1
|
Charlesworth B. The effects of inversion polymorphisms on patterns of neutral genetic diversity. Genetics 2023; 224:iyad116. [PMID: 37348059 PMCID: PMC10411593 DOI: 10.1093/genetics/iyad116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/23/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023] Open
Abstract
The strong reduction in the frequency of recombination in heterozygotes for an inversion and a standard gene arrangement causes the arrangements to become partially isolated genetically, resulting in sequence divergence between them and changes in the levels of neutral variability at nucleotide sites within each arrangement class. Previous theoretical studies on the effects of inversions on neutral variability have assumed either that the population is panmictic or that it is divided into 2 populations subject to divergent selection. Here, the theory is extended to a model of an arbitrary number of demes connected by migration, using a finite island model with the inversion present at the same frequency in all demes. Recursion relations for mean pairwise coalescent times are used to obtain simple approximate expressions for diversity and divergence statistics for an inversion polymorphism at equilibrium under recombination and drift, and for the approach to equilibrium following the sweep of an inversion to a stable intermediate frequency. The effects of an inversion polymorphism on patterns of linkage disequilibrium are also examined. The reduction in effective recombination rate caused by population subdivision can have significant effects on these statistics. The theoretical results are discussed in relation to population genomic data on inversion polymorphisms, with an emphasis on Drosophila melanogaster. Methods are proposed for testing whether or not inversions are close to recombination-drift equilibrium, and for estimating the rate of recombinational exchange in heterozygotes for inversions; difficulties involved in estimating the ages of inversions are also discussed.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
2
|
Chekunova AI, Sorokina SY, Sivoplyas EA, Bakhtoyarov GN, Proshakov PA, Fokin AV, Melnikov AI, Kulikov AM. Episodes of Rapid Recovery of the Functional Activity of the ras85D Gene in the Evolutionary History of Phylogenetically Distant Drosophila Species. Front Genet 2022; 12:807234. [PMID: 35096018 PMCID: PMC8790561 DOI: 10.3389/fgene.2021.807234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
As assemblies of genomes of new species with varying degrees of relationship appear, it becomes obvious that structural rearrangements of the genome, such as inversions, translocations, and transposon movements, are an essential and often the main source of evolutionary variation. In this regard, the following questions arise. How conserved are the regulatory regions of genes? Do they have a common evolutionary origin? And how and at what rate is the functional activity of genes restored during structural changes in the promoter region? In this article, we analyze the evolutionary history of the formation of the regulatory region of the ras85D gene in different lineages of the genus Drosophila, as well as the participation of mobile elements in structural rearrangements and in the replacement of specific areas of the promoter region with those of independent evolutionary origin. In the process, we substantiate hypotheses about the selection of promoter elements from a number of frequently repeated motifs with different degrees of degeneracy in the ancestral sequence, as well as about the restoration of the minimum required set of regulatory sequences using a conversion mechanism or similar.
Collapse
Affiliation(s)
- A I Chekunova
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - S Yu Sorokina
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - E A Sivoplyas
- Department of Biochemistry, Molecular Biology and Genetics, Institute of Biology and Chemistry of Moscow Pedagogical State University (MPGU), Moscow, Russia
| | - G N Bakhtoyarov
- Laboratory of Genetics of DNA Containing Viruses, Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», Moscow, Russia
| | - P A Proshakov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A V Fokin
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A I Melnikov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A M Kulikov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Nakamura H, Teshima K, Tachida H. Effects of cyclic changes in population size on neutral genetic diversity. Ecol Evol 2018; 8:9362-9371. [PMID: 30377507 PMCID: PMC6194295 DOI: 10.1002/ece3.4436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 01/29/2023] Open
Abstract
Recurrent changes in population size are often observed in nature, influencing the efficiency of selection and consequently affecting organismal evolution. Thus, it is important to know whether such changes occurred in the past history of a focal population of evolutionary interests. Here, we focused on cyclic changes in population size and investigated the distributional properties of Tajima's D and its power to distinguish a cyclic change model compared with the standard neutral model, changing the frequency and magnitude of the cyclic change. With very low or very high frequencies of the cycle, the distribution of Tajima's D was similar to that in a constant size population, as demonstrated by previous theoretical works. Otherwise, its mean was negative or positive, and its variance was smaller or larger depending on the time of sampling. The detection rate of the cyclic change against the constancy in size by Tajima's D depended on the sample size, the number of loci, and the time of sampling in addition to the frequency and amplitude of the cycle. Using sequence data of several tens of loci, the detection rate was fairly high if the frequency was intermediate and the sampling was made when population size was large; otherwise, the detection rate was not high. We also found that cyclic change could be discriminated from simple expansion or shrinkage of a population by Tajima's D only if the frequency was in a limited range and the sampling was made when the population was large.
Collapse
Affiliation(s)
- Haruna Nakamura
- Graduate School of Systems Life SciencesKyushu UniversityFukuokaJapan
| | - Kosuke Teshima
- Department of BiologyFaculty of ScienceKyushu UniversityFukuokaJapan
| | - Hidenori Tachida
- Department of BiologyFaculty of ScienceKyushu UniversityFukuokaJapan
| |
Collapse
|
4
|
Puig Giribets M, García Guerreiro MP, Santos M, Ayala FJ, Tarrío R, Rodríguez-Trelles F. Chromosomal inversions promote genomic islands of concerted evolution of Hsp70 genes in the Drosophila subobscura species subgroup. Mol Ecol 2018; 28:1316-1332. [PMID: 29412486 DOI: 10.1111/mec.14511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 01/31/2023]
Abstract
Heat-shock (HS) assays to understand the connection between standing inversion variation and evolutionary response to climate change in Drosophila subobscura found that "warm-climate" inversion O3+4 exhibits non-HS levels of Hsp70 protein like those of "cold-climate" OST after HS induction. This was unexpected, as overexpression of Hsp70 can incur multiple fitness costs. To understand the genetic basis of this finding, we have determined the genomic sequence organization of the Hsp70 family in four different inversions, including OST , O3+4 , O3+4+8 and O3+4+16 , using as outgroups the remainder of the subobscura species subgroup, namely Drosophila madeirensis and Drosophila guanche. We found (i) in all the assayed lines, the Hsp70 family resides in cytological locus 94A and consists of only two genes, each with four HS elements (HSEs) and three GAGA sites on its promoter. Yet, in OST , the family is comparatively more compact; (ii) the two Hsp70 copies evolve in concert through gene conversion, except in D. guanche; (iii) within D. subobscura, the rate of concerted evolution is strongly structured by inversion, being higher in OST than in O3+4 ; and (iv) in D. guanche, the two copies accumulated multiple differences, including a newly evolved "gap-type" HSE2. The absence of concerted evolution in this species may be related to a long-gone-unnoticed observation that it lacks Hsp70 HS response, perhaps because it has evolved within a narrow thermal range in an oceanic island. Our results point to a previously unrealized link between inversions and concerted evolution, with potentially major implications for understanding genome evolution.
Collapse
Affiliation(s)
- Marta Puig Giribets
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - María Pilar García Guerreiro
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mauro Santos
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francisco J Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Rosa Tarrío
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francisco Rodríguez-Trelles
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
5
|
Santos J, Pascual M, Fragata I, Simões P, Santos MA, Lima M, Marques A, Lopes-Cunha M, Kellen B, Balanyà J, Rose MR, Matos M. Tracking changes in chromosomal arrangements and their genetic content during adaptation. J Evol Biol 2016; 29:1151-67. [PMID: 26969850 DOI: 10.1111/jeb.12856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
Abstract
There is considerable evidence for an adaptive role of inversions, but how their genetic content evolves and affects the subsequent evolution of chromosomal polymorphism remains controversial. Here, we track how life-history traits, chromosomal arrangements and 22 microsatellites, within and outside inversions, change in three replicated populations of Drosophila subobscura for 30 generations of laboratory evolution since founding from the wild. The dynamics of fitness-related traits indicated adaptation to the new environment concomitant with directional evolution of chromosomal polymorphism. Evidence of selective changes in frequency of inversions was obtained for seven of 23 chromosomal arrangements, corroborating a role for inversions in adaptation. The evolution of linkage disequilibrium between some microsatellites and chromosomes suggested that adaptive changes in arrangements involved changes in their genetic content. Several microsatellite alleles increased in frequency more than expected by drift in targeted inversions in all replicate populations. In particular, there were signs of selection in the O3+4 arrangement favouring a combination of alleles in two loci linked to the inversion and changing along with it, although the lack of linkage disequilibrium between these loci precludes epistatic selection. Seven other alleles increased in frequency within inversions more than expected by drift, but were not in linkage disequilibrium with them. Possibly these alleles were hitchhiking along with alleles under selection that were not specific to those inversions. Overall, the selection detected on the genetic content of inversions, despite limited coverage of the genome, suggests that genetic changes within inversions play an important role in adaptation.
Collapse
Affiliation(s)
- J Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - M Pascual
- Department of Genetics and IrBio, Facultat de Biologia, Universitat de Barcelona, Barcelona, España
| | - I Fragata
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - P Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - M A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - M Lima
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - A Marques
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - M Lopes-Cunha
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - B Kellen
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - J Balanyà
- Department of Genetics and IrBio, Facultat de Biologia, Universitat de Barcelona, Barcelona, España
| | - M R Rose
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - M Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| |
Collapse
|
6
|
Pegueroles C, Ferrés-Coy A, Martí-Solano M, Aquadro CF, Pascual M, Mestres F. Inversions and adaptation to the plant toxin ouabain shape DNA sequence variation within and between chromosomal inversions of Drosophila subobscura. Sci Rep 2016; 6:23754. [PMID: 27029337 PMCID: PMC4815013 DOI: 10.1038/srep23754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
Adaptation is defined as an evolutionary process allowing organisms to succeed in certain habitats or conditions. Chromosomal inversions have the potential to be key in the adaptation processes, since they can contribute to the maintenance of favoured combinations of adaptive alleles through reduced recombination between individuals carrying different inversions. We have analysed six genes (Pif1A, Abi, Sqd, Yrt, Atpα and Fmr1), located inside and outside three inversions of the O chromosome in European populations of Drosophila subobscura. Genetic differentiation was significant between inversions despite extensive recombination inside inverted regions, irrespective of gene distance to the inversion breakpoints. Surprisingly, the highest level of genetic differentiation between arrangements was found for the Atpα gene, which is located outside the O1 and O7 inversions. Two derived unrelated arrangements (O3+4+1 and O3+4+7) are nearly fixed for several amino acid substitutions at the Atpα gene that have been described to confer resistance in other species to the cardenolide ouabain, a plant toxin capable of blocking ATPases. Similarities in the Atpα variants, conferring ouabain resistance in both arrangements, may be the result of convergent substitution and be favoured in response to selective pressures presumably related to the presence of plants containing ouabain in the geographic locations where both inversions are present.
Collapse
Affiliation(s)
- Cinta Pegueroles
- Departament de Genètica and IRBio, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Albert Ferrés-Coy
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, Barcelona, Spain
| | - Maria Martí-Solano
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Marta Pascual
- Departament de Genètica and IRBio, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Francesc Mestres
- Departament de Genètica and IRBio, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
7
|
Pratdesaba R, Segarra C, Aguadé M. Inferring the demographic history of Drosophila subobscura from nucleotide variation at regions not affected by chromosomal inversions. Mol Ecol 2015; 24:1729-41. [PMID: 25776124 DOI: 10.1111/mec.13155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 11/29/2022]
Abstract
Drosophila subobscura presents a rich and complex chromosomal inversion polymorphism. It can thus be considered a model system (i) to study the mechanisms originating inversions and how inversions affect the levels and patterns of variation in the inverted regions and (ii) to study adaptation at both the single-gene and chromosomal inversion levels. It is therefore important to infer its demographic history as previous information indicated that its nucleotide variation is not at mutation-drift equilibrium. For that purpose, we sequenced 16 noncoding regions distributed across those parts of the J chromosome not affected by inversions in the studied population and possibly either by other selective events. The pattern of variation detected in these 16 regions is similar to that previously reported within different chromosomal arrangements, suggesting that the latter results would, thus, mainly reflect recent demographic events rather than the partial selective sweep imposed by the origin and frequency increase of inversions. Among the simple demographic models considered in our Approximate Bayesian Computation analysis of variation at the 16 regions, the model best supported by the data implies a population size expansion soon after the penultimate glacial period. This model constitutes a better null model, and it is therefore an important resource for subsequent studies aiming among others to uncover selective events across the species genome. Our results also highlight the importance of introducing the possibility of multiple hits in the coalescent simulations with an outgroup.
Collapse
Affiliation(s)
- Roser Pratdesaba
- Departament de Genètica, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | | | | |
Collapse
|
8
|
Adrion JR, Kousathanas A, Pascual M, Burrack HJ, Haddad NM, Bergland AO, Machado H, Sackton TB, Schlenke TA, Watada M, Wegmann D, Singh ND. Drosophila suzukii: the genetic footprint of a recent, worldwide invasion. Mol Biol Evol 2014; 31:3148-63. [PMID: 25158796 PMCID: PMC4245814 DOI: 10.1093/molbev/msu246] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Native to Asia, the soft-skinned fruit pest Drosophila suzukii has recently invaded the United States and Europe. The eastern United States represents the most recent expansion of their range, and presents an opportunity to test alternative models of colonization history. Here, we investigate the genetic population structure of this invasive fruit fly, with a focus on the eastern United States. We sequenced six X-linked gene fragments from 246 individuals collected from a total of 12 populations. We examine patterns of genetic diversity within and between populations and explore alternative colonization scenarios using approximate Bayesian computation. Our results indicate high levels of nucleotide diversity in this species and suggest that the recent invasions of Europe and the continental United States are independent demographic events. More broadly speaking, our results highlight the importance of integrating population structure into demographic models, particularly when attempting to reconstruct invasion histories. Finally, our simulation results illustrate the general challenge in reconstructing invasion histories using genetic data and suggest that genome-level data are often required to distinguish among alternative demographic scenarios.
Collapse
Affiliation(s)
| | - Athanasios Kousathanas
- Department of Biology, University of Fribourg, Fribourg, Switzerland,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marta Pascual
- Department of Genetics and IRBio, University of Barcelona, Barcelona, Spain
| | | | - Nick M. Haddad
- Department of Biological Sciences, North Carolina State University
| | | | | | | | | | | | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nadia D. Singh
- Department of Biological Sciences, North Carolina State University,*Corresponding author: E-mail:
| |
Collapse
|
9
|
Pegueroles C, Aquadro CF, Mestres F, Pascual M. Gene flow and gene flux shape evolutionary patterns of variation in Drosophila subobscura. Heredity (Edinb) 2013; 110:520-9. [PMID: 23321709 PMCID: PMC3656635 DOI: 10.1038/hdy.2012.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/11/2012] [Accepted: 12/17/2012] [Indexed: 12/12/2022] Open
Abstract
Gene flow (defined as allele exchange between populations) and gene flux (defined as allele exchange during meiosis in heterokaryotypic females) are important factors decreasing genetic differentiation between populations and inversions. Many chromosomal inversions are under strong selection and their role in recombination reduction enhances the maintenance of their genetic distinctness. Here we analyze levels and patterns of nucleotide diversity, selection and demographic history, using 37 individuals of Drosophila subobscura from Mount Parnes (Greece) and Barcelona (Spain). Our sampling focused on two frequent O-chromosome arrangements that differ by two overlapping inversions (OST and O(3+4)), which are differentially adapted to the environment as observed by their opposing latitudinal clines in inversion frequencies. The six analyzed genes (Pif1A, Abi, Sqd, Yrt, Atpα and Fmr1) were selected for their location across the O-chromosome and their implication in thermal adaptation. Despite the extensive gene flux detected outside the inverted region, significant genetic differentiation between both arrangements was found inside it. However, high levels of gene flow were detected for all six genes when comparing the same arrangement among populations. These results suggest that the adaptive value of inversions is maintained, regardless of the lack of genetic differentiation within arrangements from different populations, and thus favors the Local Adaptation hypothesis over the Coadapted Genome hypothesis as the basis of the selection acting on inversions in these populations.
Collapse
Affiliation(s)
- C Pegueroles
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Spain.
| | | | | | | |
Collapse
|
10
|
Papaceit M, Segarra C, Aguadé M. Structure and population genetics of the breakpoints of a polymorphic inversion in Drosophila subobscura. Evolution 2012; 67:66-79. [PMID: 23289562 DOI: 10.1111/j.1558-5646.2012.01731.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Drosophila subobscura is a paleartic species of the obscura group with a rich chromosomal polymorphism. To further our understanding on the origin of inversions and on how they regain variation, we have identified and sequenced the two breakpoints of a polymorphic inversion of D. subobscura--inversion 3 of the O chromosome--in a population sample. The breakpoints could be identified as two rather short fragments (∼300 bp and 60 bp long) with no similarity to any known transposable element family or repetitive sequence. The presence of the ∼300-bp fragment at the two breakpoints of inverted chromosomes implies its duplication, an indication of the inversion origin via staggered double-strand breaks. Present results and previous findings support that the mode of origin of inversions is neither related to the inversion age nor species-group specific. The breakpoint regions do not consistently exhibit the lower level of variation within and stronger genetic differentiation between arrangements than more internal regions that would be expected, even in moderately small inversions, if gene conversion were greatly restricted at inversion breakpoints. Comparison of the proximal breakpoint region in species of the obscura group shows that this breakpoint lies in a small high-turnover fragment within a long collinear region (∼300 kb).
Collapse
Affiliation(s)
- Montserrat Papaceit
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
11
|
Deng L, Tang X, Hao X, Chen W, Lin J, Yu Y, Zhang D, Zeng C. Genetic flux between h1 and h2 haplotypes of the 17q21.31 inversion in European population. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 9:113-8. [PMID: 21802048 PMCID: PMC5054451 DOI: 10.1016/s1672-0229(11)60014-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/16/2011] [Indexed: 12/03/2022]
Abstract
The chromosome 17q21.31 inversion is a 900-kb common structural polymorphism found primarily in European population. Although the genetic flux within inversion region was assumed to be considerable suppressed, it is still unclear about the details of genetic exchange between the H1 (non-inverted sequence) and H2 (inverted sequence) haplotypes of this inversion. Here we describe a refined map of genetic exchanges between pairs of gene arrangements within the 17q21.31 region. Using HapMap phase II data of 1,546 single nucleotide polymorphisms, we successfully deduced 96 H1 and 24 H2 haplotypes in European samples by neighbor-joining tree reconstruction. Furthermore, we identified 15 and 26 candidate tracts with reciprocal and non-reciprocal genetic exchanges, respectively. In all 15 regions harboring reciprocal exchange, haplotypes reconstructed by clone sequencing did not support these exchange events, suggesting that such signals of exchange between two sister chromosomes in certain heterozygous individual were caused by phasing error regions. On the other hand, the finished clone sequencing across 4 of 26 tracts with non-reciprocal genetic flux confirmed that this kind of genetic exchange was caused by gene conversion. In summary, as crossover between pairs of gene arrangements had been considerably suppressed, gene conversion might be the most important mechanism for genetic exchange at 17q21.31.
Collapse
|
12
|
Araúz PA, Peris-Bondia F, Latorre A, Serra L, Mestres F. Molecular evidence to suggest the origin of a colonization: Drosophila subobscura in America. Genetica 2012; 139:1477-86. [PMID: 22481521 DOI: 10.1007/s10709-012-9647-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
The recent colonization of America by Drosophila subobscura represents a great opportunity for evolutionary biology studies. Knowledge of the populations from which the colonization started would provide an understanding of how genetic composition changed during adaptation to the new environment. Thus, a 793 nucleotide fragment of the Odh (Octanol dehydrogenase) gene was sequenced in 66 chromosomal lines from Barcelona (western Mediterranean) and in 66 from Mt. Parnes (Greece, eastern Mediterranean). No sequence of Odh fragment in Barcelona or Mt. Parnes was identical to any of those previously detected in America. However, an Odh sequence from Barcelona differed in only one nucleotide from another found in American populations. In both cases, the chromosomal lines presented the same inversion: O(7), and the Odh gene was located within this inversion. This evidence suggests a possible western Mediterranean origin for the colonization. Finally, the molecular and inversion data indicate that the colonization was not characterized by multiple reintroductions.
Collapse
Affiliation(s)
- Pedro A Araúz
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, Barcelona, Spain
| | | | | | | | | |
Collapse
|
13
|
KHADEM M, MUNTÉ A, CAMACHO R, AGUADÉ M, SEGARRA C. Multilocus analysis of nucleotide variation in Drosophila madeirensis, an endemic species of the Laurisilva forest in Madeira. J Evol Biol 2012; 25:726-39. [DOI: 10.1111/j.1420-9101.2012.02467.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Pegueroles C, Ordóñez V, Mestres F, Pascual M. Recombination and selection in the maintenance of the adaptive value of inversions. J Evol Biol 2010; 23:2709-17. [PMID: 20964762 DOI: 10.1111/j.1420-9101.2010.02136.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A huge amount of data seem to confirm the adaptive value of inversions in Drosophila. The inhibition of recombination in heterokaryotypes mediated by inversions seems fundamental in maintaining their adaptive role. This study shows that recombination is highly suppressed in Drosophila subobscura because of chromosomal inversions, not only inside the inversions but also outside them. It seems that the region outside the inversion where recombination is inhibited is asymmetrical and independent of the inversion length. Despite the difficulty of crossovers taking place near inversion breakpoints, the only two recombination events detected inside inversions were located close to the breakpoint. Thus, selection could be largely responsible for the recombination reduction maintaining sets of adaptive alleles inside the inverted region. Heterokaryotype descendants were always in higher frequency than inbred or outbred homokaryotypes, regardless of the geographical origin of the chromosome, suggesting that chromosomes carrying the same arrangement, although with a different set of alleles for neutral markers, could be submitted to the same selection processes.
Collapse
Affiliation(s)
- C Pegueroles
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|
15
|
Sánchez-Gracia A, Rozas J. Molecular population genetics of the OBP83 genomic region in Drosophila subobscura and D. guanche: contrasting the effects of natural selection and gene arrangement expansion in the patterns of nucleotide variation. Heredity (Edinb) 2010; 106:191-201. [PMID: 20332808 DOI: 10.1038/hdy.2010.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chromosomal inversion polymorphism play a major role in the evolutionary dynamics of populations and species because of their effects on the patterns of genetic variability in the genomic regions within inversions. Though there is compelling evidence for the adaptive character of chromosomal polymorphisms, the mechanisms responsible for their maintenance in natural populations is not fully understood. For this type of analysis, Drosophila subobscura is a good model species as it has a rich and extensively studied chromosomal inversion polymorphism system. Here, we examine the patterns of DNA variation in two natural populations segregating for chromosomal arrangements that differentially affect the surveyed genomic region; in particular, we analyse both nucleotide substitutions and insertion/deletion variations in the genomic region encompassing the odorant-binding protein genes Obp83a and Obp83b (Obp83 region). We show that the two main gene arrangements are genetically differentiated, but are consistent with a monophyletic origin of inversions. Nevertheless, these arrangements interchange some genetic information, likely by gene conversion. We also find that the frequency spectrum-based tests indicate that the pattern of nucleotide variation is not at equilibrium; this feature probably reflects the rapid increase in the frequency of the new gene arrangement promoted by positive selection (that is an adaptive change). Furthermore, a comparative analysis of polymorphism and divergence patterns reveals a relaxation of the functional constraints at the Obp83b gene, which might be associated with particular ecological or demographic features of the Canary island endemic species D. guanche.
Collapse
Affiliation(s)
- A Sánchez-Gracia
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, Barcelona, Spain.
| | | |
Collapse
|
16
|
Presgraves DC, Gérard PR, Cherukuri A, Lyttle TW. Large-scale selective sweep among Segregation Distorter chromosomes in African populations of Drosophila melanogaster. PLoS Genet 2009; 5:e1000463. [PMID: 19412335 PMCID: PMC2668186 DOI: 10.1371/journal.pgen.1000463] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 03/30/2009] [Indexed: 11/18/2022] Open
Abstract
Segregation Distorter (SD) is a selfish, coadapted gene complex on chromosome 2 of Drosophila melanogaster that strongly distorts Mendelian transmission; heterozygous SD/SD(+) males sire almost exclusively SD-bearing progeny. Fifty years of genetic, molecular, and theory work have made SD one of the best-characterized meiotic drive systems, but surprisingly the details of its evolutionary origins and population dynamics remain unclear. Earlier analyses suggested that the SD system arose recently in the Mediterranean basin and then spread to a low, stable equilibrium frequency (1-5%) in most natural populations worldwide. In this report, we show, first, that SD chromosomes occur in populations in sub-Saharan Africa, the ancestral range of D. melanogaster, at a similarly low frequency (approximately 2%), providing evidence for the robustness of its equilibrium frequency but raising doubts about the Mediterranean-origins hypothesis. Second, our genetic analyses reveal two kinds of SD chromosomes in Africa: inversion-free SD chromosomes with little or no transmission advantage; and an African-endemic inversion-bearing SD chromosome, SD-Mal, with a perfect transmission advantage. Third, our population genetic analyses show that SD-Mal chromosomes swept across the African continent very recently, causing linkage disequilibrium and an absence of variability over 39% of the length of the second chromosome. Thus, despite a seemingly stable equilibrium frequency, SD chromosomes continue to evolve, to compete with one another, or evade suppressors in the genome.
Collapse
|
17
|
Duplicate gene evolution toward multiple fates at the Drosophila melanogaster HIP/HIP-Replacement locus. J Mol Evol 2009; 68:337-50. [PMID: 19333534 DOI: 10.1007/s00239-009-9213-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 02/10/2009] [Accepted: 02/16/2009] [Indexed: 10/20/2022]
Abstract
Hsc/Hsp70-interacting protein (HIP) is a rapidly evolving Hsp70 cofactor. Analyses of multiple Drosophila species indicate that the HIP gene is duplicated only in D. melanogaster. The HIP region, in fact, contains seven distinctly evolving duplicated genes. The regional duplication occurred in two steps, fixed rapidly, and illustrates multiple modes of duplicate gene evolution. HIP and its duplicate HIP-R are adaptively evolving in a manner unique to the region: they exhibit elevated divergence from other drosophilids and low polymorphism within D. melanogaster. HIP and HIP-R are virtually identical, share polymorphisms, and are subject to gene conversion. In contrast, two other duplicate genes in the region, CG33221 and GP-CG32779, are pseudogenes, and the chimeric gene Crg1 is subject to balancing selection. HIP and HIP-R are evolving rapidly and adaptively; however, positive selection is not sufficient to explain the molecular evolution of the region as a whole.
Collapse
|
18
|
Abstract
The analysis of DNA sequence polymorphisms and SNPs (single nucleotide polymorphisms) can provide insights into the evolutionary forces acting on populations and species. Available population-genetic methods, and particularly those based on the coalescent theory, have become the primary framework to analyze such DNA polymorphism data. Here, I explain some essential analytical methods for interpreting DNA polymorphism data and also describe the basic functionalities of the DnaSP software. DnaSP is a multi-propose program that allows conducting exhaustive DNA polymorphism analysis using a graphical user-friendly interface.
Collapse
Affiliation(s)
- Julio Rozas
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Mestres F, Serra L. The Va/Ba balanced lethal strain: thirty years of research in Drosophila subobscura (1977–2007). J ZOOL SYST EVOL RES 2008. [DOI: 10.1111/j.1439-0469.2008.00463.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Nóbrega C, Khadem M, Aguadé M, Segarra C. Genetic exchange versus genetic differentiation in a medium-sized inversion of Drosophila: the A2/Ast arrangements of Drosophila subobscura. Mol Biol Evol 2008; 25:1534-43. [PMID: 18436552 DOI: 10.1093/molbev/msn100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chromosomal inversion polymorphism affects nucleotide variation at loci associated with inversions. In Drosophila subobscura, a species with a rich chromosomal inversion polymorphism and the largest recombinational map so far reported in the Drosophila genus, extensive genetic structure of nucleotide variation was detected in the segment affected by the O(3) inversion, a moderately sized inversion at Muller's element E. Indeed, a strong genetic differentiation all over O(3) and no evidence of a higher genetic exchange in the center of the inversion than at breakpoints were detected. In order to ascertain, whether other polymorphic and differently sized inversions of D. subobscura also exhibited a strong genetic structure, nucleotide variation in 5 gene regions (P236, P275, P150, Sxl, and P125) located along the A(2) inversion was analyzed in A(st) and A(2) chromosomes of D. subobscura. A(2) is a medium-sized inversion at Muller's element A and forms a single inversion loop in heterokaryotypes. The lower level of variation in A(2) relative to A(st) and the significant excess of low-frequency variants at polymorphic sites indicate that nucleotide variation at A(2) is not at mutation-drift equilibrium. The closest region to an inversion breakpoint, P236, exhibits the highest level of genetic differentiation (F(ST)) and of linkage disequilibrium (LD) between arrangements and variants at nucleotide polymorphic sites. The remaining 4 regions show a higher level of genetic exchange between A(2) and A(st) chromosomes than P236, as revealed by F(ST) and LD estimates. However, significant genetic differentiation between the A(st) and A(2) arrangements was detected not only at P236 but also in the other 4 regions separated from the nearest breakpoint by 1.2-2.9 Mb. Therefore, the extent of genetic exchange between arrangements has not been high enough to homogenize nucleotide variation in the center of the A(2) inversion. A(2) can be considered a typical successful inversion of D. subobscura according to its relative length. Chromosomal inversion polymorphism of D. subobscura might thus cause the genome of this species to be highly structured and to harbor different gene pools that might contribute to maintain adaptations to particular environments.
Collapse
Affiliation(s)
- Clévio Nóbrega
- Centro de Estudos da Macaronésia, Departamento de Biologia, Universidade da Madeira, Funchal, Portugal
| | | | | | | |
Collapse
|
21
|
Rašić G, Stamenković -Radak M, Savić T, Andjelković M. Inbreeding reveals interpopulation differences in inversion polymorphism of Drosophila subobscura. J ZOOL SYST EVOL RES 2007. [DOI: 10.1111/j.1439-0469.2007.00428.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Gunderina LI, Kiknadze II, Istomina AG, Gusev VD, Miroshnichenko LA. Divergence of the polytene chromosome banding sequences as a reflection of evolutionary rearrangements of the genome linear structure. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0036-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Munté A, Rozas J, Aguadé M, Segarra C. Chromosomal inversion polymorphism leads to extensive genetic structure: a multilocus survey in Drosophila subobscura. Genetics 2005; 169:1573-81. [PMID: 15687280 PMCID: PMC1449531 DOI: 10.1534/genetics.104.032748] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adaptive character of inversion polymorphism in Drosophila subobscura is well established. The O(ST) and O(3+4) chromosomal arrangements of this species differ by two overlapping inversions that arose independently on O(3) chromosomes. Nucleotide variation in eight gene regions distributed along inversion O(3) was analyzed in 14 O(ST) and 14 O(3+4) lines. Levels of variation within arrangements were quite similar along the inversion. In addition, we detected (i) extensive genetic differentiation between arrangements in all regions, regardless of their distance to the inversion breakpoints; (ii) strong association between nucleotide variants and chromosomal arrangements; and (iii) high levels of linkage disequilibrium in intralocus and also in interlocus comparisons, extending over distances as great as approximately 4 Mb. These results are not consistent with the higher genetic exchange between chromosomal arrangements expected in the central part of an inversion from double-crossover events. Hence, double crossovers were not produced or, alternatively, recombinant chromosomes were eliminated by natural selection to maintain coadapted gene complexes. If the strong genetic differentiation detected along O(3) extends to other inversions, nucleotide variation would be highly structured not only in D. subobscura, but also in the genome of other species with a rich chromosomal polymorphism.
Collapse
Affiliation(s)
- Agustí Munté
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
24
|
Mestres F, Abad L, Sabater-Muñoz B, Latorre A, Serra L. Colonization of America by Drosophila subobscura: association between Odh gene haplotypes, lethal genes and chromosomal arrangements. Genes Genet Syst 2004; 79:233-44. [PMID: 15514443 DOI: 10.1266/ggs.79.233] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The colonization of America by Drosophila subobscura has been a unique exper iment in nature that has allowed us to explore the effects of evolution on a continental scale. To analyze this evolutionary event, nucleotide sequences of the Odh (Octanol dehydrogenase) gene were obtained for 43 lethal chromosomal lines from colonizing populations of North America and 5 from South America, in addition to 5 chromosomal lines from Europe with different viabilities and 2 from laboratory marker stocks. Since 10 different Odh haplotypes were found in America, the minimum number of colonizers would be 5 (or 3 mated females). Only one Odh haplotype was found in American O(5) inversions confirming that only one copy of this inversion was included among the sample of colonizers. The same Odh haplotypes were detected in association with the same chromosomal arrangements and with identical lethal genes in both North and South America indicating that exactly the same chromosome types reached both hemispheres. These observations indicate that the two continental colonizations are not independent. They are derived from the same colonization event. The population from which the colonization started should contain the O(5) inversion, a non-negligible frequency of the O(3+4+7) arrangement and all other arrangements found in America. So far the only populations that fulfill all these requirements are those from Greece, indicating that these populations can be considered good candidates as a starting point for an in depth analysis of the origin of the American colonization by D. subobscura.
Collapse
Affiliation(s)
- Francesc Mestres
- Departament de Genètica, Universitat de Barcelona, 08071 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
25
|
Rodríguez-Trelles F. Seasonal cycles of allozyme-by-chromosomal-inversion gametic disequilibrium in Drosophila subobscura. Evolution 2003; 57:839-48. [PMID: 12778553 DOI: 10.1111/j.0014-3820.2003.tb00295.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allozyme loci are frequently found non randomly associated to the chromosomal inversions in which they are included in Drosophila. Two opposite views compete to explain strong allozyme-by-inversion gametic disequilibria: they result from natural selection or, conversely, merely represent remnants of associations accidentally established at the origin of inversions. Empirical efforts aimed at deciding between adaptive and historical scenarios have focused on the spatial distribution of disequilibria. Yet, the evolutionary significance of these associations remains uncertain. I report here the results of a time-series analysis of the seasonal variation of alleles at six allozyme loci (Acph, Lap, Pept-1, Ao, Mpi, and Xdh) in connection with the O chromosomal polymorphisms of D. subobscura. The findings were: (1) in the segment I of the O chromosome, Lap and Pept-1 allozymes changed seasonally in a cyclical fashion within the ST gene arrangement, but they changed erratically within the 3 + 4 gene configuration; (2) the frequencies of Lap1.11 and Pept-1(0.40) within ST dropped to their lowest values in early and late summer, respectively, when the seasonal level of the ST arrangement is lowest. Furthermore, Lap1.11 and Pept-1(0.40) covary with ST only within these seasons, yet in a fashion inconsistent with these alleles having a major influence on the dynamics of the inversion; (3) seasonal cycling of alleles within inversions were not detected at Acph, Ao, Mpi, and Xdh, yet these loci are nearly monomorphic at the study population, and/or their sampled series were shorter than those for Lap and Pept-1; and (4) simply monitoring allozyme frequencies separately for each inversion proved to be superior, for evidencing the seasonal cycles of the disequilibria, to the use of the D' coefficient of association. Observed seasonal cycles of allozymes within inversions likely reflect natural selection.
Collapse
|
26
|
Feder JL, Roethele JB, Filchak K, Niedbalski J, Romero-Severson J. Evidence for inversion polymorphism related to sympatric host race formation in the apple maggot fly, Rhagoletis pomonella. Genetics 2003; 163:939-53. [PMID: 12663534 PMCID: PMC1462491 DOI: 10.1093/genetics/163.3.939] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests that the apple maggot, Rhagoletis pomonella (Diptera: Tephritidae) is undergoing sympatric speciation (i.e., divergence without geographic isolation) in the process of shifting and adapting to a new host plant. Prior to the introduction of cultivated apples (Malus pumila) in North America, R. pomonella infested the fruit of native hawthorns (Crataegus spp.). However, sometime in the mid-1800s the fly formed a sympatric race on apple. The recently derived apple-infesting race shows consistent allele frequency differences from the hawthorn host race for six allozyme loci mapping to three different chromosomes. Alleles at all six of these allozymes correlate with the timing of adult eclosion, an event dependent on the duration of the overwintering pupal diapause. This timing difference differentially adapts the univoltine fly races to an approximately 3- to 4-week difference in the peak fruiting times of apple and hawthorn trees, partially reproductively isolating the host races. Here, we report finding substantial gametic disequilibrium among allozyme and complementary DNA (cDNA) markers encompassing the three chromosomal regions differentiating apple and hawthorn flies. The regions of disequilibrium extend well beyond the previously characterized six allozyme loci, covering substantial portions of chromosomes 1, 2, and 3 (haploid n = 6 in R. pomonella). Moreover, significant recombination heterogeneity and variation in gene order were observed among single-pair crosses for each of the three genomic regions, implying the existence of inversion polymorphism. We therefore have evidence that genes affecting diapause traits involved in host race formation reside within large complexes of rearranged genes. We explore whether these genomic regions (inversions) constitute coadapted gene complexes and discuss the implications of our findings for sympatric speciation in Rhagoletis.
Collapse
Affiliation(s)
- Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369, USA.
| | | | | | | | | |
Collapse
|
27
|
Rodríguez-Trelles F. SEASONAL CYCLES OF ALLOZYME-BY-CHROMOSOMAL-INVERSION GAMETIC DISEQUILIBRIUM IN DROSOPHILA SUBOBSCURA. Evolution 2003. [DOI: 10.1554/0014-3820(2003)057[0839:scoagd]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Abstract
A number of statistical tests for detecting population growth are described. We compared the statistical power of these tests with that of others available in the literature. The tests evaluated fall into three categories: those tests based on the distribution of the mutation frequencies, on the haplotype distribution, and on the mismatch distribution. We found that, for an extensive variety of cases, the most powerful tests for detecting population growth are Fu's F(S) test and the newly developed R(2) test. The behavior of the R(2) test is superior for small sample sizes, whereas F(S) is better for large sample sizes. We also show that some popular statistics based on the mismatch distribution are very conservative.
Collapse
|
29
|
Cáceres M, Puig M, Ruiz A. Molecular characterization of two natural hotspots in the Drosophila buzzatii genome induced by transposon insertions. Genome Res 2001. [PMID: 11483576 DOI: 10.1101/gr.174001.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) have been implicated in the generation of genetic rearrangements, but their potential to mediate changes in the organization and architecture of host genomes could be even greater than previously thought. Here, we describe the naturally occurring structural and nucleotide variation around two TE insertions in the genome of Drosophila buzzatii. The studied regions correspond to the breakpoints of a widespread chromosomal inversion generated by ectopic recombination between oppositely oriented copies of a TE named Galileo. A detailed molecular analysis by Southern hybridization, PCR amplification, and DNA sequencing of 7.1 kb surrounding the inversion breakpoints in 39 D. buzzatii lines revealed an unprecedented degree of restructuring, consisting of 22 insertions of ten previously undescribed TEs, 13 deletions, 1 duplication, and 1 small inversion. All of these alterations occurred exclusively in inverted chromosomes and appear to have accumulated after the insertion of the Galileo elements, within or close to them. The nucleotide variation at the studied regions is six times lower in inverted than in noninverted chromosomes, suggesting that most of the observed changes originated in only 84,000 years. Galileo elements thus seemed to promote the transformation of these, otherwise normal, chromosomal regions in genetically unstable hotspots and highly efficient traps for transposon insertions. The particular features of two new Galileo copies found indicate that this TE belongs to the Foldback family. Together, our results strengthen the importance of TEs, and especially DNA transposons, as inducers of genome plasticity in evolution.
Collapse
Affiliation(s)
- M Cáceres
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | |
Collapse
|
30
|
Cáceres M, Puig M, Ruiz A. Molecular characterization of two natural hotspots in the Drosophila buzzatii genome induced by transposon insertions. Genome Res 2001; 11:1353-64. [PMID: 11483576 PMCID: PMC311088 DOI: 10.1101/gr.174001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transposable elements (TEs) have been implicated in the generation of genetic rearrangements, but their potential to mediate changes in the organization and architecture of host genomes could be even greater than previously thought. Here, we describe the naturally occurring structural and nucleotide variation around two TE insertions in the genome of Drosophila buzzatii. The studied regions correspond to the breakpoints of a widespread chromosomal inversion generated by ectopic recombination between oppositely oriented copies of a TE named Galileo. A detailed molecular analysis by Southern hybridization, PCR amplification, and DNA sequencing of 7.1 kb surrounding the inversion breakpoints in 39 D. buzzatii lines revealed an unprecedented degree of restructuring, consisting of 22 insertions of ten previously undescribed TEs, 13 deletions, 1 duplication, and 1 small inversion. All of these alterations occurred exclusively in inverted chromosomes and appear to have accumulated after the insertion of the Galileo elements, within or close to them. The nucleotide variation at the studied regions is six times lower in inverted than in noninverted chromosomes, suggesting that most of the observed changes originated in only 84,000 years. Galileo elements thus seemed to promote the transformation of these, otherwise normal, chromosomal regions in genetically unstable hotspots and highly efficient traps for transposon insertions. The particular features of two new Galileo copies found indicate that this TE belongs to the Foldback family. Together, our results strengthen the importance of TEs, and especially DNA transposons, as inducers of genome plasticity in evolution.
Collapse
Affiliation(s)
- M Cáceres
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | |
Collapse
|
31
|
Rozas J, Gullaud M, Blandin G, Aguadé M. DNA variation at the rp49 gene region of Drosophila simulans: evolutionary inferences from an unusual haplotype structure. Genetics 2001; 158:1147-55. [PMID: 11454763 PMCID: PMC1461709 DOI: 10.1093/genetics/158.3.1147] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An approximately 1.3-kb region including the rp49 gene plus its 5' and 3' flanking regions was sequenced in 24 lines of Drosophila simulans (10 from Spain and 14 from Mozambique). Fifty-four nucleotide and 8 length polymorphisms were detected. All nucleotide polymorphisms were silent: 52 in noncoding regions and 2 at synonymous sites in the coding region. Estimated silent nucleotide diversity was similar in both populations (pi = 0.016, for the total sample). Nucleotide variation revealed an unusual haplotype structure showing a subset of 11 sequences with a single polymorphism. This haplotype was present at intermediate frequencies in both the European and the African samples. The presence of such a major haplotype in a highly recombining region is incompatible with the neutral equilibrium model. This haplotype structure in both a derived and a putatively ancestral population can be most parsimoniously explained by positive selection. As the rate of recombination in the rp49 region is high, the target of selection should be close to or within the region studied.
Collapse
Affiliation(s)
- J Rozas
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08071 Barcelona, Spain.
| | | | | | | |
Collapse
|
32
|
Khadem M, Rozas J, Segarra C, Aguade M. DNA variation at the rp49 gene region in Drosophila madeirensis and D. subobscura from Madeira: inferences about the origin of an insular endemic species. J Evol Biol 2001. [DOI: 10.1046/j.1420-9101.2001.00293.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Black WC, Baer CF, Antolin MF, DuTeau NM. Population genomics: genome-wide sampling of insect populations. ANNUAL REVIEW OF ENTOMOLOGY 2001; 46:441-469. [PMID: 11112176 DOI: 10.1146/annurev.ento.46.1.441] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Modern population genetics underwent a major paradigm shift during the last decade of the 20th century with the discovery that thousands of genes of known function and position in a genome can be analyzed simultaneously in a single individual. The impact of this technology on insect population genetics is potentially profound. Sampling distributions of genetic statistics can now be derived from many individual loci or among many segregating sites within a gene. Inferences regarding random mating, gene flow, effective population sizes, disequilibrium, and relatedness among populations can now be based on patterns of variation at many loci. More importantly, genome-wide sampling enables population geneticists to distinguish effects that act on the whole genome from those that act on individual loci or nucleotides. We introduce the term "population genomics" to describe the process of simultaneous sampling of numerous variable loci within a genome and the inference of locus-specific effects from the sample distributions. The four critical assumptions implicit in the population genomics approach are explained in detail. Studies adopting this paradigm are reviewed, and the steps necessary to complete a population genomics study are outlined.
Collapse
Affiliation(s)
- W C Black
- Department of Microbiology Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
34
|
Verrelli BC, Eanes WF. Extensive amino acid polymorphism at the pgm locus is consistent with adaptive protein evolution in Drosophila melanogaster. Genetics 2000; 156:1737-52. [PMID: 11102370 PMCID: PMC1461360 DOI: 10.1093/genetics/156.4.1737] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PGM plays a central role in the glycolytic pathway at the branch point leading to glycogen metabolism and is highly polymorphic in allozyme studies of many species. We have characterized the nucleotide diversity across the Pgm gene in Drosophila melanogaster and D. simulans to investigate the role that protein polymorphism plays at this crucial metabolic branch point shared with several other enzymes. Although D. melanogaster and D. simulans share common allozyme mobility alleles, we find these allozymes are the result of many different amino acid changes at the nucleotide level. In addition, specific allozyme classes within species contain several amino acid changes, which may explain the absence of latitudinal clines for PGM allozyme alleles, the lack of association of PGM allozymes with the cosmopolitan In(3L)P inversion, and the failure to detect differences between PGM allozymes in functional studies. We find a significant excess of amino acid polymorphisms within D. melanogaster when compared to the complete absence of fixed replacements with D. simulans. There is also strong linkage disequilibrium across the 2354 bp of the Pgm locus, which may be explained by a specific amino acid haplotype that is high in frequency yet contains an excess of singleton polymorphisms. Like G6pd, Pgm shows strong evidence for a branch point enzyme that exhibits adaptive protein evolution.
Collapse
Affiliation(s)
- B C Verrelli
- Department of Ecology and Evolution, State University of New York, Stony Brook, New York 11794-5245, USA.
| | | |
Collapse
|
35
|
Munté A, Aguadé M, Segarra C. Nucleotide variation at the yellow gene region is not reduced in Drosophila subobscura: a study in relation to chromosomal polymorphism. Mol Biol Evol 2000; 17:1942-55. [PMID: 11110911 DOI: 10.1093/oxfordjournals.molbev.a026296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In contrast to Drosophila melanogaster and Drosophila simulans, the yellow (y) gene region of Drosophila subobscura is not located in a region with a strong reduction in recombination. In addition, this gene maps very close to the breakpoints of different inversions that segregate as polymorphic in natural populations of D. subobscura. Therefore, levels of variation at the y gene region in this species relative to those found in D. melanogaster and D. simulans may be affected not only by the change in the recombinational environment, but also by the presence of inversion polymorphism. To further investigate these aspects, an approximately 5.4-kb region of the A (=X) chromosome including the y gene was sequenced in 25 lines of D. subobscura and in the closely related species Drosophila madeirensis and Drosophila guanche. The D. subobscura lines studied differed in their A-chromosomal arrangements, A(st), A(2), and A(1). Unlike in D. melanogaster and D. simulans, levels of variation at the y gene region of D. subobscura are not reduced relative to those found at other genomic regions in the same species (rp49, Acp70A, and Acph-1). This result supports the effect of the change in the recombinational environment of a particular gene on the level of neutral variation. In addition, nucleotide variation is affected by chromosomal polymorphism. A strong genetic differentiation is detected between the A(1) arrangement and either A(st) or A(2), but not between A(st) and A(2). This result is consistent with the location of the y gene relative to the breakpoints of inversions A(1) and A(2). In addition, the pattern of nucleotide polymorphism in A(st)+A(2) and A(1) seems to point out that variation at the y gene region within these chromosomal classes is in the phase transient to equilibrium. The estimated ages of these arrangements assuming a star genealogy indicate that their origin cannot predate the D. madeirensis split. Therefore, the present results are consistent with a chromosomal phylogeny where Am(1), which is an arrangement present in D. madeirensis but absent in current populations of D. subobscura, would be the ancestral arrangement.
Collapse
Affiliation(s)
- A Munté
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
36
|
Kawabe A, Yamane K, Miyashita NT. DNA polymorphism at the cytosolic phosphoglucose isomerase (PgiC) locus of the wild plant Arabidopsis thaliana. Genetics 2000; 156:1339-47. [PMID: 11063706 PMCID: PMC1461314 DOI: 10.1093/genetics/156.3.1339] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA variation in a 4.7-kb region of the cytosolic phosphoglucose isomerase (PgiC) locus was investigated for 21 ecotypes of Arabidopsis thaliana. The estimated nucleotide diversity was 0.0038, which was one-third of those in previously investigated loci. Since most of the nucleotide variations (93%) were singleton and doubleton, Tajima's test statistic was significantly negative. About 50% of nucleotide polymorphisms in exons were replacement, which caused significance in McDonald and Kreitman's test when compared with Arabis gemmifera and Cardaminopsis petraea. These results indicated that DNA polymorphism at the PgiC locus was not under neutrality. There were two divergent sequence types in the PgiC region, which were associated with allozyme variation. The Fast allozyme was shown to have originated from the Slow allozyme, since two outgroup species had the Slow form. A phylogenetic tree of ecotypes with the Fast allozyme had the shape of a star phylogeny. Mismatch distribution of the Fast allozyme ecotypes resembled that expected under an expanding population model. These results suggest positive selection for the Fast allozyme of the PGIC in A. thaliana.
Collapse
Affiliation(s)
- A Kawabe
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
37
|
Kovacevic M, Schaeffer SW. Molecular population genetics of X-linked genes in Drosophila pseudoobscura. Genetics 2000; 156:155-72. [PMID: 10978282 PMCID: PMC1461252 DOI: 10.1093/genetics/156.1.155] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This article presents a nucleotide sequence analysis of 500 bp determined in each of five X-linked genes, runt, sisterlessA, period, esterase 5, and Heat-shock protein 83, in 40 Drosophila pseudoobscura strains collected from two populations. Estimates of the neutral migration parameter for the five loci show that gene flow among D. pseudoobscura populations is sufficient to homogenize inversion frequencies across the range of the species. Nucleotide diversity at each locus fails to reject a neutral model of molecular evolution. The sample of 40 chromosomes included six Sex-ratio inversions, a series of three nonoverlapping inversions that are associated with a strong meiotic drive phenotype. The selection driven by the Sex-ratio meiotic drive element has not fixed variation across the X chromosome of D. pseudoobscura because, while significant linkage disequilibrium was observed within the sisterlessA, period, and esterase 5 genes, we did not find evidence for nonrandom association among loci. The Sex-ratio chromosome was estimated to be 25,000 years old based on the decomposition of linkage disequilibrium between esterase 5 and Heat-shock protein 83 or 1 million years old based on the net divergence of esterase 5 between Standard and Sex-ratio chromosomes. Genetic diversity was depressed within esterase 5 within Sex-ratio chromosomes, while the four other genes failed to show a reduction in heterozygosity in the Sex-ratio background. The reduced heterogeneity in esterase 5 is due either to its location near one of the Sex-ratio inversion breakpoints or that it is closely linked to a gene or genes responsible for the Sex-ratio meiotic drive system.
Collapse
Affiliation(s)
- M Kovacevic
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802-5301, USA
| | | |
Collapse
|
38
|
Pascual M, Schug MD, Aquadro CF. High density of long dinucleotide microsatellites in Drosophila subobscura. Mol Biol Evol 2000; 17:1259-67. [PMID: 10908646 DOI: 10.1093/oxfordjournals.molbev.a026409] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We isolated 96 dinucleotide repeats with five or more tandemly repeated units from a subgenomic Drosophila subobscura library. The mean repeat unit length of microsatellite clones in D. subobscura is 15, higher than that observed in other Drosophila species. Population variation was assayed in 32-40 chromosomes from Barcelona, Spain, using 18 randomly chosen microsatellite loci. Positive correlation between measures of variation and perfect repeat length measures (mean size, most common, and longest allele) is consistent with a higher mutation rate in loci with longer repeat units. Levels of microsatellite variation measured as variance in repeat number and heterozygosity in D. subobscura were similar to those of Drosophila pseudoobscura and higher than those of Drosophila melanogaster and Drosophila simulans. Our data suggest that higher levels of microsatellite variation, and possibly density, in D. subobscura compared with D. melanogaster are due to both a higher average effective population and a higher intrinsic slippage rate in the former species.
Collapse
Affiliation(s)
- M Pascual
- Department of Molecular Biology and Genetics, Cornell University, New York, NY, USA.
| | | | | |
Collapse
|
39
|
Navarro A, Barbadilla A, Ruiz A. Effect of inversion polymorphism on the neutral nucleotide variability of linked chromosomal regions in Drosophila. Genetics 2000; 155:685-98. [PMID: 10835391 PMCID: PMC1461098 DOI: 10.1093/genetics/155.2.685] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recombination is a main factor determining nucleotide variability in different regions of the genome. Chromosomal inversions, which are ubiquitous in the genus Drosophila, are known to reduce and redistribute recombination, and thus their specific effect on nucleotide variation may be of major importance as an explanatory factor for levels of DNA variation. Here, we use the coalescent approach to study this effect. First, we develop analytical expressions to predict nucleotide variability in old inversion polymorphisms that have reached mutation-drift-flux equilibrium. The effects on nucleotide variability of a new arrangement appearing in the population and reaching a stable polymorphism are then studied by computer simulation. We show that inversions modulate nucleotide variability in a complex way. The establishment of an inversion polymorphism involves a partial selective sweep that eliminates part of the variability in the population. This is followed by a slow convergence to the equilibrium values. During this convergence, regions close to the breakpoints exhibit much lower variability than central regions. However, at equilibrium, regions close to the breakpoints have higher levels of variability and differentiation between arrangements than regions in the middle of the inverted segment. The implications of these findings for overall variability levels during the evolution of Drosophila species are discussed.
Collapse
Affiliation(s)
- A Navarro
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain.
| | | | | |
Collapse
|
40
|
Andolfatto P, Wall JD, Kreitman M. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics 1999; 153:1297-311. [PMID: 10545460 PMCID: PMC1460810 DOI: 10.1093/genetics/153.3.1297] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The existence of temporally stable frequency clines for In(2L)t in natural populations of Drosophila melanogaster suggests a role for selection in the maintenance of this polymorphism. We have collected nucleotide polymorphism data from the proximal breakpoint junction regions of In(2L)t to infer its evolutionary history. The finding of a novel LINE-like element near the In(2L)t breakpoint junction in sampled inverted chromosomes supports a transposable element-mediated origin for this inversion. An analysis of nucleotide variation in a Costa Rican population sample of standard and inverted chromosomes indicates a unique and relatively recent origin for In(2L)t. Additional In(2L)t alleles from three geographically diverse populations reveal no detectable geographic differentiation. Low levels of In(2L)t nucleotide polymorphism suggest a recent increase in the inversion's frequency in tropical populations. An unusual feature of our sample of standard alleles is a marked heterogeneity in levels of linkage disequilibrium among polymorphic sites across the breakpoint region. We introduce a test of neutral equilibrium haplotype structure that corrects both for multiple tests and for an arbitrarily chosen window size. It reveals that an approximately 1.4-kb region immediately spanning the breakpoint has fewer haplotypes than expected under the neutral model, given the expected level of recombination in this genomic region. Certain features of our data suggest that the unusual pattern in standard chromosomes is the product of selection rather than demography.
Collapse
Affiliation(s)
- P Andolfatto
- Committee on Genetics, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
41
|
Navarro-Sabaté A, Aguadé M, Segarra C. The relationship between allozyme and chromosomal polymorphism inferred from nucleotide variation at the Acph-1 gene region of Drosophila subobscura. Genetics 1999; 153:871-89. [PMID: 10511564 PMCID: PMC1460765 DOI: 10.1093/genetics/153.2.871] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Acph-1 gene region was sequenced in 51 lines of Drosophila subobscura. Lines differ in their chromosomal arrangement for segment I of the O chromosome (O(st) and O(3+4)) and in the Acph-1 electrophoretic allele (Acph-1(100), Acph-1(054), and Acph-1(>100)). The ACPH-1 protein exhibits much more variation than previously detected by electrophoresis. The amino acid replacements responsible for the Acph-1(054) and Acph-1(>100) electrophoretic variants are different within O(st) and within O(3+4), which invalidates all previous studies on linkage disequilibrium between chromosomal and allozyme polymorphisms at this locus. The Acph-1(>100) allele within O(3+4) has a recent origin, while both Acph-1(054) alleles are rather old. Levels of nucleotide variation are higher within the O(3+4) than within the O(st) arrangement except for nonsynonymous sites. The McDonald and Kreitman test shows a significant excess of nonsynonymous polymorphisms within O(st) when D. guanche is used as the outgroup. According to the nearly neutral model of molecular evolution, this excess is consistent with a smaller effective size of O(st) relative to O(3+4) arrangements. A smaller population size, a lower recombination, and a more recent bottleneck might be contributing to the smaller effective size of O(st).
Collapse
Affiliation(s)
- A Navarro-Sabaté
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08071 Barcelona, Spain
| | | | | |
Collapse
|