1
|
Gruntenko NE, Deryuzhenko MA, Andreenkova OV, Shishkina OD, Bobrovskikh MA, Shatskaya NV, Vasiliev GV. Drosophila melanogaster Transcriptome Response to Different Wolbachia Strains. Int J Mol Sci 2023; 24:17411. [PMID: 38139239 PMCID: PMC10743526 DOI: 10.3390/ijms242417411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Wolbachia is a maternally inherited, intercellular bacterial symbiont of insects and some other invertebrates. Here, we investigated the effect of two different Wolbachia strains, differing in a large chromosomal inversion, on the differential expression of genes in D. melanogaster females. We revealed significant changes in the transcriptome of the infected flies compared to the uninfected ones, as well as in the transcriptome of flies infected with the Wolbachia strain, wMelPlus, compared to flies infected with the wMelCS112 strain. We linked differentially expressed genes (DEGs) from two pairwise comparisons, "uninfected-wMelPlus-infected" and "uninfected-wMelCS112-infected", into two gene networks, in which the following functional groups were designated: "Proteolysis", "Carbohydrate transport and metabolism", "Oxidation-reduction process", "Embryogenesis", "Transmembrane transport", "Response to stress" and "Alkaline phosphatases". Our data emphasized similarities and differences between infections by different strains under study: a wMelPlus infection results in more than double the number of upregulated DEGs and half the number of downregulated DEGs compared to a wMelCS112 infection. Thus, we demonstrated that Wolbachia made a significant contribution to differential expression of host genes and that the bacterial genotype plays a vital role in establishing the character of this contribution.
Collapse
Affiliation(s)
- Nataly E. Gruntenko
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (M.A.D.); (O.V.A.); (O.D.S.); (M.A.B.); (N.V.S.); (G.V.V.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Niu R, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Gao X, Luo J, Cui J. Evaluation of Hamiltonella on Aphis gossypii fitness based on life table parameters and RNA sequencing. PEST MANAGEMENT SCIENCE 2023; 79:306-314. [PMID: 36151951 DOI: 10.1002/ps.7200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Insect endosymbionts are widespread in nature and known to play key roles in regulating host biology. As a secondary endosymbiont, bacteria in the genus Hamiltonella help cotton aphids (Aphis gossypii) defend against parasitism by parasitoid wasps, however, the potential negative impacts of these bacteria on cotton aphid biology remain largely unclear. RESULTS This study aims to evaluate the potential impacts of Hamiltonella on the growth and development of cotton aphids based on life table parameters and RNA sequencing. The results showed that infection with Hamiltonella resulted in smaller body type and lower body weight in aphids. Compared to the control group, there were significant differences in the finite and intrinsic rates of increase and mean generation time. Furthermore, the RNA sequencing data revealed that the genes related to energy synthesis and nutrient metabolism pathways were significantly downregulated and genes related to molting and nervous system pathways were significantly upregulated in the Hamiltonella population. CONCLUSION Our results confirm that Hamiltonella retarded the growth and development of cotton aphids accompanied by the downregulation of genes related to energy synthesis and nutrient metabolism, which provides new insights into aphid-symbiont interactions and may support the development of improved aphid management strategies. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruichang Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
3
|
Xu J, Liu Y, Li H, Tarashansky AJ, Kalicki CH, Hung RJ, Hu Y, Comjean A, Kolluru SS, Wang B, Quake SR, Luo L, McMahon AP, Dow JAT, Perrimon N. Transcriptional and functional motifs defining renal function revealed by single-nucleus RNA sequencing. Proc Natl Acad Sci U S A 2022; 119:e2203179119. [PMID: 35696569 PMCID: PMC9231607 DOI: 10.1073/pnas.2203179119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/11/2022] [Indexed: 01/09/2023] Open
Abstract
Recent advances in single-cell sequencing provide a unique opportunity to gain novel insights into the diversity, lineage, and functions of cell types constituting a tissue/organ. Here, we performed a single-nucleus study of the adult Drosophila renal system, consisting of Malpighian tubules and nephrocytes, which shares similarities with the mammalian kidney. We identified 11 distinct clusters representing renal stem cells, stellate cells, regionally specific principal cells, garland nephrocyte cells, and pericardial nephrocytes. Characterization of the transcription factors specific to each cluster identified fruitless (fru) as playing a role in stem cell regeneration and Hepatocyte nuclear factor 4 (Hnf4) in regulating glycogen and triglyceride metabolism. In addition, we identified a number of genes, including Rho guanine nucleotide exchange factor at 64C (RhoGEF64c), Frequenin 2 (Frq2), Prip, and CG1093 that are involved in regulating the unusual star shape of stellate cells. Importantly, the single-nucleus dataset allows visualization of the expression at the organ level of genes involved in ion transport and junctional permeability, providing a systems-level view of the organization and physiological roles of the tubules. Finally, a cross-species analysis allowed us to match the fly kidney cell types to mouse kidney cell types and planarian protonephridia, knowledge that will help the generation of kidney disease models. Altogether, our study provides a comprehensive resource for studying the fly kidney.
Collapse
Affiliation(s)
- Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Hongjie Li
- Department of Biology, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Alexander J. Tarashansky
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Colin H. Kalicki
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Ruei-Jiun Hung
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Sai Saroja Kolluru
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| | - Julian A. T. Dow
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
- HHMI, Harvard University, Boston, MA 02115
| |
Collapse
|
4
|
Amaral DT, Johnson CH, Viviani VR. RNA-Seq analysis of the blue light-emitting Orfelia fultoni (Diptera: Keroplatidae) suggest photoecological adaptations at the molecular level. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 39:100840. [PMID: 34022525 PMCID: PMC8495875 DOI: 10.1016/j.cbd.2021.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
Bioluminescence in Diptera is found in the Keroplatidae family, within Arachnocampininae and Keroplatinae subfamilies, with reported occurrences in Oceania, Eurasia, and Americas. Larvae of Orfelia fultoni, which inhabit stream banks in the Appalachian Mountains, emit the bluest bioluminescence among insects, using it for prey attraction, similarly to Arachnocampa spp. Although bioluminescence has a similar prey attraction function, the systems of Arachonocampininae and Keroplatinae subfamilies are morphologically/biochemically distinct, indicating different evolutionary origins. To identify the possible coding genes associated with physiological control, ecological adaptations, and origin/evolution of bioluminescence in the Keroplatinae subfamily, we performed the RNA-Seq analysis of O. fultoni larvae during day and night and compared it with the transcriptomes of Arachnocampa luminosa, and reanalyzed the previously published proteomic data of O. fultoni against the RNA-Seq dataset. The abundance of chaperones/heat-shock and hexamerin gene products at night and in luciferase enriched fractions supports their possible association and participation in bioluminescence. The low diversity of copies/families of opsins indicate a simpler visual system in O. fultoni. Noteworthy, gene products associated with silk protein biosynthesis in Orfelia were more similar to Lepidoptera than to the Arachnocampa, indicating that, similarly to the bioluminescent systems, at some point, the biochemical apparatus for web construction may have evolved independently in Orfelia and Arachnocampa.
Collapse
Affiliation(s)
- Danilo T Amaral
- Graduate School of Biotechnology and Environmental Monitoring (UFSCar), Sorocaba, SP, Brazil
| | - Carl H Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Vadim R Viviani
- Graduate School of Biotechnology and Environmental Monitoring (UFSCar), Sorocaba, SP, Brazil; Graduate School of Evolutive Genetics and Molecular Biology, Federal Univ. São Carlos (UFSCar), São Carlos, SP, Brazil.
| |
Collapse
|
5
|
May CM, Van den Akker EB, Zwaan BJ. The Transcriptome in Transition: Global Gene Expression Profiles of Young Adult Fruit Flies Depend More Strongly on Developmental Than Adult Diet. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developmental diet is known to exert long-term effects on adult phenotypes in many animal species as well as disease risk in humans, purportedly mediated through long-term changes in gene expression. However, there are few studies linking developmental diet to adult gene expression. Here, we use a full-factorial design to address how three different larval and adult diets interact to affect gene expression in 1-day-old adult fruit flies (Drosophila melanogaster) of both sexes. We found that the largest contributor to transcriptional variation in young adult flies is larval, and not adult diet, particularly in females. We further characterized gene expression variation by applying weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. In adult female flies, the caloric content of the larval diet associated with two strongly negatively correlated modules, one of which was highly enriched for reproduction-related processes. This suggests that gene expression in young adult female flies is in large part related to investment into reproduction-related processes, and that the level of expression is affected by dietary conditions during development. In males, most modules had expression patterns independent of developmental or adult diet. However, the modules that did correlate with larval and/or adult dietary regimes related primarily to nutrient sensing and metabolic functions, and contained genes highly expressed in the gut and fat body. The gut and fat body are among the most important nutrient sensing tissues, and are also the only tissues known to avoid histolysis during pupation. This suggests that correlations between larval diet and gene expression in male flies may be mediated by the carry-over of these tissues into young adulthood. Our results show that developmental diet can have profound effects on gene expression in early life and warrant future research into how they correlate with actual fitness related traits in early adulthood.
Collapse
|
6
|
Wang C, Spradling AC. An abundant quiescent stem cell population in Drosophila Malpighian tubules protects principal cells from kidney stones. eLife 2020; 9:54096. [PMID: 32175841 PMCID: PMC7093152 DOI: 10.7554/elife.54096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/14/2020] [Indexed: 12/26/2022] Open
Abstract
Adult Drosophila Malpighian tubules have low rates of cell turnover but are vulnerable to damage caused by stones, like their mammalian counterparts, kidneys. We show that Drosophilarenal stem cells (RSCs) in the ureter and lower tubules comprise a unique, unipotent regenerative compartment. RSCs respond only to loss of nearby principal cells (PCs), cells critical for maintaining ionic balance. Large polyploid PCs are outnumbered by RSCs, which replace each lost cell with multiple PCs of lower ploidy. Notably, RSCs do not replenish principal cells or stellate cells in the upper tubules. RSCs generate daughters by asymmetric Notch signaling, yet RSCs remain quiescent (cell cycle-arrested) without damage. Nevertheless, the capacity for RSC-mediated repair extends the lifespan of flies carrying kidney stones. We propose that abundant, RSC-like stem cells exist in other tissues with low rates of turnover where they may have been mistaken for differentiated tissue cells.
Collapse
Affiliation(s)
- Chenhui Wang
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, United States
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, United States
| |
Collapse
|
7
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
8
|
Bohère J, Mancheno-Ferris A, Al Hayek S, Zanet J, Valenti P, Akino K, Yamabe Y, Inagaki S, Chanut-Delalande H, Plaza S, Kageyama Y, Osman D, Polesello C, Payre F. Shavenbaby and Yorkie mediate Hippo signaling to protect adult stem cells from apoptosis. Nat Commun 2018; 9:5123. [PMID: 30504772 PMCID: PMC6269459 DOI: 10.1038/s41467-018-07569-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/12/2018] [Indexed: 01/06/2023] Open
Abstract
To compensate for accumulating damages and cell death, adult homeostasis (e.g., body fluids and secretion) requires organ regeneration, operated by long-lived stem cells. How stem cells can survive throughout the animal life remains poorly understood. Here we show that the transcription factor Shavenbaby (Svb, OvoL in vertebrates) is expressed in renal/nephric stem cells (RNSCs) of Drosophila and required for their maintenance during adulthood. As recently shown in embryos, Svb function in adult RNSCs further needs a post-translational processing mediated by the Polished rice (Pri) smORF peptides and impairing Svb function leads to RNSC apoptosis. We show that Svb interacts both genetically and physically with Yorkie (YAP/TAZ in vertebrates), a nuclear effector of the Hippo pathway, to activate the expression of the inhibitor of apoptosis DIAP1. These data therefore identify Svb as a nuclear effector in the Hippo pathway, critical for the survival of adult somatic stem cells.
Collapse
Affiliation(s)
- Jérôme Bohère
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Bat 4R3, 118 route de Narbonne, F-31062, Toulouse, France
| | - Alexandra Mancheno-Ferris
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Bat 4R3, 118 route de Narbonne, F-31062, Toulouse, France
| | - Sandy Al Hayek
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Bat 4R3, 118 route de Narbonne, F-31062, Toulouse, France
- Faculty of Sciences III, Lebanese University, Tripoli, 1300, Lebanon
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Jennifer Zanet
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Bat 4R3, 118 route de Narbonne, F-31062, Toulouse, France
| | - Philippe Valenti
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Bat 4R3, 118 route de Narbonne, F-31062, Toulouse, France
| | - Kohsuke Akino
- Department of Biology, Graduate School of Science, Kobe, 657-8501, Japan
| | - Yuya Yamabe
- Department of Biology, Graduate School of Science, Kobe, 657-8501, Japan
| | - Sachi Inagaki
- Biosignal Research Center, Kobe University, 1-1 Rokko-dai, Nada, Kobe, 657-8501, Japan
| | - Hélène Chanut-Delalande
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Bat 4R3, 118 route de Narbonne, F-31062, Toulouse, France
| | - Serge Plaza
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Bat 4R3, 118 route de Narbonne, F-31062, Toulouse, France
- Laboratoire de Recherche en Sciences Végétales (LSRV), CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, 31326, Castanet-Tolosan, France
| | - Yuji Kageyama
- Department of Biology, Graduate School of Science, Kobe, 657-8501, Japan
- Biosignal Research Center, Kobe University, 1-1 Rokko-dai, Nada, Kobe, 657-8501, Japan
| | - Dani Osman
- Faculty of Sciences III, Lebanese University, Tripoli, 1300, Lebanon
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Cédric Polesello
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Bat 4R3, 118 route de Narbonne, F-31062, Toulouse, France.
| | - François Payre
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Bat 4R3, 118 route de Narbonne, F-31062, Toulouse, France.
| |
Collapse
|
9
|
Rizzo MJ, Evans JP, Burt M, Saunders CJ, Johnson EC. Unexpected role of a conserved domain in the first extracellular loop in G protein-coupled receptor trafficking. Biochem Biophys Res Commun 2018; 503:1919-1926. [PMID: 30064912 DOI: 10.1016/j.bbrc.2018.07.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022]
Abstract
G protein-coupled receptors are the largest superfamily of cell surface receptors in the Metazoa and play critical roles in transducing extracellular signals into intracellular responses. This action is mediated through conformational changes in the receptor following ligand binding. A number of conserved motifs have critical roles in GPCR function, and here we focus on a highly conserved motif (WxFG) in extracellular loop one (EL1). A phylogenetic analysis documents the presence of the WxFG motif in ∼90% of Class A GPCRs and the motif is represented in 17 of the 19 Class A GPCR subfamilies. Using site-directed mutagenesis, we mutagenized the conserved tryptophan residue in eight receptors which are members of disparate class A GPCR subfamilies from different taxa. The modification of the Drosophila leucokinin receptor shows that substitution of any non-aromatic amino acid for the tryptophan leads to a loss of receptor function. Additionally, leucine substitutions at this position caused similar signaling defects in the follicle-stimulating hormone receptor (FSHR), Galanin receptor (GALR1), AKH receptor (AKHR), corazonin receptor (CRZR), and muscarinic acetylcholine receptor (mACHR1). Visualization of modified receptors through the incorporation of a fluorescent tag revealed a severe reduction in plasma membrane expression, indicating aberrant trafficking of these modified receptors. Taken together, these results suggest a novel role for the WxFG motif in GPCR trafficking and receptor function.
Collapse
Affiliation(s)
- Michael J Rizzo
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - John P Evans
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Morgan Burt
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Cecil J Saunders
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Erik C Johnson
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA; Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
10
|
Khan SJ, Abidi SNF, Skinner A, Tian Y, Smith-Bolton RK. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling. PLoS Genet 2017; 13:e1006937. [PMID: 28753614 PMCID: PMC5550008 DOI: 10.1371/journal.pgen.1006937] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/09/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth. Regenerating tissue must initiate the signaling that drives regenerative growth, and then sustain that signaling long enough for regeneration to complete. Drosophila imaginal discs, the epithelial structures in the larva that will form the adult animal during metamorphosis, have been an important model system for tissue repair and regeneration for over 60 years. Here we show that damage-induced JNK signaling leads to the upregulation of a gene called moladietz, which encodes a co-factor for an enzyme, NADPH dual oxidase (Duox), that generates reactive oxygen species (ROS), a key tissue-damage signal. High expression of moladietz induces continuous production of ROS in the regenerating tissue. The sustained production of ROS then continues to activate JNK signaling throughout the course of regeneration, ensuring maximal tissue regrowth.
Collapse
Affiliation(s)
- Sumbul Jawed Khan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Syeda Nayab Fatima Abidi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Andrea Skinner
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Yuan Tian
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Rachel K. Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
11
|
Tsujimoto H, Liu K, Linser PJ, Agre P, Rasgon JL. Organ-specific splice variants of aquaporin water channel AgAQP1 in the malaria vector Anopheles gambiae. PLoS One 2013; 8:e75888. [PMID: 24066188 PMCID: PMC3774814 DOI: 10.1371/journal.pone.0075888] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/20/2013] [Indexed: 12/05/2022] Open
Abstract
Background Aquaporin (AQP) water channels are important for water homeostasis in all organisms. Malaria transmission is dependent on Anopheles mosquitoes. Water balance is a major factor influencing mosquito survival, which may indirectly affect pathogen transmission. Methodology/Principal Findings We obtained full-length mRNA sequences for Anopheles gambiae aquaporin 1 (AgAQP1) and identified two splice variants for the gene. Invitro expression analysis showed that both variants transported water and were inhibited by Hg2+. One splice variant (AgAQP1A) was exclusively expressed in adult female ovaries indicating a function in mosquito reproduction. The other splice variant (AgAQP1B) was expressed in the midgut, malpighian tubules and the head in adult mosquitoes. Immunolabeling showed that in malpighian tubules, AgAQP1 is expressed in principal cells in the proximal portion and in stellate cells in the distal portion. Moreover, AgAQP1 is expressed in Johnston’s organ (the “ear”), which is important for courtship behavior. Conclusions And Significance These results suggest that AgAQP1 may play roles associated with mating (courtship) and reproduction in addition to water homeostasis in this important African malaria vector.
Collapse
Affiliation(s)
- Hitoshi Tsujimoto
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kun Liu
- Malaria Research Institute and Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Paul J. Linser
- University of Florida, Whitney Laboratory, Gainesville, Florida, United States of America
| | - Peter Agre
- Malaria Research Institute and Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jason L. Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Thran J, Poeck B, Strauss R. Serum Response Factor-Mediated Gene Regulation in a Drosophila Visual Working Memory. Curr Biol 2013; 23:1756-63. [DOI: 10.1016/j.cub.2013.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/10/2013] [Accepted: 07/09/2013] [Indexed: 12/26/2022]
|
13
|
DeLay B, Mamidala P, Wijeratne A, Wijeratne S, Mittapalli O, Wang J, Lamp W. Transcriptome analysis of the salivary glands of potato leafhopper, Empoasca fabae. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1626-1634. [PMID: 23063500 DOI: 10.1016/j.jinsphys.2012.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
The potato leafhopper, Empoasca fabae, is a pest of economic crops in the United States and Canada, where it causes damage known as hopperburn. Saliva, along with mechanical injury, leads to decreases in gas exchange rates, stunting and chlorosis. Although E. fabae saliva is known to induce plant responses, little knowledge exists of saliva composition at the molecular level. We subjected the salivary glands of E. fabae to Roche 454-pyrosequencing which resulted significant number (30,893) of expressed sequence tags including 2805 contigs and 28,088 singletons. A high number of sequences (78%) showed similarity to other insect species in GenBank, including Triboliumcastaneum, Drosophilamelanogaster and Acrythosiphonpisum. KEGG analysis predicted the presence of pathways for purine and thiamine metabolic, biosynthesis of secondary metabolites, drug metabolism, and lysine degradation. Pfam analysis showed a high number of cellulase and carboxylesterase protein domains. Expression analysis of candidate genes (alpha amylase, lipase, pectin lyase, etc.) among different tissues revealed tissue-specific expression of digestive enzymes in E. fabae. This is the first study to characterize the sialotranscriptome of E. fabae and the first for any species in the family of Cicadellidae. Due to the status of these insects as economic pests, knowledge of which genes are active in the salivary glands is important for understanding their impact on host plants.
Collapse
Affiliation(s)
- Bridget DeLay
- Department of Entomology, University of Maryland, College Park, MD, United States.
| | | | | | | | | | | | | |
Collapse
|
14
|
Yan Y, Peng L, Liu WX, Wan FH, Harris MK. Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:9. [PMID: 21521136 PMCID: PMC3281299 DOI: 10.1673/031.011.0109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 03/08/2010] [Indexed: 05/10/2023]
Abstract
Bemisia tabaci (Gennadius) B-biotype and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) often coexist on greenhouse-grown vegetable crops in northern China. The recent spread of B. tabaci B-biotype has largely replaced T. vaporariorum, and B-biotype now overlaps with T. vaporariorum where common hosts occur in most invaded areas. The impact of the B-biotype on the agro eco system appears to be widespread, and involves the ability to compete with and perhaps replace other phytophages like T. vaporariorum. An emerging hypothesis is that the B-biotype is physiologically superior due at least in part to an improved ability to metabolically utilize the alkaline phosphatase pathway. To test this hypothesis, alkaline phosphatase activity was studied in the B-biotype and T. vaporariorum after feeding on a number of different hosts for a range of durations, with and without host switching. Alkaline phosphatase activity in T. vaporariorum was 1.45 to 2.53-fold higher than that of the B-biotype when fed on tomato for 4 and 24 h, or switched from tomato to cotton and cabbage for the same durations. However, alkaline phosphatase activity in the B-biotype was 1.40 to 3.35-fold higher than that of T. vaporariorum when the host switching time was ∼72 and ∼120 h on the same plant. Both short-term (4 h) and long-term (72 h) switching of plant hosts can significantly affect the alkaline phosphatase activity in the two species. After ∼120 h, feeding on tomato and cotton alkaline phosphatase activity in the B-biotype was significantly higher than that of T. vaporariorum. It was shown that alkaline phosphatase aids the species feeding on different plant species, and that the B-biotype is physiologically superior to T. vaporariorum in utilizing the enzyme compared to T. vaporariorum over longer periods of feeding.
Collapse
Affiliation(s)
- Ying Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
| | - Lu Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, PR China
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
| | | |
Collapse
|
15
|
Bogomolova EV, Adonyeva NV, Shumnaja LV, Rauschenbach IY, Gruntenko NE. Suppression of dopamine D2-like receptors activates alkaline phosphatase in Drosophila. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2010; 435:404-406. [PMID: 21221894 DOI: 10.1134/s0012496610060098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Indexed: 05/30/2023]
Affiliation(s)
- E V Bogomolova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
16
|
Bogomolova EV, Rauschenbach IY, Adonyeva NV, Alekseev AA, Faddeeva NV, Gruntenko NE. Dopamine down-regulates activity of alkaline phosphatase in Drosophila: the role of D2-like receptors. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1155-1159. [PMID: 20303975 DOI: 10.1016/j.jinsphys.2010.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 05/29/2023]
Abstract
The effect of a rise in dopamine (DA) level as a result of a mutation, stress or pharmacological treatment on the activity of the enzyme of its synthesis, alkaline phosphatase (ALP) in females of Drosophila virilis and Drosophila melanogaster has been studied. It has been found that regardless of its nature, a rise in DA level has a negative effect on ALP activity, which indicates that DA down-regulates activity of the enzyme. The effects of bromocriptine (an agonist of Drosophila dopamine 2-like receptor (DD2R)) on ALP activity have been studied. ALP activity was found to drop in response to bromocriptine in flies. Conversely ALP activity was increased in flies with reduced DD2R expression (i.e. Actin5C-Gal4>UAS-ds-DD2R RNA-interference flies) vs. corresponding controls (i.e. Actin5C-Gal4>w1118 flies). Bromocriptine treatment of RNAi flies rescues ALP activity to the level typical of Actin5C-Gal4>w1118 flies. A change in DD2R number or availability was found not to prevent the response of ALP to heat stress, but to change the intensity of its response to the stress exposure. The role of D2-like receptors in down-regulation of ALP activity by DA and in ALP response to stressor in Drosophila is discussed.
Collapse
Affiliation(s)
- E V Bogomolova
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
17
|
Cooper WR, Dillwith JW, Puterka GJ. Salivary proteins of Russian wheat aphid (Hemiptera: Aphididae). ENVIRONMENTAL ENTOMOLOGY 2010; 39:223-31. [PMID: 20146860 DOI: 10.1603/en09079] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Salivary secretions play critical roles in aphid-host plant interactions and are responsible for damage associated with aphid feeding. The objectives of this study were to evaluate aspects of salivation and the salivary constituents of Diuraphis noxia (Hemiptera: Aphididae). Salivary proteins were isolated and compared from three aphid probed diets: pure water, 15% sucrose, or amino acids (100 mM serine, 100 mM methionine, 100 mM aspartic acid, and 15% sucrose). After 6 h, more aphids settled on sucrose diet compared with other diets, but there were no significant differences in the number of stylet sheaths produced per aphid after 24 h. There were differences in the amount of soluble salivary protein (watery saliva), with the greatest amount secreted in sucrose diet, followed by amino acid diet and pure water, respectively. Protein constituents secreted into sucrose and amino acid diets were compared using gel electrophoresis using standardized amounts of protein. More protein bands and bands of greater intensity were visualized from probed sucrose diet compared with probed amino acid diet, indicating qualitative differences. Phosphatase was putatively identified from D. noxia saliva from a major protein band using gel electrophoresis and mass spectrophotometry. Alkaline phosphatase activity was confirmed in sucrose diet using enzymatic assays but was not detected in aphid probed water or amino acid diets. Other peptides in sucrose diet weakly but significantly showed similarities to putative dehydrogenase and RNA helicase expressed sequence tags identified from other aphids. The implications of these findings in aphid salivation and plant-insect interactions are discussed.
Collapse
Affiliation(s)
- William R Cooper
- USDA-ARS, Wheat, Peanuts, and Other Field Crops, Stillwater, OK 74075-2714, USA.
| | | | | |
Collapse
|
18
|
Zhu JY, Yin Ye G, Fang Q, Hu C. Alkaline phosphatase from venom of the endoparasitoid wasp, Pteromalus puparum. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:14. [PMID: 20575745 PMCID: PMC3014669 DOI: 10.1673/031.010.1401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 11/18/2008] [Indexed: 05/29/2023]
Abstract
Using chromogenic substrates 5-bromo-4-chloro-3'-indolyl phosphate and nitro blue tetrazolium, alkaline phosphatase (ALPase) was histochemically detected in the venom apparatus of an endoparasitoid wasp, Pteromalus puparum L. (Hymenoptera: Pteromalidae). Ultrastructural observations demonstrated its presence in the secretory vesicles and nuclei of the venom gland secretory cells. Using p-nitrophenyl phosphate as substrate to measure enzyme activity, the venom ALPase was found to be temperature dependent with bivalent cation effects. The full-length cDNA sequence of ALPase was amplified from the cDNA library of the venom apparatus of P. puparum, providing the first molecular characterization of ALPase in the venom of a parasitoid wasp. The cDNA consisted of 2645 bp with a 1623 bp open reading frame coding for 541 deduced amino acids with a predicted molecular mass of 59.83 kDa and pI of 6.98. Using multiple sequence alignment, the deduced amino acid sequence shared high identity to its counterparts from other insects. A signal peptide and a long conserved ALPase gene family signature sequence were observed. The amino acid sequence of this venom protein was characterized with different potential glycosylation, myristoylation, phosphorylation sites and metal ligand sites. The transcript of the ALPase gene was detected by RT-PCR in the venom apparatus with development related expression after adult wasp emergence, suggesting a possible correlation with the oviposition process.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- State Key Laboratory of Rice Biology & Key laboratory of Molecular Biology of Crop Pathology and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province & Key laboratory of Southwest Mountain Forest Resources Conservation and Utilization of Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Gong Yin Ye
- State Key Laboratory of Rice Biology & Key laboratory of Molecular Biology of Crop Pathology and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Key laboratory of Molecular Biology of Crop Pathology and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Cui Hu
- State Key Laboratory of Rice Biology & Key laboratory of Molecular Biology of Crop Pathology and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
19
|
Zaheer R, Morton R, Proudfoot M, Yakunin A, Finan TM. Genetic and biochemical properties of an alkaline phosphatase PhoX family protein found in many bacteria. Environ Microbiol 2009; 11:1572-87. [PMID: 19245529 DOI: 10.1111/j.1462-2920.2009.01885.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the biochemical, phylogenetic and genetic regulation of PhoX, the major alkaline phosphatase protein from the soil bacterium Sinorhizobium meliloti. The protein is shown to be a member of a recently identified family of PhoX alkaline phosphatase proteins that is distinct from the well-characterized PhoA family. The mature S. meliloti PhoX protein is located in the periplasm and lacks a 76-amino-acid N-terminal Tat signal peptide. Its phosphatase activity was stimulated by Ca(+2) and was optimal at pH 9-11. Except for phytic acid and phosphatidic acid, the enzyme was active against a wide range of phosphorylated substrates (77 nucleotides, phosphorylated carbohydrates and amino acids) and thus exhibited low substrate specificity for C-O-P bonds. No C-P bond substrate was dephosphorylated while the protein was active with two of six phosphoramidate substrates (N-P bond) tested. Sinorhizobium meliloti phoX was induced when cells were starved for phosphorous and the induction was dependent on the PhoB-regulatory protein. We demonstrate by in vitro analysis that PhoB protein binds to two tandem 22 nt PhoB binding sites located 64-21 nt upstream from the phoX transcription start site. Analysis of 95 PhoX orthologues from diverse bacteria revealed two distinct phylogenetic groups of PhoX proteins. The two groups differed in having a conserved glycine (PhoX-I) or asparagine (PhoX-II) next to their putative catalytic Ca(+2) binding site. Analysis of the phoX promoter regions from many of these bacteria also revealed the presence of PhoB binding sites. Alkaline phosphatase proteins of either the PhoX or PhoA family (but rarely both) are found in many bacteria, thus it appears that these are functionally equivalent.
Collapse
Affiliation(s)
- Rahat Zaheer
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
Singh M, Burson BL, Finlayson SA. Isolation of candidate genes for apomictic development in buffelgrass (Pennisetum ciliare). PLANT MOLECULAR BIOLOGY 2007; 64:673-82. [PMID: 17541705 DOI: 10.1007/s11103-007-9188-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 05/13/2007] [Indexed: 05/04/2023]
Abstract
Asexual reproduction through seeds, or apomixis, is a process that holds much promise for agricultural advances. However, the molecular mechanisms underlying apomixis are currently poorly understood. To identify genes related to female gametophyte development in apomictic ovaries of buffelgrass (Pennisetum ciliare (L.) Link), Suppression Subtractive Hybridization of ovary cDNA with leaf cDNA was performed. Through macroarray screening of subtracted cDNAs two genes were identified, Pca21 and Pca24, that showed differential expression between apomictic and sexual ovaries. Sequence analysis showed that both Pca21 and Pca24 are novel genes not previously characterized in plants. Pca21 shows homology to two wheat genes that are also expressed during reproductive development. Pca24 has similarity to coiled-coil-helix-coiled-coil-helix (CHCH) domain containing proteins from maize and sugarcane. Northern blot analysis revealed that both of these genes are expressed throughout female gametophyte development in apomictic ovaries. In situ hybridizations localized the transcript of these two genes to the developing embryo sacs in the apomictic ovaries. Based on the expression patterns it was concluded that Pca21 and Pca24 likely play a role during apomictic development in buffelgrass.
Collapse
Affiliation(s)
- Manjit Singh
- Department of Soil & Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | | | | |
Collapse
|
21
|
Bogomolova EV, Adon'eva NV, Gruntenko NE, Raushenbakh IY. Gonadotropins influence alkaline phosphatase activity in Drosophila virilis. DOKL BIOCHEM BIOPHYS 2007; 414:134-6. [PMID: 17695320 DOI: 10.1134/s1607672907030118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- E V Bogomolova
- Institute of Cytology and Genetics, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent'eva 10, Novosibirsk, 630090 Russia
| | | | | | | |
Collapse
|
22
|
Rauschenbach IY, Bogomolova EV, Gruntenko NE, Adonyeva NV, Chentsova NA. Effects of juvenile hormone and 20-hydroxyecdysone on alkaline phosphatase activity in Drosophila under normal and heat stress conditions. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:587-91. [PMID: 17433361 DOI: 10.1016/j.jinsphys.2007.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 02/16/2007] [Accepted: 02/21/2007] [Indexed: 05/14/2023]
Abstract
The effect of 20-hydroxyecdysone (20E) and the juvenile hormone (JH) on the activity of the alkaline phosphatase (ALP) has been studied in young females of wild-type Drosophila virilis and Drosophila melanogaster under normal conditions and under heat stress (38 degrees C). Both 20E feeding of the flies and JH application led to a substantial rise in ALP activity. ALP activity was also measured in young females of a JH-deficient strain of D. melanogaster, apterous(56f). A decrease in the enzyme activity was observed in the mutant females as compared to wild type. A rise in JH and 20E levels was found not to prevent the response of ALP to heat stress, but to change its stress-reactivity. Mechanisms of regulation of dopamine (DA) level by gonadotropins in Drosophila are discussed.
Collapse
Affiliation(s)
- I Yu Rauschenbach
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | | | | | | | | |
Collapse
|
23
|
Acevedo SF, Froudarakis EI, Kanellopoulos A, Skoulakis EM. Protection from premature habituation requires functional mushroom bodies in Drosophila. Learn Mem 2007; 14:376-84. [PMID: 17522029 PMCID: PMC1876762 DOI: 10.1101/lm.566007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Diminished responses to stimuli defined as habituation can serve as a gating mechanism for repetitive environmental cues with little predictive value and importance. We demonstrate that wild-type animals diminish their responses to electric shock stimuli with properties characteristic of short- and long-term habituation. We used spatially restricted abrogation of neurotransmission to identify brain areas involved in this behavioral response. We find that the mushroom bodies and, in particular, the alpha/beta lobes appear to guard against habituating prematurely to repetitive electric shock stimuli. In addition to protection from premature habituation, the mushroom bodies are essential for spontaneous recovery and dishabituation. These results reveal a novel modulatory role of the mushroom bodies on responses to repetitive stimuli in agreement with and complementary to their established roles in olfactory learning and memory.
Collapse
Affiliation(s)
- Summer F. Acevedo
- Institute of Molecular Biology and Genetics, Biomedical Science Research Centre “Alexander Fleming,” Vari 16672, Greece
| | - Emmanuil I. Froudarakis
- Institute of Molecular Biology and Genetics, Biomedical Science Research Centre “Alexander Fleming,” Vari 16672, Greece
| | - Alexandros Kanellopoulos
- Institute of Molecular Biology and Genetics, Biomedical Science Research Centre “Alexander Fleming,” Vari 16672, Greece
| | - Efthimios M.C. Skoulakis
- Institute of Molecular Biology and Genetics, Biomedical Science Research Centre “Alexander Fleming,” Vari 16672, Greece
- Corresponding author.E-mail ; fax 30-210-965-6563
| |
Collapse
|
24
|
Pletcher SD, Libert S, Skorupa D. Flies and their golden apples: the effect of dietary restriction on Drosophila aging and age-dependent gene expression. Ageing Res Rev 2005; 4:451-80. [PMID: 16263339 DOI: 10.1016/j.arr.2005.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/17/2005] [Indexed: 11/25/2022]
Abstract
Reduced nutrient availability (dietary restriction) extends lifespan in species as diverse as yeast, nematode worms, Daphnia, Drosophila, and mammals. Recent demographic experiments have shown that moderate nutrient manipulation in adult Drosophila affects current mortality rate in a completely reversible manner, which suggests that dietary restriction in Drosophila increases lifespan through a reduction of the current risk of death rather than a slowing of aging-related damage. When examined in the light of the new demographic data, age-dependent changes in gene expression in normal and diet-restricted flies can provide unique insight into the biological processes affected by aging and may help identify molecular pathways that regulate it.
Collapse
Affiliation(s)
- Scott D Pletcher
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|
25
|
Xu X, Dong Y, Abraham EG, Kocan A, Srinivasan P, Ghosh AK, Sinden RE, Ribeiro JMC, Jacobs-Lorena M, Kafatos FC, Dimopoulos G. Transcriptome analysis of Anopheles stephensi-Plasmodium berghei interactions. Mol Biochem Parasitol 2005; 142:76-87. [PMID: 15907562 DOI: 10.1016/j.molbiopara.2005.02.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/23/2005] [Accepted: 02/25/2005] [Indexed: 11/28/2022]
Abstract
Simultaneous microarray-based transcription analysis of 4987 Anopheles stephensi midgut and Plasmodium berghei infection stage specific cDNAs was done at seven successive time points: 6, 20 and 40h, and 4, 8, 14 and 20 days after ingestion of malaria infected blood. The study reveals the molecular components of several Anopheles processes relating to blood digestion, midgut expansion and response to Plasmodium-infected blood such as digestive enzymes, transporters, cytoskeletal and structural components and stress and immune responsive factors. In parallel, the analysis provide detailed expression patterns of Plasmodium genes encoding essential developmental and metabolic factors and proteins implicated in interaction with the mosquito vector and vertebrate host such as kinases, transcription and translational factors, cytoskeletal components and a variety of surface proteins, some of which are potent vaccine targets. Temporal correlation between transcription profiles of both organisms identifies putative gene clusters of interacting processes, such as Plasmodium invasion of the midgut epithelium, Anopheles immune responses to Plasmodium infection, and apoptosis and expulsion of invaded midgut cells from the epithelium. Intriguing transcription patterns for highly variable Plasmodium surface antigens may indicate parasite strategies to avoid recognition by the mosquito's immune surveillance system.
Collapse
Affiliation(s)
- Xiaojin Xu
- Department of Biological Sciences, Imperial College, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cabrero P, Pollock VP, Davies SA, Dow JAT. A conserved domain of alkaline phosphatase expression in the Malpighian tubules of dipteran insects. J Exp Biol 2004; 207:3299-305. [PMID: 15326206 DOI: 10.1242/jeb.01156] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYMalpighian (renal) tubules are key components of the insect osmoregulatory system and show correspondingly great diversity in both number and length. Recently, the organisation of the Drosophila melanogaster tubule has been elucidated by enhancer trapping, and an array for functional properties has been shown to align with the functional domains. In Drosophila,there is a lower tubule domain, which coincides with expression of alkaline phosphatase and delineates the absorptive region of the tubule. Here, these observations are extended to three dipteran vectors of disease (Aedes aegypti, Anopheles stephensii and Glossina morsitans) and a non-dipteran out-group, Schistocerca gregaria (Orthoptera). Despite a huge range in cell number and size, alkaline phosphatase was found on the apical surface of the lower 10% of each of the dipteran tubules but nowhere within the orthopteran tubule. An alkaline phosphatase lower tubule domain is thus conserved among Diptera.Cell counts are also provided for each species. As in Drosophila,stellate cells are not found in the lower tubule domain of Anophelesor Aedes tubules, confirming the unique genetic identity of this domain. As previously reported, we failed to find stellate cells in Schistocerca but, remarkably, also failed to find them in Glossina, the dipteran most closely related to Drosophila. The orthodoxy that stellate cells are unique to, and general among, Diptera may thus require revision.
Collapse
Affiliation(s)
- Pablo Cabrero
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| | | | | | | |
Collapse
|
27
|
Wang J, Kean L, Yang J, Allan AK, Davies SA, Herzyk P, Dow JAT. Function-informed transcriptome analysis of Drosophila renal tubule. Genome Biol 2004; 5:R69. [PMID: 15345053 PMCID: PMC522876 DOI: 10.1186/gb-2004-5-9-r69] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 06/25/2004] [Accepted: 07/23/2004] [Indexed: 11/25/2022] Open
Abstract
Analysis of the transcriptome of the Drosophila melanogaster Malpighian (renal) tubule gives a radically new view of the function of the tubule, emphasising solute transport rather than fluid secretion. Background Comprehensive, tissue-specific, microarray analysis is a potent tool for the identification of tightly defined expression patterns that might be missed in whole-organism scans. We applied such an analysis to Drosophila melanogaster Malpighian (renal) tubule, a defined differentiated tissue. Results The transcriptome of the D. melanogaster Malpighian tubule is highly reproducible and significantly different from that obtained from whole-organism arrays. More than 200 genes are more than 10-fold enriched and over 1,000 are significantly enriched. Of the top 200 genes, only 18 have previously been named, and only 45% have even estimates of function. In addition, 30 transcription factors, not previously implicated in tubule development, are shown to be enriched in adult tubule, and their expression patterns respect precisely the domains and cell types previously identified by enhancer trapping. Of Drosophila genes with close human disease homologs, 50 are enriched threefold or more, and eight enriched 10-fold or more, in tubule. Intriguingly, several of these diseases have human renal phenotypes, implying close conservation of renal function across 400 million years of divergent evolution. Conclusions From those genes that are identifiable, a radically new view of the function of the tubule, emphasizing solute transport rather than fluid secretion, can be obtained. The results illustrate the phenotype gap: historically, the effort expended on a model organism has tended to concentrate on a relatively small set of processes, rather than on the spread of genes in the genome.
Collapse
Affiliation(s)
- Jing Wang
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| | - Laura Kean
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| | - Jingli Yang
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| | - Adrian K Allan
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| | - Shireen A Davies
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| | - Pawel Herzyk
- Sir Henry Wellcome Functional Genomics Facility, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian AT Dow
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| |
Collapse
|
28
|
Westerman BA, Poutsma A, Steegers EAP, Oudejans CBM. C2360, a nuclear protein expressed in human proliferative cytotrophoblasts, is a representative member of a novel protein family with a conserved coiled coil–helix–coiled coil–helix domain. Genomics 2004; 83:1094-104. [PMID: 15177562 DOI: 10.1016/j.ygeno.2003.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 12/11/2003] [Indexed: 11/24/2022]
Abstract
In this study, we describe the identification of nine novel genes isolated from a unique human first-trimester cDNA library generated from the placental bed. One of these clones, called C2360 and located on chromosome 10q22, was selected as it showed restricted expression in placental bed tissue as well as in JEG3 choriocarcinoma cells with absent expression in adult tissues. We show that the expression is restricted to first-trimester proliferative trophoblasts of the proximal column and show that C2360 is a nuclear protein. No detectable transactivation potential was observed for different domains of the protein. Secondary structure prediction showed that C2360 is a representative member of a eukaryotic family of proteins with a low conservation at the amino acid level, but with strong conservation at the structural level, sharing the general domain (coiled coil 1)-(helix 1)-(coiled coil 2)-(helix 2), or CHCH domain. Each alpha-helix within this domain contains two cysteine amino acids, and these intrahelical cysteines are separated by nine amino acids (C-X(9)-C motif). The fixed position within each helix indicated that both helices could form a hairpin structure stabilized by two interhelical disulfide bonds. Other proteins belonging to the family include estrogen-induced gene 2 and the ethanol-induced 6 protein. The conserved motif was found in yeast, plant, Drosophila, Caenorhabditis elegans, mouse, and human proteins, indicating that the ancestor of this protein family is of eukaryotic origin. These results indicate that C2360 is a representative member of a multifamily of proteins, sharing a protein domain that is conserved in eukaryotes.
Collapse
Affiliation(s)
- Bart A Westerman
- Molecular Biology Laboratory, Department of Clinical Chemistry, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
29
|
Myohara M. Differential tissue development during embryogenesis and regeneration in an annelid. Dev Dyn 2004; 231:349-58. [PMID: 15366012 DOI: 10.1002/dvdy.20115] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fragmenting potworm Enchytraeus japonensis (Oligochaeta, Annelida) reproduces asexually by dividing the body into several fragments that then regenerate to complete individuals in 4-5 days. Such large-scale regeneration, however, occurs only in some invertebrates. To better our understanding of why regeneration is so limited in many animals, despite their ability to undergo embryonic development from the single cell of a fertilized egg, comparisons were made between regeneration and embryonic development of E. japonensis by using two methods: histochemistry for alkaline phosphatase (ALP) and immunohistochemistry with an antibody against acetylated tubulin that visualizes nervous system development. The analyses revealed that both ALP expression patterns and central nervous system development differ between embryogenesis and the regeneration, suggesting that regeneration is not a simple reiteration of embryogenesis but involves different regulatory mechanisms. The study provides a basis for the elucidation of mechanisms that are unique and crucial to regeneration.
Collapse
Affiliation(s)
- Maroko Myohara
- Developmental Biology Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
30
|
Itoh M, Inoue T, Kanamori Y, Nishida S, Yamaguchi M. Tandem duplication of alkaline phosphatase genes and polymorphism in the intergenic sequence in Bombyx mori. Mol Genet Genomics 2003; 270:114-20. [PMID: 14508679 DOI: 10.1007/s00438-003-0880-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 06/05/2003] [Indexed: 11/27/2022]
Abstract
Alkaline phosphatases are ubiquitous in organisms from bacteria to human. Two alkaline phosphatase genes, Alp-m and Alp-s, were independently cloned from the silkworm Bombyx mori. They were mapped to a small DNA region and shown to be organized in tandem. Exon-intron structures of the two genes were highly conserved, with the exception of the second intron in Alp-m, which has no counterpart in Alp-s. The similarity between the nucleotide sequences of the exons of the two genes was strikingly high (60-79%), suggesting that Alp-m and Alp-s originated from a duplication of their common ancestor gene. The intergenic sequence between the two Alp genes shows length polymorphism in different B. mori strains, which can be explained by presence/absence of two putative insertion sequences. This structural variation suggests a possible scenario for the divergence of the two Alp genes after the duplication event.
Collapse
Affiliation(s)
- M Itoh
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, 606-8585, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
31
|
Asgeirsson B, Nielsen BN, Højrup P. Amino acid sequence of the cold-active alkaline phosphatase from Atlantic cod (Gadus morhua). Comp Biochem Physiol B Biochem Mol Biol 2003; 136:45-60. [PMID: 12941638 DOI: 10.1016/s1096-4959(03)00167-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Atlantic cod is a marine fish that lives at low temperatures of 0-10 degrees C and contains a cold-adapted alkaline phosphatase (AP). Preparations of AP from either the lower part of the intestines or the pyloric caeca area were subjected to proteolytic digestion, mass spectrometry and amino acid sequencing by Edman degradation. The primary structure exhibits greatest similarity to human tissue non-specific AP (80%), and approximately 30% similarity to AP from Escherichia coli. The key residues required for catalysis are conserved in the cod AP, except for the third metal binding site, where cod AP has the same variable residues as mammalian APs (His153 and His328 by E. coli AP numbering). General comparison of the amino acid composition with mammalian APs showed that cod AP contains fewer Cys, Leu, Met and Ser, but proportionally more Asn, Asp, Ile, Lys, Trp and Tyr residues. Three N-linked glycosylation sites were found. The glycan structure was determined as complex biantennary in type with fucose and sialic acid attached, although a trace of complex tri-antennary structure was also observed. A three-dimensional model was obtained by homology modelling using the human placental AP scaffold. Cod AP has fewer charged and hydrophobic residues, but more polar residues at the intersubunit surface. The N-terminal helix arm that embraces the second subunit in dimeric APs may be more flexible due to a replaced Pro at its base. One disulfide bridge was found instead of the two present in most other APs. This may invoke greater movement in the structure that together with weaker subunit contacts leads to improved catalytic efficiency.
Collapse
Affiliation(s)
- Bjarni Asgeirsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, Reykjavik IS-107, Iceland.
| | | | | |
Collapse
|
32
|
Dow JT, Davies SA. Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol Rev 2003; 83:687-729. [PMID: 12843407 DOI: 10.1152/physrev.00035.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Classically, biologists try to understand their complex systems by simplifying them to a level where the problem is tractable, typically moving from whole animal and organ-level biology to the immensely powerful "cellular" and "molecular" approaches. However, the limitations of this reductionist approach are becoming apparent, leading to calls for a new, "integrative" physiology. Rather than use the term as a rallying cry for classical organismal physiology, we have defined it as the study of how gene products integrate into the function of whole tissues and intact organisms. From this viewpoint, the convergence between integrative physiology and functional genomics becomes clear; both seek to understand gene function in an organismal context, and both draw heavily on transgenics and genetics in genetic models to achieve their goal. This convergence between historically divergent fields provides powerful leverage to those physiologists who can phrase their research questions in a particular way. In particular, the use of appropriate genetic model organisms provides a wealth of technologies (of which microarrays and knock-outs are but two) that allow a new precision in physiological analysis. We illustrate this approach with an epithelial model system, the Malpighian (renal) tubule of Drosophila melanogaster. With the use of the beautiful genetic tools and extensive genomic resources characteristic of this genetic model, it has been possible to gain unique insights into the structure, function, and control of epithelia.
Collapse
Affiliation(s)
- Julian T Dow
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK.
| | | |
Collapse
|
33
|
Funk CJ. Alkaline phosphatase activity in whitefly salivary glands and saliva. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2001; 46:165-74. [PMID: 11304750 DOI: 10.1002/arch.1026] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Alkaline phosphatase activity was histochemically localized in adult whiteflies (Bemisia tabaci B biotype, syn. B. argentifolii) with a chromogenic substrate (5-bromo-4-chloro-3-indolylphosphate) and a fluorogenic substrate (ELF-97). The greatest amount of staining was in the basal regions of adult salivary glands with additional activity traced into the connecting salivary ducts. Other tissues that had alkaline phosphatase activity were the accessory salivary glands, the midgut, the portion of the ovariole surrounding the terminal oocyte, and the colleterial gland. Whitefly nymphs had activity in salivary ducts, whereas activity was not detected in two aphid species (Rhodobium porosum and Aphis gossypii). Whitefly diet (15% sucrose) was collected from whitefly feeding chambers and found to have alkaline phosphatase activity, indicating the enzyme was secreted in saliva. Further studies with salivary alkaline phosphatase collected from diet indicated that the enzyme had a pH optimum of 10.4 and was inhibited by 1 mM cysteine and to a lesser extent 1 mM histidine. Dithiothreitol, inorganic phosphate, and ethylenediaminetetraacetic acid (EDTA) also inhibited activity, whereas levamisole only partially inhibited salivary alkaline phosphatase. The enzyme was heat tolerant and retained approximately 50% activity after a 1-h treatment at 65 degrees C. The amount of alkaline phosphatase activity secreted by whiteflies increased under conditions that stimulate increased feeding. These observations indicate alkaline phosphatase may play a role during whitefly feeding.
Collapse
Affiliation(s)
- C J Funk
- USDA-ARS Western Cotton Research Laboratory, Phoenix, Arizona 85040, USA.
| |
Collapse
|