1
|
Li M, Wang Z, Feng Z, Lu J, Chen D, Chen C, He H, Zhang Q, Chen X, Morel JL, Baker AJM, Chao Y, Tang Y, Jiang F, Qiu R, Wang S. New insights into efficient iron sulfide oxidation for arsenic immobilization by microaerophilic and acidophilic Fe(II)-oxidizing bacteria under micro-oxygen and acidic conditions. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137695. [PMID: 39986099 DOI: 10.1016/j.jhazmat.2025.137695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Microbial-mediated FeS oxidation to Fe(Ⅲ) minerals via chemolithoautotrophic Fe(Ⅱ) oxidizers under pH/O₂ limitations engages As immobilization. However, this process is constrained under the dual stress of micro-oxygen and acidic conditions due to the critically diminished Fe(Ⅱ) oxidation capacity. Therefore, the interplay between Fe(Ⅱ) oxidation, carbon metabolism, and As immobilization in Fe(Ⅱ)-oxidizing bacteria under micro-oxygen and acidic conditions remains unclear. This study presents the first successful enrichment of microaerophilic and acidophilic Fe(II)-oxidizing bacteria (MAFeOB). These bacteria are capable of oxidizing FeS to Fe(III) minerals and immobilizing up to 27,835 mg/kg of As(Ⅴ) under micro-oxygen content (below 3.2 mg/L) and acidic pH (4.5-6.2). Through comprehensive metagenomic analysis, it was speculated that MAFeOB harbor a suite of genes potentially participating in critical processes, including carbon fixation, Fe(II) oxidation, and arsenic detoxification. Notably, a potential electron transfer pathway from Cyc2_repCluster2 to Cytochrome cbb3-type oxidases facilitates Fe(II) oxidation. Furthermore, As(Ⅲ) efflux pump (arsA, arsB, acr3) and As(Ⅲ) oxidase (aioA) genes indicate MAFeOB's potential for As immobilization. Our findings underscore the pivotal role of MAFeOB in overcoming limitations associated with Fe(III) mineral formation, thereby enhancing arsenic immobilization under micro-oxygen and acidic water.
Collapse
Affiliation(s)
- Mengyao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhe Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zekai Feng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianan Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Daijie Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chiyu Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Huan He
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qi Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoting Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | | | - Alan J M Baker
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia; School of Environmental Sciences & Engineering, Sun Yat-sen University, Guangzhou, China; Centre for Contaminant Geosciences, Environmental Earth Sciences International Pty Ltd, Sydney, Melbourne, Australia; Scientific Advisory Board Member Econick/Botanickel, Lunéville, France
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng Jiang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial International Joint Research Center on Urban Water Management and Treatment, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Kop LFM, Koch H, Dalcin Martins P, Suarez C, Karačić S, Persson F, Wilén BM, Hagelia P, Jetten MSM, Lücker S. High diversity of nitrifying bacteria and archaea in biofilms from a subsea tunnel. FEMS Microbiol Ecol 2025; 101:fiaf032. [PMID: 40156577 PMCID: PMC11995701 DOI: 10.1093/femsec/fiaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025] Open
Abstract
Microbial biofilm formation can contribute to the accelerated deterioration of steel-reinforced concrete structures and significantly impact their service life, making it critical to understand the diversity of the biofilm community and prevailing processes in these habitats. Here, we analyzed 16S rRNA gene amplicon and metagenomics sequencing data to study the abundance and diversity of nitrifiers within biofilms on the concrete surface of the Oslofjord subsea road tunnel in Norway. We showed that the abundance of nitrifiers varied greatly in time and space, with a mean abundance of 24.7 ± 15% but a wide range between 1.2% and 61.4%. We hypothesize that niche differentiation allows the coexistence of several nitrifier groups and that their high diversity increases the resilience to fluctuating environmental conditions. Strong correlations were observed between the nitrifying families Nitrosomonadaceae and Nitrospinaceae, and the iron-oxidizing family Mariprofundaceae. Metagenome-assembled genome analyses suggested that early Mariprofundaceae colonizers may provide a protected environment for nitrifiers in exchange for nitrogen compounds and vitamin B12, but further studies are needed to elucidate the spatial organization of the biofilms and the cooperative and competitive interactions in this environment. Together, this research provides novel insights into the diverse communities of nitrifiers living within biofilms on concrete surfaces and establishes a foundation for future experimental studies of concrete biofilms.
Collapse
Affiliation(s)
- Linnea F M Kop
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Hanna Koch
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Paula Dalcin Martins
- Ecosystems and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1090 GE Amsterdam, The Netherlands
| | - Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, John Ericssons väg 1, 221 00 Lund, Sweden
| | - Sabina Karačić
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, 412 96 Gothenburg, Sweden
- Institute of Medical Microbiology, Immunology and Parasitology, Universitätsklinikum Bonn, Venusberg – Campus 1, 53127 Bonn, Germany
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, 412 96 Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, 412 96 Gothenburg, Sweden
| | - Per Hagelia
- Construction Division, The Norwegian Public Roads Administration, Innspurten 11C, 0663 Oslo Norway
- Müller-Sars Biological Station, Ørje, PO Box 64, NO-1871 Ørje, Norway
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Dong C, Han X, Wang Y, Liu J, Wei M. Microbial Seafloor Weathering of Hydrothermal Sulfides: Insights from an 18-Month In Situ Incubation at the Wocan-1 Hydrothermal Field. BIOLOGY 2025; 14:389. [PMID: 40282254 PMCID: PMC12025034 DOI: 10.3390/biology14040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
The weathering of seafloor hydrothermal sulfides is facilitated by microbial activities, yet the specific mechanisms of different sulfide types are not well understood. Previous studies have primarily been carried out under laboratory conditions, making it difficult to accurately replicate the complex in situ conditions of deep-sea hydrothermal fields. Herein, we deployed two well-characterized pyrite (Py)-dominated and chalcopyrite (Ccp)-dominated sulfide slices, which were placed 300 m from an active venting site in the Wocan-1 hydrothermal field (Carlsberg Ridge, Northwest Indian Ocean) for an 18-month in situ incubation experiment. Microscopic observations and organic matter analyses were conducted on the recovered sulfide slices to investigate the microbial weathering features of different sulfide types. Our results demonstrated that the weathering of the Py-dominated sulfide sample was primarily mediated by extracellular polymeric substances (EPSs) through indirect interactions, whereas the Ccp-dominated sulfide sample exhibited both direct microbial dissolution, resulting in the formation of distinct dissolution pits, and indirect EPS-mediated interactions. Four distinct phases of microbe-sulfide interactions were identified: approach, adsorption, stable attachment, and extensive colonization. Furthermore, the weathering products and biomineralization structures differed significantly between the two sulfide types, reflecting their different microbial colonization processes. Our study confirms that microorganisms are crucial in seafloor sulfide weathering. These findings advance our understanding of microbial-driven processes in sulfide mineral transformations and their role in marine ecosystems. Our findings are also valuable for future research on biogeochemical cycles and for developing bioremediation strategies for deep-sea mining.
Collapse
Affiliation(s)
- Chuanqi Dong
- College of Marine Geosciences, Ocean University of China, Qingdao 266100, China;
- State Key Laboratory of Submarine Geoscience, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; (Y.W.); (J.L.); (M.W.)
| | - Xiqiu Han
- College of Marine Geosciences, Ocean University of China, Qingdao 266100, China;
- State Key Laboratory of Submarine Geoscience, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; (Y.W.); (J.L.); (M.W.)
- Ocean College, Zhejiang University, Zhoushan 316021, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yejian Wang
- State Key Laboratory of Submarine Geoscience, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; (Y.W.); (J.L.); (M.W.)
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Jiqiang Liu
- State Key Laboratory of Submarine Geoscience, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; (Y.W.); (J.L.); (M.W.)
| | - Mingcong Wei
- State Key Laboratory of Submarine Geoscience, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; (Y.W.); (J.L.); (M.W.)
- Ocean College, Zhejiang University, Zhoushan 316021, China
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Ganzhou 341000, China
| |
Collapse
|
4
|
Becker S, Dang TT, Wei R, Kappler A. Evaluation of Thiobacillus denitrificans' sustainability in nitrate-reducing Fe(II) oxidation and the potential significance of Fe(II) as a growth-supporting reductant. FEMS Microbiol Ecol 2025; 101:fiaf024. [PMID: 40097297 PMCID: PMC11963766 DOI: 10.1093/femsec/fiaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025] Open
Abstract
The betaproteobacterium Thiobacillus denitrificans (ATCC 25259) oxidizes Fe(II) while reducing nitrate, yet its capacity for autotrophic growth as a nitrate-reducing Fe(II)-oxidizer remains uncertain. This study explored this capacity through cultivation experiments across multiple transfers, using growth medium with Fe(II) and nitrate as sole electron donor and acceptor, respectively. This setup necessitated nitrate reduction coupled to Fe(II) oxidation as the primary energy-yielding mechanism and Fe(II) as the exclusive electron donor for CO2 fixation and biomass production. Thiosulfate/nitrate pregrown T. denitrificans oxidized 42% of 10 mM Fe(II), reduced 54% of 3.5 mM nitrate, and accumulated 1.6 mM nitrite, but showed no cell growth. Subsequent transfers from this Fe(II)/nitrate culture to fresh medium with Fe(II) and nitrate showed no nitrate-reducing Fe(II) oxidation or population growth. While bacterial activity [Fe(II) oxidation, nitrate reduction] occurred in the first transfer from thiosulfate/nitrate to Fe(II)/nitrate, nitrite was produced, further reacting with Fe(II) abiotically (chemodenitrification). A kinetic model assessed enzymatic versus abiotic Fe(II) oxidation, revealing enzymatic oxidation accounted for twice as much (ca. 70%) as abiotic denitrification (ca. 30%) within 22 days. These findings suggest T. denitrificans performs the first step of denitrification with Fe(II) as an electron donor but does not achieve autotrophic growth under these conditions.
Collapse
Affiliation(s)
- Stefanie Becker
- Geomicrobiology, Department of Geosciences, University of Tübingen, Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany
| | - Thu Trang Dang
- Geomicrobiology, Department of Geosciences, University of Tübingen, Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany
| | - Ran Wei
- Institute for Modelling Hydraulic and Environmental Systems (IWS), Department of Stochastic Simulation and Safety Research for Hydrosystems, University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, Germany
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tübingen, Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Galès G, Hennart M, Hannoun M, Postec A, Erauso G. Metabolic versatility and nitrate reduction pathways of a new thermophilic bacterium of the Deferrivibrionaceae: Deferrivibrio metallireducens sp. nov isolated from hot sediments of Vulcano Island, Italy. PLoS One 2025; 20:e0315093. [PMID: 40067810 PMCID: PMC11896075 DOI: 10.1371/journal.pone.0315093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/20/2024] [Indexed: 03/15/2025] Open
Abstract
A novel thermophilic (optimum growth temperature ~ 60 °C) anaerobic Gram-negative bacterium, designated strain V6Fe1T, was isolated from sediments heated by the hydrothermal circulation of the Aeolian Islands (Vulcano, Italy) on the seafloor. Strain V6Fe1T belongs to the recently described family Deferrivibrionaceae in the phylum Deferribacterota. It grows chemoorganotrophically by fermentation of proteinaceous substrates and organic acids or by respiration of organic compounds using fumarate, nitrate, Fe(III), S°, and Mn(IV) as electron acceptors. The strain V6Fe1T can also grow chemolithoautotrophically using H2 as an electron donor and nitrate, nitrous oxide, Fe(III), Mn(IV), or sulfur as an electron acceptor. Stable isotope probing showed that V6Fe1T performs denitrification with nitrate reduction to dinitrogen and Dissimilatory Nitrate Reduction to Ammonium (DNRA). Culture experiments with RT-qPCR analysis of target genes revealed that strain V6Fe1T performs DNRA with the nitrite reductase formate-dependent NrfA and denitrification with an Hcp protein and other redox partners yet to be identified. Genomic analysis and experimental data suggest that strain V6Fe1T performs autotrophic carbon fixation via the recently discovered reversed oxidative TCA cycle (roTCA cycle). Based on genomic (ANI) and phenotypic properties, strain V6Fe1T ( = DSM 27501T = JCM 39088T) is proposed to be the type strain of a novel species named Deferrivibrio metallireducens.
Collapse
Affiliation(s)
- Grégoire Galès
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Mélanie Hennart
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Maverick Hannoun
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Anne Postec
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Gaël Erauso
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| |
Collapse
|
6
|
Corbera-Rubio F, Goedhart R, Laureni M, van Loosdrecht MC, van Halem D. A biotechnological perspective on sand filtration for drinking water production. Curr Opin Biotechnol 2024; 90:103221. [PMID: 39536631 DOI: 10.1016/j.copbio.2024.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Gravity-driven sand filters are the dominant groundwater treatment technology for drinking water production. In the past, physicochemical reactions were often assumed to play the main role in the removal of contaminants, but recent breakthroughs showcase the vital role of microorganisms. In this Current Opinion, we thoroughly assess the current understanding of biology in sand filters and explore the potential benefits of shifting toward designs aimed at promoting biological reactions. We highlight the main bottlenecks and propose key areas to be explored toward the next generation of sustainable, resource-efficient groundwater biofilters.
Collapse
Affiliation(s)
| | - Roos Goedhart
- Delft University of Technology, van der Maasweg 9, 2629Hz Delft, the Netherlands
| | - Michele Laureni
- Delft University of Technology, van der Maasweg 9, 2629Hz Delft, the Netherlands
| | | | - Doris van Halem
- Delft University of Technology, van der Maasweg 9, 2629Hz Delft, the Netherlands.
| |
Collapse
|
7
|
Liu H, Liu T, Chen S, Liu X, Li N, Huang T, Ma B, Liu X, Pan S, Zhang H. Biogeochemical cycles of iron: Processes, mechanisms, and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175722. [PMID: 39187081 DOI: 10.1016/j.scitotenv.2024.175722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
The iron (Fe) biogeochemical cycle is critical for abiotic and biological environmental processes that overlap spatially and may compete with each other. The development of modern molecular biology technologies promoted the understanding of the electron transport mechanisms of Fe-cycling-related microorganisms. Recent studies have revealed a novel pathway for microaerophilic ferrous iron (Fe(II))-oxidizers in extracellular Fe(II) oxidation. In addition, OmcS, OmcZ, and OmcE nanowires on the cell surface have been shown to promote electron transfer between microorganisms and their environment. These processes affect the fate of pollutants in directly or indirectly ways, such as greenhouse gas emissions. In this review, these advances and the environmental implications of the Fe cycle process were discussed, with a particular focus on the mechanisms of intracellular or extracellular electron transport in microorganisms.
Collapse
Affiliation(s)
- Huan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
8
|
Kovalick A, Heard AW, Johnson AC, Chan CS, Ootes L, Nielsen SG, Dauphas N, Weber B, Bekker A. Living in Their Heyday: Iron-Oxidizing Bacteria Bloomed in Shallow-Marine, Subtidal Environments at ca. 1.88 Ga. GEOBIOLOGY 2024; 22:e70003. [PMID: 39639452 PMCID: PMC11621254 DOI: 10.1111/gbi.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/01/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024]
Abstract
The majority of large iron formations (IFs) were deposited leading up to Earth's great oxidation episode (GOE). Following the GOE, IF deposition decreased for almost 500 Myr. Subsequently, around 1.88 Ga, there was widespread deposition of shallow-water granular iron formations (GIF) within a geologically short time interval, which has been linked to enhanced iron (Fe) supply to seawater from submarine hydrothermal venting associated with the emplacement of large igneous provinces. Previous studies of Fe-rich, microfossil-bearing stromatolites from the ca. 1.88 Ga Gunflint Formation on the Superior craton suggested direct microbial oxidation of seawater Fe2+ (aq) by microaerophilic, Fe-oxidizing bacteria (FeOB), as a driver of GIF deposition. Although Fe-rich, microfossil-bearing stromatolites are common in 1.88 Ga GIF deposits on several cratons, combined paleontological and geochemical studies have been applied only to the Gunflint Formation. Here, we present new paleontological and geochemical observations for the ca. 1.89 Ga Gibraltar Formation GIFs from the East Arm of the Great Slave Lake, Northwest Territories, Canada. Fossil morphology, Rare Earth element (REE) concentrations, and Fe isotopic compositions support Fe oxidation by FeOB at a redoxcline poised above the fair-weather wave base. Small positive Eu anomalies and positive εNd (1.89 Ga) values suggest upwelling of deep, Fe-rich, hydrothermally influenced seawater. While high [Fe2+ (aq)] combined with low atmospheric pO2 in the late Paleoproterozoic would have provided optimal conditions in shallow oceans for FeOB to precipitate Fe oxyhydroxide, these redox conditions were likely toxic to cyanobacteria. As long as local O2 production by cyanobacteria was strongly diminished, FeOB would have had to rely on an atmospheric O2 supply by diffusion to shallow seawater to oxidize Fe2+ (aq). Using a 1-D reaction dispersion model, we calculate [O2(aq)] sufficient to deplete an upwelling Fe2+ (aq) source. Our results for GIF deposition are consistent with late Paleoproterozoic pO2 estimates of ~1%-10% PAL and constraints for metabolic [O2(aq)] requirements for modern FeOB. Widespread GIF deposition at ca. 1.88 Ga appears to mark a temporally restricted episode of optimal biogeochemical conditions in Earth's history when increased hydrothermal Fe2+ (aq) sourced from the deep oceans, in combination with low mid-Paleoproterozoic atmospheric pO2, globally satisfied FeOB metabolic Fe2+ (aq) and O2(aq) requirements in shallow-marine subtidal environments above the fair-weather wave base.
Collapse
Affiliation(s)
- Alex Kovalick
- Department of Earth and Planetary SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| | - Andy W. Heard
- Department of Geology & GeophysicsWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
- Origins Laboratory, Department of the Geophysical SciencesThe University of ChicagoChicagoIllinoisUSA
| | - Aleisha C. Johnson
- Origins Laboratory, Department of the Geophysical SciencesThe University of ChicagoChicagoIllinoisUSA
- Department of GeosciencesUniversity of ArizonaTucsonArizonaUSA
| | - Clara S. Chan
- Department of Earth SciencesUniversity of DelawareNewarkDelawareUSA
| | - Luke Ootes
- British Columbia Geological Survey, Ministry of Energy, Mines and Low Carbon InnovationVictoriaBritish ColumbiaCanada
| | - Sune G. Nielsen
- Department of Geology & GeophysicsWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
- CRPG, CNRSUniversité de LorraineNancyFrance
| | - Nicolas Dauphas
- Origins Laboratory, Department of the Geophysical SciencesThe University of ChicagoChicagoIllinoisUSA
| | - Bodo Weber
- Departamento de GeologíaCentro de Investigación Científica y de Educación Superior de Ensenada, CICESEEnsenadaBaja CaliforniaMexico
| | - Andrey Bekker
- Department of Earth and Planetary SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
9
|
Karačić S, Suarez C, Hagelia P, Persson F, Modin O, Martins PD, Wilén BM. Microbial acidification by N, S, Fe and Mn oxidation as a key mechanism for deterioration of subsea tunnel sprayed concrete. Sci Rep 2024; 14:22742. [PMID: 39349736 PMCID: PMC11442690 DOI: 10.1038/s41598-024-73911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
The deterioration of fibre-reinforced sprayed concrete was studied in the Oslofjord subsea tunnel (Norway). At sites with intrusion of saline groundwater resulting in biofilm growth, the concrete exhibited significant concrete deterioration and steel fibre corrosion. Using amplicon sequencing and shotgun metagenomics, the microbial taxa and surveyed potential microbial mechanisms of concrete degradation at two sites over five years were identified. The concrete beneath the biofilm was investigated with polarised light microscopy, scanning electron microscopy and X-ray diffraction. The oxic environment in the tunnel favoured aerobic oxidation processes in nitrogen, sulfur and metal biogeochemical cycling as evidenced by large abundances of metagenome-assembled genomes (MAGs) with potential for oxidation of nitrogen, sulfur, manganese and iron, observed mild acidification of the concrete, and the presence of manganese- and iron oxides. These results suggest that autotrophic microbial populations involved in the cycling of several elements contributed to the corrosion of steel fibres and acidification causing concrete deterioration.
Collapse
Affiliation(s)
- Sabina Karačić
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, Lund, 221 00, Sweden
- Sweden Water Research AB, Lund, 222 35, Sweden
| | - Per Hagelia
- Construction Division, The Norwegian Public Roads Administration, Oslo, 0030, Norway
- Müller-Sars Biological Station, Ørje, NO-1871, Norway
| | - Frank Persson
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Oskar Modin
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Paula Dalcin Martins
- Department of Ecosystem and Landscape Dynamics, University of Amsterdam, Amsterdam, 1090 GE, Netherlands
- Microbial Ecology Cluster, GELIFES, University of Groningen, Groningen, 9747 AG, Netherlands
| | - Britt-Marie Wilén
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden.
| |
Collapse
|
10
|
Barco RA, Merino N, Lam B, Budnik B, Kaplan M, Wu F, Amend JP, Nealson KH, Emerson D. Comparative proteomics of a versatile, marine, iron-oxidizing chemolithoautotroph. Environ Microbiol 2024; 26:e16632. [PMID: 38861374 DOI: 10.1111/1462-2920.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/20/2024] [Indexed: 06/13/2024]
Abstract
This study conducted a comparative proteomic analysis to identify potential genetic markers for the biological function of chemolithoautotrophic iron oxidation in the marine bacterium Ghiorsea bivora. To date, this is the only characterized species in the class Zetaproteobacteria that is not an obligate iron-oxidizer, providing a unique opportunity to investigate differential protein expression to identify key genes involved in iron-oxidation at circumneutral pH. Over 1000 proteins were identified under both iron- and hydrogen-oxidizing conditions, with differentially expressed proteins found in both treatments. Notably, a gene cluster upregulated during iron oxidation was identified. This cluster contains genes encoding for cytochromes that share sequence similarity with the known iron-oxidase, Cyc2. Interestingly, these cytochromes, conserved in both Bacteria and Archaea, do not exhibit the typical β-barrel structure of Cyc2. This cluster potentially encodes a biological nanowire-like transmembrane complex containing multiple redox proteins spanning the inner membrane, periplasm, outer membrane, and extracellular space. The upregulation of key genes associated with this complex during iron-oxidizing conditions was confirmed by quantitative reverse transcription-PCR. These findings were further supported by electromicrobiological methods, which demonstrated negative current production by G. bivora in a three-electrode system poised at a cathodic potential. This research provides significant insights into the biological function of chemolithoautotrophic iron oxidation.
Collapse
Affiliation(s)
- Roman A Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - N Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Lawrence Livermore National Lab, Biosciences and Biotechnology Division, Livermore, California, USA
| | - B Lam
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - B Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts, USA
| | - M Kaplan
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - F Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China
| | - J P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - K H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - D Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| |
Collapse
|
11
|
Baker IR, Girguis PR. Sulfur cycling likely obscures dynamic biologically-driven iron redox cycling in contemporary methane seep environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13263. [PMID: 38705733 PMCID: PMC11070330 DOI: 10.1111/1758-2229.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/06/2024] [Indexed: 05/07/2024]
Abstract
Deep-sea methane seeps are amongst the most biologically productive environments on Earth and are often characterised by stable, low oxygen concentrations and microbial communities that couple the anaerobic oxidation of methane to sulfate reduction or iron reduction in the underlying sediment. At these sites, ferrous iron (Fe2+) can be produced by organoclastic iron reduction, methanotrophic-coupled iron reduction, or through the abiotic reduction by sulfide produced by the abundant sulfate-reducing bacteria at these sites. The prevalence of Fe2+in the anoxic sediments, as well as the availability of oxygen in the overlying water, suggests that seeps could also harbour communities of iron-oxidising microbes. However, it is unclear to what extent Fe2+ remains bioavailable and in solution given that the abiotic reaction between sulfide and ferrous iron is often assumed to scavenge all ferrous iron as insoluble iron sulfides and pyrite. Accordingly, we searched the sea floor at methane seeps along the Cascadia Margin for microaerobic, neutrophilic iron-oxidising bacteria, operating under the reasoning that if iron-oxidising bacteria could be isolated from these environments, it could indicate that porewater Fe2+ can persist is long enough for biology to outcompete pyritisation. We found that the presence of sulfate in our enrichment media muted any obvious microbially-driven iron oxidation with most iron being precipitated as iron sulfides. Transfer of enrichment cultures to sulfate-depleted media led to dynamic iron redox cycling relative to abiotic controls and sulfate-containing cultures, and demonstrated the capacity for biogenic iron (oxyhydr)oxides from a methane seep-derived community. 16S rRNA analyses revealed that removing sulfate drastically reduced the diversity of enrichment cultures and caused a general shift from a Gammaproteobacteria-domainated ecosystem to one dominated by Rhodobacteraceae (Alphaproteobacteria). Our data suggest that, in most cases, sulfur cycling may restrict the biological "ferrous wheel" in contemporary environments through a combination of the sulfur-adapted sediment-dwelling ecosystems and the abiotic reactions they influence.
Collapse
Affiliation(s)
- Isabel R. Baker
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Department of Earth and Planetary ScienceJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Peter R. Girguis
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
12
|
Garry M, Farasin J, Drevillon L, Quaiser A, Bouchez C, Le Borgne T, Coffinet S, Dufresne A. Ferriphaselus amnicola strain GF-20, a new iron- and thiosulfate-oxidizing bacterium isolated from a hard rock aquifer. FEMS Microbiol Ecol 2024; 100:fiae047. [PMID: 38573825 PMCID: PMC11044966 DOI: 10.1093/femsec/fiae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024] Open
Abstract
Ferriphaselus amnicola GF-20 is the first Fe-oxidizing bacterium isolated from the continental subsurface. It was isolated from groundwater circulating at 20 m depth in the fractured-rock catchment observatory of Guidel-Ploemeur (France). Strain GF-20 is a neutrophilic, iron- and thiosulfate-oxidizer and grows autotrophically. The strain shows a preference for low oxygen concentrations, which suggests an adaptation to the limiting oxygen conditions of the subsurface. It produces extracellular stalks and dreads when grown with Fe(II) but does not secrete any structure when grown with thiosulfate. Phylogenetic analyses and genome comparisons revealed that strain GF-20 is affiliated with the species F. amnicola and is strikingly similar to F. amnicola strain OYT1, which was isolated from a groundwater seep in Japan. Based on the phenotypic and phylogenetic characteristics, we propose that GF-20 represents a new strain within the species F. amnicola.
Collapse
Affiliation(s)
- Mélissa Garry
- Géosciences Rennes, CNRS, Univ Rennes, UMR 6118, Rennes, France
- OSUR, Univ Rennes, UMS 3343, Rennes, France
| | | | - Laetitia Drevillon
- Ecobio—Ecosystèmes, Biodiversité, Evolution, CNRS, Univ Rennes, UMR 6553, Rennes, France
| | - Achim Quaiser
- Ecobio—Ecosystèmes, Biodiversité, Evolution, CNRS, Univ Rennes, UMR 6553, Rennes, France
| | - Camille Bouchez
- Géosciences Rennes, CNRS, Univ Rennes, UMR 6118, Rennes, France
| | | | - Sarah Coffinet
- Ecobio—Ecosystèmes, Biodiversité, Evolution, CNRS, Univ Rennes, UMR 6553, Rennes, France
| | - Alexis Dufresne
- Ecobio—Ecosystèmes, Biodiversité, Evolution, CNRS, Univ Rennes, UMR 6553, Rennes, France
| |
Collapse
|
13
|
Achberger AM, Jones R, Jamieson J, Holmes CP, Schubotz F, Meyer NR, Dekas AE, Moriarty S, Reeves EP, Manthey A, Brünjes J, Fornari DJ, Tivey MK, Toner BM, Sylvan JB. Inactive hydrothermal vent microbial communities are important contributors to deep ocean primary productivity. Nat Microbiol 2024; 9:657-668. [PMID: 38287146 DOI: 10.1038/s41564-024-01599-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
Active hydrothermal vents are oases for productivity in the deep ocean, but the flow of dissolved substrates that fuel such abundant life ultimately ceases, leaving behind inactive mineral deposits. The rates of microbial activity on these deposits are largely unconstrained. Here we show primary production occurs on inactive hydrothermal deposits and quantify its contribution to new organic carbon production in the deep ocean. Measured incorporation of 14C-bicarbonate shows that microbial communities on inactive deposits fix inorganic carbon at rates comparable to those on actively venting deposits. Single-cell uptake experiments and nanoscale secondary ion mass spectrometry showed chemoautotrophs comprise a large fraction (>30%) of the active microbial cells. Metagenomic and lipidomic surveys of inactive deposits further revealed that the microbial communities are dominated by Alphaproteobacteria and Gammaproteobacteria using the Calvin-Benson-Bassham pathway for carbon fixation. These findings establish inactive vent deposits as important sites for microbial activity and organic carbon production on the seafloor.
Collapse
Affiliation(s)
- Amanda M Achberger
- Department of Oceanography, Texas A&M University, College Station, Texas, USA.
| | - Rose Jones
- Department of Soil, Water and Climate, University of Minnesota-Twin Cities, St Paul, MN, USA
| | - John Jamieson
- Department of Earth Sciences, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Charles P Holmes
- Department of Oceanography, Texas A&M University, College Station, Texas, USA
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Nicolette R Meyer
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Sarah Moriarty
- Department of Earth Sciences, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Eoghan P Reeves
- Department of Earth Science, Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Alex Manthey
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Jonas Brünjes
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Fornari
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Margaret K Tivey
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Brandy M Toner
- Department of Soil, Water and Climate, University of Minnesota-Twin Cities, St Paul, MN, USA
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
14
|
Astorch-Cardona A, Odin GP, Chavagnac V, Dolla A, Gaussier H, Rommevaux C. Linking Zetaproteobacterial diversity and substratum type in iron-rich microbial mats from the Lucky Strike hydrothermal field (EMSO-Azores observatory). Appl Environ Microbiol 2024; 90:e0204123. [PMID: 38193671 PMCID: PMC10880625 DOI: 10.1128/aem.02041-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Zetaproteobacteria have been reported in different marine and terrestrial environments all over the globe. They play an essential role in marine iron-rich microbial mats, as one of their autotrophic primary producers, oxidizing Fe(II) and producing Fe-oxyhydroxides with different morphologies. Here, we study and compare the Zetaproteobacterial communities of iron-rich microbial mats from six different sites of the Lucky Strike Hydrothermal Field through the use of the Zetaproteobacterial operational taxonomic unit (ZetaOTU) classification. We report for the first time the Zetaproteobacterial core microbiome of these iron-rich microbial mats, which is composed of four ZetaOTUs that are cosmopolitan and essential for the development of the mats. The study of the presence and abundance of different ZetaOTUs among sites reveals two clusters, which are related to the lithology and permeability of the substratum on which they develop. The Zetaproteobacterial communities of cluster 1 are characteristic of poorly permeable substrata, with little evidence of diffuse venting, while those of cluster 2 develop on hydrothermal slabs or deposits that allow the percolation and outflow of diffuse hydrothermal fluids. In addition, two NewZetaOTUs 1 and 2 were identified, which could be characteristic of anthropic iron and unsedimented basalt, respectively. We also report significant correlations between the abundance of certain ZetaOTUs and that of iron oxide morphologies, indicating that their formation could be taxonomically and/or environmentally driven. We identified a new morphology of Fe(III)-oxyhydroxides that we named "corals." Overall, our work contributes to the knowledge of the biogeography of this bacterial class by providing additional data from the Atlantic Ocean, a lesser-studied ocean in terms of Zetaproteobacterial diversity.IMPORTANCEUp until now, Zetaproteobacterial diversity studies have revealed possible links between Zetaproteobacteria taxa, habitats, and niches. Here, we report for the first time the Zetaproteobacterial core microbiome of iron-rich mats from the Lucky Strike Hydrothermal Field (LSHF), as well as two new Zetaproteobacterial operational taxonomic units (NewZetaOTUs) that could be substratum specific. We highlight that the substratum on which iron-rich microbial mats develop, especially because of its permeability to diffuse hydrothermal venting, has an influence on their Zetaproteobacterial communities. Moreover, our work adds to the knowledge of the biogeography of this bacterial class by providing additional data from the hydrothermal vent sites along the Mid-Atlantic Ridge. In addition to the already described iron oxide morphologies, we identify in our iron-rich mats a new morphology that we named corals. Finally, we argue for significant correlations between the relative abundance of certain ZetaOTUs and that of iron oxide morphologies, contributing to the understanding of the drivers of iron oxide production in iron-oxidizing bacteria.
Collapse
Affiliation(s)
- Aina Astorch-Cardona
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Giliane P. Odin
- Laboratoire Géomatériaux et Environnement, Université Gustave Eiffel, Marne-la-Vallée, France
| | - Valérie Chavagnac
- Géosciences Environnement Toulouse, CNRS UMR 5563 (CNRS/UPS/IRD/CNES), Université de Toulouse, Observatoire Midi-Pyrénées, Toulouse, France
| | - Alain Dolla
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Hélène Gaussier
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Céline Rommevaux
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
15
|
Fullerton H, Smith L, Enriquez A, Butterfield D, Wheat CG, Moyer CL. Seafloor incubation experiments at deep-sea hydrothermal vents reveal distinct biogeographic signatures of autotrophic communities. FEMS Microbiol Ecol 2024; 100:fiae001. [PMID: 38200713 PMCID: PMC10808952 DOI: 10.1093/femsec/fiae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/20/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
The discharge of hydrothermal vents on the seafloor provides energy sources for dynamic and productive ecosystems, which are supported by chemosynthetic microbial populations. These populations use the energy gained by oxidizing the reduced chemicals contained within the vent fluids to fix carbon and support multiple trophic levels. Hydrothermal discharge is ephemeral and chemical composition of such fluids varies over space and time, which can result in geographically distinct microbial communities. To investigate the foundational members of the community, microbial growth chambers were placed within the hydrothermal discharge at Axial Seamount (Juan de Fuca Ridge), Magic Mountain Seamount (Explorer Ridge), and Kama'ehuakanaloa Seamount (Hawai'i hotspot). Campylobacteria were identified within the nascent communities, but different amplicon sequence variants were present at Axial and Kama'ehuakanaloa Seamounts, indicating that geography in addition to the composition of the vent effluent influences microbial community development. Across these vent locations, dissolved iron concentration was the strongest driver of community structure. These results provide insights into nascent microbial community structure and shed light on the development of diverse lithotrophic communities at hydrothermal vents.
Collapse
Affiliation(s)
- Heather Fullerton
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, United States
| | - Lindsey Smith
- Department of Biology, Western Washington University, 516 High St, Bellingham, WA 98225, United States
| | - Alejandra Enriquez
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, United States
| | - David Butterfield
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington and NOAA/PMEL, John M. Wallace Hall, 3737 Brooklyn Ave NE, Seattle, WA 98105, United States
| | - C Geoffrey Wheat
- Institute of Marine Studies, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 2150 Koyukuk Drive, 245 O’Neill Building, PO Box 757220, Fairbanks, Alaska 99775-7220, United States
| | - Craig L Moyer
- Department of Biology, Western Washington University, 516 High St, Bellingham, WA 98225, United States
| |
Collapse
|
16
|
Laufer-Meiser K, Alawi M, Böhnke S, Solterbeck CH, Schloesser J, Schippers A, Dirksen P, Brüser T, Henkel S, Fuss J, Perner M. Oxidation of sulfur, hydrogen, and iron by metabolically versatile Hydrogenovibrio from deep sea hydrothermal vents. THE ISME JOURNAL 2024; 18:wrae173. [PMID: 39276367 PMCID: PMC11439405 DOI: 10.1093/ismejo/wrae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/22/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Chemolithoautotrophic Hydrogenovibrio are ubiquitous and abundant at hydrothermal vents. They can oxidize sulfur, hydrogen, or iron, but none are known to use all three energy sources. This ability though would be advantageous in vents hallmarked by highly dynamic environmental conditions. We isolated three Hydrogenovibrio strains from vents along the Indian Ridge, which grow on all three electron donors. We present transcriptomic data from strains grown on iron, hydrogen, or thiosulfate with respective oxidation and autotrophic carbon dioxide (CO2) fixation rates, RubisCO activity, SEM, and EDX. Maximum estimates of one strain's oxidation potential were 10, 24, and 952 mmol for iron, hydrogen, and thiosulfate oxidation and 0.3, 1, and 84 mmol CO2 fixation, respectively, per vent per hour indicating their relevance for element cycling in-situ. Several genes were up- or downregulated depending on the inorganic electron donor provided. Although no known genes of iron-oxidation were detected, upregulated transcripts suggested iron-acquisition and so far unknown iron-oxidation-pathways.
Collapse
Affiliation(s)
- Katja Laufer-Meiser
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistrasse 51, 20246 Hamburg, Germany
| | - Stefanie Böhnke
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Claus-Henning Solterbeck
- Institute for Materials and Surfaces, Kiel University of Applied Sciences, Grenzstrasse 3, 24149 Kiel, Germany
| | - Jana Schloesser
- Institute for Materials and Surfaces, Kiel University of Applied Sciences, Grenzstrasse 3, 24149 Kiel, Germany
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - Philipp Dirksen
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistrasse 51, 20246 Hamburg, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Susann Henkel
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Janina Fuss
- Institute of Clinical Molecular Biology ,Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Mirjam Perner
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| |
Collapse
|
17
|
Wang S, Jiang L, Zhao Z, Chen Z, Wang J, Alain K, Cui L, Zhong Y, Peng Y, Lai Q, Dong X, Shao Z. Chemolithoautotrophic diazotrophs dominate dark nitrogen fixation in mangrove sediments. THE ISME JOURNAL 2024; 18:wrae119. [PMID: 38916247 PMCID: PMC11474244 DOI: 10.1093/ismejo/wrae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Diazotrophic microorganisms regulate marine productivity by alleviating nitrogen limitation. So far chemolithoautotrophic bacteria are widely recognized as the principal diazotrophs in oligotrophic marine and terrestrial ecosystems. However, the contribution of chemolithoautotrophs to nitrogen fixation in organic-rich habitats remains unclear. Here, we utilized metagenomic and metatranscriptomic approaches integrated with cultivation assays to investigate the diversity, distribution, and activity of diazotrophs residing in Zhangzhou mangrove sediments. Physicochemical assays show that the studied mangrove sediments are typical carbon-rich, sulfur-rich, nitrogen-limited, and low-redox marine ecosystems. These sediments host a wide phylogenetic variety of nitrogenase genes, including groups I-III and VII-VIII. Unexpectedly diverse chemolithoautotrophic taxa including Campylobacteria, Gammaproteobacteria, Zetaproteobacteria, and Thermodesulfovibrionia are the predominant and active nitrogen fixers in the 0-18 cm sediment layer. In contrast, the 18-20 cm layer is dominated by active diazotrophs from the chemolithoautotrophic taxa Desulfobacterota and Halobacteriota. Further analysis of MAGs shows that the main chemolithoautotrophs can fix nitrogen by coupling the oxidation of hydrogen, reduced sulfur, and iron, with the reduction of oxygen, nitrate, and sulfur. Culture experiments further demonstrate that members of chemolithoautotrophic Campylobacteria have the nitrogen-fixing capacity driven by hydrogen and sulfur oxidation. Activity measurements confirm that the diazotrophs inhabiting mangrove sediments preferentially drain energy from diverse reduced inorganic compounds other than from organics. Overall, our results suggest that chemolithoautotrophs rather than heterotrophs are dominant nitrogen fixers in mangrove sediments. This study underscores the significance of chemolithoautotrophs in carbon-dominant ecosystems.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhuoming Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhen Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Jun Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, EMR6002 BIOMEX, Biologie Interactions et adaptations des Organismes en Milieu EXtrême, IRP 1211 MicrobSea, F-29280 Plouzané, France
| | - Liang Cui
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yangsheng Zhong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| |
Collapse
|
18
|
Ullrich SR, Fuchs H, Schlömann M. Shedding light on the electron transfer chain of a moderately acidophilic iron oxidizer: characterization of recombinant HiPIP-41, CytC-18 and CytC-78 derived from Ferrovum sp. PN-J47-F6. Res Microbiol 2024; 175:104088. [PMID: 37348744 DOI: 10.1016/j.resmic.2023.104088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Efficient electron transfer from the donor to the acceptor couple presents a necessary requirement for acidophilic and neutrophilic iron oxidizers due to the low energy yield of aerobic ferrous iron oxidation. Involved periplasmic electron carriers are very diverse in these bacteria and show adaptations to the respective thermodynamic constraints such as a more positive redox potential reported for extreme acidophilic Acidithiobacillus spp. Respiratory chain candidates of moderately acidophilic members of the genus Ferrovum share similarities with both their neutrophilic iron oxidizing relatives and the more distantly related Acidithiobacillus spp. We examined our previous omics-based conclusions on the potential electron transfer chain in Ferrovum spp. by characterizing the three redox protein candidates CytC-18, CytC-78 and HiPIP-41 of strain PN-J47-F6 which were produced as recombinant proteins in Eschericha coli. UV/Vis-based redox assays suggested that HiPIP-41 has a very positive redox potential while redox potentials of CytC-18 and CytC-78 are more negative than their counterparts in Acidithiobacillus spp. Far Western dot blotting demonstrated interactions between all three recombinant redox proteins while redox assays showed the electron transfer from HiPIP-41 to either of the cytochromes. Altogether, CytC-18, CytC-78 and HiPIP-41 indeed represent very likely candidates of the electron transfer in Ferrovum sp. PN-J4-F6.
Collapse
Affiliation(s)
- Sophie R Ullrich
- TU Bergakademie Freiberg, Institute for Biological Sciences, Leipziger Strasse 29, Freiberg, Germany.
| | - Helena Fuchs
- TU Bergakademie Freiberg, Institute for Biological Sciences, Leipziger Strasse 29, Freiberg, Germany
| | - Michael Schlömann
- TU Bergakademie Freiberg, Institute for Biological Sciences, Leipziger Strasse 29, Freiberg, Germany
| |
Collapse
|
19
|
Masuda N, Kato S, Ohkuma M, Endo K. Metagenomic Insights into Ecophysiology of Zetaproteobacteria and Gammaproteobacteria in Shallow Zones within Deep-sea Massive Sulfide Deposits. Microbes Environ 2024; 39:ME23104. [PMID: 39343535 PMCID: PMC11427306 DOI: 10.1264/jsme2.me23104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
Deep-sea massive sulfide deposits serve as energy sources for chemosynthetic ecosystems in dark, cold environments even after hydrothermal activity ceases. However, the vertical distribution of microbial communities within sulfide deposits along their depth from the seafloor as well as their ecological roles remain unclear. We herein conducted a culture-independent metagenomic ana-lysis of a core sample of massive sulfide deposits collected in a hydrothermally inactive field of the Southern Mariana Trough, Western Pacific, by drilling (sample depth: 0.52 m below the seafloor). Based on the gene context of the metagenome-assembled genomes (MAGs) obtained, we showed the metabolic potential of as-yet-uncultivated microorganisms, particularly those unique to the shallow zone rich in iron hydroxides. Some members of Gammaproteobacteria have potential for the oxidation of reduced sulfur species (such as sulfide and thiosulfate) to sulfate coupled to nitrate reduction to ammonia and carbon fixation via the Calvin-Benson-Bassham (CBB) cycle, as the primary producers. The Zetaproteobacteria member has potential for iron oxidation coupled with microaerobic respiration. A comparative ana-lysis with previously reported metagenomes from deeper zones (~2 m below the seafloor) of massive sulfide deposits revealed a difference in the relative abundance of each putative primary producer between the shallow and deep zones. Our results expand knowledge on the ecological potential of uncultivated microorganisms in deep-sea massive sulfide deposits and provide insights into the vertical distribution patterns of chemosynthetic ecosystems.
Collapse
Affiliation(s)
- Nao Masuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074, Japan
- Submarine Resources Research Center (SRRC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074, Japan
| | - Kazuyoshi Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| |
Collapse
|
20
|
Hribovšek P, Olesin Denny E, Dahle H, Mall A, Øfstegaard Viflot T, Boonnawa C, Reeves EP, Steen IH, Stokke R. Putative novel hydrogen- and iron-oxidizing sheath-producing Zetaproteobacteria thrive at the Fåvne deep-sea hydrothermal vent field. mSystems 2023; 8:e0054323. [PMID: 37921472 PMCID: PMC10734525 DOI: 10.1128/msystems.00543-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Knowledge on microbial iron oxidation is important for understanding the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria representative belonging to Zetaproteobacteria operational taxonomic unit 9. The study proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide than previously observed. Overall, the results increase our knowledge on potential drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.
Collapse
Affiliation(s)
- Petra Hribovšek
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Emily Olesin Denny
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Håkon Dahle
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Achim Mall
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Thomas Øfstegaard Viflot
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Chanakan Boonnawa
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Eoghan P. Reeves
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Ida Helene Steen
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Runar Stokke
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
21
|
Chan CS, Dykes GE, Hoover RL, Limmer MA, Seyfferth AL. Gallionellaceae in rice root plaque: metabolic roles in iron oxidation, nutrient cycling, and plant interactions. Appl Environ Microbiol 2023; 89:e0057023. [PMID: 38009924 PMCID: PMC10734482 DOI: 10.1128/aem.00570-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/18/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE In waterlogged soils, iron plaque forms a reactive barrier between the root and soil, collecting phosphate and metals such as arsenic and cadmium. It is well established that iron-reducing bacteria solubilize iron, releasing these associated elements. In contrast, microbial roles in plaque formation have not been clear. Here, we show that there is a substantial population of iron oxidizers in plaque, and furthermore, that these organisms (Sideroxydans and Gallionella) are distinguished by genes for plant colonization and nutrient fixation. Our results suggest that iron-oxidizing and iron-reducing bacteria form and remodel iron plaque, making it a dynamic system that represents both a temporary sink for elements (P, As, Cd, C, etc.) as well as a source. In contrast to abiotic iron oxidation, microbial iron oxidation results in coupled Fe-C-N cycling, as well as microbe-microbe and microbe-plant ecological interactions that need to be considered in soil biogeochemistry, ecosystem dynamics, and crop management.
Collapse
Affiliation(s)
- Clara S. Chan
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Gretchen E. Dykes
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Rene L. Hoover
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Matt A. Limmer
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Angelia L. Seyfferth
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
22
|
Gawas P, Kerkar S. Bacterial diversity and community structure of salt pans from Goa, India. Front Microbiol 2023; 14:1230929. [PMID: 38111647 PMCID: PMC10726047 DOI: 10.3389/fmicb.2023.1230929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
In Goa, salt production from the local salt pans is an age-old practice. These salt pans harbor a rich diversity of halophilic microbes with immense biotechnological applications, as they tolerate extremely harsh conditions. Detecting the existence of these microbes by a metabarcoding approach could be a primary step to harness their potential. Three salt pans viz. Agarwado, Curca, and Nerul adjoining prominent estuaries of Goa were selected based on their unique geographical locations. The sediments of these salt pans were examined for their bacterial community and function by 16S rRNA amplicon-sequencing. These salt pans were hypersaline (400-450 PSU) and alkaline (pH 7.6-8.25), with 0.036-0.081 mg/L nitrite, 0.0031-0.016 mg/L nitrate, 6.66-15.81 mg/L sulfate, and 20.8-25.6 mg/L sulfide. The relative abundance revealed that the Pseudomonadota was dominant in salt pans of Nerul (13.9%), Curca (19.6%), and Agarwado (32.4%). The predominant genera in Nerul, Curca, and Agarwado salt pan sediments were Rhodopirellula (1.12%), Sulfurivermis (1.28%), and Psychrobacter (25.5%) respectively. The highest alpha diversity (Shannon-diversity Index) was observed in the Nerul salt pan (4.8) followed by Curca (4.3) and Agarwado (2.03). Beta diversity indicated the highest dissimilarity between Agarwado and the other two salt pans (0.73) viz. Nerul and Curca and the lowest dissimilarity was observed between Nerul and Curca salt pans (0.48). Additionally, in the Agarwado salt pan, 125 unique genera were detected, while in Nerul 119, and in Curca 28 distinct genera were noted. The presence of these exclusive microorganisms in a specific salt pan and its absence in the others indicate that the adjacent estuaries play a critical role in determining salt pan bacterial diversity. Further, the functional prediction of bacterial communities indicated the predominance of stress adaptation genes involved in osmotic balance, membrane modification, and DNA repair mechanisms. This is the first study to report the bacterial community structure and its functional genes in these three salt pans using Next-Generation Sequencing. The data generated could be used as a reference by other researchers across the world for bioprospecting these organisms for novel compounds having biotechnological and biomedical potential.
Collapse
Affiliation(s)
| | - Savita Kerkar
- School of Biological Sciences and Biotechnology, Goa University, Taleigao, Goa, India
| |
Collapse
|
23
|
Brauner M, Briggs BR. Microbial iron acquisition is influenced by spatial and temporal conditions in a glacial influenced river and estuary system. Environ Microbiol 2023; 25:3450-3465. [PMID: 37956696 PMCID: PMC10872409 DOI: 10.1111/1462-2920.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
In Arctic regions, glaciers are major sources of iron to rivers and streams; however, estuaries are considered iron sinks due to the coagulation and flocculation processes that occur at higher salinities. It is unknown how iron dynamics in a glacial influenced river and estuary environment affect microbial mechanisms for iron acquisition. Microbial taxonomic and functional sequencing was performed on samples taken throughout the year from the Kenai River and the estuary, Alaska. Despite distinct iron, sodium, and other nutrient concentrations, the river and estuary did not have statistically different microbial communities nor was time of sampling significant. However, ferrous iron transport (Feo) system genes were more abundant in river environments, while siderophore genes were more abundant and diverse in estuary environments. Siderophore transport and iron storage genes were found in all samples, but gene abundance and distribution were potentially influenced by physical drivers such as discharge rates and nutrient distributions. Differences in iron metabolism between river and estuary ecosystems indicate environmental conditions drive microbial mechanisms to sequester iron. This could have implications for iron transport as the Arctic continues to warm.
Collapse
Affiliation(s)
- Megan Brauner
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr CPSB 101, Anchorage, Alaska
| | - Brandon R. Briggs
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr CPSB 101, Anchorage, Alaska
| |
Collapse
|
24
|
Tejedor-Sanz S, Li S, Kundu BB, Ajo-Franklin CM. Extracellular electron uptake from a cathode by the lactic acid bacterium Lactiplantibacillus plantarum. Front Microbiol 2023; 14:1298023. [PMID: 38075918 PMCID: PMC10701730 DOI: 10.3389/fmicb.2023.1298023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/03/2023] [Indexed: 01/28/2024] Open
Abstract
A subset of microorganisms that perform respiration can endogenously utilize insoluble electron donors, such as Fe(II) or a cathode, in a process called extracellular electron transfer (EET). However, it is unknown whether similar endogenous EET can be performed by primarily fermentative species like lactic acid bacteria. We report for the first time electron uptake from a cathode by Lactiplantibacillus plantarum, a primarily fermentative bacteria found in the gut of mammals and in fermented foods. L. plantarum consumed electrons from a cathode and coupled this oxidation to the reduction of both an endogenous organic (pyruvate) and an exogenous inorganic electron acceptor (nitrate). This electron uptake from a cathode reroutes glucose fermentation toward lactate degradation and provides cells with a higher viability upon sugar exhaustion. Moreover, the associated genes and cofactors indicate that this activity is mechanistically different from that one employed by lactic acid bacteria to reduce an anode and to perform respiration. Our results expand our knowledge of the diversity of electroactive species and of the metabolic and bioenergetic strategies used by lactic acid bacteria.
Collapse
Affiliation(s)
- Sara Tejedor-Sanz
- Department of BioSciences, Rice University, Houston, TX, United States
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Siliang Li
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Biki Bapi Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
| | - Caroline M. Ajo-Franklin
- Department of BioSciences, Rice University, Houston, TX, United States
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
25
|
Barosa B, Ferrillo A, Selci M, Giardina M, Bastianoni A, Correggia M, di Iorio L, Bernardi G, Cascone M, Capuozzo R, Intoccia M, Price R, Vetriani C, Cordone A, Giovannelli D. Mapping the microbial diversity associated with different geochemical regimes in the shallow-water hydrothermal vents of the Aeolian archipelago, Italy. Front Microbiol 2023; 14:1134114. [PMID: 37637107 PMCID: PMC10452888 DOI: 10.3389/fmicb.2023.1134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Shallow-water hydrothermal vents are unique marine environments ubiquitous along the coast of volcanically active regions of the planet. In contrast to their deep-sea counterparts, primary production at shallow-water vents relies on both photoautotrophy and chemoautotrophy. Such processes are supported by a range of geochemical regimes driven by different geological settings. The Aeolian archipelago, located in the southern Tyrrhenian sea, is characterized by intense hydrothermal activity and harbors some of the best sampled shallow-water vents of the Mediterranean Sea. Despite this, the correlation between microbial diversity, geochemical regimes and geological settings of the different volcanic islands of the archipelago is largely unknown. Here, we report the microbial diversity associated with six distinct shallow-water hydrothermal vents of the Aeolian Islands using a combination of 16S rRNA amplicon sequencing along with physicochemical and geochemical measurements. Samples were collected from biofilms, fluids and sediments from shallow vents on the islands of Lipari, Panarea, Salina, and Vulcano. Two new shallow vent locations are described here for the first time. Our results show the presence of diverse microbial communities consistent in their composition with the local geochemical regimes. The shallow water vents of the Aeolian Islands harbor highly diverse microbial community and should be included in future conservation efforts.
Collapse
Affiliation(s)
- Bernardo Barosa
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | | | - Matteo Selci
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Marco Giardina
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Alessia Bastianoni
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Monica Correggia
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Luciano di Iorio
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | | | - Martina Cascone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Rosaria Capuozzo
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Michele Intoccia
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Roy Price
- School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Costantino Vetriani
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
| | - Angelina Cordone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
- Istituto per le Risorse Biologiche e Biotecnologiche Marine, Consiglio Nazionale Delle Ricerche, CNR-IRBIM, Ancona, Italy
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Tokyo, Japan
- Marine Chemistry and Geochemistry Department–Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
26
|
Mugge RL, Rakocinski CF, Woolsey M, Hamdan LJ. Proximity to built structures on the seabed promotes biofilm development and diversity. BIOFOULING 2023; 39:706-718. [PMID: 37746691 DOI: 10.1080/08927014.2023.2255141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
The rapidly expanding built environment in the northern Gulf of Mexico includes thousands of human built structures (e.g. platforms, shipwrecks) on the seabed. Primary-colonizing microbial biofilms transform structures into artificial reefs capable of supporting biodiversity, yet little is known about formation and recruitment of biofilms. Short-term seafloor experiments containing steel surfaces were placed near six structures, including historic shipwrecks and modern decommissioned energy platforms. Biofilms were analyzed for changes in phylogenetic composition, richness, and diversity relative to proximity to the structures. The biofilm core microbiome was primarily composed of iron-oxidizing Mariprofundus, sulfur-oxidizing Sulfurimonas, and biofilm-forming Rhodobacteraceae. Alpha diversity and richness significantly declined as a function of distance from structures. This study explores how built structures influence marine biofilms and contributes knowledge on how anthropogenic activity impacts microbiomes on the seabed.
Collapse
Affiliation(s)
- Rachel L Mugge
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, Mississippi, USA
| | - Chet F Rakocinski
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, Mississippi, USA
| | - Max Woolsey
- Hydrographic Science Research Center, University of Southern Mississippi, Stennis Space Center, Mississippi, USA
| | - Leila J Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, Mississippi, USA
| |
Collapse
|
27
|
Chen Y, Li X, Liu T, Li F, Sun W, Young LY, Huang W. Metagenomic analysis of Fe(II)-oxidizing bacteria for Fe(III) mineral formation and carbon assimilation under microoxic conditions in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158068. [PMID: 35987227 DOI: 10.1016/j.scitotenv.2022.158068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Microbially mediated Fe(II) oxidation is prevalent and thought to be central to many biogeochemical processes in paddy soils. However, we have limited insights into the Fe(II) oxidation process in paddy fields, considered the world's largest engineered wetland, where microoxic conditions are ubiquitous. In this study, microaerophilic Fe(II) oxidizing bacteria (FeOB) from paddy soil were enriched in gradient tubes with FeS, FeCO3, and Fe3(PO4)2 as iron sources to investigate their capacity for Fe(II) oxidation and carbon assimilation. Results showed that the highest rate of Fe(II) oxidation (k = 0.836 mM d-1) was obtained in the FeCO3 tubes, and cells grown in the Fe3(PO4)2 tubes yielded maximum assimilation amounts of 13C-NaHCO3 of 1.74% on Day 15. Amorphous Fe(III) oxides were found in all the cell bands with iron substrates as a result of microbial Fe(II) oxidation. Metagenomics analysis of the enriched microbes targeted genes encoding iron oxidase Cyc2, oxygen-reducing terminal oxidase, and ribulose-bisphosphate carboxylase, with results indicated that the potential Fe(II) oxidizers include nitrate-reducing FeOB (Dechloromonas and Thiobacillus), Curvibacter, and Magnetospirillum. By combining cultivation-dependent and metagenomic approaches, our results found a number of FeOB from paddy soil under microoxic conditions, which provide insight into the complex biogeochemical interactions of iron and carbon within paddy fields. The contribution of the FeOB to the element cycling in rice-growing regions deserves further investigation.
Collapse
Affiliation(s)
- Yating Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu 610207, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lily Y Young
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
28
|
Zhou N, Kupper RJ, Catalano JG, Thompson A, Chan CS. Biological Oxidation of Fe(II)-Bearing Smectite by Microaerophilic Iron Oxidizer Sideroxydans lithotrophicus Using Dual Mto and Cyc2 Iron Oxidation Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17443-17453. [PMID: 36417801 PMCID: PMC9731265 DOI: 10.1021/acs.est.2c05142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Fe(II) clays are common across many environments, making them a potentially significant microbial substrate, yet clays are not well established as an electron donor. Therefore, we explored whether Fe(II)-smectite supports the growth of Sideroxydans lithotrophicus ES-1, a microaerophilic Fe(II)-oxidizing bacterium (FeOB), using synthesized trioctahedral Fe(II)-smectite and 2% oxygen. S. lithotrophicus grew substantially and can oxidize Fe(II)-smectite to a higher extent than abiotic oxidation, based on X-ray near-edge spectroscopy (XANES). Sequential extraction showed that edge-Fe(II) is oxidized before interior-Fe(II) in both biotic and abiotic experiments. The resulting Fe(III) remains in smectite, as secondary minerals were not detected in biotic and abiotic oxidation products by XANES and Mössbauer spectroscopy. To determine the genes involved, we compared S. lithotrophicus grown on smectite versus Fe(II)-citrate using reverse-transcription quantitative PCR and found that cyc2 genes were highly expressed on both substrates, while mtoA was upregulated on smectite. Proteomics confirmed that Mto proteins were only expressed on smectite, indicating that ES-1 uses the Mto pathway to access solid Fe(II). We integrate our results into a biochemical and mineralogical model of microbial smectite oxidation. This work increases the known substrates for FeOB growth and expands the mechanisms of Fe(II)-smectite alteration in the environment.
Collapse
Affiliation(s)
- Nanqing Zhou
- School
of Marine Science and Policy, University
of Delaware, Newark, Delaware 19716, United
States
| | - Robert J. Kupper
- Department
of Earth and Planetary Sciences, Washington
University in St. Louis, Saint
Louis, Missouri 63130, United States
| | - Jeffrey G. Catalano
- Department
of Earth and Planetary Sciences, Washington
University in St. Louis, Saint
Louis, Missouri 63130, United States
| | - Aaron Thompson
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
| | - Clara S. Chan
- School
of Marine Science and Policy, University
of Delaware, Newark, Delaware 19716, United
States
- Department
of Earth Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
29
|
Wei M, Zeng X, Han X, Shao Z, Xie Q, Dong C, Wang Y, Qiu Z. Potential autotrophic carbon-fixer and Fe(II)-oxidizer Alcanivorax sp. MM125-6 isolated from Wocan hydrothermal field. Front Microbiol 2022; 13:930601. [PMID: 36316996 PMCID: PMC9616709 DOI: 10.3389/fmicb.2022.930601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
The genus Alcanivorax is common in various marine environments, including in hydrothermal fields. They were previously recognized as obligate hydrocarbonoclastic bacteria, but their potential for autotrophic carbon fixation and Fe(II)-oxidation remains largely elusive. In this study, an in situ enrichment experiment was performed using a hydrothermal massive sulfide slab deployed 300 m away from the Wocan hydrothermal vent. Furthermore, the biofilms on the surface of the slab were used as an inoculum, with hydrothermal massive sulfide powder from the same vent as an energy source, to enrich the potential iron oxidizer in the laboratory. Three dominant bacterial families, Alcanivoraceae, Pseudomonadaceae, and Rhizobiaceae, were enriched in the medium with hydrothermal massive sulfides. Subsequently, strain Alcanivorax sp. MM125-6 was isolated from the enrichment culture. It belongs to the genus Alcanivorax and is closely related to Alcanivorax profundimaris ST75FaO-1 T (98.9% sequence similarity) indicated by a phylogenetic analysis based on 16S rRNA gene sequences. Autotrophic growth experiments on strain MM125-6 revealed that the cell concentrations were increased from an initial 7.5 × 105 cells/ml to 3.13 × 108 cells/ml after 10 days, and that the δ13C VPDB in the cell biomass was also increased from 234.25‰ on day 2 to gradually 345.66 ‰ on day 10. The gradient tube incubation showed that bands of iron oxides and cells formed approximately 1 and 1.5 cm, respectively, below the air-agarose medium interface. In addition, the SEM-EDS data demonstrated that it can also secrete acidic exopolysaccharides and adhere to the surface of sulfide minerals to oxidize Fe(II) with NaHCO3 as the sole carbon source, which accelerates hydrothermal massive sulfide dissolution. These results support the conclusion that strain MM125-6 is capable of autotrophic carbon fixation and Fe(II) oxidization chemoautotrophically. This study expands our understanding of the metabolic versatility of the Alcanivorax genus as well as their important role(s) in coupling hydrothermal massive sulfide weathering and iron and carbon cycles in hydrothermal fields.
Collapse
Affiliation(s)
- Mingcong Wei
- Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiqiu Han
- Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Qian Xie
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanqi Dong
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Yejian Wang
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Zhongyan Qiu
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| |
Collapse
|
30
|
Stromecki A, Murray L, Fullerton H, Moyer CL. Unexpected diversity found within benthic microbial mats at hydrothermal springs in Crater Lake, Oregon. Front Microbiol 2022; 13:876044. [PMID: 36187998 PMCID: PMC9516098 DOI: 10.3389/fmicb.2022.876044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Crater Lake, Oregon is an oligotrophic freshwater caldera lake fed by thermally and chemically enriched hydrothermal springs. These vents distinguish Crater Lake from other freshwater systems and provide a unique ecosystem for study. This study examines the community structure of benthic microbial mats occurring with Crater Lake hydrothermal springs. Small subunit rRNA gene amplicon sequencing from eight bacterial mats was used to assess community structure. These revealed a relatively homogeneous, yet diverse bacterial community. High alpha diversity and low beta diversity indicate that these communities are likely fueled by homogeneous hydrothermal fluids. An examination of autotrophic taxa abundance indicates the potential importance of iron and sulfur inputs to the primary productivity of these mats. Chemoautotrophic potential within the mats was dominated by iron oxidation from Gallionella and Mariprofundus and by sulfur oxidation from Sulfuricurvum and Thiobacillus with an additional contribution of nitrite oxidation from Nitrospira. Metagenomic analysis showed that cbbM genes were identified as Gallionella and that aclB genes were identified as Nitrospira, further supporting these taxa as autotrophic drivers of the community. The detection of several taxa containing arsC and nirK genes suggests that arsenic detoxification and denitrification processes are likely co-occurring in addition to at least two modes of carbon fixation. These data link the importance of the detected autotrophic metabolisms driven by fluids derived from benthic hydrothermal springs to Crater Lake’s entire lentic ecosystem.
Collapse
Affiliation(s)
- Amanda Stromecki
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Laura Murray
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Heather Fullerton
- Department of Biology, College of Charleston, Charleston, SC, United States
| | - Craig L. Moyer
- Department of Biology, Western Washington University, Bellingham, WA, United States
- *Correspondence: Craig L. Moyer,
| |
Collapse
|
31
|
Chen J, Liu Y, Diep P, Mahadevan R. Harnessing synthetic biology for sustainable biomining with Fe/S-oxidizing microbes. Front Bioeng Biotechnol 2022; 10:920639. [PMID: 36131722 PMCID: PMC9483119 DOI: 10.3389/fbioe.2022.920639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Biomining is a biotechnological approach where microorganisms are used to recover metals from ores and waste materials. While biomining applications are motivated by critical issues related to the climate crisis (e.g., habitat destruction due to mine effluent pollution, metal supply chains, increasing demands for cleantech-critical metals), its drawbacks hinder its widespread commercial applications: lengthy processing times, low recovery, and metal selectivity. Advances in synthetic biology provide an opportunity to engineer iron/sulfur-oxidizing microbes to address these limitations. In this forum, we review recent progress in synthetic biology-enhanced biomining with iron/sulfur-oxidizing microbes and delineate future research avenues.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Sharma V, Vashishtha A, Jos ALM, Khosla A, Basu N, Yadav R, Bhatt A, Gulani A, Singh P, Lakhera S, Verma M. Phylogenomics of the Phylum Proteobacteria: Resolving the Complex Relationships. Curr Microbiol 2022; 79:224. [PMID: 35704242 DOI: 10.1007/s00284-022-02910-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
Proteobacteria is one of the largest and phenotypically most diverse divisions within the domain bacteria. Due to the economic importance, this phylum demands an urgent need for a clear and scientifically sound classification system to streamline their characterization. The goal of our study was to carefully reevaluate the current system of classification and suggest changes wherein necessary. Phylogenetic trees of 84 Proteobacteria were constructed using single gene-based phylogeny involving 16S rRNA genes and protein sequences of 85 conserved genes, whole genome-based phylogenetic tree using CVtree3.0, amino acid Identity matrix tree, and concatenated tree with aforementioned conserved genes. The results of our study confirm the polyphyletic relationship between Desulfurella acetivorans, a Deltaproteobacteria with Epsilonproteobacteria. The group Syntrophobacterales was found to be polyphyletic with respect to Desulfarculus baarsii and the group Thiotrichales was found to be splitting in different phylogenetic trees. Placement of phylogenetic groups belonging to Rhodocyclales, Oceonospirilalles, and Chromatiales is controversial and requires further study and revisions. Based on our analysis, we strongly support reclassification of Magnetococcales as a separate class Etaproteobacteria. From our results, we conclude that concatenated trees of conserved proteins are a more accurate method for phylogenetic analysis, as compared to other methods used.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Sri Venkateswara College, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi, Delhi, 110021, India
| | - Amit Vashishtha
- Sri Venkateswara College, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi, Delhi, 110021, India
| | - Arsha Liz M Jos
- Sri Venkateswara College, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi, Delhi, 110021, India
| | - Akshita Khosla
- Sri Venkateswara College, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi, Delhi, 110021, India
| | - Nirmegh Basu
- Sri Venkateswara College, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi, Delhi, 110021, India
| | - Rishabh Yadav
- Sri Venkateswara College, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi, Delhi, 110021, India
| | - Amit Bhatt
- Sri Venkateswara College, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi, Delhi, 110021, India
| | - Akshanshi Gulani
- Sri Venkateswara College, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi, Delhi, 110021, India
| | - Pushpa Singh
- Swami Shraddhanand College, University of Delhi, Alipur, New Delhi, Delhi, 110036, India
| | - Sanidhya Lakhera
- Sri Venkateswara College, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi, Delhi, 110021, India
| | - Mansi Verma
- Sri Venkateswara College, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi, Delhi, 110021, India. .,Department of Zoology, Sri Venkateswara College, South Campus, University of Delhi, New Delhi, Delhi, 110021, India.
| |
Collapse
|
33
|
Zhong YW, Zhou P, Cheng H, Xu XW, Wu YH. Genome sequence of five Zetaproteobacteria metagenome-assembled genomes recovered from hydrothermal vent Longqi, Southwest Indian Ridge. Mar Genomics 2022; 63:100936. [DOI: 10.1016/j.margen.2022.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/15/2022]
|
34
|
Salinity Impact on Composition and Activity of Nitrate-Reducing Fe(II)-Oxidizing Microorganisms in Saline Lakes. Appl Environ Microbiol 2022; 88:e0013222. [PMID: 35499328 DOI: 10.1128/aem.00132-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms contribute to nitrogen, carbon, and iron cycling in freshwater and marine ecosystems. However, NRFeOx microorganisms have not been investigated in hypersaline lakes, and their identity, as well as their activity in response to salinity, is unknown. In this study, we combined cultivation-based most probable number (MPN) counts with Illumina MiSeq sequencing to analyze the abundance and community compositions of NRFeOx microorganisms enriched from five lake sediments with different salinities (ranging from 0.67 g/L to 346 g/L). MPN results showed that the abundance of NRFeOx microorganisms significantly (P < 0.05) decreased with increasing lake salinity, from 7.55 × 103 to 8.09 cells/g dry sediment. The community composition of the NRFeOx enrichment cultures obtained from the MPNs differed distinctly among the five lakes and clustered with lake salinity. Two stable enrichment cultures, named FeN-EHL and FeN-CKL, were obtained from microcosm incubations of sediment from freshwater Lake Erhai and hypersaline Lake Chaka. The culture FeN-EHL was dominated by genus Gallionella (68.4%), while the culture FeN-CKL was dominated by genus Marinobacter (71.2%), with the former growing autotrophically and the latter requiring an additional organic substrate (acetate) and Fe(II) oxidation, caused to a large extent by chemodenitrification [reaction of nitrite with Fe(II)]. Short-range ordered Fe(III) (oxyhydr)oxides were the product of Fe(II) oxidation, and the cells were partially attached to or encrusted by the formed iron minerals in both cultures. In summary, different types of interactions between Fe(II) and nitrate-reducing bacteria may exist in freshwater and hypersaline lakes, i.e., autotrophic NRFeOx and chemodenitrification in freshwater and hypersaline environments, respectively. IMPORTANCE NRFeOx microorganisms are globally distributed in various types of environments and play a vital role in iron transformation and nitrate and heavy metal removal. However, most known NRFeOx microorganisms were isolated from freshwater and marine environments, while their identity and activity under hypersaline conditions remain unknown. Here, we demonstrated that salinity may affect the abundance, identity, and nutrition modes of NRFeOx microorganisms. Autotrophy was only detectable in a freshwater lake but not in the saline lake investigated. We enriched a mixotrophic culture capable of nitrate-reducing Fe(II) oxidation from hypersaline lake sediments. However, Fe(II) oxidation was probably caused by abiotic nitrite reduction (chemodenitrification) rather than by a biologically mediated process. Consequently, our study suggests that in hypersaline environments, Fe(II) oxidation is largely caused by chemodentrification initiated by nitrite formation by chemoheterotrophic bacteria, and additional experiments are needed to demonstrate whether or to what extent Fe(II) is enzymatically oxidized.
Collapse
|
35
|
Ecological and Biotechnological Relevance of Mediterranean Hydrothermal Vent Systems. MINERALS 2022. [DOI: 10.3390/min12020251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Marine hydrothermal systems are a special kind of extreme environments associated with submarine volcanic activity and characterized by harsh chemo-physical conditions, in terms of hot temperature, high concentrations of CO2 and H2S, and low pH. Such conditions strongly impact the living organisms, which have to develop adaptation strategies to survive. Hydrothermal systems have attracted the interest of researchers due to their enormous ecological and biotechnological relevance. From ecological perspective, these acidified habitats are useful natural laboratories to predict the effects of global environmental changes, such as ocean acidification at ecosystem level, through the observation of the marine organism responses to environmental extremes. In addition, hydrothermal vents are known as optimal sources for isolation of thermophilic and hyperthermophilic microbes, with biotechnological potential. This double aspect is the focus of this review, which aims at providing a picture of the ecological features of the main Mediterranean hydrothermal vents. The physiological responses, abundance, and distribution of biotic components are elucidated, by focusing on the necto-benthic fauna and prokaryotic communities recognized to possess pivotal role in the marine ecosystem dynamics and as indicator species. The scientific interest in hydrothermal vents will be also reviewed by pointing out their relevance as source of bioactive molecules.
Collapse
|
36
|
Zhou N, Keffer JL, Polson SW, Chan CS. Unraveling Fe(II)-Oxidizing Mechanisms in a Facultative Fe(II) Oxidizer, Sideroxydans lithotrophicus Strain ES-1, via Culturing, Transcriptomics, and Reverse Transcription-Quantitative PCR. Appl Environ Microbiol 2022; 88:e0159521. [PMID: 34788064 PMCID: PMC8788666 DOI: 10.1128/aem.01595-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
Sideroxydans lithotrophicus ES-1 grows autotrophically either by Fe(II) oxidation or by thiosulfate oxidation, in contrast to most other isolates of neutrophilic Fe(II)-oxidizing bacteria (FeOB). This provides a unique opportunity to explore the physiology of a facultative FeOB and constrain the genes specific to Fe(II) oxidation. We compared the growth of S. lithotrophicus ES-1 on Fe(II), thiosulfate, and both substrates together. While initial growth rates were similar, thiosulfate-grown cultures had higher yield with or without Fe(II) present, which may give ES-1 an advantage over obligate FeOB. To investigate the Fe(II) and S oxidation pathways, we conducted transcriptomics experiments, validated with reverse transcription-quantitative PCR (RT-qPCR). We explored the long-term gene expression response at different growth phases (over days to a week) and expression changes during a short-term switch from thiosulfate to Fe(II) (90 min). The dsr and sox sulfur oxidation genes were upregulated in thiosulfate cultures. The Fe(II) oxidase gene cyc2 was among the top expressed genes during both Fe(II) and thiosulfate oxidation, and addition of Fe(II) to thiosulfate-grown cells caused an increase in cyc2 expression. These results support the role of Cyc2 as the Fe(II) oxidase and suggest that ES-1 maintains readiness to oxidize Fe(II), even in the absence of Fe(II). We used gene expression profiles to further constrain the ES-1 Fe(II) oxidation pathway. Notably, among the most highly upregulated genes during Fe(II) oxidation were genes for alternative complex III, reverse electron transport, and carbon fixation. This implies a direct connection between Fe(II) oxidation and carbon fixation, suggesting that CO2 is an important electron sink for Fe(II) oxidation. IMPORTANCE Neutrophilic FeOB are increasingly observed in various environments, but knowledge of their ecophysiology and Fe(II) oxidation mechanisms is still relatively limited. Sideroxydans isolates are widely observed in aquifers, wetlands, and sediments, and genome analysis suggests metabolic flexibility contributes to their success. The type strain ES-1 is unusual among neutrophilic FeOB isolates, as it can grow on either Fe(II) or a non-Fe(II) substrate, thiosulfate. Almost all our knowledge of neutrophilic Fe(II) oxidation pathways comes from genome analyses, with some work on metatranscriptomes. This study used culture-based experiments to test the genes specific to Fe(II) oxidation in a facultative FeOB and refine our model of the Fe(II) oxidation pathway. We gained insight into how facultative FeOB like ES-1 connect Fe, S, and C biogeochemical cycling in the environment and suggest a multigene indicator would improve understanding of Fe(II) oxidation activity in environments with facultative FeOB.
Collapse
Affiliation(s)
- Nanqing Zhou
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| | - Jessica L. Keffer
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Shawn W. Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Clara S. Chan
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
37
|
Oligo-heterotrophic Activity of Marinobacter subterrani Creates an Indirect Fe(II) Oxidation Phenotype in Gradient Tubes. Appl Environ Microbiol 2021; 87:e0136721. [PMID: 34586913 DOI: 10.1128/aem.01367-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotrophic bacteria utilizing Fe(II) as their energy and electron sources for growth affect multiple biogeochemical cycles. Some chemoheterotrophic bacteria have also been considered to exhibit an Fe(II) oxidation phenotype. For example, several Marinobacter strains have been reported to oxidize Fe(II) based on formation of oxidized iron bands in semi-solid gradient tubes that produce opposing concentration gradients of Fe(II) and oxygen. While gradient tubes are a simple and visually compelling method to test for Fe(II) oxidation, this method alone cannot confirm if, and to what extent, Fe(II) oxidation is linked to metabolism in chemoheterotrophic bacteria. Here we probe the possibility of protein-mediated and metabolic by-product-mediated Fe(II) oxidation in Marinobacter subterrani JG233, a chemoheterotroph previously proposed to oxidize Fe(II). Results from conditional and mutant studies, along with measurements of Fe(II) oxidation rates, suggest M. subterrani is unlikely to facilitate Fe(II) oxidation under microaerobic conditions. We conclude that the Fe(II) oxidation phenotype observed in gradient tubes inoculated with M. subterrani JG233 is a result of oligo-heterotrophic activity, shifting the location where oxygen dependent chemical Fe(II) oxidation occurs, rather than a biologically mediated process. IMPORTANCE Gradient tubes are the most commonly used method to isolate and identify neutrophilic Fe(II)-oxidizing bacteria. The formation of oxidized iron bands in gradient tubes provides a compelling assay to ascribe the ability to oxidize Fe(II) to autotrophic bacteria whose growth is dependent on Fe(II) oxidation. However, the physiological significance of Fe(II) oxidation in chemoheterotrophic bacteria is less well understood. Our work suggests that oligo-heterotrophic activity of certain bacteria may create a false-positive phenotype in gradient tubes by altering the location of the abiotic, oxygen-mediated oxidized iron band. Based on the results and analysis presented here, we caution against utilizing gradient tubes as the sole evidence for the capability of a strain to oxidize Fe(II) and that additional experiments are necessary to ascribe this phenotype to new isolates.
Collapse
|
38
|
Mitsunobu S, Ohashi Y, Makita H, Suzuki Y, Nozaki T, Ohigashi T, Ina T, Takaki Y. One-Year In Situ Incubation of Pyrite at the Deep Seafloor and Its Microbiological and Biogeochemical Characterizations. Appl Environ Microbiol 2021; 87:e0097721. [PMID: 34550782 PMCID: PMC8592575 DOI: 10.1128/aem.00977-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/04/2021] [Indexed: 11/20/2022] Open
Abstract
In this study, we performed a year-long in situ incubation experiment on a common ferrous sulfide (Fe-S) mineral, pyrite, at the oxidative deep seafloor in the hydrothermal vent field in the Izu-Bonin arc, Japan, and characterized its microbiological and biogeochemical properties to understand the microbial alteration processes of the pyrite, focusing on Fe(II) oxidation. The microbial community analysis of the incubated pyrite showed that the domain Bacteria heavily dominated over Archaea compared with that of the ambient seawater, and Alphaproteobacteria and Gammaproteobacteria distinctively codominated at the class level. The mineralogical characterization by surface-sensitive Fe X-ray absorption near-edge structure (XANES) analysis revealed that specific Fe(III) hydroxides (schwertmannite and ferrihydrite) were locally formed at the pyrite surface as the pyrite alteration products. Based on the Fe(III) hydroxide species and proportion, we thermodynamically calculated the pH value at the pyrite surface to be pH 4.9 to 5.7, indicating that the acidic condition derived from pyrite alteration was locally formed at the surface against neutral ambient seawater. This acidic microenvironment at the pyrite surface might explain the distinct microbial communities found in our pyrite samples. Also, the acidity at the pyrite surface indicates that the abiotic Fe(II) oxidation rate was much limited at the pyrite surface kinetically, 3.9 × 103- to 1.6 × 105-fold lower than that in the ambient seawater. Moreover, nanoscale characterization of microbial biomolecules using carbon near-edge X-ray absorption fine-structure (NEXAFS) analysis showed that the sessile cells attached to pyrite excreted the acidic polysaccharide-rich extracellular polymeric substances at the pyrite surface, which can lead to the promotion of biogenic Fe(II) oxidation and pyrite alteration. IMPORTANCE Pyrite is one of the most common Fe-S minerals found in submarine hydrothermal environments. Previous studies demonstrated that the Fe-S mineral can be a suitable host for Fe(II)-oxidizing microbes in hydrothermal environments; however, the details of microbial Fe(II) oxidation processes with Fe-S mineral alteration are not well known. The spectroscopic and thermodynamic examination in the present study suggests that a moderately acidic pH condition was locally formed at the pyrite surface during pyrite alteration at the seafloor due to proton releases with Fe(II) and sulfidic S oxidations. Following previous studies, the abiotic Fe(II) oxidation rate significantly decreases with a decrease in pH, but the biotic (microbial) Fe(II) oxidation rate is not sensitive to the pH decrease. Thus, our findings clearly suggest that the pyrite surface is a unique microenvironment where abiotic Fe(II) oxidation is limited and biotic Fe(II) oxidation is more prominent than that in neutral ambient seawater.
Collapse
Affiliation(s)
- S. Mitsunobu
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Y. Ohashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - H. Makita
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Tokyo, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| | - Y. Suzuki
- Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| | - T. Nozaki
- Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo, Tokyo, Tokyo, Japan
- Department of Planetology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
- Ocean Resources Research Center for Next Generation, Chiba Institute of Technology, Narashino, Chiba, Japan
| | - T. Ohigashi
- UVSOR Facility, Institute for Molecular Science, Myodaiji, Okazaki, Japan
| | - T. Ina
- SPring-8, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo, Japan
| | - Y. Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
39
|
Garber AI, Cohen AB, Nealson KH, Ramírez GA, Barco RA, Enzingmüller-Bleyl TC, Gehringer MM, Merino N. Metagenomic Insights Into the Microbial Iron Cycle of Subseafloor Habitats. Front Microbiol 2021; 12:667944. [PMID: 34539592 PMCID: PMC8446621 DOI: 10.3389/fmicb.2021.667944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial iron cycling influences the flux of major nutrients in the environment (e.g., through the adsorptive capacity of iron oxides) and includes biotically induced iron oxidation and reduction processes. The ecological extent of microbial iron cycling is not well understood, even with increased sequencing efforts, in part due to limitations in gene annotation pipelines and limitations in experimental studies linking phenotype to genotype. This is particularly true for the marine subseafloor, which remains undersampled, but represents the largest contiguous habitat on Earth. To address this limitation, we used FeGenie, a database and bioinformatics tool that identifies microbial iron cycling genes and enables the development of testable hypotheses on the biogeochemical cycling of iron. Herein, we survey the microbial iron cycle in diverse subseafloor habitats, including sediment-buried crustal aquifers, as well as surficial and deep sediments. We inferred the genetic potential for iron redox cycling in 32 of the 46 metagenomes included in our analysis, demonstrating the prevalence of these activities across underexplored subseafloor ecosystems. We show that while some processes (e.g., iron uptake and storage, siderophore transport potential, and iron gene regulation) are near-universal, others (e.g., iron reduction/oxidation, siderophore synthesis, and magnetosome formation) are dependent on local redox and nutrient status. Additionally, we detected niche-specific differences in strategies used for dissimilatory iron reduction, suggesting that geochemical constraints likely play an important role in dictating the dominant mechanisms for iron cycling. Overall, our survey advances the known distribution, magnitude, and potential ecological impact of microbe-mediated iron cycling and utilization in sub-benthic ecosystems.
Collapse
Affiliation(s)
- Arkadiy I Garber
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Ashley B Cohen
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Gustavo A Ramírez
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Roman A Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | | | - Michelle M Gehringer
- Department of Microbiology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Nancy Merino
- Biosciences & Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
40
|
Abstract
Iron (Fe) oxidation is one of Earth’s major biogeochemical processes, key to weathering, soil formation, water quality, and corrosion. However, our understanding of microbial contribution is limited by incomplete knowledge of microbial iron oxidation mechanisms, particularly in neutrophilic iron oxidizers. The genomes of many diverse iron oxidizers encode a homolog to an outer membrane cytochrome (Cyc2) shown to oxidize iron in two acidophiles. Phylogenetic analyses show Cyc2 sequences from neutrophiles cluster together, suggesting a common function, though this function has not been verified in these organisms. Therefore, we investigated the iron oxidase function of heterologously expressed Cyc2 from a neutrophilic iron oxidizer Mariprofundus ferrooxydans PV-1. Cyc2PV-1 is capable of oxidizing iron, and its redox potential is 208 ± 20 mV, consistent with the ability to accept electrons from Fe2+ at neutral pH. These results support the hypothesis that Cyc2 functions as an iron oxidase in neutrophilic iron-oxidizing organisms. The results of sequence analysis and modeling reveal that the entire Cyc2 family shares a unique fused cytochrome-porin structure, with a defining consensus motif in the cytochrome region. On the basis of results from structural analyses, we predict that the monoheme cytochrome Cyc2 specifically oxidizes dissolved Fe2+, in contrast to multiheme iron oxidases, which may oxidize solid Fe(II). With our results, there is now functional validation for diverse representatives of Cyc2 sequences. We present a comprehensive Cyc2 phylogenetic tree and offer a roadmap for identifying cyc2/Cyc2 homologs and interpreting their function. The occurrence of cyc2 in many genomes beyond known iron oxidizers presents the possibility that microbial iron oxidation may be a widespread metabolism.
Collapse
|
41
|
Huang YM, Straub D, Blackwell N, Kappler A, Kleindienst S. Meta-omics Reveal Gallionellaceae and Rhodanobacter Species as Interdependent Key Players for Fe(II) Oxidation and Nitrate Reduction in the Autotrophic Enrichment Culture KS. Appl Environ Microbiol 2021; 87:e0049621. [PMID: 34020935 PMCID: PMC8276803 DOI: 10.1128/aem.00496-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/16/2021] [Indexed: 01/04/2023] Open
Abstract
Nitrate reduction coupled to Fe(II) oxidation (NRFO) has been recognized as an environmentally important microbial process in many freshwater ecosystems. However, well-characterized examples of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria are rare, and their pathway of electron transfer as well as their interaction with flanking community members remain largely unknown. Here, we applied meta-omics (i.e., metagenomics, metatranscriptomics, and metaproteomics) to the nitrate-reducing Fe(II)-oxidizing enrichment culture KS growing under autotrophic or heterotrophic conditions and originating from freshwater sediment. We constructed four metagenome-assembled genomes with an estimated completeness of ≥95%, including the key players of NRFO in culture KS, identified as Gallionellaceae sp. and Rhodanobacter sp. The Gallionellaceae sp. and Rhodanobacter sp. transcripts and proteins likely involved in Fe(II) oxidation (e.g., mtoAB, cyc2, and mofA), denitrification (e.g., napGHI), and oxidative phosphorylation (e.g., respiratory chain complexes I to V) along with Gallionellaceae sp. transcripts and proteins for carbon fixation (e.g., rbcL) were detected. Overall, our results indicate that in culture KS, the Gallionellaceae sp. and Rhodanobacter sp. are interdependent: while Gallionellaceae sp. fixes CO2 and provides organic compounds for Rhodanobacter sp., Rhodanobacter sp. likely detoxifies NO through NO reduction and completes denitrification, which cannot be performed by Gallionellaceae sp. alone. Additionally, the transcripts and partial proteins of cbb3- and aa3-type cytochrome c suggest the possibility for a microaerophilic lifestyle of the Gallionellaceae sp., yet culture KS grows under anoxic conditions. Our findings demonstrate that autotrophic NRFO is performed through cooperation among denitrifying and Fe(II)-oxidizing bacteria, which might resemble microbial interactions in freshwater environments. IMPORTANCE Nitrate-reducing Fe(II)-oxidizing bacteria are widespread in the environment, contribute to nitrate removal, and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing Fe(II)-oxidizing bacteria is rarely investigated and not fully understood. The most prominent model system for this type of study is the enrichment culture KS. To gain insights into the metabolism of nitrate reduction coupled to Fe(II) oxidation in the absence of organic carbon and oxygen, we performed metagenomic, metatranscriptomic, and metaproteomic analyses of culture KS and identified Gallionellaceae sp. and Rhodanobacter sp. as interdependent key Fe(II) oxidizers in culture KS. Our work demonstrates that autotrophic nitrate reduction coupled to Fe(II) oxidation is not performed by an individual strain but is a cooperation of at least two members of the bacterial community in culture KS. These findings serve as a foundation for our understanding of nitrate-reducing Fe(II)-oxidizing bacteria in the environment.
Collapse
Affiliation(s)
- Yu-Ming Huang
- Microbial Ecology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
- Geomicrobiology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Daniel Straub
- Microbial Ecology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Nia Blackwell
- Microbial Ecology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
- Cluster of Excellence, EXC 2124, “Controlling Microbes to Fight Infections,” University of Tübingen, Tübingen, Germany
| | - Sara Kleindienst
- Microbial Ecology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
42
|
Zhou N, Luther GW, Chan CS. Ligand Effects on Biotic and Abiotic Fe(II) Oxidation by the Microaerophile Sideroxydans lithotrophicus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9362-9371. [PMID: 34110796 DOI: 10.1021/acs.est.1c00497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic ligands are widely distributed and can affect microbially driven Fe biogeochemical cycles, but effects on microbial iron oxidation have not been well quantified. Our work used a model microaerophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1 to quantify biotic Fe(II) oxidation rates in the presence of organic ligands at 0.02 atm O2 and pH 6.0. We used two common Fe chelators with different binding strengths: citrate (log KFe(II)-citrate = 3.20) and nitrilotriacetic acid (NTA) (log KFe(II)-NTA = 8.09) and two standard humic substances, Pahokee peat humic acid (PPHA) and Suwannee River fulvic acid (SRFA). Our results provide rate constants for biotic and abiotic Fe(II) oxidation over different ligand concentrations and furthermore demonstrate that various models and natural iron-binding ligands each have distinct effects on abiotic versus biotic Fe(II) oxidation rates. We show that NTA accelerates abiotic oxidation and citrate has negligible effects, making it a better laboratory chelator. The humic substances only affect biotic Fe(II) oxidation, via a combination of chelation and electron transfer. PPHA accelerates biotic Fe(II) oxidation, while SRFA decelerates or accelerates the rate depending on concentration. The specific nature of organic-Fe microbe interactions may play key roles in environmental Fe(II) oxidation, which have cascading influences on cycling of nutrients and contaminants that associate with Fe oxide minerals.
Collapse
Affiliation(s)
- Nanqing Zhou
- School of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, United States
| | - George W Luther
- School of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, United States
| | - Clara S Chan
- School of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, United States
- Department of Earth Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
43
|
Tran PQ, Bachand SC, McIntyre PB, Kraemer BM, Vadeboncoeur Y, Kimirei IA, Tamatamah R, McMahon KD, Anantharaman K. Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika. THE ISME JOURNAL 2021; 15:1971-1986. [PMID: 33564113 PMCID: PMC8245535 DOI: 10.1038/s41396-021-00898-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/22/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023]
Abstract
Lake Tanganyika (LT) is the largest tropical freshwater lake, and the largest body of anoxic freshwater on Earth's surface. LT's mixed oxygenated surface waters float atop a permanently anoxic layer and host rich animal biodiversity. However, little is known about microorganisms inhabiting LT's 1470 meter deep water column and their contributions to nutrient cycling, which affect ecosystem-level function and productivity. Here, we applied genome-resolved metagenomics and environmental analyses to link specific taxa to key biogeochemical processes across a vertical depth gradient in LT. We reconstructed 523 unique metagenome-assembled genomes (MAGs) from 34 bacterial and archaeal phyla, including many rarely observed in freshwater lakes. We identified sharp contrasts in community composition and metabolic potential with an abundance of typical freshwater taxa in oxygenated mixed upper layers, and Archaea and uncultured Candidate Phyla in deep anoxic waters. Genomic capacity for nitrogen and sulfur cycling was abundant in MAGs recovered from anoxic waters, highlighting microbial contributions to the productive surface layers via recycling of upwelled nutrients, and greenhouse gases such as nitrous oxide. Overall, our study provides a blueprint for incorporation of aquatic microbial genomics in the representation of tropical freshwater lakes, especially in the context of ongoing climate change, which is predicted to bring increased stratification and anoxia to freshwater lakes.
Collapse
Affiliation(s)
- Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha C Bachand
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter B McIntyre
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
| | - Benjamin M Kraemer
- Department of Ecosystem Research, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | | | - Ismael A Kimirei
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | | | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
44
|
Koeksoy E, Bezuidt OM, Bayer T, Chan CS, Emerson D. Zetaproteobacteria Pan-Genome Reveals Candidate Gene Cluster for Twisted Stalk Biosynthesis and Export. Front Microbiol 2021; 12:679409. [PMID: 34220764 PMCID: PMC8250860 DOI: 10.3389/fmicb.2021.679409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Twisted stalks are morphologically unique bacterial extracellular organo-metallic structures containing Fe(III) oxyhydroxides that are produced by microaerophilic Fe(II)-oxidizers belonging to the Betaproteobacteria and Zetaproteobacteria. Understanding the underlying genetic and physiological mechanisms of stalk formation is of great interest based on their potential as novel biogenic nanomaterials and their relevance as putative biomarkers for microbial Fe(II) oxidation on ancient Earth. Despite the recognition of these special biominerals for over 150 years, the genetic foundation for the stalk phenotype has remained unresolved. Here we present a candidate gene cluster for the biosynthesis and secretion of the stalk organic matrix that we identified with a trait-based analyses of a pan-genome comprising 16 Zetaproteobacteria isolate genomes. The “stalk formation in Zetaproteobacteria” (sfz) cluster comprises six genes (sfz1-sfz6), of which sfz1 and sfz2 were predicted with functions in exopolysaccharide synthesis, regulation, and export, sfz4 and sfz6 with functions in cell wall synthesis manipulation and carbohydrate hydrolysis, and sfz3 and sfz5 with unknown functions. The stalk-forming Betaproteobacteria Ferriphaselus R-1 and OYT-1, as well as dread-forming Zetaproteobacteria Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8 contain distant sfz gene homologs, whereas stalk-less Zetaproteobacteria and Betaproteobacteria lack the entire gene cluster. Our pan-genome analysis further revealed a significant enrichment of clusters of orthologous groups (COGs) across all Zetaproteobacteria isolate genomes that are associated with the regulation of a switch between sessile and motile growth controlled by the intracellular signaling molecule c-di-GMP. Potential interactions between stalk-former unique transcription factor genes, sfz genes, and c-di-GMP point toward a c-di-GMP regulated surface attachment function of stalks during sessile growth.
Collapse
Affiliation(s)
- Elif Koeksoy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States.,Leibniz Institute DSMZ (German Collection of Microorganisms and Cell Cultures), Braunschweig, Germany
| | - Oliver M Bezuidt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Timm Bayer
- Geomicrobiology Group, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Clara S Chan
- Department of Earth Sciences, University of Delaware, Newark, DE, United States.,School of Marine Sciences and Policy, University of Delaware, Newark, DE, United States
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
45
|
Little CTS, Johannessen KC, Bengtson S, Chan CS, Ivarsson M, Slack JF, Broman C, Thorseth IH, Grenne T, Rouxel OJ, Bekker A. A late Paleoproterozoic (1.74 Ga) deep-sea, low-temperature, iron-oxidizing microbial hydrothermal vent community from Arizona, USA. GEOBIOLOGY 2021; 19:228-249. [PMID: 33594795 DOI: 10.1111/gbi.12434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Modern marine hydrothermal vents occur in a wide variety of tectonic settings and are characterized by seafloor emission of fluids rich in dissolved chemicals and rapid mineral precipitation. Some hydrothermal systems vent only low-temperature Fe-rich fluids, which precipitate deposits dominated by iron oxyhydroxides, in places together with Mn-oxyhydroxides and amorphous silica. While a proportion of this mineralization is abiogenic, most is the result of the metabolic activities of benthic, Fe-oxidizing bacteria (FeOB), principally belonging to the Zetaproteobacteria. These micro-organisms secrete micrometer-scale stalks, sheaths, and tubes with a variety of morphologies, composed largely of ferrihydrite that act as sacrificial structures, preventing encrustation of the cells that produce them. Cultivated marine FeOB generally require neutral pH and microaerobic conditions to grow. Here, we describe the morphology and mineralogy of filamentous microstructures from a late Paleoproterozoic (1.74 Ga) jasper (Fe-oxide-silica) deposit from the Jerome area of the Verde mining district in central Arizona, USA, that resemble the branching tubes formed by some modern marine FeOB. On the basis of this comparison, we interpret the Jerome area filaments as having formed by FeOB on the deep seafloor, at the interface of weakly oxygenated seawater and low-temperature Fe-rich hydrothermal fluids. We compare the Jerome area filaments with other purported examples of Precambrian FeOB and discuss the implications of their presence for existing redox models of Paleoproterozoic oceans during the "Boring Billion."
Collapse
Affiliation(s)
| | | | - Stefan Bengtson
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Clara S Chan
- Department of Earth Sciences, University of Delaware, Newark, USA
| | - Magnus Ivarsson
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - John F Slack
- U.S. Geological Survey (Emeritus), National Center, Reston, USA
| | - Curt Broman
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | | | - Tor Grenne
- Geological Survey of Norway, Trondheim, Norway
| | | | - Andrey Bekker
- Department of Earth and Planetary Sciences, University of California, Riverside, USA
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
46
|
Cambon-Bonavita MA, Aubé J, Cueff-Gauchard V, Reveillaud J. Niche partitioning in the Rimicaris exoculata holobiont: the case of the first symbiotic Zetaproteobacteria. MICROBIOME 2021; 9:87. [PMID: 33845886 PMCID: PMC8042907 DOI: 10.1186/s40168-021-01045-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Free-living and symbiotic chemosynthetic microbial communities support primary production and higher trophic levels in deep-sea hydrothermal vents. The shrimp Rimicaris exoculata, which dominates animal communities along the Mid-Atlantic Ridge, houses a complex bacterial community in its enlarged cephalothorax. The dominant bacteria present are from the taxonomic groups Campylobacteria, Desulfobulbia (formerly Deltaproteobacteria), Alphaproteobacteria, Gammaproteobacteria, and some recently discovered iron oxyhydroxide-coated Zetaproteobacteria. This epibiotic consortium uses iron, sulfide, methane, and hydrogen as energy sources. Here, we generated shotgun metagenomes from Rimicaris exoculata cephalothoracic epibiotic communities to reconstruct and investigate symbiotic genomes. We collected specimens from three geochemically contrasted vent fields, TAG, Rainbow, and Snake Pit, to unravel the specificity, variability, and adaptation of Rimicaris-microbe associations. RESULTS Our data enabled us to reconstruct 49 metagenome-assembled genomes (MAGs) from the TAG and Rainbow vent fields, including 16 with more than 90% completion and less than 5% contamination based on single copy core genes. These MAGs belonged to the dominant Campylobacteria, Desulfobulbia, Thiotrichaceae, and some novel candidate phyla radiation (CPR) lineages. In addition, most importantly, two MAGs in our collection were affiliated to Zetaproteobacteria and had no close relatives (average nucleotide identity ANI < 77% with the closest relative Ghiorsea bivora isolated from TAG, and 88% with each other), suggesting potential novel species. Genes for Calvin-Benson Bassham (CBB) carbon fixation, iron, and sulfur oxidation, as well as nitrate reduction, occurred in both MAGs. However, genes for hydrogen oxidation and multicopper oxidases occurred in one MAG only, suggesting shared and specific potential functions for these two novel Zetaproteobacteria symbiotic lineages. Overall, we observed highly similar symbionts co-existing in a single shrimp at both the basaltic TAG and ultramafic Rainbow vent sites. Nevertheless, further examination of the seeming functional redundancy among these epibionts revealed important differences. CONCLUSION These data highlight microniche partitioning in the Rimicaris holobiont and support recent studies showing that functional diversity enables multiple symbiont strains to coexist in animals colonizing hydrothermal vents. Video Abstract.
Collapse
Affiliation(s)
- Marie-Anne Cambon-Bonavita
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Johanne Aubé
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Valérie Cueff-Gauchard
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Julie Reveillaud
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
- MIVEGEC, Univ. Montpellier, INRAe, CNRS, IRD, Montpellier, France
| |
Collapse
|
47
|
Kappler A, Bryce C, Mansor M, Lueder U, Byrne JM, Swanner ED. An evolving view on biogeochemical cycling of iron. Nat Rev Microbiol 2021; 19:360-374. [PMID: 33526911 DOI: 10.1038/s41579-020-00502-7] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 01/23/2023]
Abstract
Biogeochemical cycling of iron is crucial to many environmental processes, such as ocean productivity, carbon storage, greenhouse gas emissions and the fate of nutrients, toxic metals and metalloids. Knowledge of the underlying processes involved in iron cycling has accelerated in recent years along with appreciation of the complex network of biotic and abiotic reactions dictating the speciation, mobility and reactivity of iron in the environment. Recent studies have provided insights into novel processes in the biogeochemical iron cycle such as microbial ammonium oxidation and methane oxidation coupled to Fe(III) reduction. They have also revealed that processes in the biogeochemical iron cycle spatially overlap and may compete with each other, and that oxidation and reduction of iron occur cyclically or simultaneously in many environments. This Review discusses these advances with particular focus on their environmental consequences, including the formation of greenhouse gases and the fate of nutrients and contaminants.
Collapse
Affiliation(s)
- Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany.
| | - Casey Bryce
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Muammar Mansor
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Ulf Lueder
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - James M Byrne
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Elizabeth D Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
48
|
Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents. ISME JOURNAL 2020; 15:1271-1286. [PMID: 33328652 PMCID: PMC8114936 DOI: 10.1038/s41396-020-00849-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022]
Abstract
In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism, Candidatus Ferristratum sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum. Candidatus Ferristratum sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes narGH and the iron oxidation gene cyc2 in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer. Candidatus Ferristratum sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.
Collapse
|
49
|
Gupta D, Guzman MS, Bose A. Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications. ACTA ACUST UNITED AC 2020; 47:863-876. [DOI: 10.1007/s10295-020-02309-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023]
Abstract
Abstract
Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional and supports essential microbial oxidation–reduction processes, such as respiration and photosynthesis. The microbial capacity to use electrons from insoluble electron donors, such as redox-active minerals, poised electrodes, or even other microbial cells is called extracellular electron uptake (EEU). Autotrophs with this capability can thrive in nutrient and soluble electron donor-deficient environments. As primary producers, autotrophic microbes capable of EEU greatly impact microbial ecology and play important roles in matter and energy flow in the biosphere. In this review, we discuss EEU-driven autotrophic metabolisms, their mechanism and physiology, and highlight their ecological, evolutionary, and biotechnological implications.
Collapse
Affiliation(s)
- Dinesh Gupta
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in St. Louis One Brookings Drive 63130 St. Louis MO USA
| | - Michael S Guzman
- grid.250008.f 0000 0001 2160 9702 Biosciences and Biotechnology Division Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA USA
| | - Arpita Bose
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in St. Louis One Brookings Drive 63130 St. Louis MO USA
| |
Collapse
|
50
|
Bellec L, Cambon-Bonavita MA, Durand L, Aube J, Gayet N, Sandulli R, Brandily C, Zeppilli D. Microbial Communities of the Shallow-Water Hydrothermal Vent Near Naples, Italy, and Chemosynthetic Symbionts Associated With a Free-Living Marine Nematode. Front Microbiol 2020; 11:2023. [PMID: 32973733 PMCID: PMC7469538 DOI: 10.3389/fmicb.2020.02023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Shallow-water hydrothermal vents are widespread, especially in the Mediterranean Sea, owing to the active volcanism of the area. Apart free microbial communities’ investigations, few biological studies have been leaded yet. Investigations of microbial communities associated with Nematoda, an ecologically important group in sediments, can help to improve our overall understanding of these ecosystems. We used a multidisciplinary-approach, based on microscopic observations (scanning electron microscopy: SEM and Fluorescence In Situ Hybridization: FISH) coupled with a molecular diversity analysis using metabarcoding, based on the 16S rRNA gene (V3-V4 region), to characterize the bacterial community of a free-living marine nematode and its environment, the shallow hydrothermal vent near Naples (Italy). Observations of living bacteria in the intestine (FISH), molecular and phylogenetic analyses showed that this species of nematode harbors its own bacterial community, distinct from the surrounding sediment and water. Metabarcoding results revealed the specific microbiomes of the sediment from three sites of this hydrothermal area to be composed mainly of sulfur oxidizing and reducing related bacteria.
Collapse
Affiliation(s)
- Laure Bellec
- Ifremer, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, Plouzané, France.,Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, Plouzané, France.,EPOC, UMR 5805, University of Bordeaux, Arcachon, France
| | | | - Lucile Durand
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, Plouzané, France
| | - Johanne Aube
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, Plouzané, France
| | - Nicolas Gayet
- Ifremer, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, Plouzané, France
| | - Roberto Sandulli
- Laboratory of Marine Ecology, Department of Science and Technology, University of Naples "Parthenope," Naples, Italy
| | - Christophe Brandily
- Ifremer, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, Plouzané, France
| | - Daniela Zeppilli
- Ifremer, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, Plouzané, France
| |
Collapse
|