1
|
Gao S, Fu Y, Peng X, Ma S, Liu YR, Chen W, Huang Q, Hao X. Microplastics Trigger Soil Dissolved Organic Carbon and Nutrient Turnover by Strengthening Microbial Network Connectivity and Cross-Trophic Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5596-5606. [PMID: 40041936 DOI: 10.1021/acs.est.4c12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Increasing microplastic (MP) inputs in agricultural soils have gained global attention for their ecological effects, especially on soil organic carbon (SOC) and nutrient turnover. However, the microbial mechanism underlying MP-induced SOC and nutrient dynamics remains poorly understood. Here, we investigated the impacts of two common MPs (polyethylene and polyvinyl chloride) on microbial hierarchical groups (bacteria, fungi, and protists) and the cascading effects on dissolved organic carbon (DOC) and nutrient dynamics in two typical agricultural soils (Mollisol and Ultisol). Our results showed that MP inputs consistently reduced NO3--N concentration but increased the content of DOC and specific dissolved organic matter (DOM) components. Despite divergent responses of microbial hierarchical groups to MPs, MP inputs consistently strengthened the connectivity and cross-trophic associations of microbial multitrophic networks. Protistan nodes belonging to Cercozoa, Ciliophora, and Chlorophyta played essential roles in maintaining network connectivity in MP-treated soils. The enhanced network connectivity and cross-trophic associations primarily explained variations in soil DOC and nutrient turnover. These findings collectively indicate that MP inputs trigger DOC and nutrient turnover by enhancing the potential multitrophic interactions and species connectivity within soil micro-food webs. Our study provides novel insights into the ecological consequences of MP pollution on microbial hierarchical interactions and microbially mediated biogeochemical cycling.
Collapse
Affiliation(s)
- Shenghan Gao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunbo Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyi Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Silin Ma
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Tromas N, Goitom E, Chin T, Dinh QT, Dorner SM, Khawasik OS, Cristescu ME, Burnet JB. Impact of grazing by multiple Daphnia species on wastewater bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178364. [PMID: 39799645 DOI: 10.1016/j.scitotenv.2024.178364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Understanding the dynamics of fecal bacterial communities is crucial for managing public health risks and protecting drinking water resources. While extensive research exists on how abiotic factors influence the survival of fecal microbial communities in water, less attention has been paid to the impact of predation by higher organisms, such as the widely distributed grazer Daphnia. Nevertheless, Daphnia plays a significant role in regulating bacterial communities in natural aquatic ecosystems, and recent studies highlighted its potential as a biofilter in alternative tertiary wastewater treatment systems. In this study, we investigated the influence of three different Daphnia species on a wastewater bacterial community, including fecal indicator bacterium E. coli. Using a microcosm setup to simulate the discharge of untreated sewage into surface water, we conducted in-depth analysis of bacterial community dynamics through sequencing the 16S rRNA gene. Our results revealed significant changes in microbial diversity and composition following exposure to Daphnia grazing, with variations observed among the three Daphnia species. D. pulicaria exerted the most pronounced impact on microbial diversity, followed by D. middendorffiana and D. mendotae. A total of 90 taxa exhibited significantly reduced relative abundance in the presence of Daphnia, with Firmicutes phylum being the most affected. At genus level, bacteria typically associated with wastewater (e.g., Zoogloea and Arcobacter) and gut microbiome constituents (e.g., Prevotella and Akkermansia) were notably affected by Daphnia exposure. The influence of Daphnia on bacterial community composition was most pronounced for D. pulicaria, while D. middendorffiana and D. mendotae primarily impacted community structure. Furthermore, we demonstrated that the microbial response to Daphnia exposure is phylogenetically conserved, potentially reflecting a grazing resistance or grazer feeding trait. Our findings shed new light on the role of Daphnia in controlling bacterial communities in polluted water bodies and underscore its potential as biofilter in wastewater treatment and reuse contexts.
Collapse
Affiliation(s)
- Nicolas Tromas
- UMR CARRTEL - INRAE, 74200 Thonon les Bains, France; Department of Biological Sciences, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Eyerusalem Goitom
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada; Department of Geography, and Environmental Studies, Toronto Metropolitan University(,) Toronto, ON M5B 2K3, Canada
| | - Tiffany Chin
- Department of Biology, McGill University, Montréal, QC H3A 1B1, Canada
| | - Quoc Tuc Dinh
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada
| | - Sarah M Dorner
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada
| | - Ola S Khawasik
- Department of Biology, McGill University, Montréal, QC H3A 1B1, Canada
| | | | - Jean-Baptiste Burnet
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada.
| |
Collapse
|
3
|
Govaert L, Klauschies T. Eco-phenotypic feedback loops differ in multistressor environments. Ecology 2025; 106:e4480. [PMID: 39592230 PMCID: PMC11733661 DOI: 10.1002/ecy.4480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 11/28/2024]
Abstract
Natural communities are exposed to multiple environmental stressors, which simultaneously impact the population and trait dynamics of the species embedded within these communities. Given that certain traits, such as body size, are known to rapidly respond to environmental change, and given that they can strongly influence the density of populations, this raises the question of whether the strength of the eco-phenotypic feedback loop depends on the environment, and whether stressful environments would enhance or disrupt this feedback or causal linkage. We use two competing freshwater ciliates-Colpidium striatum and Paramecium aurelia-and expose their populations to a full-factorial design of increasing salinity and temperature conditions as well as interspecific competition. We found that salinity, temperature, and competition significantly affected the density and cell size dynamics of both species. Cell size dynamics strongly influenced density dynamics; however, the strength of this eco-phenotypic feedback loop weakened in stressful conditions and with interspecific competition. Our study highlights the importance of studying eco-phenotypic dynamics in different environments comprising stressful abiotic conditions and species interactions.
Collapse
Affiliation(s)
- Lynn Govaert
- Department of Evolutionary and Integrative EcologyLeibniz‐Institut für Gewässerökologie und Binnenfischerei (IGB)BerlinGermany
| | - Toni Klauschies
- Department of Ecology and Ecosystem ModellingInstitute of Biochemistry and Biology, University of PotsdamPotsdamGermany
| |
Collapse
|
4
|
Rammohan R, Baidwal S, Venkatapathy N, Lorenzo-Morales J, Raghavan A. A 5-Year Review of Coinfections in Acanthamoeba keratitis From South India. Eye Contact Lens 2023; 49:334-338. [PMID: 37232397 DOI: 10.1097/icl.0000000000001005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE To ascertain the frequency of coinfections in Acanthamoeba keratitis, the nature of copathogens involved, and to analyze the implications in the context of current research on amoebic interactions. METHODS A retrospective case review from a Tertiary Care Eye Hospital in South India. Smear and culture data for coinfections in Acanthamoeba corneal ulcers were collected from records over a 5-year period. The significance and relevance of our findings in the light of current research on Acanthamoeba interactions were analyzed. RESULTS Eighty-five cases of culture-positive Acanthamoeba keratitis were identified over a 5-year period (43 of them being coinfections). Fusarium was most commonly identified species, followed by Aspergillus and the dematiaceous fungi. Pseudomonas spp was the commonest bacterial isolate. CONCLUSION Coinfections with Acanthamoeba are common at our centre, and account for 50% of Acanthamoeba keratitis. The diverse nature of the organisms involved in coinfections suggest that such amoebic interactions with other organisms are probably more widespread than recognized. To the best of our knowledge, this is the first documentation from a long-term study of pathogen diversity in Acanthamoeba coinfections. It is possible that Acanthamoeba itself may be virulence enhanced and secondary to the co-organism, breaching the ocular surface defenses in an already compromised cornea. However, observations from the existing literature on Acanthamoeba interactions with bacteria and certain fungi are based mainly on nonocular or nonclinical isolates. It would be illuminating if such studies are performed on Acanthamoeba and coinfectors from corneal ulcers-to ascertain whether interactions are endosymbiotic or virulence enhanced through amoebic passage.
Collapse
Affiliation(s)
- Ram Rammohan
- Aravind Eye Hospital and Post-Graduate Institute of Ophthalmology (R.R., N.V., A.R.), Coimbatore; Fortis Hospital (S.B.), Chandigarh Road, Ludhiana, India; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC) (J.L.-M.), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología (J.L.-M.), Universidad de La Laguna, Tenerife, Spain; and Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC) (J.L.-M.), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|
5
|
Tsai CM, Chen CH, Cheng WH, Stelma FF, Li SC, Lin WC. Homeostasis of cellular amino acids in Acanthamoeba castellanii exposed to different media under amoeba-bacteria coculture conditions. BMC Microbiol 2023; 23:198. [PMID: 37495951 PMCID: PMC10373360 DOI: 10.1186/s12866-023-02942-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Acanthamoeba castellanii is a free-living protist that feeds on diverse bacteria. A. castellanii has frequently been utilized in studies on microbial interactions. Grazing bacteria also exhibit diverse effects on the physiological characteristics of amoebae, such as their growth, encystation, and cytotoxicity. Since the composition of amoebae amino acids is closely related to cellular activities, it can indicate the overall responses of A. castellanii to various stimuli. METHOD A. castellanii was exposed to different culture conditions in low-nutrient medium with heat-killed DH5α to clarify their effects. A targeted metabolomic technique was utilized to evaluate the concentration of cellular amino acids. The amino acid composition and pathways were analyzed by two web-based tools: MetaboAnalyst and Pathview. Then, long-term exposure to A. castellanii was investigated through in silico and in vitro methods to elucidate the homeostasis of amino acids and the growth of A. castellanii. RESULTS Under short-term exposure, all kinds of amino acids were enriched in all exposed groups. In contrast to the presence of heat-killed bacteria, the medium exhibited obvious effects on the amino acid composition of A. castellanii. After long-term exposure, the amino acid composition was more similar to that of the control group. A. castellanii may achieve amino acid homeostasis through pathways related to alanine, aspartate, citrulline, and serine. DISCUSSION Under short-term exposure, compared to the presence of bacteria, the type of medium exerted a more powerful effect on the amino acid composition of the amoeba. Previous studies focused on the interaction of the amoeba and bacteria with effective secretion systems and effectors. This may have caused the effects of low-nutrient environments to be overlooked. CONCLUSION When A. castellanii was stimulated in the coculture system through various methods, such as the presence of bacteria and a low-nutrient environment, it accumulated intracellular amino acids within a short period. However, different stimulations correspond to different amino acid compositions. After long-term exposure, A. castellanii achieved an amino acid equilibrium by downregulating the biosynthesis of several amino acids.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hsien Chen
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Cheng
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Foekje F. Stelma
- Department of Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Sung-Chou Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Wei-Chen Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Padayhag BM, Nada MAL, Baquiran JIP, Sison-Mangus MP, San Diego-McGlone ML, Cabaitan PC, Conaco C. Microbial community structure and settlement induction capacity of marine biofilms developed under varied reef conditions. MARINE POLLUTION BULLETIN 2023; 193:115138. [PMID: 37321001 DOI: 10.1016/j.marpolbul.2023.115138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Coral larval settlement relies on biogenic cues such as those elicited by microbial biofilm communities, a crucial element of coral recruitment. Eutrophication can modify these biofilm-associated communities, but studies on how this affects coral larval settlement are limited. In this study, we developed biofilm communities on glass slides at four sites with increasing distance from a mariculture zone. Biofilms farthest from the mariculture area were more effective at inducing the settlement of Acropora tenuis larvae. These biofilms were characterized by a greater proportion of crustose coralline algae (CCA) and gammaproteobacterial taxa compared to biofilms from sites closer to the mariculture zone, which had a greater proportion of cyanobacteria and no CCA. These findings suggest that nutrient enrichment due to mariculture activities alters the composition of biofilm-associated microbiome at nearby reef sites and indirectly causes poor coral larval settlement.
Collapse
Affiliation(s)
- Blaire M Padayhag
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Michael Angelou L Nada
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Jake Ivan P Baquiran
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | | | | | - Patrick C Cabaitan
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
7
|
Shifts from cooperative to individual-based predation defense determine microbial predator-prey dynamics. THE ISME JOURNAL 2023; 17:775-785. [PMID: 36854789 PMCID: PMC10119117 DOI: 10.1038/s41396-023-01381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 03/02/2023]
Abstract
Predation defense is an important feature of predator-prey interactions adding complexity to ecosystem dynamics. Prey organisms have developed various strategies to escape predation which differ in mode (elude vs. attack), reversibility (inducible vs. permanent), and scope (individual vs. cooperative defenses). While the mechanisms and controls of many singular defenses are well understood, important ecological and evolutionary facets impacting long-term predator-prey dynamics remain underexplored. This pertains especially to trade-offs and interactions between alternative defenses occurring in prey populations evolving under predation pressure. Here, we explored the dynamics of a microbial predator-prey system consisting of bacterivorous flagellates (Poteriospumella lacustris) feeding on Pseudomonas putida. Within five weeks of co-cultivation corresponding to about 35 predator generations, we observed a consistent succession of bacterial defenses in all replicates (n = 16). Initially, bacteria expressed a highly effective cooperative defense based on toxic metabolites, which brought predators close to extinction. This initial strategy, however, was consistently superseded by a second mechanism of predation defense emerging via de novo mutations. Combining experiments with mathematical modeling, we demonstrate how this succession of defenses is driven by the maximization of individual rather than population benefits, highlighting the role of rapid evolution in the breakdown of social cooperation.
Collapse
|
8
|
McLaughlin M, Hershey DM, Reyes Ruiz LM, Fiebig A, Crosson S. A cryptic transcription factor regulates Caulobacter adhesin development. PLoS Genet 2022; 18:e1010481. [PMID: 36315598 PMCID: PMC9648850 DOI: 10.1371/journal.pgen.1010481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/10/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Alphaproteobacteria commonly produce an adhesin that is anchored to the exterior of the envelope at one cell pole. In Caulobacter crescentus this adhesin, known as the holdfast, facilitates attachment to solid surfaces and cell partitioning to air-liquid interfaces. An ensemble of two-component signal transduction (TCS) proteins controls C. crescentus holdfast biogenesis by indirectly regulating expression of HfiA, a potent inhibitor of holdfast synthesis. We performed a genetic selection to discover direct hfiA regulators that function downstream of the adhesion TCS system and identified rtrC, a hypothetical gene. rtrC transcription is directly activated by the adhesion TCS regulator, SpdR. Though its primary structure bears no resemblance to any defined protein family, RtrC binds and regulates dozens of sites on the C. crescentus chromosome via a pseudo-palindromic sequence. Among these binding sites is the hfiA promoter, where RtrC functions to directly repress transcription and thereby activate holdfast development. Either RtrC or SpdR can directly activate transcription of a second hfiA repressor, rtrB. Thus, environmental regulation of hfiA transcription by the adhesion TCS system is subject to control by an OR-gated type I coherent feedforward loop; these regulatory motifs are known to buffer gene expression against fluctuations in regulating signals. We have further assessed the functional role of rtrC in holdfast-dependent processes, including surface adherence to a cellulosic substrate and formation of pellicle biofilms at air-liquid interfaces. Strains harboring insertional mutations in rtrC have a diminished adhesion profile in a competitive cheesecloth binding assay and a reduced capacity to colonize pellicle biofilms in select media conditions. Our results add to an emerging understanding of the regulatory topology and molecular components of a complex bacterial cell adhesion control system.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - David M. Hershey
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Leila M. Reyes Ruiz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
9
|
Villalba LA, Kasada M, Zoccarato L, Wollrab S, Grossart HP. Differing Escape Responses of the Marine Bacterium Marinobacter adhaerens in the Presence of Planktonic vs. Surface-Associated Protist Grazers. Int J Mol Sci 2022; 23:ijms231710082. [PMID: 36077481 PMCID: PMC9456119 DOI: 10.3390/ijms231710082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Protist grazing pressure plays a major role in controlling aquatic bacterial populations, affecting energy flow through the microbial loop and biogeochemical cycles. Predator-escape mechanisms might play a crucial role in energy flow through the microbial loop, but are yet understudied. For example, some bacteria can use planktonic as well as surface-associated habitats, providing a potential escape mechanism to habitat-specific grazers. We investigated the escape response of the marine bacterium Marinobacter adhaerens in the presence of either planktonic (nanoflagellate: Cafeteria roenbergensis) or surface-associated (amoeba: Vannella anglica) protist predators, following population dynamics over time. In the presence of V. anglica, M. adhaerens cell density increased in the water, but decreased on solid surfaces, indicating an escape response towards the planktonic habitat. In contrast, the planktonic predator C. roenbergensis induced bacterial escape to the surface habitat. While C. roenbergensis cell numbers dropped substantially after a sharp initial increase, V. anglica exhibited a slow, but constant growth throughout the entire experiment. In the presence of C. roenbergensis, M. adhaerens rapidly formed cell clumps in the water habitat, which likely prevented consumption of the planktonic M. adhaerens by the flagellate, resulting in a strong decline in the predator population. Our results indicate an active escape of M. adhaerens via phenotypic plasticity (i.e., behavioral and morphological changes) against predator ingestion. This study highlights the potentially important role of behavioral escape mechanisms for community composition and energy flow in pelagic environments, especially with globally rising particle loads in aquatic systems through human activities and extreme weather events.
Collapse
Affiliation(s)
- Luis Alberto Villalba
- Department Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany
- Correspondence: (L.A.V.); (H.P.G.)
| | - Minoru Kasada
- Department Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany
- Graduate School of Life Sciences, Tohoku University, 6-3, Aoba, Sendai 980-8578, Japan
| | - Luca Zoccarato
- Department Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany
- Institute of Computational Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Sabine Wollrab
- Department Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany
| | - Hans Peter Grossart
- Department Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany
- Institute for Biochemistry and Biology, Potsdam University, 14482 Potsdam, Germany
- Correspondence: (L.A.V.); (H.P.G.)
| |
Collapse
|
10
|
Zachar I, Boza G. The Evolution of Microbial Facilitation: Sociogenesis, Symbiogenesis, and Transition in Individuality. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.798045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic cooperation is widespread, and it seems to be a ubiquitous and easily evolvable interaction in the microbial domain. Mutual metabolic cooperation, like syntrophy, is thought to have a crucial role in stabilizing interactions and communities, for example biofilms. Furthermore, cooperation is expected to feed back positively to the community under higher-level selection. In certain cases, cooperation can lead to a transition in individuality, when freely reproducing, unrelated entities (genes, microbes, etc.) irreversibly integrate to form a new evolutionary unit. The textbook example is endosymbiosis, prevalent among eukaryotes but virtually lacking among prokaryotes. Concerning the ubiquity of syntrophic microbial communities, it is intriguing why evolution has not lead to more transitions in individuality in the microbial domain. We set out to distinguish syntrophy-specific aspects of major transitions, to investigate why a transition in individuality within a syntrophic pair or community is so rare. We review the field of metabolic communities to identify potential evolutionary trajectories that may lead to a transition. Community properties, like joint metabolic capacity, functional profile, guild composition, assembly and interaction patterns are important concepts that may not only persist stably but according to thought-provoking theories, may provide the heritable information at a higher level of selection. We explore these ideas, relating to concepts of multilevel selection and of informational replication, to assess their relevance in the debate whether microbial communities may inherit community-level information or not.
Collapse
|
11
|
Predation increases multiple components of microbial diversity in activated sludge communities. THE ISME JOURNAL 2022; 16:1086-1094. [PMID: 34853477 PMCID: PMC8941047 DOI: 10.1038/s41396-021-01145-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Protozoan predators form an essential component of activated sludge communities that is tightly linked to wastewater treatment efficiency. Nonetheless, very little is known how protozoan predation is channelled via bacterial communities to affect ecosystem functioning. Therefore, we experimentally manipulated protozoan predation pressure in activated-sludge communities to determine its impacts on microbial diversity, composition and putative functionality. Different components of bacterial diversity such as taxa richness, evenness, genetic diversity and beta diversity all responded strongly and positively to high protozoan predation pressure. These responses were non-linear and levelled off at higher levels of predation pressure, supporting predictions of hump-shaped relationships between predation pressure and prey diversity. In contrast to predation intensity, the impact of predator diversity had both positive (taxa richness) and negative (evenness and phylogenetic distinctiveness) effects on bacterial diversity. Furthermore, predation shaped the structure of bacterial communities. Reduction in top-down control negatively affected the majority of taxa that are generally associated with increased treatment efficiency, compromising particularly the potential for nitrogen removal. Consequently, our findings highlight responses of bacterial diversity and community composition as two distinct mechanisms linking protozoan predation with ecosystem functioning in activated sludge communities.
Collapse
|
12
|
Hoque MM, Noorian P, Espinoza-Vergara G, Manuneedhi Cholan P, Kim M, Rahman MH, Labbate M, Rice SA, Pernice M, Oehlers SH, McDougald D. Adaptation to an amoeba host drives selection of virulence-associated traits in Vibrio cholerae. THE ISME JOURNAL 2022; 16:856-867. [PMID: 34654895 PMCID: PMC8857207 DOI: 10.1038/s41396-021-01134-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 12/02/2022]
Abstract
Predation by heterotrophic protists drives the emergence of adaptive traits in bacteria, and often these traits lead to altered interactions with hosts and persistence in the environment. Here we studied adaptation of the cholera pathogen, Vibrio cholerae during long-term co-incubation with the protist host, Acanthamoeba castellanii. We determined phenotypic and genotypic changes associated with long-term intra-amoebal host adaptation and how this impacts pathogen survival and fitness. We showed that adaptation to the amoeba host leads to temporal changes in multiple phenotypic traits in V. cholerae that facilitate increased survival and competitive fitness in amoeba. Genome sequencing and mutational analysis revealed that these altered lifestyles were linked to non-synonymous mutations in conserved regions of the flagellar transcriptional regulator, flrA. Additionally, the mutations resulted in enhanced colonisation in zebrafish, establishing a link between adaptation of V. cholerae to amoeba predation and enhanced environmental persistence. Our results show that pressure imposed by amoeba on V. cholerae selects for flrA mutations that serves as a key driver for adaptation. Importantly, this study provides evidence that adaptive traits that evolve in pathogens in response to environmental predatory pressure impact the colonisation of eukaryotic organisms by these pathogens.
Collapse
Affiliation(s)
- M. Mozammel Hoque
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia
| | - Parisa Noorian
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia
| | - Gustavo Espinoza-Vergara
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia
| | - Pradeep Manuneedhi Cholan
- grid.1013.30000 0004 1936 834XTuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XFaculty of Medicine and Health & Marie Bashir Institute, The University of Sydney, Camperdown, NSW Australia
| | - Mikael Kim
- grid.117476.20000 0004 1936 7611Climate Change Cluster, University of Technology Sydney, Sydney, NSW Australia
| | - Md Hafizur Rahman
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW Australia
| | - Maurizio Labbate
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW Australia
| | - Scott A. Rice
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia ,grid.59025.3b0000 0001 2224 0361Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mathieu Pernice
- grid.117476.20000 0004 1936 7611Climate Change Cluster, University of Technology Sydney, Sydney, NSW Australia
| | - Stefan H. Oehlers
- grid.1013.30000 0004 1936 834XTuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XFaculty of Medicine and Health & Marie Bashir Institute, The University of Sydney, Camperdown, NSW Australia
| | - Diane McDougald
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia ,grid.59025.3b0000 0001 2224 0361Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Han Z, Sieriebriennikov B, Susoy V, Lo WS, Igreja C, Dong C, Berasategui A, Witte H, Sommer RJ. Horizontally Acquired Cellulases Assist the Expansion of Dietary Range in Pristionchus Nematodes. Mol Biol Evol 2022; 39:msab370. [PMID: 34978575 PMCID: PMC8826503 DOI: 10.1093/molbev/msab370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer (HGT) enables the acquisition of novel traits via non-Mendelian inheritance of genetic material. HGT plays a prominent role in the evolution of prokaryotes, whereas in animals, HGT is rare and its functional significance is often uncertain. Here, we investigate horizontally acquired cellulase genes in the free-living nematode model organism Pristionchus pacificus. We show that these cellulase genes 1) are likely of eukaryotic origin, 2) are expressed, 3) have protein products that are secreted and functional, and 4) result in endo-cellulase activity. Using CRISPR/Cas9, we generated an octuple cellulase mutant, which lacks all eight cellulase genes and cellulase activity altogether. Nonetheless, this cellulase-null mutant is viable and therefore allows a detailed analysis of a gene family that was horizontally acquired. We show that the octuple cellulase mutant has associated fitness costs with reduced fecundity and slower developmental speed. Furthermore, by using various Escherichia coli K-12 strains as a model for cellulosic biofilms, we demonstrate that cellulases facilitate the procurement of nutrients from bacterial biofilms. Together, our analysis of cellulases in Pristionchus provides comprehensive evidence from biochemistry, genetics, and phylogeny, which supports the integration of horizontally acquired genes into the complex life history strategy of this soil nematode.
Collapse
Affiliation(s)
- Ziduan Han
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Vladislav Susoy
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Wen-Sui Lo
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Catia Igreja
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Chuanfu Dong
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | | | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| |
Collapse
|
14
|
Exposure to Parasitic Protists and Helminths Changes the Intestinal Community Structure of Bacterial Communities in a Cohort of Mother-Child Binomials from a Semirural Setting in Mexico. mSphere 2021; 6:e0008321. [PMID: 34406855 PMCID: PMC8386383 DOI: 10.1128/msphere.00083-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An estimated 3.5 billion people are colonized by intestinal parasites worldwide. Intestinal parasitic eukaryotes interact not only with the host but also with the intestinal microbiota. In this work, we studied the relationship between the presence of multiple enteric parasites and the community structures of gut bacteria and eukaryotes in an asymptomatic mother-child cohort from a semirural community in Mexico. Fecal samples were collected from 46 mothers and their respective children, with ages ranging from 2 to 20 months. Mothers and infants were found to be multiparasitized by Blastocystis hominis, Entamoeba dispar, Endolimax nana, Chilomastix mesnili, Iodamoeba butshlii, Entamoeba coli, Hymenolepis nana, and Ascaris lumbricoides. Sequencing of bacterial 16S rRNA and eukaryotic 18S rRNA genes showed a significant effect of parasite exposure on bacterial beta-diversity, which explained between 5.2% and 15.0% of the variation of the bacterial community structure in the cohort. Additionally, exposure to parasites was associated with significant changes in the relative abundances of multiple bacterial taxa, characterized by an increase in Clostridiales and decreases in Actinobacteria and Bacteroidales. Parasite exposure was not associated with changes in intestinal eukaryote relative abundances. However, we found several significant positive correlations between intestinal bacteria and eukaryotes, including Oscillospira with Entamoeba coli and Prevotella stercorea with Entamoeba hartmanni, as well as the co-occurrence of the fungus Candida with Bacteroides and Actinomyces, Bifidobacterium, and Prevotella copri and the fungus Pichia with Oscillospira. The parasitic exposure-associated changes in the bacterial community structure suggest effects on microbial metabolic routes, host nutrient uptake abilities, and intestinal immunity regulation in host-parasite interactions. IMPORTANCE The impact of intestinal eukaryotes on the prokaryotic microbiome composition of asymptomatic carriers has not been extensively explored, especially in infants and mothers with multiple parasitic infections. In this work, we studied the relationship between protist and helminth parasite colonization and the intestinal microbiota structure in an asymptomatic population of mother-child binomials from a semirural community in Mexico. We found that the presence of parasitic eukaryotes correlated with changes in the bacterial gut community structure in the intestinal microbiota in an age-dependent way. Parasitic infection was associated with an increase in the relative abundance of the class Clostridia and decreases of Actinobacteria and Bacteroidia. Parasitic infection was not associated with changes in the eukaryote community structure. However, we observed strong positive correlations between bacterial and other eukaryote taxa, identifying novel relationships between prokaryotes and fungi reflecting interkingdom interactions within the human intestine.
Collapse
|
15
|
Akbar S, Stevens DC. Functional genomics study of Pseudomonas putida to determine traits associated with avoidance of a myxobacterial predator. Sci Rep 2021; 11:16445. [PMID: 34385565 PMCID: PMC8360965 DOI: 10.1038/s41598-021-96046-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Predation contributes to the structure and diversity of microbial communities. Predatory myxobacteria are ubiquitous to a variety of microbial habitats and capably consume a broad diversity of microbial prey. Predator-prey experiments utilizing myxobacteria have provided details into predatory mechanisms and features that facilitate consumption of prey. However, prey resistance to myxobacterial predation remains underexplored, and prey resistances have been observed exclusively from predator-prey experiments that included the model myxobacterium Myxococcus xanthus. Utilizing a predator-prey pairing that instead included the myxobacterium, Cystobacter ferrugineus, with Pseudomonas putida as prey, we observed surviving phenotypes capable of eluding predation. Comparative transcriptomics between P. putida unexposed to C. ferrugineus and the survivor phenotype suggested that increased expression of efflux pumps, genes associated with mucoid conversion, and various membrane features contribute to predator avoidance. Unique features observed from the survivor phenotype when compared to the parent P. putida include small colony variation, efflux-mediated antibiotic resistance, phenazine-1-carboxylic acid production, and increased mucoid conversion. These results demonstrate the utility of myxobacterial predator-prey models and provide insight into prey resistances in response to predatory stress that might contribute to the phenotypic diversity and structure of bacterial communities.
Collapse
Affiliation(s)
- Shukria Akbar
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - D Cole Stevens
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.
| |
Collapse
|
16
|
Peplinski J, Malone MA, Fowler KJ, Potratz EJ, Pergams AG, Charmoy KL, Rasheed K, Avdieiev SS, Whelan CJ, Brown JS. Ecology of Fear: Spines, Armor and Noxious Chemicals Deter Predators in Cancer and in Nature. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.682504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In nature, many multicellular and unicellular organisms use constitutive defenses such as armor, spines, and noxious chemicals to keep predators at bay. These defenses render the prey difficult and/or dangerous to subdue and handle, which confers a strong deterrent for predators. The distinct benefit of this mode of defense is that prey can defend in place and continue activities such as foraging even under imminent threat of predation. The same qualitative types of armor-like, spine-like, and noxious defenses have evolved independently and repeatedly in nature, and we present evidence that cancer is no exception. Cancer cells exist in environments inundated with predator-like immune cells, so the ability of cancer cells to defend in place while foraging and proliferating would clearly be advantageous. We argue that these defenses repeatedly evolve in cancers and may be among the most advanced and important adaptations of cancers. By drawing parallels between several taxa exhibiting armor-like, spine-like, and noxious defenses, we present an overview of different ways these defenses can appear and emphasize how phenotypes that appear vastly different can nevertheless have the same essential functions. This cross-taxa comparison reveals how cancer phenotypes can be interpreted as anti-predator defenses, which can facilitate therapy approaches which aim to give the predators (the immune system) the upper hand. This cross-taxa comparison is also informative for evolutionary ecology. Cancer provides an opportunity to observe how prey evolve in the context of a unique predatory threat (the immune system) and varied environments.
Collapse
|
17
|
Sharma S, Compant S, Franken P, Ruppel S, Ballhausen MB. It Takes Two to Tango: A Bacterial Biofilm Provides Protection against a Fungus-Feeding Bacterial Predator. Microorganisms 2021; 9:microorganisms9081566. [PMID: 34442645 PMCID: PMC8398733 DOI: 10.3390/microorganisms9081566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022] Open
Abstract
Fungus-bacterium interactions are widespread, encompass multiple interaction types from mutualism to parasitism, and have been frequent targets for microbial inoculant development. In this study, using in vitro systems combined with confocal laser scanning microscopy and real-time quantitative PCR, we test whether the nitrogen-fixing bacterium Kosakonia radicincitans can provide protection to the plant-beneficial fungus Serendipita indica, which inhabits the rhizosphere and colonizes plants as an endophyte, from the fungus-feeding bacterium Collimonas fungivorans. We show that K. radicincitans can protect fungal hyphae from bacterial feeding on solid agar medium, with probable mechanisms being quick hyphal colonization and biofilm formation. We furthermore find evidence for different feeding modes of K. radicincitans and C. fungivorans, namely “metabolite” and “hyphal feeding”, respectively. Overall, we demonstrate, to our knowledge, the first evidence for a bacterial, biofilm-based protection of fungal hyphae against attack by a fungus-feeding, bacterial predator on solid agar medium. Besides highlighting the importance of tripartite microbial interactions, we discuss implications of our results for the development and application of microbial consortium-based bioprotectants and biostimulants.
Collapse
Affiliation(s)
- Shubhangi Sharma
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Stéphane Compant
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria;
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 24, 07743 Jena, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Max-Bernhard Ballhausen
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Correspondence:
| |
Collapse
|
18
|
The role of Acanthamoeba spp. in biofilm communities: a systematic review. Parasitol Res 2021; 120:2717-2729. [PMID: 34292376 DOI: 10.1007/s00436-021-07240-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Acanthamoeba spp. have always caused disease in immunosuppressed patients, but since 1986, they have become a worldwide public health issue by causing infection in healthy contact lens wearers. Amoebae of the Acanthamoeba genus are broadly distributed in nature, living either freely or as parasites, and are frequently associated with biofilms throughout the environment. These biofilms provide the parasite with protection against external aggression, thus favoring its increased pathogeny. This review aims to assess observational studies on the association between Acanthamoeba spp. and biofilms, opening potential lines of research on this severe ocular infection. A systematic literature search was conducted in May 2020 in the following databases: PubMed Central®/Medline, LILACS, The Cochrane Library, and EMBASE®. The studies were selected following the inclusion and exclusion criteria specifically defined for this review. Electronic research recovered 353 publications in the literature. However, none of the studies met the inclusion criterion of biofilm-producing Acanthamoeba spp., inferring that the parasite does not produce biofilms. Nonetheless, 78 studies were classified as potentially included regarding any association of Acanthamoeba spp. and biofilms. These studies were allocated across six different locations (hospital, aquatic, ophthalmic and dental environments, biofilms produced by bacteria, and other places). Acanthamoeba species use biofilms produced by other microorganisms for their benefit, in addition to them providing protection to and facilitating the dissemination of pathogens residing in them.
Collapse
|
19
|
Wucher BR, Elsayed M, Adelman JS, Kadouri DE, Nadell CD. Bacterial predation transforms the landscape and community assembly of biofilms. Curr Biol 2021; 31:2643-2651.e3. [PMID: 33826904 PMCID: PMC8588571 DOI: 10.1016/j.cub.2021.03.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/02/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023]
Abstract
The bacterium Bdellovibrio bacteriovorus attaches to the exterior of a Gram-negative prey cell, enters the periplasm, and harvests resources to replicate before lysing the host to find new prey.1-7 Predatory bacteria such as this are common in many natural environments,8-13 as are groups of matrix-bound prey cell clusters, termed biofilms.14-16 Despite the ubiquity of both predatory bacteria and biofilm-dwelling prey, the interaction between B. bacteriovorus and prey inside biofilms has received little attention and has not yet been studied at the micrometer scale. Filling this knowledge gap is critical to understanding bacterial predator-prey interaction in nature. Here we show that B. bacteriovorus is able to attack biofilms of the pathogen Vibrio cholerae, but only up until a critical maturation threshold past which the prey biofilms are protected from their predators. Using high-resolution microscopy and detailed spatial analysis, we determine the relative contributions of matrix secretion and cell-cell packing of the prey biofilm toward this protection mechanism. Our results demonstrate that B. bacteriovorus predation in the context of this protection threshold fundamentally transforms the sub-millimeter-scale landscape of biofilm growth, as well as the process of community assembly as new potential biofilm residents enter the system. We conclude that bacterial predation can be a key factor influencing the spatial community ecology of microbial biofilms.
Collapse
Affiliation(s)
- Benjamin R Wucher
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ 07101, USA
| | - James S Adelman
- Department of Biological Sciences, The University of Memphis, 3700 Walker Avenue, Memphis, TN 38117, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ 07101, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA.
| |
Collapse
|
20
|
Ceulemans R, Guill C, Gaedke U. Top predators govern multitrophic diversity effects in tritrophic food webs. Ecology 2021; 102:e03379. [PMID: 33937982 DOI: 10.1002/ecy.3379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/22/2020] [Accepted: 02/05/2021] [Indexed: 01/11/2023]
Abstract
It is well known that functional diversity strongly affects ecosystem functioning. However, even in rather simple model communities consisting of only two or, at best, three trophic levels, the relationship between multitrophic functional diversity and ecosystem functioning appears difficult to generalize, because of its high contextuality. In this study, we considered several differently structured tritrophic food webs, in which the amount of functional diversity was varied independently on each trophic level. To achieve generalizable results, largely independent of parametrization, we examined the outcomes of 128,000 parameter combinations sampled from ecologically plausible intervals, with each tested for 200 randomly sampled initial conditions. Analysis of our data was done by training a random forest model. This method enables the identification of complex patterns in the data through partial dependence graphs, and the comparison of the relative influence of model parameters, including the degree of diversity, on food-web properties. We found that bottom-up and top-down effects cascade simultaneously throughout the food web, intimately linking the effects of functional diversity of any trophic level to the amount of diversity of other trophic levels, which may explain the difficulty in unifying results from previous studies. Strikingly, only with high diversity throughout the whole food web, different interactions synergize to ensure efficient exploitation of the available nutrients and efficient biomass transfer to higher trophic levels, ultimately leading to a high biomass and production on the top level. The temporal variation of biomass showed a more complex pattern with increasing multitrophic diversity: while the system initially became less variable, eventually the temporal variation rose again because of the increasingly complex dynamical patterns. Importantly, top predator diversity and food-web parameters affecting the top trophic level were of highest importance to determine the biomass and temporal variability of any trophic level. Overall, our study reveals that the mechanisms by which diversity influences ecosystem functioning are affected by every part of the food web, hampering the extrapolation of insights from simple monotrophic or bitrophic systems to complex natural food webs.
Collapse
Affiliation(s)
- Ruben Ceulemans
- Institute of Biochemistry and Biology, University of Potsdam, Am Neuen Palais 10, Potsdam, 14469, Germany
| | - Christian Guill
- Institute of Biochemistry and Biology, University of Potsdam, Am Neuen Palais 10, Potsdam, 14469, Germany
| | - Ursula Gaedke
- Institute of Biochemistry and Biology, University of Potsdam, Am Neuen Palais 10, Potsdam, 14469, Germany
| |
Collapse
|
21
|
Identification of a solo acylhomoserine lactone synthase from the myxobacterium Archangium gephyra. Sci Rep 2021; 11:3018. [PMID: 33542315 PMCID: PMC7862692 DOI: 10.1038/s41598-021-82480-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 12/31/2022] Open
Abstract
Considered a key taxon in soil and marine microbial communities, myxobacteria exist as coordinated swarms that utilize a combination of lytic enzymes and specialized metabolites to facilitate predation of microbes. This capacity to produce specialized metabolites and the associated abundance of biosynthetic pathways contained within their genomes have motivated continued drug discovery efforts from myxobacteria. Of all myxobacterial biosynthetic gene clusters deposited in the antiSMASH database, only one putative acylhomoserine lactone (AHL) synthase, agpI, was observed, in genome data from Archangium gephyra. Without an AHL receptor also apparent in the genome of A. gephyra, we sought to determine if AgpI was an uncommon example of an orphaned AHL synthase. Herein we report the bioinformatic assessment of AgpI and discovery of a second AHL synthase from Vitiosangium sp. During axenic cultivation conditions, no detectible AHL metabolites were observed in A. gephyra extracts. However, heterologous expression of each synthase in Escherichia coli provided detectible quantities of 3 AHL signals including 2 known AHLs, C8-AHL and C9-AHL. These results suggest that A. gephyra AHL production is dormant during axenic cultivation. The functional, orphaned AHL synthase, AgpI, is unique to A. gephyra, and its utility to the predatory myxobacterium remains unknown.
Collapse
|
22
|
Conradi FD, Mullineaux CW, Wilde A. The Role of the Cyanobacterial Type IV Pilus Machinery in Finding and Maintaining a Favourable Environment. Life (Basel) 2020; 10:life10110252. [PMID: 33114175 PMCID: PMC7690835 DOI: 10.3390/life10110252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Type IV pili (T4P) are proteinaceous filaments found on the cell surface of many prokaryotic organisms and convey twitching motility through their extension/retraction cycles, moving cells across surfaces. In cyanobacteria, twitching motility is the sole mode of motility properly characterised to date and is the means by which cells perform phototaxis, the movement towards and away from directional light sources. The wavelength and intensity of the light source determine the direction of movement and, sometimes in concert with nutrient conditions, act as signals for some cyanobacteria to form mucoid multicellular assemblages. Formation of such aggregates or flocs represents an acclimation strategy to unfavourable environmental conditions and stresses, such as harmful light conditions or predation. T4P are also involved in natural transformation by exogenous DNA, secretion processes, and in cellular adaptation and survival strategies, further cementing the role of cell surface appendages. In this way, cyanobacteria are finely tuned by external stimuli to either escape unfavourable environmental conditions via phototaxis, exchange genetic material, and to modify their surroundings to fit their needs by forming multicellular assemblies.
Collapse
Affiliation(s)
- Fabian D. Conradi
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (F.D.C.); (C.W.M.)
| | - Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (F.D.C.); (C.W.M.)
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg; Germany
- Correspondence:
| |
Collapse
|
23
|
Otto SB, Martin M, Schäfer D, Hartmann R, Drescher K, Brix S, Dragoš A, Kovács ÁT. Privatization of Biofilm Matrix in Structurally Heterogeneous Biofilms. mSystems 2020; 5:e00425-20. [PMID: 32753507 PMCID: PMC7406226 DOI: 10.1128/msystems.00425-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
The self-produced biofilm provides beneficial protection for the enclosed cells, but the costly production of matrix components makes producer cells susceptible to cheating by nonproducing individuals. Despite detrimental effects of nonproducers, biofilms can be heterogeneous, with isogenic nonproducers being a natural consequence of phenotypic differentiation processes. For instance, in Bacillus subtilis biofilm cells differ in production of the two major matrix components, the amyloid fiber protein TasA and exopolysaccharides (EPS), demonstrating different expression levels of corresponding matrix genes. This raises questions regarding matrix gene expression dynamics during biofilm development and the impact of phenotypic nonproducers on biofilm robustness. Here, we show that biofilms are structurally heterogeneous and can be separated into strongly and weakly associated clusters. We reveal that spatiotemporal changes in structural heterogeneity correlate with matrix gene expression, with TasA playing a key role in biofilm integrity and timing of development. We show that the matrix remains partially privatized by the producer subpopulation, where cells tightly stick together even when exposed to shear stress. Our results support previous findings on the existence of "weak points" in seemingly robust biofilms as well as on the key role of linkage proteins in biofilm formation. Furthermore, we provide a starting point for investigating the privatization of common goods within isogenic populations.IMPORTANCE Biofilms are communities of bacteria protected by a self-produced extracellular matrix. The detrimental effects of nonproducing individuals on biofilm development raise questions about the dynamics between community members, especially when isogenic nonproducers exist within wild-type populations. We asked ourselves whether phenotypic nonproducers impact biofilm robustness, and where and when this heterogeneity of matrix gene expression occurs. Based on our results, we propose that the matrix remains partly privatized by the producing subpopulation, since producing cells stick together when exposed to shear stress. The important role of linkage proteins in robustness and development of the structurally heterogeneous biofilm provides an entry into studying the privatization of common goods within isogenic populations.
Collapse
Affiliation(s)
- Simon B Otto
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marivic Martin
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Daniel Schäfer
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Susanne Brix
- Disease Systems Immunology Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Dragoš
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
24
|
Martin KH, Borlee GI, Wheat WH, Jackson M, Borlee BR. Busting biofilms: free-living amoebae disrupt preformed methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis biofilms. MICROBIOLOGY (READING, ENGLAND) 2020; 166:695-706. [PMID: 32459167 PMCID: PMC7641382 DOI: 10.1099/mic.0.000933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
Biofilm-associated infections are difficult to eradicate because of their ability to tolerate antibiotics and evade host immune responses. Amoebae and/or their secreted products may provide alternative strategies to inhibit and disperse biofilms on biotic and abiotic surfaces. We evaluated the potential of five predatory amoebae - Acanthamoeba castellanii, Acanthamoeba lenticulata, Acanthamoeba polyphaga, Vermamoeba vermiformis and Dictyostelium discoideum - and their cell-free secretions to disrupt biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis. The biofilm biomass produced by MRSA and M. bovis was significantly reduced when co-incubated with A. castellanii, A. lenticulata and A. polyphaga, and their corresponding cell-free supernatants (CFS). Acanthamoeba spp. generally produced CFS that mediated biofilm dispersal rather than directly killing the bacteria; however, A. polyphaga CFS demonstrated active killing of MRSA planktonic cells when the bacteria were present at low concentrations. The active component(s) of the A. polyphaga CFS is resistant to freezing, but can be inactivated to differing degrees by mechanical disruption and exposure to heat. D. discoideum and its CFS also reduced preformed M. bovis biofilms, whereas V. vermiformis only decreased M. bovis biofilm biomass when amoebae were added. These results highlight the potential of using select amoebae species or their CFS to disrupt preformed bacterial biofilms.
Collapse
Affiliation(s)
- Kevin H. Martin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Grace I. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - William H. Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Bradley R. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
25
|
Gionchetta G, Oliva F, Romaní AM, Bañeras L. Hydrological variations shape diversity and functional responses of streambed microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136838. [PMID: 32018979 DOI: 10.1016/j.scitotenv.2020.136838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Microbiota inhabiting the intermittent streambeds mediates several in-stream processes that are essential for ecosystem function. Reduced stream discharge caused by the strengthened intermittency and increased duration of the dry phase is a spreading global response to changes in climate. Here, the impacts of a 5-month desiccation, one-week rewetting and punctual storms, which interrupted the dry period, were examined. The genomic composition of total (DNA) and active (RNA) diversity, and the community level physiological profiles (CLPP) were considered as proxies for functional diversity to describe both prokaryotes and eukaryotes inhabiting the surface and hyporheic streambeds. Comparisons between the genomic and potential functional responses helped to understand how and whether the microbial diversity was sensitive to the environmental conditions and resource acquisition, such as water stress and extracellular enzyme activities, respectively. RNA expression showed the strongest relationship with the environmental conditions and resource acquisition, being more responsive to changing conditions compared to DNA diversity, especially in the case of prokaryotes. The DNA results presumably reflected the legacy of the treatments because inactive, dormant, or dead cells were included, suggesting a slow microbial biomass turnover or responses of the microbial communities to changes mainly through physiological acclimation. On the other hand, microbial functional diversity was largely explained by resources acquisition, such as metrics of extracellular enzymes, and appeared vulnerable to the hydrological changes and duration of desiccation. The data highlight the need to improve the functional assessment of stream ecosystems with the application of complementary metrics to better describe the streambed microbial dynamics under dry-rewet stress.
Collapse
Affiliation(s)
- G Gionchetta
- GRECO, Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain.
| | - F Oliva
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - A M Romaní
- GRECO, Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain
| | - L Bañeras
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain
| |
Collapse
|
26
|
Carnt NA, Subedi D, Connor S, Kilvington S. The relationship between environmental sources and the susceptibility of Acanthamoeba keratitis in the United Kingdom. PLoS One 2020; 15:e0229681. [PMID: 32160218 PMCID: PMC7065798 DOI: 10.1371/journal.pone.0229681] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/11/2020] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To determine whether Acanthamoeba keratitis (AK) patients have higher rates of Acanthamoeba and free-living amoeba (FLA) colonising domestic sinks than control contact lens (CL) wearers, and whether these isolates are genetically similar to the corneal isolates from their CL associated AK. METHODS 129 AK patients from Moorefield Eye Hospital, London and 64 control CL wearers from the Institute of Optometry were included in this study. The participants self-collected home kitchen and bathroom samples from tap-spouts, overflows and drains using an instructional kit. The samples were cultured by inoculating onto a non-nutrient agar plate seeded with Escherichia coli, incubated at 32°C and examined for amoebae by microscopy for up to 2 weeks. Partial sequences of mitochondrial cytochrome oxidase genes (coxA) of Acanthamoeba isolates from four AK patients were compared to Acanthamoeba isolated from the patient's home. The association between sampling sites was analysed with the chi-square test. RESULTS A total of 513 samples from AK patients and 189 from CL controls were collected. The yield of FLA was significantly greater in patients' bathrooms (72.1%) than CL controls' bathrooms (53.4%) (p<0.05). Spouts (kitchen 6.7%, bathroom 11%) had the lowest rate of Acanthamoeba isolation compared to drains (kitchen 18.2%, bathroom 27.9%) and overflow (kitchen 39.1%, bathroom 25.9%) either in kitchens or bathrooms (p<0.05). There was no statistically significant difference between the average prevalence of Acanthamoeba in all three sample sites in kitchens (16.9%) compared to all three sample sites in bathrooms (21.5%) and no association for Acanthamoeba prevalence between AK patients and CL controls. All four corneal isolates had the same coxA sequence as at least one domestic water isolate from the patients' sink of the kitchen and the bathroom. CONCLUSION The prevalence of Acanthamoeba and FLA was high in UK homes. FLA colonisation was higher in AK patients compared to controls but the prevalence of Acanthamoeba between AK patients and CL controls domestic sinks was similar. This study confirms that domestic water isolates are probably the source of AK infection. Advice about avoiding water contact when using CL's should be mandatory.
Collapse
Affiliation(s)
- Nicole A Carnt
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,Westmead Institute for Medical Research, University of Sydney, Sydney, Australia.,University College London Institute of Ophthalmology, London, England, United Kingdom
| | - Dinesh Subedi
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,School of Biological Sciences, Monash University, Clayton, Australia
| | - Sophie Connor
- Research Organisation (KC) Ltd, London, England, United Kingdom
| | | |
Collapse
|
27
|
van Velzen E. Predator coexistence through emergent fitness equalization. Ecology 2020; 101:e02995. [PMID: 32002995 DOI: 10.1002/ecy.2995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/20/2019] [Indexed: 11/10/2022]
Abstract
The competitive exclusion principle is one of the oldest ideas in ecology and states that without additional self-limitation two predators cannot coexist on a single prey. The search for mechanisms allowing coexistence despite this has identified niche differentiation between predators as crucial: without this, coexistence requires the predators to have exactly the same R* values, which is considered impossible. However, this reasoning misses a critical point: predators' R* values are not static properties, but affected by defensive traits of their prey, which in turn can adapt in response to changes in predator densities. Here I show that this feedback between defense and predator dynamics enables stable predator coexistence without ecological niche differentiation. Instead, the mechanism driving coexistence is that prey adaptation causes defense to converge to the value where both predators have equal R* values ("fitness equalization"). This result is highly general, independent of specific model details, and applies to both rapid defense evolution and inducible defenses. It demonstrates the importance of considering long-standing ecological questions from an eco-evolutionary viewpoint, and showcases how the effects of adaptation can cascade through communities, driving diversity on higher trophic levels. These insights offer an important new perspective on coexistence theory.
Collapse
Affiliation(s)
- Ellen van Velzen
- Department of Ecology and Ecosystem Modeling, Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, Potsdam, 14469, Germany
| |
Collapse
|
28
|
Shteindel N, Yankelev D, Gerchman Y. High-Throughput Quantitative Measurement of Bacterial Attachment Kinetics on Seconds Time Scale. MICROBIAL ECOLOGY 2019; 77:726-735. [PMID: 30244277 DOI: 10.1007/s00248-018-1254-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Surface attachment is an important factor in the life of many microbial species. Late stages of attachment (i.e., mature biofilms) are rigorously studied, but data on the very early stages is scarce. The lack of robust research methods may go a long way in explaining this situation. We have developed a method that allows the rapid kinetic measurement of bacterial attachment, with seconds to minute's temporal resolution, in a high-throughput setting. The method requires the use of a commercially available microtiter plate reader capable of fluorescence measurement from the bottom, standard microtiter plates, fluorescently tagged bacteria, and a common dye. The high temporal resolution reveals nuanced, fast, and dynamic behaviors in the very early phases of attachment. To demonstrate potential applications, we tested the effect of various conditions on attachment kinetics-specie, substratum, salt concentration, and culture density. Results are in good agreement with crystal violet staining (correlation R2 > 0.95 in all cases) and reproducing published data but show much greater detail and fidelity.
Collapse
Affiliation(s)
- N Shteindel
- Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.
| | - D Yankelev
- Department of Physics of Complex Systems, Weizmann Institute, Rehovot, Israel
| | - Y Gerchman
- Biology and Environment, University of Haifa-Oranim, Kiryat Tivon, Israel
| |
Collapse
|
29
|
Yamamichi M, Klauschies T, Miner BE, Velzen E. Modelling inducible defences in predator–prey interactions: assumptions and dynamical consequences of three distinct approaches. Ecol Lett 2018; 22:390-404. [DOI: 10.1111/ele.13183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Masato Yamamichi
- Department of General Systems Studies University of Tokyo 3‐8‐1 Komaba Meguro Tokyo153‐8902 Japan
| | - Toni Klauschies
- Department of Ecology and Ecosystem Modelling Institute of Biochemistry and Biology University of Potsdam Am Neuen Palais 10 Potsdam 14469 Germany
| | - Brooks E. Miner
- Department of Biology Ithaca College 953 Danby Rd. Ithaca NY14850 USA
| | - Ellen Velzen
- Department of Ecology and Ecosystem Modelling Institute of Biochemistry and Biology University of Potsdam Am Neuen Palais 10 Potsdam 14469 Germany
| |
Collapse
|
30
|
van Velzen E, Thieser T, Berendonk T, Weitere M, Gaedke U. Inducible defense destabilizes predator-prey dynamics: the importance of multiple predators. OIKOS 2018. [DOI: 10.1111/oik.04868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ellen van Velzen
- Dept of Ecology and Ecosystem Modelling, Inst. of Biochemistry and Biology; Univ. of Potsdam; Maulbeerallee 2 DE-14469 Potsdam Germany
| | - Tamara Thieser
- Dept of Ecology and Ecosystem Modelling, Inst. of Biochemistry and Biology; Univ. of Potsdam; Maulbeerallee 2 DE-14469 Potsdam Germany
| | - Thomas Berendonk
- Faculty for Environmental Sciences, Inst. for Hydrobiology; Technische Univ. Dresden; Dresden Germany
| | - Markus Weitere
- Dept of River Ecology; Helmholtz Centre for Environmental Research (UFZ); Magdeburg Germany
| | - Ursula Gaedke
- Dept of Ecology and Ecosystem Modelling, Inst. of Biochemistry and Biology; Univ. of Potsdam; Maulbeerallee 2 DE-14469 Potsdam Germany
| |
Collapse
|
31
|
Weitere M, Erken M, Majdi N, Arndt H, Norf H, Reinshagen M, Traunspurger W, Walterscheid A, Wey JK. The food web perspective on aquatic biofilms. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1315] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Markus Weitere
- Department River Ecology; Helmholtz Centre of Environmental Research - UFZ; Brückstrasse 3a 39114 Magdeburg Germany
| | - Martina Erken
- Department River Ecology; Helmholtz Centre of Environmental Research - UFZ; Brückstrasse 3a 39114 Magdeburg Germany
| | - Nabil Majdi
- Department of Animal Ecology; University of Bielefeld; Konsequenz 45 33615 Bielefeld Germany
| | - Hartmut Arndt
- General Ecology; Zoological Institute; Cologne Biocenter; University of Cologne; Zülpicher Strasse 47b 50674 Cologne Germany
| | - Helge Norf
- Department River Ecology; Helmholtz Centre of Environmental Research - UFZ; Brückstrasse 3a 39114 Magdeburg Germany
- Department Aquatic Ecosystem Analyses and Management; Helmholtz Centre of Environmental Research - UFZ; Brückstrasse 3a 39114 Magdeburg Germany
| | - Michael Reinshagen
- General Ecology; Zoological Institute; Cologne Biocenter; University of Cologne; Zülpicher Strasse 47b 50674 Cologne Germany
| | - Walter Traunspurger
- Department of Animal Ecology; University of Bielefeld; Konsequenz 45 33615 Bielefeld Germany
| | - Anja Walterscheid
- General Ecology; Zoological Institute; Cologne Biocenter; University of Cologne; Zülpicher Strasse 47b 50674 Cologne Germany
| | - Jennifer K. Wey
- Department River Ecology; Helmholtz Centre of Environmental Research - UFZ; Brückstrasse 3a 39114 Magdeburg Germany
- Department of Animal Ecology; Federal Institute of Hydrology; Am Mainzer Tor 1 56068 Koblenz Germany
| |
Collapse
|
32
|
Raghupathi PK, Liu W, Sabbe K, Houf K, Burmølle M, Sørensen SJ. Synergistic Interactions within a Multispecies Biofilm Enhance Individual Species Protection against Grazing by a Pelagic Protozoan. Front Microbiol 2018; 8:2649. [PMID: 29375516 PMCID: PMC5767253 DOI: 10.3389/fmicb.2017.02649] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023] Open
Abstract
Biofilm formation has been shown to confer protection against grazing, but little information is available on the effect of grazing on biofilm formation and protection in multispecies consortia. With most biofilms in nature being composed of multiple bacterial species, the interactions and dynamics of a multispecies bacterial biofilm subject to grazing by a pelagic protozoan predator were investigated. To this end, a mono and multispecies biofilms of four bacterial soil isolates, namely Xanthomonas retroflexus, Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus, were constructed and subjected to grazing by the ciliate Tetrahymena pyriformis. In monocultures, grazing strongly reduced planktonic cell numbers in P. amylolyticus and S. rhizophila and also X. retroflexus. At the same time, cell numbers in the underlying biofilms increased in S. rhizophila and X. retroflexus, but not in P. amylolyticus. This may be due to the fact that while grazing enhanced biofilm formation in the former two species, no biofilm was formed by P. amylolyticus in monoculture, either with or without grazing. In four-species biofilms, biofilm formation was higher than in the best monoculture, a strong biodiversity effect that was even more pronounced in the presence of grazing. While cell numbers of X. retroflexus, S. rhizophila, and P. amylolyticus in the planktonic fraction were greatly reduced in the presence of grazers, cell numbers of all three species strongly increased in the biofilm. Our results show that synergistic interactions between the four-species were important to induce biofilm formation, and suggest that bacterial members that produce more biofilm when exposed to the grazer not only protect themselves but also supported other members which are sensitive to grazing, thereby providing a "shared grazing protection" within the four-species biofilm model. Hence, complex interactions shape the dynamics of the biofilm and enhance overall community fitness under stressful conditions such as grazing. These emerging inter- and intra-species interactions could play a vital role in biofilm dynamics in natural environments like soil or aquatic systems.
Collapse
Affiliation(s)
- Prem K. Raghupathi
- Laboratory of Microbiology, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Section for Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenzheng Liu
- Section for Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Kurt Houf
- Laboratory of Microbiology, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Mette Burmølle
- Section for Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J. Sørensen
- Section for Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|