/immunology
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Multivariate Analysis
- Prognosis
- Progression-Free Survival
- Receptors, Cell Surface/metabolism
- Scavenger Receptors, Class A/metabolism
- T-Lymphocytes/immunology
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Keigo Kubota
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan.
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Sachiko Furukawa
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Haque A S M Rafiul
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuyuki Maruse
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Teppei Jinno
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akihiko Tanaka
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Miho Ohta
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Noriko Ishiguro
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masaaki Yamauchi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mizuki Sakamoto
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takashi Maehara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Jun-Nosuke Hayashida
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
33
|
Unconventional Secretion of Heat Shock Proteins in Cancer. Int J Mol Sci 2017; 18:ijms18050946. [PMID: 28468249 PMCID: PMC5454859 DOI: 10.3390/ijms18050946] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Heat shock proteins (HSPs) are abundant cellular proteins involved with protein homeostasis. They have both constitutive and inducible isoforms, whose expression levels are further increased by stress conditions, such as temperature elevation, reduced oxygen levels, infection, inflammation and exposure to toxic substances. In these situations, HSPs exert a pivotal role in offering protection, preventing cell death and promoting cell recovery. Although the majority of HSPs functions are exerted in the cytoplasm and organelles, several lines of evidence reveal that HSPs are able to induce cell responses in the extracellular milieu. HSPs do not possess secretion signal peptides, and their secretion was subject to widespread skepticism until the demonstration of the role of unconventional secretion forms such as exosomes. Secretion of HSPs may confer immune system modulation and be a cell-to-cell mediated form of increasing stress resistance. Thus, there is a wide potential for secreted HSPs in resistance of cancer therapy and in the development new therapeutic strategies.
Collapse
|
34
|
Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol Adv 2017; 35:375-389. [PMID: 28288861 DOI: 10.1016/j.biotechadv.2017.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023]
Abstract
Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their mechanisms of action, structural or sequence requirements for activity, sequence modifications to enhance their activity or simplify production, adverse effects, and examples of vaccines in preclinical or human clinical trials.
Collapse
|
35
|
Abello-Cáceres P, Pizarro-Bauerle J, Rosas C, Maldonado I, Aguilar-Guzmán L, González C, Ramírez G, Ferreira J, Ferreira A. Does native Trypanosoma cruzi calreticulin mediate growth inhibition of a mammary tumor during infection? BMC Cancer 2016; 16:731. [PMID: 27619675 PMCID: PMC5020520 DOI: 10.1186/s12885-016-2764-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/27/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND For several decades now an antagonism between Trypanosoma cruzi infection and tumor development has been detected. The molecular basis of this phenomenon remained basically unknown until our proposal that T. cruzi Calreticulin (TcCRT), an endoplasmic reticulum-resident chaperone, translocated-externalized by the parasite, may mediate at least an important part of this effect. Thus, recombinant TcCRT (rTcCRT) has important in vivo antiangiogenic and antitumor activities. However, the relevant question whether the in vivo antitumor effect of T. cruzi infection is indeed mediated by the native chaperone (nTcCRT), remains open. Herein, by using specific modified anti-rTcCRT antibodies (Abs), we have neutralized the antitumor activity of T. cruzi infection and extracts thereof, thus identifying nTcCRT as a valid mediator of this effect. METHODS Polyclonal anti-rTcCRT F(ab')2 Ab fragments were used to reverse the capacity of rTcCRT to inhibit EAhy926 endothelial cell (EC) proliferation, as detected by BrdU uptake. Using these F(ab')2 fragments, we also challenged the capacity of nTcCRT, during T. cruzi infection, to inhibit the growth of an aggressive mammary adenocarcinoma cell line (TA3-MTXR) in mice. Moreover, we determined the capacity of anti-rTcCRT Abs to reverse the antitumor effect of an epimastigote extract (EE). Finally, the effects of these treatments on tumor histology were evaluated. RESULTS The rTcCRT capacity to inhibit ECs proliferation was reversed by anti-rTcCRT F(ab')2 Ab fragments, thus defining them as valid probes to interfere in vivo with this important TcCRT function. Consequently, during infection, these Ab fragments also reversed the in vivo experimental mammary tumor growth. Moreover, anti-rTcCRT Abs also neutralized the antitumor effect of an EE, again identifying the chaperone protein as an important mediator of this anti mammary tumor effect. Finally, as determined by conventional histological parameters, in infected animals and in those treated with EE, less invasive tumors were observed while, as expected, treatment with F(ab')2 Ab fragments increased malignancy. CONCLUSION We have identified translocated/externalized nTcCRT as responsible for at least an important part of the anti mammary tumor effect of the chaperone observed during experimental infections with T. cruzi.
Collapse
Affiliation(s)
- Paula Abello-Cáceres
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Javier Pizarro-Bauerle
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Carlos Rosas
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Ismael Maldonado
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Lorena Aguilar-Guzmán
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Carlos González
- Faculty of Veterinary Medicine, Andrés Bello University, Avenida República 440, Santiago Centro, Santiago, Chile
| | - Galia Ramírez
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Jorge Ferreira
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Arturo Ferreira
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
- University of Chile, Avenida Independencia 1027, Santiago, Chile
| |
Collapse
|
36
|
Di Blasio S, Wortel IMN, van Bladel DAG, de Vries LE, Duiveman-de Boer T, Worah K, de Haas N, Buschow SI, de Vries IJM, Figdor CG, Hato SV. Human CD1c(+) DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology 2016; 5:e1192739. [PMID: 27622063 PMCID: PMC5007971 DOI: 10.1080/2162402x.2016.1192739] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Chemotherapeutics, including the platinum compounds oxaliplatin (OXP) and cisplatin (CDDP), are standard care of treatment for cancer. Although chemotherapy has long been considered immunosuppressive, evidence now suggests that certain cytotoxic agents can efficiently stimulate antitumor responses, through the induction of a form of apoptosis, called immunogenic cell death (ICD). ICD is characterized by exposure of calreticulin and heat shock proteins (HSPs), secretion of ATP and release of high-mobility group box 1 (HMGB1). Proper activation of the immune system relies on the integration of these signals by dendritic cells (DCs). Studies on the crucial role of DCs, in the context of ICD, have been performed using mouse models or human in vitro-generated monocyte-derived DCs (moDCs), which do not fully recapitulate the in vivo situation. Here, we explore the effect of platinum-induced ICD on phenotype and function of human blood circulating DCs. Tumor cells were treated with OXP or CDDP and induction of ICD was investigated. We show that both platinum drugs triggered translocation of calreticulin and HSP70, as well as the release of ATP and HMGB1. Platinum treatment increased phagocytosis of tumor fragments by human blood DCs and enhanced phenotypic maturation of blood myeloid and plasmacytoid DCs. Moreover, upon interaction with platinum-treated tumor cells, CD1c+ DCs efficiently stimulated allogeneic proliferation of T lymphocytes. Together, our observations indicate that platinum-treated tumor cells may exert an active stimulatory effect on human blood DCs. In particular, these data suggest that CD1c+ DCs are critical mediators of immune responses induced by ICD.
Collapse
Affiliation(s)
- Stefania Di Blasio
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Inge M N Wortel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Diede A G van Bladel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Laura E de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Tjitske Duiveman-de Boer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Kuntal Worah
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Nienke de Haas
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Sonja I Buschow
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Stanleyson V Hato
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| |
Collapse
|
37
|
Ramírez-Toloza G, Abello P, Ferreira A. Is the Antitumor Property of Trypanosoma cruzi Infection Mediated by Its Calreticulin? Front Immunol 2016; 7:268. [PMID: 27462315 PMCID: PMC4939398 DOI: 10.3389/fimmu.2016.00268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/27/2016] [Indexed: 12/31/2022] Open
Abstract
Eight to 10 million people in 21 endemic countries are infected with Trypanosoma cruzi. However, only 30% of those infected develop symptoms of Chagas' disease, a chronic, neglected tropical disease worldwide. Similar to other pathogens, T. cruzi has evolved to resist the host immune response. Studies, performed 80 years ago in the Soviet Union, proposed that T. cruzi infects tumor cells with similar capacity to that displayed for target tissues such as cardiac, aortic, or digestive. An antagonistic relationship between T. cruzi infection and cancer development was also proposed, but the molecular mechanisms involved have remained largely unknown. Probably, a variety of T. cruzi molecules is involved. This review focuses on how T. cruzi calreticulin (TcCRT), exteriorized from the endoplasmic reticulum, targets the first classical complement component C1 and negatively regulates the classical complement activation cascade, promoting parasite infectivity. We propose that this C1-dependent TcCRT-mediated virulence is critical to explain, at least an important part, of the parasite capacity to inhibit tumor development. We will discuss how TcCRT, by directly interacting with venous and arterial endothelial cells, inhibits angiogenesis and tumor growth. Thus, these TcCRT functions not only illustrate T. cruzi interactions with the host immune defensive strategies, but also illustrate a possible co-evolutionary adaptation to privilege a prolonged interaction with its host.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile , Santiago , Chile
| | - Paula Abello
- Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile , Santiago , Chile
| | - Arturo Ferreira
- Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile , Santiago , Chile
| |
Collapse
|
38
|
Rana A, Sattar SS, Shahzad A, Ali GM, Waheed Y. Scavenger receptor class-A plays diverse role in innate immunity, cell signaling and different pathologies. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016; 6:567-572. [DOI: 10.1016/s2222-1808(16)61088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Shevtsov M, Multhoff G. Heat Shock Protein-Peptide and HSP-Based Immunotherapies for the Treatment of Cancer. Front Immunol 2016; 7:171. [PMID: 27199993 PMCID: PMC4850156 DOI: 10.3389/fimmu.2016.00171] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/18/2016] [Indexed: 01/23/2023] Open
Abstract
Intracellular residing heat shock proteins (HSPs) with a molecular weight of approximately 70 and 90 kDa function as molecular chaperones that assist folding/unfolding and transport of proteins across membranes and prevent protein aggregation after environmental stress. In contrast to normal cells, tumor cells have higher cytosolic heat shock protein 70 and Hsp90 levels, which contribute to tumor cell propagation, metastasis, and protection against apoptosis. In addition to their intracellular chaperoning functions, extracellular localized and membrane-bound HSPs have been found to play key roles in eliciting antitumor immune responses by acting as carriers for tumor-derived immunogenic peptides, as adjuvants for antigen presentation, or as targets for the innate immune system. The interaction of HSP–peptide complexes or peptide-free HSPs with receptors on antigen-presenting cells promotes the maturation of dendritic cells, results in an upregulation of major histocompatibility complex class I and class II molecules, induces secretion of pro- and anti-inflammatory cytokines, chemokines, and immune modulatory nitric oxides, and thus integrates adaptive and innate immune phenomena. Herein, we aim to recapitulate the history and current status of HSP-based immunotherapies and vaccination strategies in the treatment of cancer.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Department of Radiation Oncology, Klinikum rechts der Isar, TU München, Munich, Germany; Institute of Cytology of Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, TU München , Munich , Germany
| |
Collapse
|
40
|
Zuo D, Subjeck J, Wang XY. Unfolding the Role of Large Heat Shock Proteins: New Insights and Therapeutic Implications. Front Immunol 2016; 7:75. [PMID: 26973652 PMCID: PMC4771732 DOI: 10.3389/fimmu.2016.00075] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Heat shock proteins (HSPs) of eukaryotes are evolutionarily conserved molecules present in all the major intracellular organelles. They mainly function as molecular chaperones and participate in maintenance of protein homeostasis in physiological state and under stressful conditions. Despite their relative abundance, the large HSPs, i.e., Hsp110 and glucose-regulated protein 170 (Grp170), have received less attention compared to other conventional HSPs. These proteins are distantly related to the Hsp70 and belong to Hsp70 superfamily. Increased sizes of Hsp110 and Grp170, due to the presence of a loop structure, result in their exceptional capability in binding to polypeptide substrates or non-protein ligands, such as pathogen-associated molecules. These interactions that occur in the extracellular environment during tissue injury or microbial infection may lead to amplification of an immune response engaging both innate and adaptive immune components. Here, we review the current advances in understanding these large HSPs as molecular chaperones in proteostasis control and immune modulation as well as their therapeutic implications in treatment of cancer and neurodegeneration. Given their unique immunoregulatory activities, we also discuss the emerging evidence of their potential involvement in inflammatory and immune-related diseases.
Collapse
Affiliation(s)
- Daming Zuo
- Department of Immunology, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - John Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
41
|
Zachova K, Krupka M, Raska M. Antigen Cross-Presentation and Heat Shock Protein-Based Vaccines. Arch Immunol Ther Exp (Warsz) 2015; 64:1-18. [DOI: 10.1007/s00005-015-0370-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/31/2015] [Indexed: 12/15/2022]
|
42
|
Abstract
Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John R Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
43
|
Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 2015; 15:335-49. [PMID: 25976513 PMCID: PMC4786079 DOI: 10.1038/nri3843] [Citation(s) in RCA: 714] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fever is a cardinal response to infection that has been conserved in warm-blooded and cold-blooded vertebrates for more than 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. In this Review, we discuss our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction and during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. We also discuss the emerging evidence suggesting that the adrenergic signalling pathways associated with thermogenesis shape immune cell function.
Collapse
Affiliation(s)
- Sharon S Evans
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| | - Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| |
Collapse
|
44
|
Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, Ponnambalam S. Scavenger receptor structure and function in health and disease. Cells 2015; 4:178-201. [PMID: 26010753 PMCID: PMC4493455 DOI: 10.3390/cells4020178] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
Scavenger receptors (SRs) are a ‘superfamily’ of membrane-bound receptors that were initially thought to bind and internalize modified low-density lipoprotein (LDL), though it is currently known to bind to a variety of ligands including endogenous proteins and pathogens. New family of SRs and their properties have been identified in recent years, and have now been classified into 10 eukaryote families, defined as Classes A-J. These receptors are classified according to their sequences, although in each class they are further classified based in the variations of the sequence. Their ability to bind a range of ligands is reflected on the biological functions such as clearance of modified lipoproteins and pathogens. SR members regulate pathophysiological states including atherosclerosis, pathogen infections, immune surveillance, and cancer. Here, we review our current understanding of SR structure and function implicated in health and disease.
Collapse
Affiliation(s)
- Izma Abdul Zani
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sam L Stephen
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Nadeem A Mughal
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | - David Russell
- Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | | | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
45
|
Murshid A, Gong J, Prince T, Borges TJ, Calderwood SK. Scavenger receptor SREC-I mediated entry of TLR4 into lipid microdomains and triggered inflammatory cytokine release in RAW 264.7 cells upon LPS activation. PLoS One 2015; 10:e0122529. [PMID: 25836976 PMCID: PMC4383338 DOI: 10.1371/journal.pone.0122529] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/20/2015] [Indexed: 12/11/2022] Open
Abstract
Scavenger receptor associated with endothelial cells I (SREC-I) was shown to be expressed in immune cells and to play a role in the endocytosis of peptides and antigen presentation. As our previous studies indicated that SREC-I required intact Toll-like receptor 4 (TLR4) expression for its functions in tumor immunity, we examined potential interactions between these two receptors. We have shown here that SREC-I became associated with TLR4 on binding bacterial lipopolysaccharides (LPS) in RAW 264.7 and HEK 293 cells overexpressing these two receptors. The receptors then became internalized together in intracellular endosomes. SREC-I promoted TLR4-induced signal transduction through the NF-kB and MAP kinase pathways, leading to enhanced inflammatory cytokine release. Activation of inflammatory signaling through SREC-I/TLR4 complexes appeared to involve recruitment of the receptors into detergent-insoluble, cholesterol-rich lipid microdomains that contained the small GTPase Cdc42 and the non-receptor tyrosine kinase c-src. Under conditions of SREC-I activation by LPS, TLR4 activity required Cdc42 as well as cholesterol and actin polymerization for signaling through NF-kB and MAP kinase pathways in RAW 264.7 cells. SREC-I appeared to respond differently to another ligand, the molecular chaperone Hsp90 that, while triggering SREC-I-TLR4 binding caused only faint activation of the NF-kB pathway. Our experiments therefore indicated that SREC-I could bind LPS and might be involved in innate inflammatory immune responses to extracellular danger signals in RAW 264.7 cells or bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
| | - Jianlin Gong
- Stress Response Center, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Thomas Prince
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
| | - Thiago J. Borges
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
- School of Biosciences and Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Stuart K. Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Kelley JL, Ozment TR, Li C, Schweitzer JB, Williams DL. Scavenger receptor-A (CD204): a two-edged sword in health and disease. Crit Rev Immunol 2015; 34:241-61. [PMID: 24941076 DOI: 10.1615/critrevimmunol.2014010267] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Scavenger receptor A (SR-A), also known as the macrophage scavenger receptor and cluster of differentiation 204 (CD204), plays roles in lipid metabolism, atherogenesis, and a number of metabolic processes. However, recent evidence points to important roles for SR-A in inflammation, innate immunity, host defense, sepsis, and ischemic injury. Herein, we review the role of SR-A in inflammation, innate immunity, host defense, sepsis, cardiac and cerebral ischemic injury, Alzheimer's disease, virus recognition and uptake, bone metabolism, and pulmonary injury. Interestingly, SR-A is reported to be host protective in some disease states, but there is also compelling evidence that SR-A plays a role in the pathophysiology of other diseases. These observations of both harmful and beneficial effects of SR-A are discussed here in the framework of inflammation, innate immunity, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jim L Kelley
- Departments of Internal Medicine, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Tammy R Ozment
- Departments of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Chuanfu Li
- Departments of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - John B Schweitzer
- Departments of Pathology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - David L Williams
- Departments of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| |
Collapse
|
47
|
Ju Y, Fan H, Liu J, Hu J, Li X, Li C, Chen L, Gao Q, Gao GF, Meng S. Heat shock protein gp96 adjuvant induces T cell responses and cross-protection to a split influenza vaccine. Vaccine 2014; 32:2703-11. [PMID: 24699472 DOI: 10.1016/j.vaccine.2014.03.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/06/2014] [Accepted: 03/13/2014] [Indexed: 01/09/2023]
Abstract
The commonly used inactivated or split influenza vaccines induce only induce minimal T cell responses and are less effective in preventing heterologous virus infection. Thus, developing cross-protective influenza vaccines against the spread of a new influenza virus is an important strategy against pandemic emergence. Here we demonstrated that immunization with heat shock protein gp96 as adjuvant led to a dramatic increased antigen-specific T cell response to a pandemic H1N1 split vaccine. Notably, gp96 elicited a cross-protective CD8(+) T cell response to the internal conserved viral protein NP. Although the split pH1N1vaccine alone has low cross-protective efficiency, adding gp96 as an adjuvant effectively improved the cross-protection against challenge with a heterologous virus in mice. Our study reveals the novel property of gp96 in boosting the T cell response against conserved epitopes of influenza virus and its potential use as an adjuvant for human pre-pandemic inactivated influenza vaccines against different viral subtypes.
Collapse
Affiliation(s)
- Ying Ju
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Hongxia Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Xinghui Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Lizhao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Qiang Gao
- Sinovac Biotech Co., Ltd, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
48
|
Tosti G, Cocorocchio E, Pennacchioli E, Ferrucci PF, Testori A, Martinoli C. Heat-shock proteins-based immunotherapy for advanced melanoma in the era of target therapies and immunomodulating agents. Expert Opin Biol Ther 2014; 14:955-67. [PMID: 24670226 DOI: 10.1517/14712598.2014.902928] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Heat-shock proteins (HSPs) are highly conserved, stress-induced proteins that function as chaperones, stabilizing proteins and delivering peptides. Tumor-derived HSP peptide complexes (HSPPCs) induced immunity against several malignancies in preclinical models, exhibiting activity across tumor types. AREAS COVERED HSPPC-based vaccination showed clinical activity in subsets of patients with different malignancies (e.g., gastric, colorectal, pancreatic, ovarian cancer, and glioblastoma). In Phase III clinical trials for advanced melanoma and renal cell carcinoma patients, HSPPC-based vaccine demonstrated an excellent safety profile, thus emerging as a flexible tumor- and patient-specific therapeutic approach. EXPERT OPINION Melanoma, renal clear cell carcinoma, and glioblastoma are among suitable targets for HSP-based treatment as demonstrated by immune responses and clinical activity observed in subsets of patients, mainly those with early stage of disease and limited tumor burden. In order to further improve clinical activity, combinations of HSPPC-based vaccines with mutation-driven therapies, antiangiogenic agents, or immunomodulating monoclonal antibodies should be tested in controlled clinical trials.
Collapse
Affiliation(s)
- Giulio Tosti
- Istituto Europeo di Oncologia, Melanoma and Sarcoma Division , Via Ripamonti 435, 2014i Milano , Italy +39 02 57489459 ; +39 02 94379230 ;
| | | | | | | | | | | |
Collapse
|
49
|
Harvey BP, Raycroft MT, Quan TE, Rudenga BJ, Roman RM, Craft J, Mamula MJ. Transfer of antigen from human B cells to dendritic cells. Mol Immunol 2014; 58:56-65. [PMID: 24309484 PMCID: PMC4234097 DOI: 10.1016/j.molimm.2013.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/03/2013] [Accepted: 10/15/2013] [Indexed: 12/13/2022]
Abstract
The cooperation of B lymphocytes with other antigen presenting cells (APCs) is often necessary in the efficient processing and presentation of antigen. Herein, we describe a mechanism by which B cells physically interact with dendritic cells (DCs) resulting in the transfer of B cell receptor (BCR)-enriched antigen to these APCs. Antigen transfer involves direct contact between the two cells followed by the capture of B cell derived membrane and intracellular components. Strikingly, DCs acquire greater amounts of antigen by transfer from B cells than by endocytosis of free antigen. Blocking scavenger receptor A, a DC surface receptor involved in membrane acquisition, abrogates these events. We propose that antigen transfer from B cells to DCs results in a more focused immunologic response due to the selective editing of Ag by the BCR.
Collapse
Affiliation(s)
- Bohdan P Harvey
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Maurice T Raycroft
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Timothy E Quan
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Benjamin J Rudenga
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert M Roman
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joe Craft
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mark J Mamula
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
50
|
Pauletto M, Milan M, Moreira R, Novoa B, Figueras A, Babbucci M, Patarnello T, Bargelloni L. Deep transcriptome sequencing of Pecten maximus hemocytes: a genomic resource for bivalve immunology. FISH & SHELLFISH IMMUNOLOGY 2014; 37:154-165. [PMID: 24486903 DOI: 10.1016/j.fsi.2014.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
Pecten maximus, the king scallop, is a bivalve species with important commercial value for both fisheries and aquaculture, traditionally consumed in several European countries. Major problems in larval rearing, however, still limit hatchery-based seed production. High mortalities during early larval stages, likely related to bacterial pathogens, represent the most relevant bottleneck. To address this issue, understanding host defense mechanisms against microbes is extremely important. In this study next-generation RNA-sequencing was carried on scallop hemocytes. To enrich for immune-related transcripts, cDNA libraries from hemocytes challenged in vivo with inactivated-Vibrio anguillarum and in vitro with pathogen-associated molecular patterns, as well as unchallenged controls, were sequenced yielding 216,444,674 sequence reads. De novo assembly of the scallop hemocyte transcriptome consisted of 73,732 contigs (31% annotated). A total of 934 contigs encoded proteins with a known immune function, grouped into several functional categories. Particular attention was reserved to Toll-like receptors (TLRs), a family of pattern recognition receptors (PRRs) involved in non-self recognition. Through mining the scallop hemocyte transcriptome, at least four TLRs could be identified. The organization of canonical TLR domains demonstrated that single cysteine cluster and multiple cysteine cluster TLRs co-exist in this species. In addition, preliminary data concerning their mRNA level following bacterial challenge suggested that different members of this family could exhibit opposite responses to pathogenic stimuli. Finally, a global analysis of differential expression comparing gene-expression levels in in vitro and in vivo stimulated hemocytes against controls provided evidence on a large set of transcripts involved in the great scallop immune response.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Rebeca Moreira
- Instituto de Investigaciones Marinas (IIM), CSIC, C/Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain.
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), CSIC, C/Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain.
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM), CSIC, C/Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain.
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| |
Collapse
|