1
|
Zhou P, Yang P, Zhang K, Guo H, Du J, Huang L, Jin D, Alolga RN, Wang H, Li J, Li P, Lu X. Discovery and engineering of the asiaticoside, madecassoside and asiaticoside B biosynthetic pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109864. [PMID: 40215734 DOI: 10.1016/j.plaphy.2025.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 05/21/2025]
Abstract
Asiaticoside, madecassoside, and asiaticoside B are pentacyclic triterpenoid saponins derived from Centella asiatica, known to possess remarkable in wound-healing and skin-protective properties. However, the key biosynthetic steps for these bioactive compounds remain unclear, hampering the role of heterologous biosynthesis in ensuring a stable supply of these clinically important products. Here, we identified and characterized two missing enzymes (UGT94M2 and UGT94BE1) in the asiaticoside, madecassoside and asiaticoside B biosynthetic pathway, which sequentially added glucosyl moiety of UDP-Glucose and UDP-Rhamnose to the monoglucosides of asiatic acid (1), madecassic acid (5) and terminolic acid (9) in C. asiatica at C-28, respectively. Additionally, the multienzyme one-pot reaction was used to elucidate the biosynthetic pathway and generate the asiaticoside (4), madecassoside (8), asiaticoside B (12) and intermediate compounds, and the conversion rates for asiatic acid, madecassic acid and terminolic acid with UGT73AD1, UGT94M2 and UGT94BE1 was 77 %, 84 % and 82 %, respectively. Notably, the reconstruction of asiaticoside, madecassoside and asiaticoside B was realized in N. benthamiana with the newly identified genes, as well as seven already known ones. This study presents an almost complete biosynthetic pathway for asiaticoside, madecassoside and asiaticoside B, enabling the heterologous biosynthesis of these pentacyclic triterpenoids in other organisms.
Collapse
Affiliation(s)
- Peina Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Nanjing Research Institute for Comprehensive Utilization of Wild Plants, Nanjing, 210042, Jiangsu, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kaiwei Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huijun Guo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinfa Du
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lijin Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dian Jin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huiying Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junchen Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xu Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Liu Z, Wang Q, Zhang L, Zhang Y, Jin Q. Integrated transcriptome and metabolome analysis revealed the molecular regulatory mechanism of carbohydrate synthesis in Panax ginseng. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025:112573. [PMID: 40403932 DOI: 10.1016/j.plantsci.2025.112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/24/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Ginseng (Panax ginseng) is renowned for its medicinal properties, which are primarily attributed to bioactive compounds such as polysaccharides and secondary metabolites. However, the mechanisms underlying carbohydrate synthesis and metabolism in ginseng remains poorly understood. In this study, we investigated the effects of different potassium fertilizers, including potassium fulvic acid (BSFA), potassium humate (KHM), and potassium sulfate (KS), on the accumulation of monosaccharides and polysaccharides in ginseng. Through integrated metabolomic and transcriptomic analyses, we elucidated the metabolic pathways and gene networks associated with monosaccharide and polysaccharide biosynthesis under these treatments. Among the tested fertilizers, KS treatment significantly enhanced the accumulation of galactose, arabinose, and crude polysaccharides, outperforming both BSFA and KHM treatments. Metabolomic profiling revealed distinct metabolic reprogramming induced by each treatment: BSFA and KHM treatments enriched pathways related to phosphatidylinositol signaling and autophagy, whereas KS treatment uniquely activated monoterpenoid biosynthesis. Transcriptomic analysis further demonstrated that KS treatment markedly upregulated key genes involved in nucleotide sugar metabolism, including EVM0043355 (UAE), EVM0012792 (UDP-D-xylose synthase), and EVM0013821 (UDP-D-xylose synthase), as well as starch hydrolysis-related genes such as EVM0053524 (glycosyl hydrolase family) and EVM0000395 (hexokinase). Notably, UDP-D-xylose synthase plays a pivotal role in generating polysaccharide precursors, and the nucleotide sugar metabolism pathway may regulate the diversion of sugar intermediates toward polysaccharide biosynthesis. These findings further support the role of KS in promoting polysaccharide synthesis. Network analysis identified critical gene-metabolite interactions, highlighting the importance of nucleotide sugar metabolism in polysaccharide biosynthesis. Collectively, our results provide novel insights into how potassium fertilizers modulate ginseng's metabolic profile and offer practical strategies for optimizing cultivation practices to improve its medicinal value.
Collapse
Affiliation(s)
- Zhengbo Liu
- Library, Jilin Agricultural University, Changchun 130118, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Qiuxia Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Linlin Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yue Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Qiao Jin
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun 130022, China.
| |
Collapse
|
3
|
Fan J, Rao W, Peng D, Wei T, Xing S. Genome-Wide Identification of UGT Gene Family and Functional Analysis of PgUGT29 in Platycodon grandiflorus. Int J Mol Sci 2025; 26:4832. [PMID: 40429974 DOI: 10.3390/ijms26104832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/13/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Uridine diphosphate glycosyltransferase (UGT) is a core protein for glycosylation of plant natural products and other small molecules. Although many studies on functional identification of UGTs are now available, analysis of UGTs in Platycodon grandiflorus is still relatively scarce. We identified 107 PgUGTs genome-wide from P. grandiflorus and investigated their phylogenetic relationships, chromosomal localisation, collinearity, cis-regulatory elements, motifs, domains, and gene structures. PgUGT29 and PgUGT72 were two putative glycosyltransferases for platycodins biosynthesis in P. grandiflorus according to our previous study and bioinfornatical analyses. In vitro enzyme activity showed that PgUGT29 can catalyse the glycosylation of the C3 position of Platycodin D (PD) to generate Platycodin D3 (PD3), while candidate enzyme PgUGT72 does not function as a glycosyltransferase. Molecular docking indicated that T145, D392, Q393, and N396 may be the crucial residues for PgUGT29 to catalyse the generation of PD3 from UDP-Glc and PD. In this study, we identified and cloned PgUGT29, elucidated its catalytic function in converting PD to PD3, and predicted key residues critical for its enzymatic activity. These findings provide a theoretical foundation and technical framework for future targeted metabolic engineering and directional regulation of medicinal components in Platycodon grandiflorus.
Collapse
Affiliation(s)
- Jizhou Fan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weiyi Rao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230038, China
| | - Tao Wei
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
4
|
Huang S, Zhang Y, Wei X, Cai H, Wu Z, Su Z, Ma Z. Chromosome-level genome assembly of an important ethnic medicinal plant Callicarpa nudiflora. Sci Data 2025; 12:655. [PMID: 40251251 PMCID: PMC12008277 DOI: 10.1038/s41597-025-04999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
Callicarpa nudiflora is one of high medicinal and economic value plants in China, which was recorded in Chinese pharmacopoeia (2020 edition) and widely used to treat tropical bacterial infections, acute infectious hepatitis, and internal and external bleeding. In this study, we assembled the C. nudiflora genome with a size of approximately 597.82 Mb and a contig N50 length of 34.14 Mb. A total of 98.61% of the assembled sequences were anchored to 17 pseudo-chromosomes by using PacBio long reads and Hi-C sequencing data. We totally predicted 31,266 protein-coding genes, of which 92.45% could be annotated in databases such as NR, GO, KOG, and KEGG. In addition, we identified 2,303 rRNAs, 884 MicroRNAs and 531 tRNAs from the genome. The chromosome-scale genome represents a crucial resource for investigating the molecular mechanisms underlying the biosynthesis of medicinal components and facilitates the exploration and conservation of C. nudiflora.
Collapse
Affiliation(s)
- Sirong Huang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yu Zhang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xiaomei Wei
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Huimin Cai
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhengdan Wu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhiwei Su
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Zhonghui Ma
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
5
|
Qiu S, Blank LM. Long-Term Yeast Cultivation Coupled with In Situ Extraction for High Triterpenoid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7933-7943. [PMID: 40129278 DOI: 10.1021/acs.jafc.5c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Ginsenosides are a class of triterpenoids from the ginseng genus, with many medicinal properties. Traditionally, ginsenosides are extracted from ginseng plants to satisfy market demand; however, this approach requires substantial plant biomass and a lengthy six-year growth period before harvest. The advancement of synthetic biology allows the production of ginsenosides by engineered yeast. In this study, we combined our previously reported cultivation method with in situ extraction to enhance the production and exportation of intracellular ginsenosides by the engineered Saccharomyces cerevisiae. Remarkably, ginsenoside production reached as high as 3.4 g/L in a single shake flask, with almost 100% of ginsenosides in the organic phase. The "empty yeasts" were successfully reused 10 times in sequential cultivations. These findings are discussed in the context of cultivation intensification for natural product synthesis. Increasing the level of triterpenoid synthesis facilitates rapid development and supports the industrialization of this intriguing group of natural products.
Collapse
Affiliation(s)
- Shangkun Qiu
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
6
|
Cai S, Liao X, Xi Y, Chu Y, Liu S, Su H, Dou D, Xu J, Xiao S. Screening and Application of DNA Markers for Novel Quality Consistency Evaluation in Panax ginseng. Int J Mol Sci 2025; 26:2701. [PMID: 40141343 PMCID: PMC11942579 DOI: 10.3390/ijms26062701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Quality control remains a challenge in traditional Chinese medicine (TCM). This study introduced a novel genetic-based quality control method for TCM. Genetic variations in ginseng were evaluated across whole-genome, chloroplast genome, and ITS2 DNA barcode dimensions. Significant genetic variations were found in whole-genome comparison, leading to the use of inter-simple sequence repeat markers to assess the genetic diversity of ginseng decoction pieces (PG), garden ginseng (GG), and ginseng under forest (FG). Fingerprints of ginseng samples revealed instability within some batches. These evaluations were transformed into information entropy to calculate the size of Hardy-Weinberg equilibrium population (HWEP). FG had significantly higher genetic and chemical minimum HWEP than GG (p < 0.05). Notably, a significant positive correlation was observed between the minimum HWEP for genetics and for chemistry (r = 0.857, p = 0.014). Genetic polymorphism analysis of ginseng has the potential to evaluate chemical quality consistency, offering a new method to ensure quality consistency in TCM.
Collapse
Affiliation(s)
- Siyuan Cai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| | - Xuejiao Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| | - Yidan Xi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China;
| | - Yang Chu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| | - Shuang Liu
- Shanxi Institute of Functional Foods, Shanxi Agricultural University, Taiyuan 030031, China;
| | - Hang Su
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China;
| | - Jiang Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| | - Shuiming Xiao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| |
Collapse
|
7
|
Cheng LT, Wang ZL, Zhu QH, Ye M, Ye CY. A long road ahead to reliable and complete medicinal plant genomes. Nat Commun 2025; 16:2150. [PMID: 40032878 PMCID: PMC11876585 DOI: 10.1038/s41467-025-57448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
Long-read DNA sequencing has propelled medicinal plant genomics forward, with over 400 genomes from 203 plants sequenced by February 2025. However, many genomes still have assembly and annotation flaws, with only 11 gapless telomere-to-telomere assemblies. The core challenge remains identifying genes linked to secondary metabolite biosynthesis, regulation and evolution. High-quality complete genomes are essential for characterizing biosynthetic gene clusters and for enabling robust functional genomics and synthetic biology applications. We propose to focus on achieving more complete genome assemblies in diverse varieties on the basis of refining the currently available ones, leverage lessons from crop genomics research, and apply the cutting-edge genomics technologies in research of medicinal plant genomics.
Collapse
Affiliation(s)
- Ling-Tong Cheng
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang University, Hangzhou, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chu-Yu Ye
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Zou Y, Tang W, Li B. Exploring natural product biosynthesis in plants with mass spectrometry imaging. TRENDS IN PLANT SCIENCE 2025; 30:69-84. [PMID: 39341734 DOI: 10.1016/j.tplants.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
The biosynthesis of natural products (NPs) is a complex dynamic spatial and temporal process that requires the collaboration of multiple disciplines to explore the underlying mechanisms. Mass spectrometry imaging (MSI) is a powerful technique for studying NPs due to its high molecular coverage and sensitivity without the need for labeling. To date, many analysts still use MSI primarily for visualizing the distribution of NPs in heterogeneous tissues, although studies have proved that it can provide crucial insights into the specialized spatial metabolic process of NPs. In this review we strive to bring awareness of the importance of MSI, and we advocate further exploitation of the spatial information obtained from MSI to establish metabolite-gene expression relationships.
Collapse
Affiliation(s)
- Yuchen Zou
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Lephoto KS, Wang D, Liu S, Li L, Wang C, Liu R, Jiang Y, Wang A, Wang K, Zhao M, Chen P, Wang Y, Zhang M. Evolution, Structural and Functional Characteristics of the MADS-box Gene Family and Gene Expression Through Methyl Jasmonate Regulation in Panax ginseng C.A. Meyer. PLANTS (BASEL, SWITZERLAND) 2024; 13:3574. [PMID: 39771274 PMCID: PMC11677711 DOI: 10.3390/plants13243574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
MADS-box genes are essential for plant development and secondary metabolism. The majority of genes within a genome exist in a gene family, each with specific functions. Ginseng is an herb used in medicine for its potential health benefits. The MADS-Box gene family in Jilin ginseng has not been studied. This study investigated the evolution and structural and functional diversification of the PgMADS gene family using bioinformatics and analyzed gene expression through methyl jasmonate (MeJA) regulation. The results revealed that the evolution of the PgMADS gene family is diverged into ten clusters of a constructed phylogenetic tree, of which the SOC1 cluster is the most prevalent with a higher number of PgMADS genes. Despite their distinct evolutionary clusters, a significant number of members contains common conserved motifs. The PgMADS gene family was functionally differentiated into three primary functional categories, biological process, molecular function, and cellular component. Their expression is variable within a tissue, at a developmental stage, and in cultivars. Regardless of the diversity of the functions of PgMADS genes and evolution, their expression correlated and formed a co-expression gene network. Weighted gene co-expression network analyses identified hub genes that could be regulating ginsenoside biosynthesis. Interestingly, the family also is involved in MeJA regulation. These findings provide a valuable reference for future investigations on PgMADS genes.
Collapse
Affiliation(s)
- Katleho Senoko Lephoto
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
- National University of Lesotho, P.O. Roma 180, Roma, Maseru 100, Lesotho
| | - Dinghui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Chaofan Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Ruicen Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Aimin Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
10
|
Wang H, Hong L, Yang F, Zhao Y, Jing Q, Wang W, Zhang M, Yang Y, Chen Q, Hu Y, Zou Y, Li X, Yang W. Desorption Electrospray Ionization-Mass Spectrometry Imaging-Based Spatial Metabolomics for Visualizing and Comparing Ginsenosides and Lipids among Multiple Parts and Positions of the Panax ginseng Root. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27549-27560. [PMID: 39620636 DOI: 10.1021/acs.jafc.4c07461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Ginsenosides and lipids are both bioactive ingredients for ginseng. Targeting these two categories of components, this study was designed to develop desorption electrospray ionization-mass spectrometry imaging approaches and spatial metabolomics strategies, achieving the visualization and differentiation among different parts of Panax ginseng root (e.g., rhizome, main root, lateral root, fibrous root, and adventitious root). Potential chemical markers were identified by searching an in-house ginsenoside library and online Lipid Maps database, together with high-resolution MS2 data analysis. Six ginsenosides and 11 lipids were diagnostic to differentiate five different parts of the P. ginseng root. Additionally, three ginsenosides and 20 lipids were identified as differential markers among the six positions of the main root of P. ginseng. High-abundance malonyl- and oleanolic acid-ginsenosides were observed in the rhizome. These results assist in understanding the accumulation of bioactive molecules all through the root of P. ginseng, which can benefit its quality control and rational use.
Collapse
Affiliation(s)
- Hongda Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Lili Hong
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Feifei Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yuying Zhao
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Qi Jing
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wei Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Min Zhang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Ying Hu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yadan Zou
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wenzhi Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
11
|
Dang NH, Nguyen NH. Leveraging next-generation sequencing technology for the study of ginsenosides biosynthesis and exploring DNA markers in the endemic species Panax vietnamensis. Mol Biol Rep 2024; 52:20. [PMID: 39601979 DOI: 10.1007/s11033-024-10118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Panax species, particularly Panax ginseng, Panax quinquefolius, and Panax vietnamensis are renowned for their medicinal properties and economic value. Of these, the endemic P. vietnamensis species (native to Vietnam, Laos, and southern China) is currently receiving focused attention due to its special ginsenosides accumulation in comparison to the others. Recent advances in next-generation sequencing (NGS) technologies have accelerated the molecular genetic studies in this Panax species, providing deeper insights into the ginsenosides biosynthesis pathway as well as other aspects such as genetic diversity and molecular evolution. This work aims to systematically review all studies on the application of NGS in P. vietnamensis, particularly in whole-genome sequencing and transcriptome analysis. These key findings significantly contribute to identifying critical genes involved in ginsenosides biosynthesis, developing various DNA markers (such as SSR and SNP) for molecular genetic studies, and gaining insights into the species' molecular evolution. Based on these findings, future research can further expand to complete the full genomic database of this species and further investigate the underlying regulatory mechanisms of ginsenosides biosynthesis. These efforts will be crucial for enhancing the conservation, molecular breeding, and agricultural productivity of this valuable medicinal species.
Collapse
Affiliation(s)
- Nhan Hoang Dang
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Center for Life Science Research, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
12
|
Jin Q, Yang K, Zhang Y, Zhang S, Liu Z, Guan Y, Zhang L, Zhang Y, Wang Q. Physiological and molecular mechanisms of silicon and potassium on mitigating iron-toxicity stress in Panax ginseng. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108975. [PMID: 39084170 DOI: 10.1016/j.plaphy.2024.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Iron plays a crucial role in plant chlorophyll synthesis, respiration, and plant growth. However, excessive iron content can contribute to ginseng poisoning. We previously discovered that the application of silicon (Si) and potassium (K) can mitigate the iron toxicity on ginseng. To elucidate the molecular mechanism of how Si and K alleviate iron toxicity stress in ginseng. We investigated the physiological and transcriptional effects of exogenous Si and K on Panax ginseng. The results suggested that the leaves of ginseng with Si and K addition under iron stress increased antioxidant enzyme activity or secondary metabolite content, such as phenylalanine amino-lyase, polyphenol oxidase, ascorbate peroxidase, total phenols and lignin, by 6.21%-25.94%, 30.12%-309.19%, 32.26%-38.82%, 7.81%-23.66%, and 4.68%-48.42%, respectively. Moreover, Si and K increased the expression of differentially expressed genes (DEGs) associated with resistance to both biotic and abiotic stress, including WRKY (WRKY1, WRKY5, and WRKY65), bHLH (bHLH35, bHLH66, bHLH128, and bHLH149), EREBP, ERF10 and ZIP. Additionally, the amount of DEGs of ginseng by Si and K addition was enriched in metabolic processes, single-organism process pathways, signal transduction, metabolism, synthesis and disease resistance. In conclusion, the utilization of Si and K can potentially reduce the accumulation of iron in ginseng, regulate the expression of iron tolerance genes, and enhance the antioxidant enzyme activity and secondary metabolite production in both leaves and roots, thus alleviating the iron toxicity stress in ginseng.
Collapse
Affiliation(s)
- Qiao Jin
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Kexin Yang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China; College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Shuna Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Zhengbo Liu
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yiming Guan
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Linlin Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yue Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Qiuxia Wang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China.
| |
Collapse
|
13
|
Kielich N, Mazur O, Musidlak O, Gracz-Bernaciak J, Nawrot R. Herbgenomics meets Papaveraceae: a promising -omics perspective on medicinal plant research. Brief Funct Genomics 2024; 23:579-594. [PMID: 37952099 PMCID: PMC11812042 DOI: 10.1093/bfgp/elad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Herbal medicines were widely used in ancient and modern societies as remedies for human ailments. Notably, the Papaveraceae family includes well-known species, such as Papaver somniferum and Chelidonium majus, which possess medicinal properties due to their latex content. Latex-bearing plants are a rich source of diverse bioactive compounds, with applications ranging from narcotics to analgesics and relaxants. With the advent of high-throughput technologies and advancements in sequencing tools, an opportunity exists to bridge the knowledge gap between the genetic information of herbs and the regulatory networks underlying their medicinal activities. This emerging discipline, known as herbgenomics, combines genomic information with other -omics studies to unravel the genetic foundations, including essential gene functions and secondary metabolite biosynthesis pathways. Furthermore, exploring the genomes of various medicinal plants enables the utilization of modern genetic manipulation techniques, such as Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR/Cas9) or RNA interference. This technological revolution has facilitated systematic studies of model herbs, targeted breeding of medicinal plants, the establishment of gene banks and the adoption of synthetic biology approaches. In this article, we provide a comprehensive overview of the recent advances in genomic, transcriptomic, proteomic and metabolomic research on species within the Papaveraceae family. Additionally, it briefly explores the potential applications and key opportunities offered by the -omics perspective in the pharmaceutical industry and the agrobiotechnology field.
Collapse
Affiliation(s)
- Natalia Kielich
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oskar Musidlak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Gracz-Bernaciak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
14
|
Jiang T, Zhang Y, Zuo G, Luo T, Wang H, Zhang R, Luo Z. Transcription factor PgNAC72 activates DAMMARENEDIOL SYNTHASE expression to promote ginseng saponin biosynthesis. PLANT PHYSIOLOGY 2024; 195:2952-2969. [PMID: 38606940 DOI: 10.1093/plphys/kiae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
Ginsenosides, the primary bioactive constituents in ginseng (Panax ginseng), possess substantial pharmacological potential and are in high demand in the market. The plant hormone methyl jasmonate (MeJA) effectively elicits ginsenoside biosynthesis in P. ginseng, though the regulatory mechanism remains largely unexplored. NAC transcription factors are critical in intricate plant regulatory networks and participate in numerous plant physiological activities. In this study, we identified a MeJA-responsive NAC transcription factor gene, PgNAC72, from a transcriptome library produced from MeJA-treated P. ginseng callus. Predominantly expressed in P. ginseng flowers, PgNAC72 localizes to the nucleus. Overexpressing PgNAC72 (OE-PgNAC72) in P. ginseng callus notably elevated total saponin levels, particularly dammarane-type ginsenosides, by upregulating dammarenediol synthase (PgDDS), encoding a key enzyme in the ginsenoside biosynthesis pathway. Electrophoretic mobility shift assays and dual-luciferase assays confirmed that PgNAC72 binds to the NAC-binding elements in the PgDDS promoter, thereby activating its transcription. Further RNA-seq and terpenoid metabolomic data in the OE-PgNAC72 line confirmed that PgNAC72 enhances ginsenoside biosynthesis. These findings uncover a regulatory role of PgNAC72 in MeJA-mediated ginsenoside biosynthesis, providing insights into the ginsenoside regulatory network and presenting a valuable target gene for metabolic engineering.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China
| | - Gege Zuo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China
| | - Tiao Luo
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Hui Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China
| | - Ru Zhang
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Zhiyong Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China
| |
Collapse
|
15
|
Qian J, Jiang Y, Hu H. Ginsenosides: an immunomodulator for the treatment of colorectal cancer. Front Pharmacol 2024; 15:1408993. [PMID: 38939839 PMCID: PMC11208871 DOI: 10.3389/fphar.2024.1408993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Ginsenosides, the primary bioactive ingredients derived from the root of Panax ginseng, are eagerly in demand for tumor patients as a complementary and alternative drug. Ginsenosides have increasingly become a "hot topic" in recent years due to their multifunctional role in treating colorectal cancer (CRC) and regulating tumor microenvironment (TME). Emerging experimental research on ginsenosides in the treatment and immune regulation of CRC has been published, while no review sums up its specific role in the CRC microenvironment. Therefore, this paper systematically introduces how ginsenosides affect the TME, specifically by enhancing immune response, inhibiting the activation of stromal cells, and altering the hallmarks of CRC cells. In addition, we discuss their impact on the physicochemical properties of the tumor microenvironment. Furthermore, we discuss the application of ginsenosides in clinical treatment as their efficacy in enhancing tumor patient immunity and prolonging survival. The future perspectives of ginsenoside as a complementary and alternative drug of CRC are also provided. This review hopes to open up a new horizon for the cancer treatment of Traditional Chinese Medicine monomers.
Collapse
Affiliation(s)
- Jianan Qian
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Song Y, Zhang Y, Wang X, Yu X, Liao Y, Zhang H, Li L, Wang Y, Liu B, Li W. Telomere-to-telomere reference genome for Panax ginseng highlights the evolution of saponin biosynthesis. HORTICULTURE RESEARCH 2024; 11:uhae107. [PMID: 38883331 PMCID: PMC11179851 DOI: 10.1093/hr/uhae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/31/2024] [Indexed: 06/18/2024]
Abstract
Ginseng (Panax ginseng) is a representative of Chinese traditional medicine, also used worldwide, while the triterpene saponin ginsenoside is the most important effective compound within it. Ginseng is an allotetraploid, with complex genetic background, making the study of its metabolic evolution challenging. In this study, we assembled a telomere-to-telomere ginseng reference genome, constructed of 3.45 Gb with 24 chromosomes and 77 266 protein-coding genes. Additionally, the reference genome was divided into two subgenomes, designated as subgenome A and B. Subgenome A contains a larger number of genes, whereas subgenome B has a general expression advantage, suggesting that ginseng subgenomes experienced asymmetric gene loss with biased gene expression. The two subgenomes separated approximately 6.07 million years ago, and subgenome B shows the closest relation to Panax vietnamensis var. fuscidiscus. Comparative genomics revealed an expansion of gene families associated with ginsenoside biosynthesis in both ginseng subgenomes. Furthermore, both tandem duplications and proximal duplications play crucial roles in ginsenoside biosynthesis. We also screened functional genes identified in previous research and found that some of these genes located in colinear regions between subgenomes have divergence functions, revealing an unbalanced evolution in both subgenomes and the saponin biosynthesis pathway in ginseng. Our work provides important resources for future genetic studies and breeding programs of ginseng, as well as the biosynthesis of ginsenosides.
Collapse
Affiliation(s)
- Yiting Song
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yating Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xikai Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yi Liao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hao Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200433, China
| | - Yingping Wang
- State-Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
17
|
Dong J, Zhao X, Song X, Wang S, Zhao X, Liang B, Long Y, Xing Z. Identification of Eleutherococcus senticosus NAC transcription factors and their mechanisms in mediating DNA methylation of EsFPS, EsSS, and EsSE promoters to regulate saponin synthesis. BMC Genomics 2024; 25:536. [PMID: 38816704 PMCID: PMC11140872 DOI: 10.1186/s12864-024-10442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The formation of pharmacologically active components in medicinal plants is significantly impacted by DNA methylation. However, the exact mechanisms through which DNA methylation regulates secondary metabolism remain incompletely understood. Research in model species has demonstrated that DNA methylation at the transcription factor binding site within functional gene promoters can impact the binding of transcription factors to target DNA, subsequently influencing gene expression. These findings suggest that the interaction between transcription factors and target DNA could be a significant mechanism through which DNA methylation regulates secondary metabolism in medicinal plants. RESULTS This research conducted a comprehensive analysis of the NAC family in E. senticosus, encompassing genome-wide characterization and functional analysis. A total of 117 EsNAC genes were identified and phylogenetically divided into 15 subfamilies. Tandem duplications and chromosome segment duplications were found to be the primary replication modes of these genes. Motif 2 was identified as the core conserved motif of the genes, and the cis-acting elements, gene structures, and expression patterns of each EsNAC gene were different. EsJUB1, EsNAC047, EsNAC098, and EsNAC005 were significantly associated with the DNA methylation ratio in E. senticosus. These four genes were located in the nucleus or cytoplasm and exhibited transcriptional self-activation activity. DNA methylation in EsFPS, EsSS, and EsSE promoters significantly reduced their activity. The methyl groups added to cytosine directly hindered the binding of the promoters to EsJUB1, EsNAC047, EsNAC098, and EsNAC005 and altered the expression of EsFPS, EsSS, and EsSE genes, eventually leading to changes in saponin synthesis in E. senticosus. CONCLUSIONS NAC transcription factors that are hindered from binding by methylated DNA are found in E. senticosus. The incapacity of these NACs to bind to the promoter of the methylated saponin synthase gene leads to subsequent alterations in gene expression and saponin synthesis. This research is the initial evidence showcasing the involvement of EsNAC in governing the impact of DNA methylation on saponin production in E. senticosus.
Collapse
Affiliation(s)
- Jing Dong
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xuelei Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xin Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shuo Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xueying Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Baoxiang Liang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yuehong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| | - Zhaobin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
18
|
Xiong M, Yang X, Yao L, Li Z, Zhang J, Lv J. Bioassay-guided isolation of three new alkaloids from Suillus bovinus and preliminary mechanism against ginseng root rot. Front Microbiol 2024; 15:1408013. [PMID: 38756729 PMCID: PMC11096550 DOI: 10.3389/fmicb.2024.1408013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
In order to control the occurrence of ginseng root rot caused by Fusarium solani (Mart.) Sacc., the antifungal compounds of the mushroom Suillus bovinus were investigated. And three new alkaloids (1-3), named bovinalkaloid A-C, along with one known analog (4), were isolated and identified by bioassay-guided isolation and spectroscopic analyses. Compound 1 strongly inhibited the mycelial growth and spore germination of F. solani with minimum inhibitory concentration of 2.08 mM. Increases in electrical conductivity, nucleic acid, and protein contents, and decreases in lipid content showed that the membrane permeability and integrity were damaged by compound 1. Compound 1 also increased the contents of malondialdehyde and hydrogen peroxide and the activities of antioxidant enzymes, indicating that lipid peroxidation had taken place in F. solani. Compound 1 may serve as a natural alternative to synthetic fungicides for the control of ginseng root rot.
Collapse
Affiliation(s)
- Miaomiao Xiong
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaomin Yang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lan Yao
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, China
| | - Zhuang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jinxiu Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jianhua Lv
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
19
|
Feng Z, Zheng Y, Jiang Y, Pei J, Huang L. Phylogenetic relationships, selective pressure and molecular markers development of six species in subfamily Polygonoideae based on complete chloroplast genomes. Sci Rep 2024; 14:9783. [PMID: 38684694 PMCID: PMC11059183 DOI: 10.1038/s41598-024-58934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
The subfamily Polygonoideae encompasses a diverse array of medicinal and horticultural plants that hold significant economic value. However, due to the lack of a robust taxonomy based on phylogenetic relationships, the classification within this family is perplexing, and there is also a scarcity of reports on the chloroplast genomes of many plants falling under this classification. In this study, we conducted a comprehensive analysis by sequencing and characterizing the complete chloroplast genomes of six Polygonoideae plants, namely Pteroxygonum denticulatum, Pleuropterus multiflorus, Pleuropterus ciliinervis, Fallopia aubertii, Fallopia dentatoalata, and Fallopia convolvulus. Our findings revealed that these six plants possess chloroplast genomes with a typical quadripartite structure, averaging 162,931 bp in length. Comparative chloroplast analysis, codon usage analysis, and repetitive sequence analysis demonstrated a high level of conservation within the chloroplast genomes of these plants. Furthermore, phylogenetic analysis unveiled a distinct clade occupied by P. denticulatum, while P. ciliinrvis displayed a closer relationship to the three plants belonging to the Fallopia genus. Selective pressure analysis based on maximum likelihood trees showed that a total of 14 protein-coding genes exhibited positive selection, with psbB and ycf1 having the highest number of positive amino acid sites. Additionally, we identified four molecular markers, namely petN-psbM, psal-ycf4, ycf3-trnS-GGA, and trnL-UAG-ccsA, which exhibit high variability and can be utilized for the identification of these six plants.
Collapse
Affiliation(s)
- Zhan Feng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Zheng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yuan Jiang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
20
|
Yu W, Cai S, Zhao J, Hu S, Zang C, Xu J, Hu L. Beyond genome: Advanced omics progress of Panax ginseng. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112022. [PMID: 38311250 DOI: 10.1016/j.plantsci.2024.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Ginseng is a perennial herb of the genus Panax in the family Araliaceae as one of the most important traditional medicine. Genomic studies of ginseng assist in the systematic discovery of genes related to bioactive ginsenosides biosynthesis and resistance to stress, which are of great significance in the conservation of genetic resources and variety improvement. The transcriptome reflects the difference and consistency of gene expression, and transcriptomics studies of ginseng assist in screening ginseng differentially expressed genes to further explore the powerful gene source of ginseng. Protein is the ultimate bearer of ginseng life activities, and proteomic studies of ginseng assist in exploring the biosynthesis and regulation of secondary metabolites like ginsenosides and the molecular mechanism of ginseng adversity adaptation at the overall level. In this review, we summarize the current status of ginseng research in genomics, transcriptomics and proteomics, respectively. We also discuss and look forward to the development of ginseng genome allele mapping, ginseng spatiotemporal, single-cell transcriptome, as well as ginseng post-translational modification proteome. We hope that this review will contribute to the in-depth study of ginseng and provide a reference for future analysis of ginseng from a systems biology perspective.
Collapse
Affiliation(s)
- Wenjing Yu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Siyuan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiali Zhao
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Shuhan Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Chen Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
21
|
Shi M, Zhang S, Zheng Z, Maoz I, Zhang L, Kai G. Molecular regulation of the key specialized metabolism pathways in medicinal plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:510-531. [PMID: 38441295 DOI: 10.1111/jipb.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.
Collapse
Affiliation(s)
- Min Shi
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siwei Zhang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zizhen Zheng
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon, LeZion, 7505101, Israel
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
22
|
Luo S, Yang X, Zhang Y, Kuang T, Tang C. Spatial metabolomics method to reveal differential metabolomes in microregions of Panax quinquefolius roots by using ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry and desorption electrospray ionization mass spectrometry imaging. Food Chem 2024; 435:137504. [PMID: 37813026 DOI: 10.1016/j.foodchem.2023.137504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Panax quinquefolius is a natural homology medicine and food that is rich in bioactive ingredients, such as ginsenosides and polysaccharides. The combination of ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry (UPLC-Q-TOF/MS) and desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was used for the first time in a spatial metabolomics analysis to comprehensively evaluate the differential components in different microregions of P. quinquefolius. UPLC-Q-TOF/MS and DESI-MSI combined with principal component analysis and orthogonal partial least squares-discriminant analysis were used to screen differential metabolites. UPLC-Q-TOF/MS and DESI-MSI screened 27 and 23 differential metabolites, respectively, among which 15 differential metabolites were identified by both methods. It was found that some components, such as ginsenoside Rg1 and malonyl-ginsenoside Rc, were mainly distributed in P of the transverse slice of P. quinquefolius roots, while ginsenoside Ro and malonyl-ginsenoside Rd were mainly distributed in C. The methods and results of this study could be used to understand the precise localization, biosynthesis, and biological functions of special metabolites in P. quinquefolius.
Collapse
Affiliation(s)
- Shiying Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Xuexin Yang
- Waters Technology (Beijing) Co. Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Tingting Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| |
Collapse
|
23
|
Pei Y, Leng L, Sun W, Liu B, Feng X, Li X, Chen S. Whole-genome sequencing in medicinal plants: current progress and prospect. SCIENCE CHINA. LIFE SCIENCES 2024; 67:258-273. [PMID: 37837531 DOI: 10.1007/s11427-022-2375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 10/16/2023]
Abstract
Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.
Collapse
Affiliation(s)
- Yifei Pei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baocai Liu
- Institute of Agricultural Bioresource, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
24
|
Yuan W, Wang QF, Pei WH, Li SY, Wang TM, Song HP, Teng D, Kang TG, Zhang H. Age-induced Changes in Ginsenoside Accumulation and Primary Metabolic Characteristics of Panax Ginseng in Transplantation Mode. J Ginseng Res 2024; 48:103-111. [PMID: 38223831 PMCID: PMC10785232 DOI: 10.1016/j.jgr.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 01/16/2024] Open
Abstract
Background Ginseng (Panax ginseng Mayer) is an important natural medicine. However, a long culture period and challenging quality control requirements limit its further use. Although artificial cultivation can yield a sustainable medicinal supply, research on the association between the transplantation and chaining of metabolic networks, especially the regulation of ginsenoside biosynthetic pathways, is limited. Methods Herein, we performed Liquid chromatography tandem mass spectrometry based metabolomic measurements to evaluate ginsenoside accumulation and categorise differentially abundant metabolites (DAMs). Transcriptome measurements using an Illumina Platform were then conducted to probe the landscape of genetic alterations in ginseng at various ages in transplantation mode. Using pathway data and crosstalk DAMs obtained by MapMan, we constructed a metabolic profile of transplantation Ginseng. Results Accumulation of active ingredients was not obvious during the first 4 years (in the field), but following transplantation, the ginsenoside content increased significantly from 6-8 years (in the wild). Glycerolipid metabolism and Glycerophospholipid metabolism were the most significant metabolic pathways, as Lipids and lipid-like molecule affected the yield of ginsenosides. Starch and sucrose were the most active metabolic pathways during transplantation Ginseng growth. Conclusion This study expands our understanding of metabolic network features and the accumulation of specific compounds during different growth stages of this perennial herbaceous plant when growing in transplantation mode. The findings provide a basis for selecting the optimal transplanting time.
Collapse
Affiliation(s)
- Wei Yuan
- Liaoning University of Traditional Chinese Medicine, China
| | - Qing-feng Wang
- Liaoning University of Traditional Chinese Medicine, China
| | - Wen-han Pei
- Macau University of Science and Technology, China
| | - Si-yu Li
- Liaoning University of Traditional Chinese Medicine, China
| | - Tian-min Wang
- Liaoning University of Traditional Chinese Medicine, China
| | - Hui-peng Song
- Liaoning University of Traditional Chinese Medicine, China
| | | | - Ting-guo Kang
- Liaoning University of Traditional Chinese Medicine, China
| | - Hui Zhang
- Liaoning University of Traditional Chinese Medicine, China
| |
Collapse
|
25
|
Dinday S, Ghosh S. Recent advances in triterpenoid pathway elucidation and engineering. Biotechnol Adv 2023; 68:108214. [PMID: 37478981 DOI: 10.1016/j.biotechadv.2023.108214] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Triterpenoids are among the most assorted class of specialized metabolites found in all the taxa of living organisms. Triterpenoids are the leading active ingredients sourced from plant species and are utilized in pharmaceutical and cosmetic industries. The triterpenoid precursor 2,3-oxidosqualene, which is biosynthesized via the mevalonate (MVA) pathway is structurally diversified by the oxidosqualene cyclases (OSCs) and other scaffold-decorating enzymes such as cytochrome P450 monooxygenases (P450s), UDP-glycosyltransferases (UGTs) and acyltransferases (ATs). A majority of the bioactive triterpenoids are harvested from the native hosts using the traditional methods of extraction and occasionally semi-synthesized. These methods of supply are time-consuming and do not often align with sustainability goals. Recent advancements in metabolic engineering and synthetic biology have shown prospects for the green routes of triterpenoid pathway reconstruction in heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae and Nicotiana benthamiana, which appear to be quite promising and might lead to the development of alternative source of triterpenoids. The present review describes the biotechnological strategies used to elucidate complex biosynthetic pathways and to understand their regulation and also discusses how the advances in triterpenoid pathway engineering might aid in the scale-up of triterpenoid production in engineered hosts.
Collapse
Affiliation(s)
- Sandeep Dinday
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
26
|
Ding X, Chen J, Dai C, Shi P, Pan H, Lin Y, Chen Y, Gong L, Chen L, Wu W, Qiu X, Xu J, Huang Z, Liao B. Developing population identification tool based on polymorphism of rDNA for traditional Chinese medicine: Artemisia annua L. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154882. [PMID: 37210961 DOI: 10.1016/j.phymed.2023.154882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Artemisia annua, a well-known traditional Chinese medicine, is the main source for production of artemisinin, an anti-malaria drug. A. annua is distributed globally, with great diversity of morphological characteristics and artemisinin contents. Diverse traits among A. annua populations impeded the stable production of artemisinin, which needs an efficient tool to identify strains and assess population genetic homogeneity. PURPOSE In this study, ribosomal DNA (rDNA), were characterized for A. annua for strains identification and population genetic homogeneity assessment. METHODS The ribosomal RNA (rRNA) genes were identified using cmscan and assembled using rDNA unit of LQ-9 as a reference. rDNA among Asteraceae species were compared performing with 45S rDNA. The rDNA copy number was calculated based on sequencing depth. The polymorphisms of rDNA sequences were identified with bam-readcount, and confirmed by Sanger sequencing and restriction enzyme experiment. The ITS2 amplicon sequencing was used to verify the stability of ITS2 haplotype analysis. RESULTS Different from other Asteraceae species, 45S and 5S linked-type rDNA was only found in Artemisia genus. Rich polymorphisms of copy number and sequence of rDNA were identified in A. annua population. The haplotype composition of internal transcribed spacer 2 (ITS2) region which had moderate sequence polymorphism and relative short size was significantly different among A. annua strains. A population discrimination method was developed based on ITS2 haplotype analysis with high-throughput sequencing. CONCLUSION This study provides comprehensive characteristics of rDNA and suggests that ITS2 haplotype analysis is ideal tool for A. annua strain identification and population genetic homogeneity assessment.
Collapse
Affiliation(s)
- Xiaoxia Ding
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jieting Chen
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chunyan Dai
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Peiqi Shi
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hengyu Pan
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yanqi Lin
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yikang Chen
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lu Gong
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Linming Chen
- Guangzhou Huibiao Testing Technology Center, Guangzhou 510700, China
| | - Wenguang Wu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaohui Qiu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhihai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Baosheng Liao
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
27
|
Li M, Ma M, Wu Z, Liang X, Zheng Q, Li D, An T, Wang G. Advances in the biosynthesis and metabolic engineering of rare ginsenosides. Appl Microbiol Biotechnol 2023; 107:3391-3404. [PMID: 37126085 DOI: 10.1007/s00253-023-12549-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Rare ginsenosides are the deglycosylated secondary metabolic derivatives of major ginsenosides, and they are more readily absorbed into the bloodstream and function as active substances. The traditional preparation methods hindered the potential application of these effective components. The continuous elucidation of ginsenoside biosynthesis pathways has rendered the production of rare ginsenosides using synthetic biology techniques effective for their large-scale production. Previously, only the progress in the biosynthesis and biotechnological production of major ginsenosides was highlighted. In this review, we summarized the recent advances in the identification of key enzymes involved in the biosynthetic pathways of rare ginsenosides, especially the glycosyltransferases (GTs). Then the construction of microbial chassis for the production of rare ginsenosides, mainly in Saccharomyces cerevisiae, was presented. In the future, discovery of more GTs and improving their catalytic efficiencies are essential for the metabolic engineering of rare ginsenosides. This review will give more clues and be helpful for the characterization of the biosynthesis and metabolic engineering of rare ginsenosides. KEY POINTS: • The key enzymes involved in the biosynthetic pathways of rare ginsenosides are summarized. • The recent progress in metabolic engineering of rare ginsenosides is presented. • The discovery of glycosyltransferases is essential for the microbial production of rare ginsenosides in the future.
Collapse
Affiliation(s)
- Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
28
|
Ye YN, Liang DF, Yi JH, Jin S, Zeng Z. IGTCM: An integrative genome database of traditional Chinese medicine plants. THE PLANT GENOME 2023:e20317. [PMID: 36896476 DOI: 10.1002/tpg2.20317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Fully understanding traditional Chinese medicines (TCMs) is still challenging because of the extreme complexity of their chemical components and mechanisms of action. The TCM Plant Genome Project aimed to obtain genetic information, determine gene functions, discover regulatory networks of herbal species, and elucidate the molecular mechanisms involved in the disease prevention and treatment, thereby accelerating the modernization of TCMs. A comprehensive database that contains TCM-related information will provide a vital resource. Here, we present an integrative genome database of TCM plants (IGTCM) that contains 14,711,220 records of 83 annotated TCM-related herb genomes, including 3,610,350 genes, 3,534,314 proteins and corresponding coding sequences, and 4,032,242 RNAs, as well as 1033 non-redundant component records for 68 herbs, downloaded and integrated from the GenBank and RefSeq databases. For minimal interconnectivity, each gene, protein, and component was annotated using the eggNOG-mapper tool and Kyoto Encyclopedia of Genes and Genomes database to acquire pathway information and enzyme classifications. These features can be linked across several species and different components. The IGTCM database also provides visualization and sequence similarity search tools for data analyses. These annotated herb genome sequences in IGTCM database are a necessary resource for systematically exploring genes related to the biosynthesis of compounds that have significant medicinal activities and excellent agronomic traits that can be used to improve TCM-related varieties through molecular breeding. It also provides valuable data and tools for future research on drug discovery and the protection and rational use of TCM plant resources. The IGTCM database is freely available at http://yeyn.group:96/.
Collapse
Affiliation(s)
- Yuan-Nong Ye
- Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Bioinformatics and Biomedical Big Data Mining Laboratory, Department of Medical Informatics, School of Big Health, Guizhou Medical University, Guiyang, China
| | - Ding-Fa Liang
- Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Jia-Hao Yi
- Bioinformatics and Biomedical Big Data Mining Laboratory, Department of Medical Informatics, School of Big Health, Guizhou Medical University, Guiyang, China
| | - Shuai Jin
- Bioinformatics and Biomedical Big Data Mining Laboratory, Department of Medical Informatics, School of Big Health, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| |
Collapse
|
29
|
Qiu S, Blank LM. Recent Advances in Yeast Recombinant Biosynthesis of the Triterpenoid Protopanaxadiol and Glycosylated Derivatives Thereof. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2197-2210. [PMID: 36696911 DOI: 10.1021/acs.jafc.2c06888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant natural products are a seemingly endless resource for novel chemical structures. However, their extraction often results in high prices, fluctuation in both quantity and quality, and negative environmental impact. The latter might result from the extraction procedure but more often from the high amount of plant biomass required. With the advent of synthetic biology, producing natural plant products in large quantities using yeasts as hosts has become possible. Here, we focus on the recent advances in metabolic engineering of the yeasts species Saccharomyces cerevisiae and Yarrowia lipolytica for the synthesis of ginsenoside triterpenoids, namely, dammarenediol-II, protopanaxadiol, protopanaxatriol, compound K, ginsenoside Rh1, ginsenoside Rh2, ginsenoside Rg3, and ginsenoside F1. A discussion is provided on advanced synthetic biology, bioprocess strategies, and current challenges for the biosynthesis of ginsenoside triterpenoids. Finally, future directions in metabolic and process engineering are summarized and may help reify sustainable ginsenoside production.
Collapse
Affiliation(s)
- Shangkun Qiu
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
30
|
Ma R, Yang P, Jing C, Fu B, Teng X, Zhao D, Sun L. Comparison of the metabolomic and proteomic profiles associated with triterpene and phytosterol accumulation between wild and cultivated ginseng. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:288-299. [PMID: 36652850 DOI: 10.1016/j.plaphy.2023.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Wild ginseng is thought to be superior in its medicinal quality to cultivated ginseng, potentially owing to the differences in active components. This study was designed accordingly to assess the differences in secondary metabolite components and their synthesis in wild and cultivated ginseng by using quantitative proteomics combined with secondary metabolomics approaches. A total of 72 secondary metabolites were found to be differentially abundant, of which dominant abundant in wild ginseng primarily included triterpenoid saponins (ginsenosides) and phytosterols. Ginsenoside diversity was increased in wild ginseng, particularly with respect to rare ginsenosides. Ginsenoside Rk1, F1, Rg5, Rh1, PPT, Rh2, and CK enriched in wild ginseng were validated by HPLC. In addition to ginsenosides, stigmasterol and β-sitosterol were accumulated in wild ginseng. 102 differentially expressed proteins between wild and cultivated ginseng were identified using iTRAQ labeling technique. Among them, 25 were related to secondary metabolism, mainly involved in sesquiterpene and triterpene biosynthesis, which was consistent with metabolomics results. Consistently, the activity levels of HMGR, FDPS, SS, SE, DS, CYP450, GT and CAS, which are key enzymes related to ginsenoside and phytosterol biosynthesis, were confirmed to be elevated in wild ginseng.The biosynthesis of ginsenosides and phytosterols in wild ginseng is higher than that in cultivated ginseng, which may be related to natural growth without artificial domestication. To some extent, this study explained the accumulation of pharmacodynamic components and overall quality of ginseng, which could provide reference for the germplasm improvement and planting of ginseng.
Collapse
Affiliation(s)
- Rui Ma
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Pengdi Yang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, Beihua University, 15 Jilin Street, Jilin, Jilin Province, 132013, China
| | - Chenxu Jing
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Baoyu Fu
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Xiaoyu Teng
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, Beihua University, 15 Jilin Street, Jilin, Jilin Province, 132013, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China.
| |
Collapse
|
31
|
Li F, Chen MM, Zhang HM, Wu QP, Han YB. Production of ginsenoside compound K by microbial cell factory using synthetic biology-based strategy: a review. Biotechnol Lett 2023; 45:163-174. [PMID: 36550334 DOI: 10.1007/s10529-022-03326-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Ginsenoside compound K (CK) is a major intestinal bacterial metabolite of the protopanaxadiol-type ginsenoside family that can be absorbed in the systemic circulation. CK possesses diverse and important pharmacological properties. The low production and high cost of traditional manufacturing methods based on the extraction and biotransformation of total ginsenosides from ginseng have limited their medical application. However, considerable progress has been made in the area of de novo CK production via microbial cell factories using synthetic biology-based strategies. By introducing key enzymes responsible for CK biosynthesis into microbial cells, CK was produced via a series of in vivo enzymatic reactions that utilize the inherent precursors in microbial cells. After systematic optimization using various metabolic engineering strategies, the yield of CK increased significantly and exceeded the traditional plant extraction-biotransformation method, implying the commercial feasibility of this approach. This review summarizes recent novel advancements in the production of CK using microbial cell factories.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng Meng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Min Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qing Ping Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Bin Han
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
32
|
Li L, Lv B, Zang K, Jiang Y, Wang C, Wang Y, Wang K, Zhao M, Chen P, Lei J, Wang Y, Zhang M. Genome-wide identification and systematic analysis of the HD-Zip gene family and its roles in response to pH in Panax ginseng Meyer. BMC PLANT BIOLOGY 2023; 23:30. [PMID: 36639779 PMCID: PMC9838044 DOI: 10.1186/s12870-023-04038-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ginseng, Panax ginseng Meyer, is a traditional herb that is immensely valuable both for human health and medicine and for medicinal plant research. The homeodomain leucine zipper (HD-Zip) gene family is a plant-specific transcription factor gene family indispensable in the regulation of plant growth and development and plant response to environmental stresses. RESULTS We identified 117 HD-Zip transcripts from the transcriptome of ginseng cv. Damaya that is widely grown in Jilin, China where approximately 60% of the world's ginseng is produced. These transcripts were positioned to 64 loci in the ginseng genome and the ginseng HD-Zip genes were designated as PgHDZ genes. Identification of 82 and 83 PgHDZ genes from the ginseng acc. IR826 and cv. ChP genomes, respectively, indicated that the PgHDZ gene family consists of approximately 80 PgHDZ genes. Phylogenetic analysis showed that the gene family originated after Angiosperm split from Gymnosperm and before Dicots split from Monocots. The gene family was classified into four subfamilies and has dramatically diverged not only in gene structure and functionality but also in expression characteristics. Nevertheless, co-expression network analysis showed that the activities of the genes in the family remain significantly correlated, suggesting their functional correlation. Five hub PgHDZ genes were identified that might have central functions in ginseng biological processes and four of them were shown to be actively involved in plant response to environmental pH stress in ginseng. CONCLUSIONS The PgHDZ gene family was identified from ginseng and analyzed systematically. Five potential hub genes were identified and four of them were shown to be involved in ginseng response to environmental pH stress. The results provide new insights into the characteristics, diversity, evolution, and functionality of the PgHDZ gene family in ginseng and lay a foundation for comprehensive research of the gene family in plants.
Collapse
Affiliation(s)
- Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Boxin Lv
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Kaiyou Zang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Chaofan Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yanfang Wang
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
33
|
Cheng X, Li X, Liao B, Xu J, Hu L. Improved performance of proteomic characterization for Panax ginseng by strong cation exchange extraction and liquid chromatography-mass spectrometry analysis. J Chromatogr A 2023; 1688:463692. [PMID: 36549145 DOI: 10.1016/j.chroma.2022.463692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Panax ginseng is a precious and ancient medicinal plant. The completion of its genome sequencing has laid the foundation for the study of proteome and peptidome. However, the high abundance of secondary metabolites in ginseng reduces the identification efficiency of proteins and peptides in mass spectrometry. In this report, strong cation exchange pretreatment was carried out to eliminate the interference of impurities. Based on the charge separation of proteolytic peptides and metabolites, the sensitivity of mass spectrometry detection was greatly improved. After pretreatment, 2322 and 2685 proteins were identified from the root and stem leaf extract. Further, the ginseng peptidome was analyzed based on this optimized strategy, where 970 and 653 endogenous peptides were identified from root and stem leaf extract, respectively. Functional analysis of proteins and endogenous peptides provided valuable information on the biological activities, metabolic processes, and ginsenoside biosynthesis pathways of ginseng.
Collapse
Affiliation(s)
- Xianhui Cheng
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaoying Li
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
34
|
Mohanan P, Yang TJ, Song YH. Genes and Regulatory Mechanisms for Ginsenoside Biosynthesis. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2023; 66:87-97. [PMID: 36714200 PMCID: PMC9867542 DOI: 10.1007/s12374-023-09384-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 05/13/2023]
Abstract
Panax ginseng is a medicinal plant belonging to the Araliaceae family. Ginseng is known as the king of oriental medicine, which has been practiced since ancient times in East Asian countries and globally in the modern era. Ginseng is used as an adaptogen, and research shows that it has several pharmacological benefits for various ailments such as cancer, inflammation, diabetes, and neurological symptoms. The pharmacological benefits of ginseng are attributed to the triterpenoid saponin ginsenosides found throughout the Panax ginseng species, which are abundant in its root and are found exclusively in P. ginseng and Panax quinquefolius. Recently, with the completion of the entire ginseng genome sequencing and the construction of the ginseng genome database, it has become possible to access information about many genes newly predicted to be involved in ginsenoside biosynthesis. This review briefly summarizes the current progress in ginseng genome analysis and genes involved in ginsenoside biosynthesis, proposing directions for functional studies of the predicted genes related to ginsenoside production and its regulation.
Collapse
Affiliation(s)
- Padmanaban Mohanan
- Plant Genomics and Breeding Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| | - Tae-Jin Yang
- Plant Genomics and Breeding Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| | - Young Hun Song
- Plant Genomics and Breeding Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
35
|
Identification of microRNA and analysis of target genes in Panax ginseng. CHINESE HERBAL MEDICINES 2023; 15:69-75. [PMID: 36875435 PMCID: PMC9975625 DOI: 10.1016/j.chmed.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Objective Ginsenosides, polysaccharides and phenols, the main active ingredients in Panax ginseng, are not different significantly in content between 3 and 5 years old of ginsengs called Yuan ginseng and more than ten years old ones called Shizhu ginseng. The responsible chemical compounds cannot fully explain difference in efficacy between them. According to reports in Lonicerae Japonicae Flos (Jinyinhua in Chinese) and Glycyrrhizae Radix et Rhizoma (Gancao in Chinese), microRNA may play a role in efficacy, so we identified microRNAs in P. ginseng at the different growth years and analyzed their target genes. Methods Using high-throughput sequencing, the RNA-Seq, small RNA-Seq and degradome databases of P. ginseng were constructed. The differentially expressed microRNAs was identified by qRT-PCR. Results A total of 63,875 unigenes and 24,154,579 small RNA clean reads were obtained from the roots of P. ginseng. From these small RNAs, 71 miRNA families were identified by bioinformatics target prediction software, including 34 conserved miRNAs, 37 non-conserved miRNA families, as well as 179 target genes of 17 known miRNAs. Through degradome sequencing and computation, we finally verified 13 targets of eight miRNAs involved in transcription, energy metabolism, biological stress and disease resistance, suggesting the significance of miRNAs in the development of P. ginseng. Consistently, major miRNA targets exhibited tissue specificity and complexity in expression patterns. Conclusion Differential expression microRNAs were found in different growth years of ginsengs (Shizhu ginseng and Yuan ginseng), and the regulatory roles and functional annotations of miRNA targets in P. ginseng need further investigation.
Collapse
|
36
|
Xu J, Hu Z, He H, Ou X, Yang Y, Xiao C, Yang C, Li L, Jiang W, Zhou T. Transcriptome analysis reveals that jasmonic acid biosynthesis and signaling is associated with the biosynthesis of asperosaponin VI in Dipsacus asperoides. FRONTIERS IN PLANT SCIENCE 2022; 13:1022075. [PMID: 36798802 PMCID: PMC9928152 DOI: 10.3389/fpls.2022.1022075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/01/2022] [Indexed: 05/27/2023]
Abstract
Dipsacus asperoides is a perennial herb, the roots of which are abundant in asperosaponin VI, which has important medicinal value. However, the molecular mechanism underlying the biosynthesis of asperosaponin VI in D. asperoides remains unclear. In present study, a comprehensive investigation of asperosaponin VI biosynthesis was conducted at the levels of metabolite and transcript during root development. The content of asperosaponin VI was significantly accumulated in two-leaf stage roots, and the spatial distribution of asperosaponin VI was localized in the xylem. The concentration of asperosaponin VI gradually increased in the root with the development process. Transcriptome analysis revealed 3916 unique differentially expressed genes (DEGs) including 146 transcription factors (TFs) during root development in D. asperoides. In addition, α-linolenic acid metabolism, jasmonic acid (JA) biosynthesis, JA signal transduction, sesquiterpenoid and triterpenoid biosynthesis, and terpenoid backbone biosynthesis were prominently enriched. Furthermore, the concentration of JA gradually increased, and genes involved in α-linolenic acid metabolism, JA biosynthesis, and triterpenoid biosynthesis were up-regulated during root development. Moreover, the concentration of asperosaponin VI was increased following methyl jasmonate (MeJA) treatment by activating the expression of genes in the triterpenoid biosynthesis pathway, including acetyl-CoA acetyltransferase (DaAACT), 3-hydroxy-3-methylglutaryl coenzyme A synthase (DaHMGCS), 3-hydroxy-3-methylglutaryl coenzyme-A reductase (DaHMGCR). We speculate that JA biosynthesis and signaling regulates the expression of triterpenoid biosynthetic genes and facilitate the biosynthesis of asperosaponin VI. The results suggest a regulatory network wherein triterpenoids, JA, and TFs co-modulate the biosynthesis of asperosaponin VI in D. asperoides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Zhou
- Resource Institute for Chinese Medicine and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
37
|
Shi Z, Chen H, Zhou X, Yang W, Lin Y. Pharmacological effects of natural medicine ginsenosides against Alzheimer's disease. Front Pharmacol 2022; 13:952332. [PMID: 36467099 PMCID: PMC9708891 DOI: 10.3389/fphar.2022.952332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/08/2022] [Indexed: 08/04/2023] Open
Abstract
Ginsenosides are the most important pharmacological active ingredient of ginseng, with multiple biological therapeutic targets, mild action and no side effects. It is having shown beneficial effects in vitro and in vivo models of AD. In this review, we analyze large literature, summarize the inhibition of ginsenosides fibrous extracellular deposition of β-amyloid (Aβ) and neurofibrillary tangles (NFTs) of possible mechanisms, and explain the effects of ginsenosides on AD neuroprotection from the aspects of antioxidant, anti-inflammatory, and anti-apoptosis, prove the potential of ginsenosides as a new class of drugs for the treatment of AD. In addition, according to the current clinical application status of natural drugs, this paper analysis the delivery route and delivery mode of ginsenosides from the perspective of pharmacokinetics, providing a deeper insight into the clinical application of ginsenosides in the treatment of AD.
Collapse
Affiliation(s)
- Zhikun Shi
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu Chen
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xu Zhou
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yang Lin
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Transcriptome and Phenotype Integrated Analysis Identifies Genes Controlling Ginsenoside Rb1 Biosynthesis and Reveals Their Interactions in the Process in Panax ginseng. Int J Mol Sci 2022; 23:ijms232214016. [PMID: 36430494 PMCID: PMC9698431 DOI: 10.3390/ijms232214016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Genes are the keys to deciphering the molecular mechanism underlying a biological trait and designing approaches desirable for plant genetic improvement. Ginseng is an important medicinal herb in which ginsenosides have been shown to be the major bioactive component; however, only a few genes involved in ginsenoside biosynthesis have been cloned through orthologue analysis. Here, we report the identification of 21 genes controlling Rb1 biosynthesis by stepwise ginseng transcriptome and Rb1 content integrated analysis. We first identified the candidate genes for Rb1 biosynthesis by integrated analysis of genes with the trait from four aspects, including gene transcript differential expression between highest- and lowest-Rb1 content cultivars, gene transcript expression-Rb1 content correlation, and biological impacts of gene mutations on Rb1 content, followed by the gene transcript co-expression network. Twenty-two candidate genes were identified, of which 21 were functionally validated for Rb1 biosynthesis by gene regulation, genetic transformation, and mutation analysis. These genes were strongly correlated in expression with the previously cloned genes encoding key enzymes for Rb1 biosynthesis. Based on the correlations, a pathway for Rb1 biosynthesis was deduced to indicate the roles of the genes in Rb1 biosynthesis. Moreover, the genes formed a strong co-expression network with the previously cloned Rb1 biosynthesis genes, and the variation in the network was associated with the variation in the Rb1 content. These results indicate that Rb1 biosynthesis is a process of correlative interactions among Rb1 biosynthesis genes. Therefore, this study provides new knowledge, 21 new genes, and 96 biomarkers for Rb1 biosynthesis useful for enhanced research and breeding in ginseng.
Collapse
|
39
|
Li Y, Zhang L, Wang T, Zhang C, Wang R, Zhang D, Xie Y, Zhou N, Wang W, Zhang H, Hu B, Li W, Zhao Q, Wang L, Wu X. The complete chloroplast genome sequences of three lilies: genome structure, comparative genomic and phylogenetic analyses. JOURNAL OF PLANT RESEARCH 2022; 135:723-737. [PMID: 36260182 DOI: 10.1007/s10265-022-01417-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
We sequenced and analyzed the complete chloroplast genomes of Lilium amoenum, Lilium souliei, and Nomocharis forrestii in detail, including the first sequence and structural comparison of Nomocharis forrestii. We found that the lengths and nucleotide composition of the three chloroplast genes showed little variation. The chloroplast genomes of the three Lilium species contain 87 protein coding genes (PCGs), 38 tRNAs, and 8 rRNA genes. The only difference is that Nomocharis forrestii had an additional infA pseudogene. In the sequence analysis of the Lilium chloroplast genomes, 216 SSRs, 143 pairs of long repeats, 571 SNPs, and 202 indels were detected. In addition, we identified seven hypervariable regions that can be used as potential molecular markers and DNA barcodes of Lilium through complete sequence alignment. The phylogenetic tree was constructed from the three chloroplast genome sequences of Lilium obtained here and 40 chloroplast genome sequences from the NCBI database (including 35 Lilium species, 4 Fritillaria species, and one species of Smilax). The analysis showed that the species clustering of the genus Lilium essentially conformed to the classical morphological classification system of Comber, but differences in the classification of individual species remained. In our report, we support the reclassification of Lilium henryi and Lilium rosthorniiy in the genus Lilium. In general, this study not only provides genome data for three Lilium species, but also provides a comparative analysis of the Lilium chloroplast genomes. These advances will help to identify Lilium species, clarify the phylogenetic analysis of the Lilium genus, and help to solve and improve the disputes and deficiencies in the traditional morphological classification.
Collapse
Affiliation(s)
- Yuan Li
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| | - LiNa Zhang
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| | - TianXi Wang
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| | - ChaoChao Zhang
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| | - RuiJia Wang
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| | - Da Zhang
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| | - YuQi Xie
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| | - NingNing Zhou
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| | - WeiZhen Wang
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| | - HuiMin Zhang
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| | - Bin Hu
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| | - WenHan Li
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| | - QingQing Zhao
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| | - LiHua Wang
- Flower Research Institute, Yunnan Agriculture Academy of Science, Panlong District, Kunming, 650025, Yunnan, China.
| | - XueWei Wu
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China.
| |
Collapse
|
40
|
DI P, YAN Y, WANG P, YAN M, WANG YP, HUANG LQ. Integrative SMRT sequencing and ginsenoside profiling analysis provide insights into the biosynthesis of ginsenoside in Panax quinquefolium. Chin J Nat Med 2022; 20:614-626. [DOI: 10.1016/s1875-5364(22)60198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/28/2022]
|
41
|
Liao B, Shen X, Xiang L, Guo S, Chen S, Meng Y, Liang Y, Ding D, Bai J, Zhang D, Czechowski T, Li Y, Yao H, Ma T, Howard C, Sun C, Liu H, Liu J, Pei J, Gao J, Wang J, Qiu X, Huang Z, Li H, Yuan L, Wei J, Graham I, Xu J, Zhang B, Chen S. Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. MOLECULAR PLANT 2022; 15:1310-1328. [PMID: 35655434 DOI: 10.1016/j.molp.2022.05.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Artemisia annua is the major natural source of artemisinin, an anti-malarial medicine commonly used worldwide. Here, we present chromosome-level haploid maps for two A. annua strains with different artemisinin contents to explore the relationships between genomic organization and artemisinin production. High-fidelity sequencing, optical mapping, and chromatin conformation capture sequencing were used to assemble the heterogeneous and repetitive genome and resolve the haplotypes of A. annua. Approximately 50,000 genes were annotated for each haplotype genome, and a triplication event that occurred approximately 58.12 million years ago was examined for the first time in this species. A total of 3,903,467-5,193,414 variants (SNPs, indels, and structural variants) were identified in the 1.5-Gb genome during pairwise comparison between haplotypes, consistent with the high heterozygosity of this species. Genomic analyses revealed a correlation between artemisinin concents and the copy number of amorpha-4,11-diene synthase genes. This correlation was further confirmed by resequencing of 36 A. annua samples with varied artemisinin contents. Circular consensus sequencing of transcripts facilitated the detection of paralog expression. Collectively, our study provides chromosome-level allele-aware genome assemblies for two A. annua strains and new insights into the biosynthesis of artemisinin and its regulation, which will contribute to conquering malaria worldwide.
Collapse
Affiliation(s)
- Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaofeng Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Li Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuai Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiyu Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying Meng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dandan Ding
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junqi Bai
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Tomasz Czechowski
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Hui Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Tingyu Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caroline Howard
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1RQ, UK
| | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Jiushi Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Jin Pei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jihai Gao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jigang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaohui Qiu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhihai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongyi Li
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ling Yuan
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Ian Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Boli Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
42
|
Zhang G, Wei F, Chen Z, Wang Y, Jiao S, Yang J, Chen Y, Liu C, Huang Z, Dong L, Chen S. Evidence for saponin diversity-mycobiome links and conservatism of plant-fungi interaction patterns across Holarctic disjunct Panax species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154583. [PMID: 35304141 DOI: 10.1016/j.scitotenv.2022.154583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Although interplays between plant and coevolved microorganisms are believed to drive landscape formation and ecosystem services, the relationships between the mycobiome and phytochemical evolution and the evolutionary characteristics of plant-mycobiome interaction patterns are still unclear. The present study explored fungal communities from 405 multiniche samples of three Holarctic disjunct Panax species. The overall mycobiomes showed compartment-dominated variations and dynamic universality. Neutral models were fitted for each compartment at the Panax genus (I) and species (II) levels to infer the community assembly mechanism and identify fungal subgroups potentially representing different plant-fungi interaction results, i.e., the potentially selected, opposed, and neutral taxa. Selection contributed more to the endosphere than to external compartments. The nonneutral taxa showed significant phylogenetic clustering. In Model I, the opposed subgroups could best reflect Panax saponin diversities (r = 0.69), and genera with highly positive correlations to specific saponins were identified using machine learning. Although mycobiomes in the three species differed significantly, subgroups in Model II were phylogenetically clustered based on potential interaction type rather than plant species, indicating potentially conservative plant-fungi interactions. In summary, the finding of strong links between invaders and saponin diversity can help explore the underlying mechanisms of saponin biosynthesis evolution from microbial insights, which is important to understanding the formation of the current landscape. The potential conservatism of plant-fungi interaction patterns suggests that the related genetic modules and selection pressures were convergent across Panax species, advancing our understanding of plant interplay with biotic environments.
Collapse
Affiliation(s)
- Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co, Ltd., Wenshan 663000, China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, Wenshan 663000, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan 663000, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling 712100, China.
| | - JiaYing Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongzhong Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Congsheng Liu
- Zhangzhou Pianzihuang Pharmaceutical Co., Ltd., Fujian 363099, China
| | - Zhixin Huang
- Zhangzhou Pianzihuang Pharmaceutical Co., Ltd., Fujian 363099, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
43
|
Yang L, Gu Y, Zhou J, Yuan P, Jiang N, Wu Z, Tan X. Whole-Genome Identification and Analysis of Multiple Gene Families Reveal Candidate Genes for Theasaponin Biosynthesis in Camellia oleifera. Int J Mol Sci 2022; 23:ijms23126393. [PMID: 35742835 PMCID: PMC9223445 DOI: 10.3390/ijms23126393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 01/27/2023] Open
Abstract
Camellia oleifera is an economically important oilseed tree. Seed meals of C. oleifera have a long history of use as biocontrol agents in shrimp farming and as cleaning agents in peoples’ daily lives due to the presence of theasaponins, the triterpene saponins from the genus Camellia. To characterize the biosynthetic pathway of theasaponins in C. oleifera, members of gene families involved in triterpenoid biosynthetic pathways were identified and subjected to phylogenetic analysis with corresponding members in Arabidopsis thaliana, Camellia sinensis, Actinidia chinensis, Panax ginseng, and Medicago truncatula. In total, 143 triterpenoid backbone biosynthetic genes, 1169 CYP450s, and 1019 UGTs were identified in C. oleifera. The expression profiles of triterpenoid backbone biosynthetic genes were analyzed in different tissue and seed developmental stages of C. oleifera. The results suggested that MVA is the main pathway for triterpenoid backbone biosynthesis. Moreover, the candidate genes for theasaponin biosynthesis were identified by WGCNA and qRT-PCR analysis; these included 11 CYP450s, 14 UGTs, and eight transcription factors. Our results provide valuable information for further research investigating the biosynthetic and regulatory network of theasaponins.
Collapse
Affiliation(s)
- Liying Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Yiyang Gu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
- Correspondence: (J.Z.); (X.T.)
| | - Ping Yuan
- Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Nan Jiang
- School of Packing and Material Engineering, Hunan University of Technology, Zhuzhou 412000, China;
| | - Zelong Wu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
- Correspondence: (J.Z.); (X.T.)
| |
Collapse
|
44
|
Guo HY, Zhang J, Lin LM, Song X, Zhang DD, Cui MH, Long CW, Long YH, Xing ZB. Metabolome and transcriptome analysis of eleutheroside B biosynthesis pathway in Eleutherococcus senticosus. Heliyon 2022; 8:e09665. [PMID: 35706960 PMCID: PMC9190005 DOI: 10.1016/j.heliyon.2022.e09665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/15/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Eleutheroside B (syringin) is a medicinal active ingredient extracted from Eleutherococcus senticosus (Ruper. et Maxim.) Maxim with high clinical application value. However, its synthesis pathway remains unknown. Here, we analyzed the eleutheroside B biosynthesis pathway in E. senticosus. Consequently, metabolomic and transcriptomic analyses identified 461 differentially expressed genes (DEGs) and 425 metabolites. Further, we identified 7 DEGs and 67 metabolites involved in the eleutheroside B biosynthetic pathway in the eleutheroside B high and low plants. The correlation between the gene and metabolites was explored using the pearson correlation coefficient (PCC) analysis. Caffeoyl-CoA O-methyltransferase, caffeic acid-O-methyltransferase, β-amyrin synthase (β-AS) genes, NAC5, and HB5 transcription factors were identified as candidate genes and transcription factors related to the eleutheroside B synthesis. Eleutheroside B content was the highest at the young stage of the leaves both in the high and low eleutheroside B plants. Quantitative real-time polymerase chain reaction revealed that phenylalanine ammonia-lyase1, cinnamate 4-hydroxylase, β-AS, and leucoanthocyanidin reductase gene had higher expression levels at the young stage of the leaves in the low eleutheroside B plants but lower expression levels in the high eleutheroside B plants. In the present study, we complemented the eleutheroside B biosynthetic pathway by analyzing the expression levels of relevant genes and metabolite accumulation patterns.
Collapse
Affiliation(s)
- Hong-Yu Guo
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jie Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Li-Mei Lin
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Xin Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Duo-Duo Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Ming-Hui Cui
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | | | - Yue-Hong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
- Corresponding author.
| | - Zhao-Bin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
- Corresponding author.
| |
Collapse
|
45
|
Guo S, Liao X, Chen S, Liao B, Guo Y, Cheng R, Xiao S, Hu H, Chen J, Pei J, Chen Y, Xu J, Chen S. A Comparative Analysis of the Chloroplast Genomes of Four Polygonum Medicinal Plants. Front Genet 2022; 13:764534. [PMID: 35547259 PMCID: PMC9084321 DOI: 10.3389/fgene.2022.764534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Polygonum is a generalized genus of the Polygonaceae family that includes various herbaceous plants. In order to provide aid in understanding the evolutionary and phylogenetic relationship in Polygonum at the chloroplast (cp) genome-scale level, we sequenced and annotated the complete chloroplast genomes of four Polygonum species using next-generation sequencing technology and CpGAVAS. Then, repeat sequences, IR contractions, and expansion and transformation sites of chloroplast genomes of four Polygonum species were studied, and a phylogenetic tree was built using the chloroplast genomes of Polygonum. The results indicated that the chloroplast genome construction of Polygonum also displayed characteristic four types of results, comparable to the published chloroplast genome of recorded angiosperms. The chloroplast genomes of the four Polygonum plants are highly consistent in genome size (159,015 bp-163,461 bp), number of genes (112 genes, including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes), gene types, gene order, codon usage, and repeat sequence distribution, which identifies the high preservation among the Polygonum chloroplast genomes. The Polygonum phylogenetic tree was recreated by a full sequence of the chloroplast genome, which illustrates that the P. bistorta, P. orientale, and P. perfoliatum are divided into the same branch, and P. aviculare belongs to Fallopia. The precise system site of lots base parts requires further verification, but the study would provide a basis for developing the available genetic resources and evolutionary relationships of Polygonum.
Collapse
Affiliation(s)
- Shuai Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuejiao Liao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiyu Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiming Guo
- Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoyu Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Chen
- Beijing Engineering Research Center of Pediatric Surgery, Engineering and Transformation Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Jin Pei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangjin Chen
- Department of City and Regional Planning, Nanjing University, Nanjing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Fang X, Wang M, Zhou X, Wang H, Wang H, Xiao H. Effects of growth years on ginsenoside biosynthesis of wild ginseng and cultivated ginseng. BMC Genomics 2022; 23:325. [PMID: 35461216 PMCID: PMC9035264 DOI: 10.1186/s12864-022-08570-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Ginsenoside, as the main active substance in ginseng, has the function of treating various diseases. However, the ginsenosides content of cultivated ginseng is obviously affected by the growth years, but the molecular mechanism is not clear. In addition, there are significant differences in morphology and physiology between wild ginseng and cultivated ginseng, and the effect of growth years on ginsenoside synthesis not yet understood in wild ginseng. RESULTS Transcriptome sequencing on the roots, stems and leaves of cultivated ginseng and wild ginseng with different growth years was performed in this study, exploring the effect of growth years on gene expression in ginseng. The number of differentially expressed genes (DEGs) from comparison groups in cultivated ginseng was higher than that in wild ginseng. The result of weighted gene co-expression network analysis (WGCNA) showed that growth years significantly affected the gene expression of Mitogen-activated protein kinases (MAPK) signaling pathway and terpenoid backbone biosynthesis pathway in cultivated ginseng, but had no effects in wild ginseng. Furthermore, the growth years had significant effects on the genes related to ginsenoside synthesis in cultivated ginseng, and the effects were different in the roots, stems and leaves. However, it had little influence on the expression of genes related to ginsenoside synthesis in wild ginseng. Growth years might affect the expression of genes for ginsenoside synthesis by influencing the expression of these transcription factors (TFs), like my elob lastosis (MYB), NAM, ATAF1 and 2, and CUC2 (NAC), APETALA2/ethylene-responsive factor (AP2/ERF), basic helix-loop-helix (bHLH) and WRKY, etc., thereby affecting the content of ginsenosides. CONCLUSIONS This study complemented the gaps in the genetic information of wild ginseng in different growth periods and helped to clarify the potential mechanisms of the effect of growth years on the physiological state in wild ginseng and cultivated ginseng, which also provided a new insight into the mechanism of ginsenoside regulation.
Collapse
Affiliation(s)
- Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Manqi Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xinteng Zhou
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Huan Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Hongxing Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
47
|
Endophytic bacterial and fungal community compositions in different organs of ginseng (Panax ginseng). Arch Microbiol 2022; 204:208. [PMID: 35275265 DOI: 10.1007/s00203-022-02815-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 01/18/2023]
Abstract
Panax ginseng (Panax ginseng C. A. Mey.) is a perennial herb of the genus ginseng, which is used as medicine with dried roots and rhizomes. With the deepening of research on ginseng, the chemical components and pharmacological effects of ginseng have gradually been discovered. Endophytes are beneficial to host plants. However, the composition of endophytes in different organs from ginseng is poorly elucidated. The report of ginsenoside production by endophytic microbes isolated from Panax sp., motivated us to explore the endophytic microbial diversity related to the roots, stems, and leaves. In this study, the V5-V7 variable region of endophytic bacteria 16S rRNA gene and V1 variable region of endophytic fungi ITS gene in different organs were analyzed by high-throughput sequencing. The diversity and abundance of endophytic microbes in the three organs are different and are affected by the organs. For example, the most abundant endophytic bacterial genus in roots was Mycobacterium, while, the stems and leaves were Ochrobactrum. Similarly, the fungal endophytes, Coniothyrium and Cladosporium, were also found in high abundance in stems, in comparison to roots and leaves. The Shannon index shows that the diversity of endophytic bacteria in roots is the highest, and the richness of endophytic bacterial was root > stem (p < 0.05). Principal coordinate analysis showed that there were obvious microbial differences among the three groups, and the endophytic bacterial composition of the leaves was closer to that of the roots. This study provides an important reference for the study of endophytic microorganisms in ginseng.
Collapse
|
48
|
Meng F, Tang Q, Chu T, Li X, Lin Y, Song X, Chen W. TCMPG: an integrative database for traditional Chinese medicine plant genomes. HORTICULTURE RESEARCH 2022; 9:uhac060. [PMID: 35591924 PMCID: PMC9113410 DOI: 10.1093/hr/uhac060] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/25/2022] [Indexed: 05/12/2023]
Abstract
Because of their great therapeutic and economic value, medicinal plants have attracted increasing scientific attention. With the rapid development of high-throughput sequencing technology, the genomes of many medicinal plants have been sequenced. Storing and analyzing the increasing volume of genomic data has become an urgent task. To solve this challenge, we have proposed the Traditional Chinese Medicine Plant Genome database (TCMPG, http://cbcb.cdutcm.edu.cn/TCMPG/), an integrative database for storing the scattered genomes of medicinal plants. TCMPG currently includes 160 medicinal plants, 195 corresponding genomes, and 255 herbal medicines. Detailed information on plant species, genomes, and herbal medicines is also integrated into TCMPG. Popular genomic analysis tools are embedded in TCMPG to facilitate the systematic analysis of medicinal plants. These include BLAST for identifying orthologs from different plants, SSR Finder for identifying simple sequence repeats, JBrowse for browsing genomes, Synteny Viewer for displaying syntenic blocks between two genomes, and HmmSearch for identifying protein domains. TCMPG will be continuously updated by integrating new data and tools for comparative and functional genomic analysis.
Collapse
Affiliation(s)
- Fanbo Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianzhe Chu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianhai Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yue Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Wei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
49
|
Global Pharmacopoeia Genome Database is an integrated and mineable genomic database for traditional medicines derived from eight international pharmacopoeias. SCIENCE CHINA. LIFE SCIENCES 2022; 65:809-817. [PMID: 34378141 PMCID: PMC8354779 DOI: 10.1007/s11427-021-1968-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Genomic data have demonstrated considerable traction in accelerating contemporary studies in traditional medicine. However, the lack of a uniform format and dispersed storage limits the full potential of herb genomic data. In this study, we developed a Global Pharmacopoeia Genome Database (GPGD). The database contains 34,346 records for 903 herb species from eight global pharmacopoeias (Brazilian, Egyptian, European, Indian, Japanese, Korean, the Pharmacopoeia of the People's Republic of China, and U.S. Pharmacopoeia's Herbal Medicines Compendium). In particular, the GPGD contains 21,872 DNA barcodes from 867 species, 2,203 organelle genomes from 674 species, 55 whole genomes from 49 species, 534 genomic sequencing datasets from 366 species, and 9,682 transcriptome datasets from 350 species. Among the organelle genomes, 534 genomes from 366 species were newly generated in this study. Whole genomes, organelle genomes, genomic fragments, transcriptomes, and DNA barcodes were uniformly formatted and arranged by species. The GPGD is publicly accessible at http://www.gpgenome.com and serves as an essential resource for species identification, decomposition of biosynthetic pathways, and molecular-assisted breeding analysis. Thus, the database is an invaluable resource for future studies on herbal medicine safety, drug discovery, and the protection and rational use of herbal resources.
Collapse
|
50
|
Liu X, Gong X, Liu Y, Liu J, Zhang H, Qiao S, Li G, Tang M. Application of High-Throughput Sequencing on the Chinese Herbal Medicine for the Data-Mining of the Bioactive Compounds. FRONTIERS IN PLANT SCIENCE 2022; 13:900035. [PMID: 35909744 PMCID: PMC9331165 DOI: 10.3389/fpls.2022.900035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/10/2022] [Indexed: 05/11/2023]
Abstract
The Chinese Herbal Medicine (CHM) has been used worldwide in clinic to treat the vast majority of human diseases, and the healing effect is remarkable. However, the functional components and the corresponding pharmacological mechanism of the herbs are unclear. As one of the main means, the high-throughput sequencing (HTS) technologies have been employed to discover and parse the active ingredients of CHM. Moreover, a tremendous amount of effort is made to uncover the pharmacodynamic genes associated with the synthesis of active substances. Here, based on the genome-assembly and the downstream bioinformatics analysis, we present a comprehensive summary of the application of HTS on CHM for the synthesis pathways of active ingredients from two aspects: active ingredient properties and disease classification, which are important for pharmacological, herb molecular breeding, and synthetic biology studies.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Sen Qiao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- Gang Li,
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Min Tang,
| |
Collapse
|