1
|
Hezwani M, Anokye D, Soutar DE, Ligorio M, Prabhakar N, Oram JC, Cantor AJ, Jackson GD, Terracciano R, Walker M, Baker AN. Glycopolymer-Functionalized Gold Nanoparticles for the Detection of Western Diamondback Rattlesnake ( Crotalus atrox) Venom. Biomacromolecules 2025. [PMID: 40392118 DOI: 10.1021/acs.biomac.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Every 5 minutes, 50 people are bitten by a snake worldwide; four will be permanently disabled and one will die. Most approaches to treating and diagnosing snake envenomation, a World Health Organization (WHO)-neglected tropical disease, rely on antibody-based solutions derived from animals or cell culture. Here, we present the first proof of concept for a glycopolymer-based ultraviolet-visible (UV-vis) assay to detect snake venom, specifically Western Diamondback Rattlesnake (Crotalus atrox) venom. This was achieved by synthesizing a library of glycan-terminated poly(hydroxyethyl acrylamide) functionalized gold nanoparticles. The library was analyzed using UV-vis spectroscopy and biolayer interferometry, with galactose-terminating systems found to demonstrate specificity for C. atrox venom, versus model lectins and Naja naja venom in UV-vis assays. This corroborates glycan array data in the literature and highlights our glycopolymer systems' potential as a diagnostic tool for snakebite, with the best particle system displaying a limit of detection of ∼20 μg·mL-1.
Collapse
Affiliation(s)
- Mahdi Hezwani
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Derecash Anokye
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Douglas E Soutar
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Melissa Ligorio
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Neil Prabhakar
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Jack C Oram
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Alexander J Cantor
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Garrett D Jackson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Roberto Terracciano
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Marc Walker
- Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Alexander N Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| |
Collapse
|
2
|
Díaz-Valdez J, Javier-Reyna R, Galindo A, Salazar-Villatoro L, Montaño S, Orozco E. EhVps35, a retromer component, is a key factor in secretion, motility, and tissue invasion by Entamoeba histolytica. Front Cell Infect Microbiol 2024; 14:1467440. [PMID: 39397861 PMCID: PMC11466944 DOI: 10.3389/fcimb.2024.1467440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024] Open
Abstract
In humans and Drosophila melanogaster, the functional convergence of the endosomal sorting complex required for transport (ESCRT) machinery that is in charge of selecting ubiquitinated proteins for sorting into multivesicular bodies, and the retromer, that is the complex responsible for protein recycling to the plasma membrane and Golgi apparatus. ESCRT and retromer complexes are codependent for protein sorting recycling, degradation, and secretion. In this article, we studied the EhVps35 C isoform (referred to as EhVps35), that is the central member of the Entamoeba histolytica retromer, and its relation with the ESCRT machinery during sorting and protein recycling events and their involvement virulence. Our findings revealed that EhVps35 interacts with at least 300 proteins that participate in multiple cellular processes. Laser confocal and transmission electronic microscopy images, as well as secretion assays, revealed that EhVps35 is secreted in vesicles together with EhVps23 and EhADH (both ESCRT machinery proteins). In addition, immunoprecipitation, immunofluorescence, and molecular docking assays revealed the relationship among EhVps35 and other ESCRT machinery proteins. Red blood cell stimulus increased EhVps35 secretion, and the knockdown of the Ehvps35 gene in trophozoites reduced their capacity to migrate and invade tissues. This also impacts the cellular localization of ubiquitin, EhVps23 (ESCRT-I), and EhVps32 (ESCRT-III) proteins, strongly suggesting their functional relationship. Our results, taken together, give evidence that EhVps35 is a key factor in E. histolytica virulence mechanisms and that it, together with the ESCRT machinery components and other regulatory proteins, is involved in vesicle trafficking, secretion, migration, and cell proliferation.
Collapse
Affiliation(s)
- Joselin Díaz-Valdez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Ausencio Galindo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Sinaloa, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| |
Collapse
|
3
|
Díaz-Valdez J, Javier-Reyna R, Montaño S, Talamás-Lara D, Orozco E. EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of Entamoeba histolytica. FRONTIERS IN PARASITOLOGY 2024; 3:1356601. [PMID: 39817169 PMCID: PMC11732012 DOI: 10.3389/fpara.2024.1356601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/01/2024] [Indexed: 01/18/2025]
Abstract
The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, Entamoeba histolytica, exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved. In this work, we studied the structure of EhVps35 the central member of the CSC retromeric subcomplex as it binds EhVps26 and EhVps29, the other two CSC members, allowing the position of the retromer in the membranes. We also studied the EhVps35 role in the recycling of virulence proteins, particularly those involved in phagocytosis. Confocal microscopy assays revealed that EhVps35 is located in the plasmatic and endosomal membranes and in the phagocytic cups and channels. In addition, it follows the target cell from the moment it is in contact with the trophozoites. Molecular docking analyses, immunoprecipitation assays, and microscopy studies revealed that EhVps35 interacts with the EhADH, Gal/GalNac lectin, and actin proteins. In addition, experimental evidence indicated that it recycles surface proteins, particularly EhADH and Gal/GalNac proteins, two molecules highly involved in virulence. Knockdown of the Ehvps35 gene induced a decrease in protein recycling, as well as impairments in the efficiency of adhesion and the rate of phagocytosis. The actin cytoskeleton was deeply affected by the Ehvps35 gene knockdown. In summary, our results revealed the participation of EhVps35 in protein recycling and phagocytosis. Furthermore, altogether, our results demonstrated the concert of finely regulated molecules, including EhVps35, EhADH, Gal/GalNac lectin, and actin, in the phagocytosis of E. histolytica.
Collapse
Affiliation(s)
- Joselin Díaz-Valdez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico-Bilógicas, Universidad Autónoma de Sinaloa, Sinaloa, Mexico
| | - Daniel Talamás-Lara
- Unidad de Microscopía Electrónica, Laboratorios Nacionales de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico
| |
Collapse
|
4
|
Nagode A, Vanbeselaere J, Duchêne M. Revisiting the isolation and characterisation of Entamoeba histolytica lipopeptidophosphoglycan. Parasitol Res 2024; 123:138. [PMID: 38378851 PMCID: PMC10879251 DOI: 10.1007/s00436-024-08149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The parasite Entamoeba histolytica is the cause of amoebic dysentery and liver abscess in humans. On the protozoan cell surface, a variety of glycosylated molecules are involved in the interaction with the environment, such as attachment to the colonic mucus. One of these molecules is the lipopeptidophosphoglycan (LPPG), a complex surface component with antigenic properties. Its structure is only partly known, it is a glycosylphosphatidylinositol (GPI)-linked glycoprotein with a large amount of O-glycosylation. To date, the sequence of a core protein has not been identified. In this study, we further investigated this complex surface molecule aided by the availability of the monoclonal antibody EH5, which had been raised in our laboratory. We studied the extraction of LPPG in various solvent mixtures and discovered that 2-butanol saturated water was simple and superior to other solvents used in the past. The isolated LPPG was subjected to treatment with several proteases and the Ser/Thr specific cleavage agent scandium (III) trifluoromethanesulfonate (scandium triflate). The products were probed with antibody EH5 and the blots showed that the LPPG preparation was largely resistant to standard proteases, but could be cleaved by the scandium compound. These observations could point to the existence of a Ser- or Thr-rich core protein structure.
Collapse
Affiliation(s)
- Anna Nagode
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Michael Duchêne
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Krishnan D, Pandey M, Nayak S, Ghosh SK. Novel Insights into the Wattle and Daub Model of Entamoeba Cyst Wall Formation and the Importance of Actin Cytoskeleton. Pathogens 2023; 13:20. [PMID: 38251328 PMCID: PMC10818507 DOI: 10.3390/pathogens13010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The "Wattle and Daub" model of cyst wall formation in Entamoeba invadens has been used to explain encystment in Entamoeba histolytica, the causal agent of amoebiasis, and this process could be a potential target for new antiamoebic drugs. In this study, we studied the morphological stages of chitin wall formation in E. invadens in more detail using fluorescent chitin-binding dyes and the immunolocalization of cyst wall proteins. It was found that chitin deposition was mainly initiated on the cell surface at a specific point or at different points at the same time. The cystic wall grew outward and gradually covered the entire surface of the cyst over time, following the model of Wattle and Daub. The onset of chitin deposition was guided by the localization of chitin synthase 1 to the plasma membrane, occurring on the basis of the Jacob lectin in the cell membrane. During encystation, F-actin was reorganized into the cortical region within the early stages of encystation and remained intact until the completion of the chitin wall. The disruption of actin polymerization in the cortical region inhibited proper wall formation, producing wall-less cysts or cysts with defective chitin walls, indicating the importance of the cortical actin cytoskeleton for proper cyst wall formation.
Collapse
Affiliation(s)
| | | | | | - Sudip K. Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (D.K.); (M.P.); (S.N.)
| |
Collapse
|
6
|
Abstract
Intestinal parasites include intestinal protozoa and intestinal helminths. Intestinal parasitic infections (IPIs) pose a global health problem affecting over one billion people worldwide. Although these infections are predominantly seen in the developing world, they are frequently seen in the developed countries, particularly in immunocompromised patients. Patients' clinical presentations generally include diarrhea, dysentery, abdominal pain, nausea, vomiting, nutritional deficiency, iron deficiency anemia, anal and perianal itching, and rarely intestinal obstruction. The intestinal parasites have similarities in their mode of transmission and life cycle. The stool test is the primary way of diagnosing IPIs. Treatment is given with various anti-parasitic agents. However, appropriate preventive measures are essential for successfully controlling the IPIs.
Collapse
Affiliation(s)
- Monjur Ahmed
- Division of Gastroenterology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
7
|
Pacheco-Sánchez M, Martínez-Hernández SL, Muñoz-Ortega MH, Reyes-Martínez JA, Ávila-Blanco ME, Ventura-Juárez J. The Gal/GalNac lectin as a possible acetylcholine receptor in Entamoeba histolytica. Front Cell Infect Microbiol 2023; 13:1110600. [PMID: 37260701 PMCID: PMC10228505 DOI: 10.3389/fcimb.2023.1110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/18/2023] [Indexed: 06/02/2023] Open
Abstract
Entamoeba histolytica (E. histolytica) is a protozoan responsible for intestinal amebiasis in at least 500 million people per year, although only 10% of those infected show severe symptoms. It is known that E. histolytica captures molecules released during the host immune response through membrane receptors that favor its pathogenetic mechanisms for the establishment of amebic invasion. It has been suggested that E. histolytica interacts with acetylcholine (ACh) through its membrane. This promotes the increase of virulence factors and diverse mechanisms carried out by the amoeba to produce damage. The aim of this study is to identify a membrane receptor in E. histolytica trophozoites for ACh. Methods included identification by colocalization for the ACh and Gal/GalNAc lectin binding site by immunofluorescence, western blot, bioinformatic analysis, and quantification of the relative expression of Ras 5 and Rab 7 GTPases by RT-qPCR. Results show that the Gal/GalNAc lectin acts as a possible binding site for ACh and this binding may occur through the 150 kDa intermediate subunit. At the same time, this interaction activates the GTPases, Ras, and Rab, which are involved in the proliferation, and reorganization of the amoebic cytoskeleton and vesicular trafficking. In conclusion, ACh is captured by the parasite, and the interaction promotes the activation of signaling pathways involved in pathogenicity mechanisms, contributing to disease and the establishment of invasive amebiasis.
Collapse
Affiliation(s)
- Marisol Pacheco-Sánchez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Sandra Luz Martínez-Hernández
- Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Martín Humberto Muñoz-Ortega
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | | | - Manuel Enrique Ávila-Blanco
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Javier Ventura-Juárez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
8
|
Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, Porwal O, Alam A, Parveen SR, Singh H, Chellappan DK, Gupta G, Kumbhar P, Disouza J, Patravale V, Adams J, Dua K, Singh SK. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chem Biol Interact 2022; 368:110238. [DOI: 10.1016/j.cbi.2022.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022]
|
9
|
Leal E, Angotzi AR, Gregório SF, Ortiz-Delgado JB, Rotllant J, Fuentes J, Tafalla C, Cerdá-Reverter JM. Role of the melanocortin system in zebrafish skin physiology. FISH & SHELLFISH IMMUNOLOGY 2022; 130:591-601. [PMID: 36150411 DOI: 10.1016/j.fsi.2022.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The agouti-signaling protein (ASIP) acts as both a competitive antagonist and inverse agonist of melanocortin receptors which regulate dorsal-ventral pigmentation patterns in fish. However, the potential role of ASIP in the regulation of additional physiological pathways in the skin is unknown. The skin plays a crucial role in the immune function, acting as a physical limitation against infestation and also as a chemical barrier due to its ability to synthesize and secrete mucus and many immune effector proteins. In this study, the putative role of ASIP in regulating the immune system of skin has been explored using a transgenic zebrafish model overexpressing the asip1 gene (ASIPzf). Initially, the structural changes in skin induced by asip1 overexpression were studied, revealing that the ventral skin of ASIPzf was thinner than that of wild type (WT) animals. A moderate hypertrophy of mucous cells was also found in ASIPzf. Histochemical studies showed that transgenic animals appear to compensate for the lower number of cell layers by modifying the mucus composition and increasing lectin affinity and mucin content in order to maintain or improve protection against microorganism adhesion. ASIPzf also exhibit higher protein concentration under crowding conditions suggesting an increased mucus production under stressful conditions. Exposure to bacterial lipopolysaccharide (LPS) showed that ASIPzf exhibit a faster pro-inflammatory response and increased mucin expression yet severe skin injures and a slight increase in mortality was observed. Electrophysiological measurements show that the ASIP1 genotype exhibits reduced epithelial resistance, an indicator of reduced tissue integrity and barrier function. Overall, not only are ASIP1 animals more prone to infiltration and subsequent infections due to reduced skin epithelial integrity, but also display an increased inflammatory response that can lead to increased skin sensitivity to external infections.
Collapse
Affiliation(s)
- E Leal
- Department of Fish Physiology and Biotechnology, Institute of Aquiculture de Torre de la Sal, IATS-CSIC, 12595, Castellon, Spain.
| | - A R Angotzi
- Department of Fish Physiology and Biotechnology, Institute of Aquiculture de Torre de la Sal, IATS-CSIC, 12595, Castellon, Spain
| | - S F Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve Campus de Gambelas, 8005-139, Faro, Portugal
| | - J B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - J Rotllant
- Instituto de Investigaciones Marinas (IIM), CSIC, 36208, Vigo, Spain
| | - J Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve Campus de Gambelas, 8005-139, Faro, Portugal
| | - C Tafalla
- Animal Health Research Center (CISA-INIA-CSIC), Valdeolmos, 28130, Madrid, Spain
| | - J M Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Institute of Aquiculture de Torre de la Sal, IATS-CSIC, 12595, Castellon, Spain.
| |
Collapse
|
10
|
Jasni N, Saidin S, Kin WW, Arifin N, Othman N. Entamoeba histolytica: Membrane and Non-Membrane Protein Structure, Function, Immune Response Interaction, and Vaccine Development. MEMBRANES 2022; 12:1079. [PMID: 36363634 PMCID: PMC9695907 DOI: 10.3390/membranes12111079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Entamoeba histolytica is a protozoan parasite that is the causative agent of amoebiasis. This parasite has caused widespread infection in India, Africa, Mexico, and Central and South America, and results in 100,000 deaths yearly. An immune response is a body's mechanism for eradicating and fighting against substances it sees as harmful or foreign. E. histolytica biological membranes are considered foreign and immunogenic to the human body, thereby initiating the body's immune responses. Understanding immune response and antigen interaction are essential for vaccine development. Thus, this review aims to identify and understand the protein structure, function, and interaction of the biological membrane with the immune response, which could contribute to vaccine development. Furthermore, the current trend of vaccine development studies to combat amoebiasis is also reviewed.
Collapse
Affiliation(s)
- Nurhana Jasni
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Syazwan Saidin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Wong Weng Kin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Norsyahida Arifin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| |
Collapse
|
11
|
Singh A, Banerjee T. Host-parasite interactions in infections due to Entamoeba histolytica: A tale of known and unknown. Trop Parasitol 2022; 12:69-77. [PMID: 36643990 PMCID: PMC9832491 DOI: 10.4103/tp.tp_81_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Entamoeba histolytica (E. histolytica) is an enteric microaerophilic protozoan parasite responsible for millions of cases worldwide. Majority of the infections due to E. histolytica remain asymptomatic; however, it can cause an array of symptoms ranging from devastating dysentery, colitis, and abscesses in different vital organs. The interactions between the E. histolytica and its host are a multifaceted chain of events rather than merely destruction and invasion. There are manifold decisive steps for the establishment of infections by E. histolytica which includes degradation of mucosal layer, adherence to the host epithelium, invasion into the host tissues, and dissemination to vital organs. It is widely hypothesized that, for establishment of infections, the interactions at the intestinal mucosa decides the fate of the disease. The delicate communications between the parasite, the host factors, and the associated bacterial microflora play a significant role in the pathogenesis of E. histolytica. In this review, we summarize the interactions between the E. histolytica and it's host at the genetic and immunological interphases emphasizing the crucial role of microbiota in these interactions.
Collapse
Affiliation(s)
- Aradhana Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
Wiser MF. Unique Endomembrane Systems and Virulence in Pathogenic Protozoa. Life (Basel) 2021; 11:life11080822. [PMID: 34440567 PMCID: PMC8401336 DOI: 10.3390/life11080822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virulence in pathogenic protozoa is often tied to secretory processes such as the expression of adhesins on parasite surfaces or the secretion of proteases to assisted in tissue invasion and other proteins to avoid the immune system. This review is a broad overview of the endomembrane systems of pathogenic protozoa with a focus on Giardia, Trichomonas, Entamoeba, kinetoplastids, and apicomplexans. The focus is on unique features of these protozoa and how these features relate to virulence. In general, the basic elements of the endocytic and exocytic pathways are present in all protozoa. Some of these elements, especially the endosomal compartments, have been repurposed by the various species and quite often the repurposing is associated with virulence. The Apicomplexa exhibit the most unique endomembrane systems. This includes unique secretory organelles that play a central role in interactions between parasite and host and are involved in the invasion of host cells. Furthermore, as intracellular parasites, the apicomplexans extensively modify their host cells through the secretion of proteins and other material into the host cell. This includes a unique targeting motif for proteins destined for the host cell. Most notable among the apicomplexans is the malaria parasite, which extensively modifies and exports numerous proteins into the host erythrocyte. These modifications of the host erythrocyte include the formation of unique membranes and structures in the host erythrocyte cytoplasm and on the erythrocyte membrane. The transport of parasite proteins to the host erythrocyte involves several unique mechanisms and components, as well as the generation of compartments within the erythrocyte that participate in extraparasite trafficking.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Uribe-Querol E, Rosales C. Immune Response to the Enteric Parasite Entamoeba histolytica. Physiology (Bethesda) 2021; 35:244-260. [PMID: 32490746 DOI: 10.1152/physiol.00038.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite responsible for amoebiasis, a disease with a high prevalence in developing countries. Establishing an amoebic infection involves interplay between pathogenic factors for invasion and tissue damage, and immune responses for protecting the host. Here, we review the pathogenicity of E. histolytica and summarize the latest knowledge on immune response and immune evasion mechanisms during amoebiasis.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
14
|
Lima PC, Hartley-Tassell L, Cooper O, Wynne JW. Searching for the sweet spot of amoebic gill disease of farmed Atlantic salmon: the potential role of glycan-lectin interactions in the adhesion of Neoparamoeba perurans. Int J Parasitol 2021; 51:545-557. [PMID: 33675796 DOI: 10.1016/j.ijpara.2020.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 01/25/2023]
Abstract
One of the first critical steps in the pathogenesis of amoebic gill disease (AGD) of farmed salmon is the adhesion of the causative amoeba to the host. The current study aimed to investigate the potential involvement of glycan-binding proteins expressed on the extracellular surface of Neoparamoeba perurans in gill tissue recognition and binding. The glycan-binding properties of the surface membrane of N. perurans and the carbohydrate binding profile of Atlantic salmon gill-derived epithelial cells were identified through the use of glycan and lectin microarrays, respectively. The occurrence of specific carbohydrate-mediated binding was then further assessed by in vitro attachment assays using microtitre plates pre-coated with the main glycan candidates. Adhesion assays were also performed in the presence of exogenous saccharides with the aim of blocking glycan-specific binding activity. Comparative analysis of the results from both lectin and glycan arrays showed significant overlap, as some glycans to which binding by the amoeba was seen were reflected as being present on the gill epithelial cells. The two main candidates proposed to be involved in amoeba attachment to the gills are mannobiose and N-acetylgalactosamine (GalNAc). Adhesion of amoebae significantly increased by 33.5 and 23% when cells were added to α1,3-Mannobiose-BSA and GalNAc-BSA coated plates. The observed increased in attachment was significantly reduced when the amoebae were incubated with exogenous glycans, further demonstrating the presence of mannobiose- and GalNAc-binding sites on the surfaces of the cells. We believe this study provides the first evidence for the presence of a highly specific carbohydrate recognition and binding system in N. perurans. These preliminary findings could be of extreme importance given that AGD is an external parasitic infestation and much of the current research on the development of alternative treatment strategies relies on either instant amoeba detachment or blocking parasite attachment.
Collapse
Affiliation(s)
- P C Lima
- CSIRO Agriculture and Food, Livestock & Aquaculture, Queensland Biosciences Precinct, 306 Carmody Road, Brisbane, QLD 4067, Australia.
| | - L Hartley-Tassell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - O Cooper
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - J W Wynne
- CSIRO Agriculture and Food, Livestock & Aquaculture, Castray Esplanade, Battery Point, TAS 7004, Australia
| |
Collapse
|
15
|
Damalanka VC, Maddirala AR, Janetka JW. Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert Opin Drug Discov 2021; 16:513-536. [PMID: 33337918 DOI: 10.1080/17460441.2021.1857721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The direct binding of carbohydrates or those presented on glycoproteins or glycolipids to proteins is the primary effector of many biological responses. One class of carbohydrate-binding proteins, lectins are important in all forms of life. Their functions in animals include regulating cell adhesion, glycoprotein synthesis, metabolism, and mediating immune system response while in bacteria and viruses a lectin-mediated carbohydrate-protein interaction between host cells and the pathogen initiates pathogenesis of the infection.Areas covered: In this review, the authors outline the structural and functional pathogenesis of lectins from bacteria, amoeba, and humans. Mimics of a carbohydrate are referred to as glycomimetics, which are much smaller in molecular weight and are devised to mimic the key binding interactions of the carbohydrate while also allowing additional contacts with the lectin. This article emphasizes the various approaches used over the past 10-15 years in the rational design of glycomimetic ligands.Expert opinion: Medicinal chemistry efforts enabled by X-ray structural biology have identified small-molecule glycomimetic lectin antagonists that have entered or are nearing clinical trials. A common theme in these strategies is the use of biaryl ring systems to emulate the carbohydrate interactions with the lectin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| |
Collapse
|
16
|
Flores MS, Obregón-Cardenas A, Rangel R, Tamez E, Flores A, Trejo-Avila L, Quintero I, Arévalo K, Maldonado MG, Gandarilla FL, Galán L. Glycan moieties in Entamoeba histolytica ubiquitin are immunodominant. Parasite Immunol 2020; 43:e12812. [PMID: 33270232 DOI: 10.1111/pim.12812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/16/2023]
Abstract
The ubiquitin-proteasome system plays a central role performing several functions to maintain parasite homeostasis. We have reported the partial characterization of N-linked glycosylation profile in E. histolytica ubiquitin (EhUb). Here we examined the immunogenicity and antigenicity of carbohydrates in EhUbiquitin. Rabbits were immunized with purified EhUbiquitin or purified recombinant rUb expressed by E. coli. Using Western Blot, we explored the immunogenicity and antigenicity of protein portion and carbohydrates moiety. Interestingly, immunized rabbits produced antibodies to both Ub glycoprotein and rUb; but antibodies against carbohydrates were immunodominant, rather than antibodies to the protein moiety of EhUbiquitin. In addition, we observed that antibodies to protein moiety are not conserved in serum unless antigen is continually administrated. Conversely, anti-Ub glycoprotein antibodies are well maintained in circulation. In humans, infection with Entamoeba histolytica induces strong IgG anti-Ub response. The human antibodies recognize both, the protein moieties and the glycosylated structure. Entamoeba histolytica ubiquitin is immunogenic and antigenic. The glycan moieties are immunodominant and induces IgG. These data open the door to use carbohydrates as potential targets for diagnose tests, drugs and vaccine to prevent this parasitic disease.
Collapse
Affiliation(s)
- María S Flores
- Facultad de Ciencias Biológicas, Instituto de Biotecnología. San Nicolás de los Garza, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Adriana Obregón-Cardenas
- Facultad de Ciencias Biológicas, Instituto de Biotecnología. San Nicolás de los Garza, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Roberto Rangel
- Facultad de Ciencias Biológicas, Instituto de Biotecnología. San Nicolás de los Garza, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Eva Tamez
- Facultad de Ciencias Biológicas, Instituto de Biotecnología. San Nicolás de los Garza, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Andrés Flores
- Facultad de Ciencias Biológicas, Instituto de Biotecnología. San Nicolás de los Garza, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Laura Trejo-Avila
- Facultad de Ciencias Biológicas, Instituto de Biotecnología. San Nicolás de los Garza, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Isela Quintero
- Facultad de Ciencias Biológicas, Instituto de Biotecnología. San Nicolás de los Garza, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Katiushka Arévalo
- Facultad de Ciencias Biológicas, Instituto de Biotecnología. San Nicolás de los Garza, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - María G Maldonado
- Facultad de Ciencias Biológicas, Instituto de Biotecnología. San Nicolás de los Garza, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Fátima L Gandarilla
- Facultad de Ciencias Biológicas, Instituto de Biotecnología. San Nicolás de los Garza, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Luis Galán
- Facultad de Ciencias Biológicas, Instituto de Biotecnología. San Nicolás de los Garza, Universidad Autónoma de Nuevo León, Nuevo León, México
| |
Collapse
|
17
|
Abstract
Sugar ligand molecules, such as mannose, galactose and glucose, can bind to drug-delivery systems, making them targeted. These glycosylation ligands have the advantages of nontoxicity, no immunogenicity, good biocompatibility and biodegradation. They can be widely used in glycosylation-modified drug-delivery systems. Herein, the targeting mechanisms, synthesis methods and targeting characteristics of glycosylation-modified drug-delivery systems were reviewed.
Collapse
|
18
|
Targeting Programmed Fusobacterium nucleatum Fap2 for Colorectal Cancer Therapy. Cancers (Basel) 2019; 11:cancers11101592. [PMID: 31635333 PMCID: PMC6827134 DOI: 10.3390/cancers11101592] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal patients generally have the maximum counts of Fusobacterium nucleatum (F. nucleatum) in tumors and elevate colorectal adenomas and carcinomas, which show the lowest rate of human survival. Hence, F. nucleatum is a diagnostic marker of colorectal cancer (CRC). Studies demonstrated that targeting fusobacterial Fap2 or polysaccharide of the host epithelium may decrease fusobacteria count in the CRC. Attenuated F. nucleatum-Fap2 prevents transmembrane signals and inhibits tumorigenesis inducing mechanisms. Hence, in this review, we hypothesized that application of genetically programmed fusobacterium can be skillful and thus reduce fusobacterium in the CRC. Genetically programmed F. nucleatum is a promising antitumor strategy.
Collapse
|
19
|
Uprety T, Spurlin BB, Antony L, Sreenivasan C, Young A, Li F, Hildreth MB, Kaushik RS. Development and characterization of a stable bovine intestinal sub-epithelial myofibroblast cell line from ileum of a young calf. In Vitro Cell Dev Biol Anim 2019; 55:533-547. [PMID: 31183683 DOI: 10.1007/s11626-019-00365-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Intestinal sub-epithelial myofibroblasts (ISEMFs) are mesenchymal cells that do not express cytokeratin but express α-smooth muscle actin and vimentin. Despite being cells with diverse functions, there is a paucity of knowledge about their origin and functions primarily due to the absence of a stable cell line. Although myofibroblast in vitro models for human, mouse, and pig are available, there is no ISEMF cell line available from young calves. We isolated and developed an ileal ISEMF cell line from a 2-d-old calf that expressed α-smooth muscle actin and vimentin but no cytokeratin indicating true myofibroblast cells. To overcome replicative senescence, we immortalized primary cells with SV40 large T antigen. We characterized and compared both primary and immortalized ileal ISEMF cells for surface glycan and Toll-like-receptor (TLR) expression by lectin-binding assay and real-time quantitative PCR (RT-qPCR) assay respectively. SV40 immortalization significantly decreased surface lectin binding for lectins GSL-I, PHA-L, ECL, Jacalin, Con-A, LCA, and LEL. Both cell types expressed TLRs 1-9 and showed no significant differences in TLR expression. Thus, these cells can be useful in vitro model to study ISEMF's origin, physiology, and functions.
Collapse
Affiliation(s)
- Tirth Uprety
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Brionna B Spurlin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Linto Antony
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Chithra Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Alan Young
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Michael B Hildreth
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
20
|
Abstract
Entamoeba histolytica (Eh) is a protozoan parasite of humans that colonizes the outer colonic mucus layer. Under conditions not fully understood, Eh breaches innate host defenses and invades the intestinal mucosa-causing amebic colitis and liver abscess. In asymptomatic infection, Eh interacts with and feeds on resident microbiota that forms biofilms on the outer colonic mucus layer. Despite the close association between Eh and commensal microbiota, we still lack basic knowledge on whether microbiota and/or their metabolites influence Eh virulence traits critical in disease pathogenesis. In the pathogenesis of intestinal amebiasis, Eh overcomes the protective mucus layer using a combination of mucinase/glycosidase and potent mucus secretagogue activity. In this addendum, we discuss the interconnected role of a healthy mucus barrier and the role commensal microbiota play in shaping innate host defense against Eh-induced pro-inflammatory and secretory responses critical in disease pathogenesis.
Collapse
Affiliation(s)
- Aralia Leon-Coria
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Manish Kumar
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada,CONTACT Kris Chadee Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Guardiola FA, Mabrok M, Machado M, Azeredo R, Afonso A, Esteban MA, Costas B. Mucosal and systemic immune responses in Senegalese sole (Solea senegalensis Kaup) bath challenged with Tenacibaculum maritimum: A time-course study. FISH & SHELLFISH IMMUNOLOGY 2019; 87:744-754. [PMID: 30763617 DOI: 10.1016/j.fsi.2019.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Tenacibaculosis, caused by Tenacibaculum maritimum, continues to inflict substantial losses among cultured marine species, particularly in the Senegalese sole. However, the immune mechanisms in fish involved in fighting against this disease are still poorly understood. Thus, the present study aimed to investigate the skin mucus's terminal carbohydrate composition, several immune-related enzymes (i.e. lysozyme, peroxidase, proteases and antiproteases), the haemolytic activity of complement and the bactericidal activity in the skin mucus and plasma of the Senegalese sole in a time-course study following a bath challenge with T. maritimum. The haematological profile and the kinetics of cell migration post-infection were also considered. The bath challenge induced slight variations in the terminal carbohydrate composition of Senegalese sole skin mucus. In general, results from this study showed a delay in the mucosal immune response compared to that found at the systemic level (i.e. blood and plasma). For instance, a significant increase in the skin mucus's lysozyme, complement, protease and antiprotease activities were observed at the end of the experiment (14 d post-challenge). Interestingly, the higher activity of these enzymes could be related to the skin mucus's bactericidal capacity and haemolytic complement activity, suggesting that these enzymes play an important role in the defence against Gram-negative bacteria. The haematological profile revealed a significant increase in circulating neutrophils in challenged fish after 48 and 72 h, which was positively correlated to the increments observed in peroxidase and lysozyme activities, respectively, in the plasma of challenged fish at the same time. Although the route of entry and the survival strategy of T. maritimum are still not fully elucidated, results from the present study will contribute to this endeavour through the study of the mucosal immune responses of fish against this particular pathogen.
Collapse
Affiliation(s)
- F A Guardiola
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal; Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| | - M Mabrok
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal; Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - M Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - R Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - A Afonso
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - M A Esteban
- Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - B Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
22
|
Fonseca Z, Uribe-Querol E, Díaz-Godínez C, Carrero JC, Rosales C. Pathogenic Entamoeba histolytica, but not Entamoeba dispar, induce neutrophil extracellular trap (NET) formation. J Leukoc Biol 2019; 105:1167-1181. [PMID: 30913315 DOI: 10.1002/jlb.ma0818-309rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Amoebiasis is an infection of global importance, caused by the eukaryotic parasite Entamoeba histolytica. Pathogenic E. histolytica is associated worldwide with over a million cases of amoebic dysentery, colitis, and amoebic liver abscess. In contrast, the nonpathogenic Entamoeba dispar does not cause these diseases, although it is commonly found in the same areas as pathogenic amoeba. Entamoeba histolytica infection is usually associated with infiltrating neutrophils. These neutrophils appear to play a defensive role against this parasite, by mechanisms not completely understood. Recently, our group reported that neutrophil extracellular traps (NET) are produced in response to E. histolytica trophozoites. But, there is no information on whether nonpathogenic E. dispar can also induce NET formation. In this report, we explored the possibility that E. dispar leads to NET formation. Neutrophils were stimulated by E. histolytica trophozoites or by E. dispar trophozoites, and NET formation was assessed by video microscopy. NET induced by E. histolytica were important for trapping and killing amoebas. In contrast, E. dispar did not induce NET formation in any condition. Also E. dispar did not induce neutrophil degranulation or reactive oxygen species production. In addition, E. histolytica-induced NET formation required alive amoebas and it was inhibited by galactose, N-acetylgalactosamine, and lactose. These data show that only alive pathogenic E. histolytica activates neutrophils to produce NET, and suggest that recognition of the parasite involves a carbohydrate with an axial HO- group at carbon 4 of a hexose.
Collapse
Affiliation(s)
- Zayda Fonseca
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - César Díaz-Godínez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
23
|
Cornick S, Chadee K. Entamoeba histolytica: Host parasite interactions at the colonic epithelium. Tissue Barriers 2018; 5:e1283386. [PMID: 28452682 DOI: 10.1080/21688370.2017.1283386] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Entamoeba histolytica (Eh) is the protozoan parasite responsible for intestinal amebiasis and interacts dynamically with the host intestinal epithelium during disease pathogenesis. A multifaceted pathogenesis profile accounts for why 90% of individuals infected with Eh are largely asymptomatic. For 100 millions individuals that are infected each year, key interactions within the intestinal mucosa dictate disease susceptibility. The ability for Eh to induce amebic colitis and disseminate into extraintestinal organs depends on the parasite competing with indigenous bacteria and overcoming the mucus barrier, binding to host cells inducing their cell death, invasion through the mucosa and outsmarting the immune system. In this review we summarize how Eh interacts with the intestinal epithelium and subverts host defense mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Steve Cornick
- a Department of Microbiology, Immunology and Infectious Diseases , Snyder Institute for Chronic Diseases, University of Calgary , Calgary , Alberta , Canada
| | - Kris Chadee
- a Department of Microbiology, Immunology and Infectious Diseases , Snyder Institute for Chronic Diseases, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
24
|
Shabardina V, Kischka T, Kmita H, Suzuki Y, Makałowski W. Environmental adaptation of Acanthamoeba castellanii and Entamoeba histolytica at genome level as seen by comparative genomic analysis. Int J Biol Sci 2018; 14:306-320. [PMID: 29559848 PMCID: PMC5859476 DOI: 10.7150/ijbs.23869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/30/2017] [Indexed: 11/17/2022] Open
Abstract
Amoebozoans are in many aspects interesting research objects, as they combine features of single-cell organisms with complex signaling and defense systems, comparable to multicellular organisms. Acanthamoeba castellanii is a cosmopolitan species and developed diverged feeding abilities and strong anti-bacterial resistance; Entamoeba histolytica is a parasitic amoeba, who underwent massive gene loss and its genome is almost twice smaller than that of A. castellanii. Nevertheless, both species prosper, demonstrating fitness to their specific environments. Here we compare transcriptomes of A. castellanii and E. histolytica with application of orthologs' search and gene ontology to learn how different life strategies influence genome evolution and restructuring of physiology. A. castellanii demonstrates great metabolic activity and plasticity, while E. histolytica reveals several interesting features in its translational machinery, cytoskeleton, antioxidant protection, and nutritional behavior. In addition, we suggest new features in E. histolytica physiology that may explain its successful colonization of human colon and may facilitate medical research.
Collapse
Affiliation(s)
- Victoria Shabardina
- Institute of Bioinformatics, University Münster, Niels-Stensen Strasse 14, Münster 48149, Germany
| | - Tabea Kischka
- Institute of Bioinformatics, University Münster, Niels-Stensen Strasse 14, Münster 48149, Germany
| | - Hanna Kmita
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Wojciech Makałowski
- Institute of Bioinformatics, University Münster, Niels-Stensen Strasse 14, Münster 48149, Germany
| |
Collapse
|
25
|
Ximénez C, González E, Nieves M, Magaña U, Morán P, Gudiño-Zayas M, Partida O, Hernández E, Rojas-Velázquez L, García de León MC, Maldonado H. Differential expression of pathogenic genes of Entamoeba histolytica vs E. dispar in a model of infection using human liver tissue explants. PLoS One 2017; 12:e0181962. [PMID: 28771523 PMCID: PMC5542602 DOI: 10.1371/journal.pone.0181962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
We sought to establish an ex vivo model for examining the interaction of E. histolytica with human tissue, using precision-cut liver slices (PCLS) from donated organs. E. histolytica- or E. dispar-infected PCLS were analyzed at different post-infection times (0, 1, 3, 24 and 48 h) to evaluate the relation between tissue damage and the expression of genes associated with three factors: a) parasite survival (peroxiredoxin, superoxide dismutase and 70 kDa heat shock protein), b) parasite virulence (EhGal/GalNAc lectin, amoebapore, cysteine proteases and calreticulin), and c) the host inflammatory response (various cytokines). Unlike E. dispar (non-pathogenic), E. histolytica produced some damage to the structure of hepatic parenchyma. Overall, greater expression of virulence genes existed in E. histolytica-infected versus E. dispar-infected tissue. Accordingly, there was an increased expression of EhGal/GalNAc lectin, Ehap-a and Ehcp-5, Ehcp-2, ehcp-1 genes with E. histolytica, and a decreased or lack of expression of Ehcp-2, and Ehap-a genes with E. dispar. E. histolytica-infected tissue also exhibited an elevated expression of genes linked to survival, principally peroxiredoxin, superoxide dismutase and Ehhsp-70. Moreover, E. histolytica-infected tissue showed an overexpression of some genes encoding for pro-inflammatory interleukins (ILs), such as il-8, ifn-γ and tnf-α. Contrarily, E. dispar-infected tissue displayed higher levels of il-10, the gene for the corresponding anti-inflammatory cytokine. Additionally, other genes were investigated that are important in the host-parasite relationship, including those encoding for the 20 kDa heat shock protein (HSP-20), the AIG-1 protein, and immune dominant variable surface antigen, as well as for proteins apparently involved in mechanisms for the protection of the trophozoites in different environments (e.g., thioredoxin-reductase, oxido-reductase, and 9 hypothetical proteins). Some of the hypothetical proteins evidenced interesting overexpression rates, however we should wait to their characterization. This finding suggest that the present model could be advantageous for exploring the complex interaction between trophozoites and hepatocytes during the development of ALA, particularly in the initial stages of infection.
Collapse
Affiliation(s)
- Cecilia Ximénez
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
- * E-mail:
| | - Enrique González
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Miriam Nieves
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Ulises Magaña
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Patricia Morán
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Marco Gudiño-Zayas
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Oswaldo Partida
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Eric Hernández
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Liliana Rojas-Velázquez
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | | | - Héctor Maldonado
- Sub direction of Pathology, National Institute of Cancerology, México City, México
| |
Collapse
|
26
|
Comparison of hemolytic activity of the intermediate subunit of Entamoeba histolytica and Entamoeba dispar lectins. PLoS One 2017; 12:e0181864. [PMID: 28750000 PMCID: PMC5531476 DOI: 10.1371/journal.pone.0181864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022] Open
Abstract
Galactose and N-acetyl-D-galactosamine-inhibitable lectin of Entamoeba histolytica has roles in pathogenicity and induction of protective immunity in rodent models of amoebiasis. Recently, the intermediate subunit of the lectin, Igl1, of E. histolytica has been shown to have hemolytic activity. However, the corresponding lectin is also expressed in a non-virulent species, Entamoeba dispar, and another subunit, Igl2, is expressed in the protozoa. Therefore, in this study, we compared the activities of Igl1 and Igl2 subunits from E. histolytica and E. dispar using various regions of recombinant Igl proteins expressed in Escherichia coli. The recombinant E. dispar Igl proteins had comparable hemolytic activities with those of E. histolytica Igl proteins. Furthermore, Igl1 gene-silenced E. histolytica trophozoites showed less hemolytic activity compared with vector-transfected trophozoites, indicating that the expression level of Igl1 protein influences the activity. These results suggest that the lower hemolytic activity in E. dispar compared with E. histolytica reflects the lower expression level of Igl1 in the E. dispar parasite.
Collapse
|
27
|
Guardiola FA, Bahi A, Bakhrouf A, Esteban MA. Effects of dietary supplementation with fenugreek seeds, alone or in combination with probiotics, on gilthead seabream (Sparus aurata L.) skin mucosal immunity. FISH & SHELLFISH IMMUNOLOGY 2017; 65:169-178. [PMID: 28433714 DOI: 10.1016/j.fsi.2017.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/15/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
Despite increasing interest in modulating the immune response of fish, providing a combination of probiotics and herbal immunostimulants in aquafeed has rarely has been studied. The effects on gilthead seabream (Sparus aurata L.) of the dietary administration of fenugreek (Trigonella foenum graecum) seeds alone (FE), or combined with one of the following probiotic strains: Bacillus licheniformis (FEBL), Lactobacillus plantarum (FELP) or Bacillus subtilis (FEBS) were evaluated. Fish were fed a control or one of the supplemented diets for 3 weeks. After 2 and 3 weeks of the feeding trial, the abundance of terminal carbohydrates, IgM levels, enzymatic activities (proteases, alkaline phosphatase, esterase and ceruloplasmin) and bactericidal activity were determined in skin mucus. Our results demonstrated that the dietary administration of FE in combination with L. plantarum, particularly, increased carbohydrate abundance, the activity of certain enzymes such as ceruloplasmin, and bactericidal activity against the pathogenic bacterium Photobacterium damselae and the non-pathogenic bacterium B. subtilis in skin mucus at the end of the trial. The carbohydrates most affected by the FELP diet were mannose/glucose, N-acetyl-d-galactosamine and N-acetyl-β-d-glucosamine. Interestingly, IgM levels were significantly higher in fish fed the FELP and FEBS diets whilst protease activity generally increased in all supplemented diets, which could suggests that the main effect in this activity was to the result of FE supplementation although that fact cannot be confirmed because the effects of probiotics addition alone were not studied. These results suggest that the combined dietary administration of fenugreek and L. plantarum will best enhance the skin mucosal immunity response of gilthead seabream.
Collapse
Affiliation(s)
- F A Guardiola
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain; Fish Nutrition & Immunobiology Group, Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - A Bahi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - A Bakhrouf
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - M A Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
28
|
Guardiola FA, Cuartero M, Del Mar Collado-González M, Díaz Baños FG, Cuesta A, Moriñigo MÁ, Esteban MÁ. Terminal carbohydrates abundance, immune related enzymes, bactericidal activity and physico-chemical parameters of the Senegalese sole (Solea senegalensis, Kaup) skin mucus. FISH & SHELLFISH IMMUNOLOGY 2017; 60:483-491. [PMID: 27836718 DOI: 10.1016/j.fsi.2016.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Recently, interest in mucosal surfaces, more specifically fish skin and its secreted mucus, has greatly increased among immunologists. The abundance of terminal carbohydrates, several enzymes (proteases, lysozyme, peroxidase, alkaline phosphatase, esterases and ceruloplasmin), bactericidal activity against fish pathogenic and non-pathogenic bacteria and several physico-chemical parameters (protein concentration, pH, conductivity, redox potential, osmolarity, density and viscosity) in the skin mucus of Senegalese sole (Solea senegalensis, Kaup) have been evaluated. Present results evidence the abundance of N-acetylneuraminic acid, mannose, glucose and N-acetyl-galactosamine in skin mucus. The levels of lysozyme, proteases, esterases and alkaline phosphatase were very similar (from 20 to 30 Units mg-1 protein). However, 93 Units mg-1 protein were detected of ceruloplasmin and only 4'88 Units mg-1 protein of peroxidase. Skin mucus of S. senegalensis showed high bactericidal activity against the tested pathogen bacteria but weak activity against non-pathogenic bacteria. Finally, a clear relationship between mucus density and temperature was detected, while viscosity showed a direct shear- and temperature-dependent behaviour. These results could be useful for better understanding the role of the skin mucus as a key component of the innate immune system, as well as, for elucidating possible relationships between biological and physico-chemical parameters and disease susceptibility.
Collapse
Affiliation(s)
- Francisco A Guardiola
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - María Cuartero
- Department of Analytical Chemistry, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - María Del Mar Collado-González
- Department of Physical Chemistry, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - F Guillermo Díaz Baños
- Department of Physical Chemistry, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Miguel Ángel Moriñigo
- Department of Microbiology, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | - M Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
29
|
Singh RS, Walia AK, Kanwar JR, Kennedy JF. Amoebiasis vaccine development: A snapshot on E. histolytica with emphasis on perspectives of Gal/GalNAc lectin. Int J Biol Macromol 2016; 91:258-68. [DOI: 10.1016/j.ijbiomac.2016.05.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023]
|
30
|
Abstract
ABSTRACT
Parasites are an important cause of human disease worldwide. The clinical severity and outcome of parasitic disease is often dependent on the immune status of the host. Specific parasitic diseases discussed in this chapter are amebiasis, giardiasis, cryptosporidiosis, cyclosporiasis, cystoisosporiasis, microsporidosis, granulomatous amebic encephalitis, toxoplasmosis, leishmaniasis, Chagas disease, malaria, babesiosis, strongyloidiasis, and scabies.
Collapse
|
31
|
Di Genova BM, Tonelli RR. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses. Front Microbiol 2016; 7:256. [PMID: 26973630 PMCID: PMC4776161 DOI: 10.3389/fmicb.2016.00256] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
Giardia lamblia, Cryptosporidium sp., and Entamoeba histolytica are important pathogenic intestinal parasites and are amongst the leading causes worldwide of diarrheal illness in humans. Diseases caused by these organisms, giardiasis, cryptosporidiosis, and amoebiasis, respectively, are characterized by self-limited diarrhea but can evolve to long-term complications. The cellular and molecular mechanisms underlying the pathogenesis of diarrhea associated with these three pathogens are being unraveled, with knowledge of both the strategies explored by the parasites to establish infection and the methods evolved by hosts to avoid it. Special attention is being given to molecules participating in parasite–host interaction and in the mechanisms implicated in the diseases’ pathophysiologic processes. This review focuses on cell mechanisms that are modulated during infection, including gene transcription, cytoskeleton rearrangements, signal transduction pathways, and cell death.
Collapse
Affiliation(s)
- Bruno M Di Genova
- Departamento de Microbiologia e Imunologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Renata R Tonelli
- Departamento de Microbiologia e Imunologia, Universidade Federal de São PauloSão Paulo, Brazil; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Biológicas, Universidade Federal de São PauloDiadema, Brazil
| |
Collapse
|
32
|
Cerezuela R, Guardiola FA, Cuesta A, Esteban MÁ. Enrichment of gilthead seabream (Sparus aurata L.) diet with palm fruit extracts and probiotics: Effects on skin mucosal immunity. FISH & SHELLFISH IMMUNOLOGY 2016; 49:100-109. [PMID: 26712151 DOI: 10.1016/j.fsi.2015.12.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Fish skin mucus contains numerous immune substances still poorly studied. To date, there are no studies regarding the possible influence of dietary supplements on such important substances. In the present work, a commercial diet used as control diet was enriched with: 1) probiotic Shewanella putrefaciens (Pdp11 diet, 10(9) cfu g(-1)); 2) probiotic Bacillus sp. (Bacillus diet, 10(9) ufc g(-1)); 3) aqueous date palm fruits extracts (DPE diet, 4%), and 4) a combination of Pdp11 + Bacillus sp + aqueous DPE (Mix diet). After 2 and 4 weeks of the feeding trial, enzymatic activities (proteases, antiproteases and peroxidases), IgM levels and terminal carbohydrates abundance were determined in skin mucus. In addition, the expression of certain immune related genes was evaluated in the skin. Our results demonstrated the significant alteration of the terminal carbohydrate abundance in skin mucus. Carbohydrates more affected by experimental diets were N-acetyl-galactosamine, N-acetyl-glucosamine, galactose, mannose, glucose and fucose. IgM, peroxidase activity and protease were also significantly higher in fish fed enriched diets. For last, an important up-regulation on the immune related gene studied on the skin was also detected. Present findings provide robust evidence that fish skin mucosal immunity can be improved by the diet.
Collapse
Affiliation(s)
- Rebeca Cerezuela
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Francisco A Guardiola
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
33
|
Guardiola FA, de Haro JP, Díaz-Baños FG, Meseguer J, Cuesta A, Esteban MÁ. Terminal carbohydrate composition, IgM level and enzymatic and bacteriostatic activity of European sea bass (Dicentrarchus labrax) skin epidermis extracts. FISH & SHELLFISH IMMUNOLOGY 2015; 47:352-359. [PMID: 26384845 DOI: 10.1016/j.fsi.2015.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/06/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
Although the skin is one of the main defense barriers of fish to date, very little is known about the immune implications and the properties of the numerous substances present in skin cells. In the present study, terminal carbohydrate composition and some components of the skin immunity (total IgM level, and several enzymatic and bacteriostatic activities) present on aqueous and organic epidermal extracts of European sea bass (Dicentrarchus labrax) were determined. Most of the parameters measured followed a protein concentration dose-response. Curiously, both skin extracts have similar levels of total IgM. However, aqueous extracts showed higher presence of some terminal carbohydrates, alkaline phosphatase and esterase activities and lower proteases and ceruloplasmin activities than epidermal organic extracts. Regarding the bacteriostatic activity, the growth of all the bacterial strains tested was reduced when cultivated in presence of organic extracts, being the observed reduction correlated to the protein concentration present in the extract sample. On the contrary, skin aqueous extracts have no significant effect on bacterial growth or even allow bacteria to overgrow, suggesting that the bacteria could use the extracts as a nutrient source. The results are discussed and compared with the same activities studied on fish skin mucus in order to understand their possible implications on mucosal immunity.
Collapse
Affiliation(s)
- Francisco A Guardiola
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Juan P de Haro
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco Guillermo Díaz-Baños
- Department of Physical Chemistry, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - José Meseguer
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
34
|
Novel hemagglutinating, hemolytic and cytotoxic activities of the intermediate subunit of Entamoeba histolytica lectin. Sci Rep 2015; 5:13901. [PMID: 26354528 PMCID: PMC4564812 DOI: 10.1038/srep13901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/10/2015] [Indexed: 01/13/2023] Open
Abstract
Galactose and N-acetyl-D-galactosamine (Gal/GalNAc) inhibitable lectin of Entamoeba histolytica, a common protozoan parasite, has roles in pathogenicity and induction of protective immunity in mouse models of amoebiasis. The lectin consists of heavy (Hgl), light (Lgl), and intermediate (Igl) subunits. Hgl has lectin activity and Lgl does not, but little is known about the activity of Igl. In this study, we assessed various regions of Igl for hemagglutinating activity using recombinant proteins expressed in Escherichia coli. We identified a weak hemagglutinating activity of the protein. Furthermore, we found novel hemolytic and cytotoxic activities of the lectin, which resided in the carboxy-terminal region of the protein. Antibodies against Igl inhibited the hemolytic activity of Entamoeba histolytica trophozoites. This is the first report showing hemagglutinating, hemolytic and cytotoxic activities of an amoebic molecule, Igl.
Collapse
|
35
|
Marie C, Verkerke HP, Theodorescu D, Petri WA. A whole-genome RNAi screen uncovers a novel role for human potassium channels in cell killing by the parasite Entamoeba histolytica. Sci Rep 2015; 5:13613. [PMID: 26346926 PMCID: PMC4561901 DOI: 10.1038/srep13613] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/30/2015] [Indexed: 01/29/2023] Open
Abstract
The parasite Entamoeba histolytica kills human cells resulting in ulceration, inflammation and invasion of the colonic epithelium. We used the cytotoxic properties of ameba to select a genome-wide RNAi library to reveal novel host factors that control susceptibility to amebic killing. We identified 281 candidate susceptibility genes and bioinformatics analyses revealed that ion transporters were significantly enriched among susceptibility genes. Potassium (K+) channels were the most common transporter identified. Their importance was further supported by colon biopsy of humans with amebiasis that demonstrated suppressed K+ channel expression. Inhibition of human K+ channels by genetic silencing, pharmacologic inhibitors and with excess K+ protected diverse cell types from E. histolytica-induced death. Contact with E. histolytica parasites triggered K+ channel activation and K+ efflux by intestinal epithelial cells, which preceded cell killing. Specific inhibition of Ca2+-dependent K+ channels was highly effective in preventing amebic cytotoxicity in intestinal epithelial cells and macrophages. Blockade of K+ efflux also inhibited caspase-1 activation, IL-1β secretion and pyroptotic death in THP-1 macrophages. We concluded that K+ channels are host mediators of amebic cytotoxicity in multiple cells types and of inflammasome activation in macrophages.
Collapse
Affiliation(s)
- Chelsea Marie
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia USA
| | - Hans P Verkerke
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia USA
| | - Dan Theodorescu
- Department of Surgery, Department of Pharmacology, University of Colorado Comprehensive Cancer Center, University of Colorado, Denver, CO, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia USA
| |
Collapse
|
36
|
Guardiola FA, Dioguardi M, Parisi MG, Trapani MR, Meseguer J, Cuesta A, Cammarata M, Esteban MA. Evaluation of waterborne exposure to heavy metals in innate immune defences present on skin mucus of gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2015; 45:112-123. [PMID: 25700783 DOI: 10.1016/j.fsi.2015.02.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Aquatic animals are continuously exposed to chemical pollutants but the effects evoked in skin surfaces, which receive the most direct contact with them, are poorly investigated. Terminal carbohydrate composition and immunological components present in skin mucus of gilthead seabream (Sparus aurata L.) specimens exposed to waterborne sublethal dosages of heavy metals [arsenic (As2O3), cadmium (CdCl2) and mercury (CH3HgCl) at 5, 5 and 0.04 μM, respectively for 2, 10 and 30 days were analysed. Moreover, the presence of a fucose binding lectin (FBL) was evaluated by western blot and the protein profiles were by SDS-PAGE and HPLC. Results showed little effects of heavy metals in the presence of several terminal carbohydrates with few increments or decrements. Most of the enzyme activities related to immune responses were increased upon heavy metal exposure in the skin mucus including bactericidal activity. Methylmercury produced the most dramatic changes increasing all the activities. Moreover, the FBL was undetected in any of the control fish skin mucus but was evident in all the heavy metal exposed fish. In addition, As and Cd produced a clear change in the protein profile as evidenced by the lack of a protein band of around 12 kDa which is absent. These protein changes were more evident with the HPLC study showing the presence of different peaks and differences in intensity. The present results could be useful for better understanding the role and their behaviour of the mucosal immunity in skin as a key component of the innate immune system against pollutants.
Collapse
Affiliation(s)
- Francisco A Guardiola
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Maria Dioguardi
- Marine Immunobiology Laboratory, Department of Biological Chemical Pharmaceutical Science and Technology, University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Department of Biological Chemical Pharmaceutical Science and Technology, University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Maria Rosa Trapani
- Marine Immunobiology Laboratory, Department of Biological Chemical Pharmaceutical Science and Technology, University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - José Meseguer
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Biological Chemical Pharmaceutical Science and Technology, University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - María A Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
37
|
Lee YA, Saito-Nakano Y, Kim KA, Min A, Nozaki T, Shin MH. Modulation of endogenous Cysteine Protease Inhibitor (ICP) 1 expression in Entamoeba histolytica affects amoebic adhesion to Extracellular Matrix proteins. Exp Parasitol 2014; 149:7-15. [PMID: 25500214 DOI: 10.1016/j.exppara.2014.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
Abstract
Entamoeba histolytica is an enteric tissue-invading protozoan parasite that causes amoebic colitis and occasionally liver abscess in humans. During tissue invasion, amoebic adhesion to host components is an important event for host cell death leading to successful invasion and infection. Among amoebic virulence factors, Gal/GalNAc lectin is known to be major adhesion factor to host cells. In this study, we investigated the role of amoebic secreted CP (Cysteine Proteases) in amoebic adhesion to extracellular matrix (ECM) protein using CP inhibitor and E. histolytica strains in which the endogenous inhibitor of cysteine protease (ICP) 1 gene was overexpressed (ICP1(+)) or repressed by antisense small RNA-mediated gene silencing (ICP1(-)). We found that pretreatment of wild-type amoebae with CP inhibitor E64, or thiol-group modifiers such as diamide and N-Ethylmaleimide resulted in a significant decrease in adhesion to laminin and collagen ECM proteins. Furthermore, ICP1(+) strain, with a reduction of secreted CP activity, exhibited reduced ability by 40% to adhere to laminin. In contrast, ICP1(-) strain, with a 1.9-fold increase of secreted CP activity, showed a two-fold increase in amoebic adherence to laminin compared to the control strain. In addition, total amount of secreted CP5 was decreased in ICP1(+) amoeba. Conversely, total amount of secreted CP1 and mature-form CP5 were increased in ICP1(-) amoeba. We also found that ICP1 was secreted into extracellular milieu. These results suggest that secreted CP activity by E. histolytica may be an important factor affecting adhesion to host proteins, and regulation of CP secretion by ICP plays a major role in pathogenesis. This study provides insight into the CP-mediated tissue pathogenesis in amoeba-invaded lesions during human amoebiasis.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Kyeong Ah Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Arim Min
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
| |
Collapse
|
38
|
Biophysical characterization of lectin–glycan interactions for therapeutics, vaccines and targeted drug-delivery. Future Med Chem 2014; 6:2113-29. [DOI: 10.4155/fmc.14.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lectin–glycan interactions play a role in biological processes, host–pathogen interactions and in disease. A more detailed understanding of these interactions is not only useful for the elucidation of their biological function but can also be applied in immunology, drug development and delivery and diagnostics. We review some commonly used biophysical techniques for studying lectin–glycan interactions; namely: frontal affinity chromatography, glycan/lectin microarray, surface plasmon resonance, electrochemical impedance spectroscopy, isothermal titration calorimetry, fluorescent assays, enzyme linked lectin sorbent assay and saturation transfer difference nuclear magnetic resonance spectroscopy. Each method is evaluated on efficiency, cost and throughput. We also consider the advantages and limitations of each technique and provide examples of their application in biology, drug discovery and delivery, immunology, glycoprofiling and biosensing.
Collapse
|
39
|
A beneficiary role for neuraminidase in influenza virus penetration through the respiratory mucus. PLoS One 2014; 9:e110026. [PMID: 25333824 PMCID: PMC4198190 DOI: 10.1371/journal.pone.0110026] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/08/2014] [Indexed: 12/24/2022] Open
Abstract
Swine influenza virus (SIV) has a strong tropism for pig respiratory mucosa, which consists of a mucus layer, epithelium, basement membrane and lamina propria. Sialic acids present on the epithelial surface have long been considered to be determinants of influenza virus tropism. However, mucus which is also rich in sialic acids may serve as the first barrier of selection. It was investigated how influenza virus interacts with the mucus to infect epithelial cells. Two techniques were applied to track SIV H1N1 in porcine mucus. The microscopic diffusion of SIV particles in the mucus was analyzed by single particle tracking (SPT), and the macroscopic penetration of SIV through mucus was studied by a virus in-capsule-mucus penetration system, followed by visualizing the translocation of the virions with time by immunofluorescence staining. Furthermore, the effects of neuraminidase on SIV getting through or binding to the mucus were studied by using zanamivir, a neuraminidase inhibitor (NAI), and Arthrobacter ureafaciens neuraminidase. The distribution of the diffusion coefficient shows that 70% of SIV particles were entrapped, while the rest diffused freely in the mucus. Additionally, SIV penetrated the porcine mucus with time, reaching a depth of 65 µm at 30 min post virus addition, 2 fold of that at 2 min. Both the microscopic diffusion and macroscopic penetration were largely diminished by NAI, while were clearly increased by the effect of exogenous neuraminidase. Moreover, the exogenous neuraminidase sufficiently prevented the binding of SIV to mucus which was reversely enhanced by effect of NAI. These findings clearly show that the neuraminidase helps SIV move through the mucus, which is important for the virus to reach and infect epithelial cells and eventually become shed into the lumen of the respiratory tract.
Collapse
|
40
|
Kim JH, Matin A, Shin HJ, Park H, Yoo KT, Yuan XZ, Kim KS, Jung SY. Functional roles of mannose-binding protein in the adhesion, cytotoxicity and phagocytosis of Acanthamoeba castellanii. Exp Parasitol 2012; 132:287-92. [DOI: 10.1016/j.exppara.2012.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022]
|
41
|
Marchant J, Cowper B, Liu Y, Lai L, Pinzan C, Marq JB, Friedrich N, Sawmynaden K, Liew L, Chai W, Childs RA, Saouros S, Simpson P, Roque Barreira MC, Feizi T, Soldati-Favre D, Matthews S. Galactose recognition by the apicomplexan parasite Toxoplasma gondii. J Biol Chem 2012; 287:16720-33. [PMID: 22399295 DOI: 10.1074/jbc.m111.325928] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.
Collapse
Affiliation(s)
- Jan Marchant
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Putative xylosyltransferase genes in Trichomonas vaginalis. Soft comput 2012. [DOI: 10.1007/s00500-011-0722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Staubach F, Künzel S, Baines AC, Yee A, McGee BM, Bäckhed F, Baines JF, Johnsen JM. Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice. ISME JOURNAL 2012; 6:1345-55. [PMID: 22278669 PMCID: PMC3379640 DOI: 10.1038/ismej.2011.204] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glycans on mucosal surfaces have an important role in host–microbe interactions. The locus encoding the blood-group-related glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) is subject to strong selective forces in natural house-mouse populations that contain a common allelic variant that confers loss of B4galnt2 gene expression in the gastrointestinal (GI) tract. We reasoned that altered glycan-dependent intestinal host–microbe interactions may underlie these signatures of selection. To determine whether B4galnt2 influences the intestinal microbial ecology, we profiled the microbiota of wild-type and B4galnt2-deficient siblings throughout the GI tract using 16S rRNA gene pyrosequencing. This revealed both distinct communities at different anatomic sites and significant changes in composition with respect to genotype, indicating a previously unappreciated role of B4galnt2 in host–microbial homeostasis. Among the numerous B4galnt2-dependent differences identified in the abundance of specific bacterial taxa, we unexpectedly detected a difference in the pathogenic genus, Helicobacter, suggesting Helicobacter spp. also interact with B4galnt2 glycans. In contrast to other glycosyltransferases, we found that the host intestinal B4galnt2 expression is not dependent on presence of the microbiota. Given the long-term maintenance of alleles influencing B4galnt2 expression by natural selection and the GI phenotypes presented here, we suggest that variation in B4galnt2 GI expression may alter susceptibility to GI diseases such as infectious gastroenteritis.
Collapse
Affiliation(s)
- Fabian Staubach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Vasta GR, Nita-Lazar M, Giomarelli B, Ahmed H, Du S, Cammarata M, Parrinello N, Bianchet MA, Amzel LM. Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1388-99. [PMID: 21896283 PMCID: PMC3429948 DOI: 10.1016/j.dci.2011.08.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 07/28/2011] [Accepted: 08/23/2011] [Indexed: 05/11/2023]
Abstract
Protein-carbohydrate interactions mediated by lectins have been recognized as key components of innate immunity in vertebrates and invertebrates, not only for recognition of potential pathogens, but also for participating in downstream effector functions, such as their agglutination, immobilization, and complement-mediated opsonization and killing. More recently, lectins have been identified as critical regulators of mammalian adaptive immune responses. Fish are endowed with virtually all components of the mammalian adaptive immunity, and are equipped with a complex lectin repertoire. In this review, we discuss evidence suggesting that: (a) lectin repertoires in teleost fish are highly diversified, and include not only representatives of the lectin families described in mammals, but also members of lectin families described for the first time in fish species; (b) the tissue-specific expression and localization of the diverse lectin repertoires and their molecular partners is consistent with their distinct biological roles in innate and adaptive immunity; (c) although some lectins may bind endogenous ligands, others bind sugars on the surface of potential pathogens; (d) in addition to pathogen recognition and opsonization, some lectins display additional effector roles, such as complement activation and regulation of immune functions; (e) some lectins that recognize exogenous ligands mediate processes unrelated to immunity: they may act as anti-freeze proteins or prevent polyspermia during fertilization.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Program in the Biology of Model Systems, Baltimore, MD 21202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Juge N. Microbial adhesins to gastrointestinal mucus. Trends Microbiol 2011; 20:30-9. [PMID: 22088901 DOI: 10.1016/j.tim.2011.10.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/30/2011] [Accepted: 10/14/2011] [Indexed: 01/04/2023]
Abstract
The gastrointestinal tract (GIT) is lined by a layer of mucus formed by mucin glycoproteins. This layer constitutes a physical and chemical barrier between the intestinal contents and the underlying epithelia. In addition to this protective role, mucins harbor glycan-rich domains that provide preferential binding sites for pathogens and commensal bacteria. Although mucus-microbial interactions in the GIT play a crucial role in determining the outcome of relationships of both commensal and pathogens with the host, the adhesins and ligands involved in the interaction are poorly delineated. This review focuses on the current knowledge of microbial adhesins to gastrointestinal mucus and mucus components.
Collapse
Affiliation(s)
- Nathalie Juge
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| |
Collapse
|
46
|
Mantis NJ, Forbes SJ. Secretory IgA: arresting microbial pathogens at epithelial borders. Immunol Invest 2010; 39:383-406. [PMID: 20450284 DOI: 10.3109/08820131003622635] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Secretory IgA (SIgA) is the predominant class of antibody found in intestinal secretions. Although SIgA's role in protecting the intestinal epithelium from the enteric pathogens and toxins has long been recognized, surprisingly little is known about the molecular mechanisms by which this is achieved. The present review summarizes the current understanding of how SIgA functions to prevent microbial pathogens and toxins from gaining access to the intestinal epithelium. We also discuss recent work from our laboratory examining the interaction of a particular protective monoclonal IgA with Salmonella and propose, based on this work, that SIgA has a previously unrecognized capacity to directly interfere with microbial virulence at mucosal surfaces.
Collapse
Affiliation(s)
- Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, University at Albany School of Public Health, Albany, New York 12208, USA.
| | | |
Collapse
|
47
|
Redondo MJ, Alvarez-Pellitero P. Carbohydrate patterns in the digestive tract of Sparus aurata L. and Psetta maxima (L.) (Teleostei) parasitized by Enteromyxum leei and E. scophthalmi (Myxozoa). Parasitol Int 2010; 59:445-53. [PMID: 20601108 DOI: 10.1016/j.parint.2010.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 05/12/2010] [Accepted: 06/14/2010] [Indexed: 02/02/2023]
Abstract
The influence of Enteromyxum spp. infections on the carbohydrate patterns of the digestive tract of gilthead sea bream (GSB) Sparus aurata L. and turbot (TB) Psetta maxima (L.) has been studied. Histochemical stainings to differentiate the types of mucins and lectin-binding assays to detect terminal carbohydrate residues were applied to histological sections of GSB and TB uninfected or infected by Enteromyxum leei and E. scophthalmi, respectively. The number of intestinal GC decreased in severely infected fish in both parasitoses, though changes in mucin patterns were limited to the decrease in the staining intensity for acidic mucins in infected GSB. The TB stomach and intestine lacked histochemically detectable acidic mucins, or sialic acid detectable by SNA, in contrast with their abundance in GSB. Glucose/mannose, fucose and GlcNAc residues were less abundant in both infected hosts with respect to uninfected fish. In contrast, D-Gal and D-GalNAc moieties (detectable by BSL I) increased in most parts of E. scophthalmi-infected TB while decreasing (oesophagus) or remaining unchanged (intestine) in E. leei-infected GSB. The decreasing in the expression of acidic mucins and of sialic acid detectable by SNA in E. leei-infected GSB is remarkable. Differences in the carbohydrate patterns between both hosts could aid to explain the differences in the severity of both enteromyxoses. In addition, the changes induced by Enteromyxum spp. infections in the digestive tract of GSB and TB suggest a role of terminal carbohydrate residues in the parasite-host interaction.
Collapse
Affiliation(s)
- María J Redondo
- Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Ribera de Cabanes, Castellón, Spain.
| | | |
Collapse
|
48
|
Abstract
Acanthamoeba keratitis (AK) is a serious infection of the cornea. At present, diagnosis of the disease is not straightforward and treatment is very demanding. While contact lens wear is the leading risk factor for A K, Acanthamoeba parasites are increasingly recognized as an important cause of keratitis in non-contact lens wearers. The first critical step in the pathogenesis of infection is the adhesion of the microbe to the surface of the host tissues. Acanthamoebae express a major virulence protein, the mannose-binding protein (MBP), which mediates the adhesion of amoebae to the surface of the cornea. The MBP is a transmembrane protein with characteristics of a typical cell surface receptor. Subsequent to the MBP-mediated adhesion to host cells, the amoebae produce a contact-dependent metalloproteinase and several contact-independent serine proteinases. These proteinases work in concert to produce a potent cytopathic effect (CPE ) involving killing of the host cells, degradation of epithelial basement membrane and underlying stromal matrix, and penetration into the deeper layers of the cornea. In the hamster animal model, oral immunization with the recombinant MBP protects against AK, and this protection is associated with an increased level of anti-MBP IgA in tears of protected animals. Normal human tear fluid contains IgA antibodies against Acanthamoeba MBP that is likely to provide protection by inhibiting the adhesion of parasites to host cells. Indeed, in in vitro CPE assays, even a low concentration of tears (10 microL of undiluted tears per milliliter of media) almost completely inhibits Acanthamoeba-induced CPE . In addition to adherence-inhibiting, IgA-mediated protection, human tears also contain IgA-independent factors that provide protection against Acanthamoeba-induced CPE by inhibiting the activity of cytotoxic proteinases. Characterization of the CPE-inhibitory factors of human tears should lead to a better understanding of the mechanism by which the tissues of the host resist the infection and also help decode circumstances that predispose to Acanthamoeba infections.
Collapse
Affiliation(s)
- Noorjahan Panjwani
- Departments of Ophthalmology and Biochemistry, The New England Eye Center, Tufts University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
49
|
Bansal D, Ave P, Kerneis S, Frileux P, Boché O, Baglin AC, Dubost G, Leguern AS, Prevost MC, Bracha R, Mirelman D, Guillén N, Labruyère E. An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis. PLoS Negl Trop Dis 2009; 3:e551. [PMID: 19936071 PMCID: PMC2777411 DOI: 10.1371/journal.pntd.0000551] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 10/19/2009] [Indexed: 11/30/2022] Open
Abstract
Amoebiasis (a human intestinal infection affecting 50 million people every year) is caused by the protozoan parasite Entamoeba histolytica. To study the molecular mechanisms underlying human colon invasion by E. histolytica, we have set up an ex vivo human colon model to study the early steps in amoebiasis. Using scanning electron microscopy and histological analyses, we have established that E. histolytica caused the removal of the protective mucus coat during the first two hours of incubation, detached the enterocytes, and then penetrated into the lamina propria by following the crypts of Lieberkühn. Significant cell lysis (determined by the release of lactodehydrogenase) and inflammation (marked by the secretion of pro-inflammatory molecules such as interleukin 1 beta, interferon gamma, interleukin 6, interleukin 8 and tumour necrosis factor) were detected after four hours of incubation. Entamoeba dispar (a closely related non-pathogenic amoeba that also colonizes the human colon) was unable to invade colonic mucosa, lyse cells or induce an inflammatory response. We also examined the behaviour of trophozoites in which genes coding for known virulent factors (such as amoebapores, the Gal/GalNAc lectin and the cysteine protease 5 (CP-A5), which have major roles in cell death, adhesion (to target cells or mucus) and mucus degradation, respectively) were silenced, together with the corresponding tissue responses. Our data revealed that the signalling via the heavy chain Hgl2 or via the light chain Lgl1 of the Gal/GalNAc lectin is not essential to penetrate the human colonic mucosa. In addition, our study demonstrates that E. histolytica silenced for CP-A5 does not penetrate the colonic lamina propria and does not induce the host's pro-inflammatory cytokine secretion. Entamoeba histolytica is the causative agent of amoebiasis, a human disease. Like other enteric infections, the lack of animal models enhances the difficulty of studying the development of amoebiasis. To date, no experimental model has been developed that reproduces the invasive intestinal amoebic lesions seen in human colon. We present the first study that examines, using human colon explants, the early steps of the human colonic barrier invasion by E. histolytica. With this ex vivo integrative model we have investigated both parasite behaviour and the human tissue response. Remarkably, in this model E. histolytica was able to cross and destroy the intestinal barrier evoking a tissue inflammatory response, while E. dispar, a non-pathogenic species, was unable to penetrate nor induce tissue responses. Furthermore, we have explored the role of three virulence factors during the invasive process, using gene-silenced E. histolytica trophozoites, particularly the kinetics of invasion, tissue destruction and induction of an early inflammatory responses. This is, to our knowledge, the first time that their role is highlighted in a complex human system. Our study provides new insights in the molecular mechanisms involved in the early steps of human colon invasion by E. histolytica.
Collapse
Affiliation(s)
- Devendra Bansal
- Institut Pasteur, Unité de Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| | - Patrick Ave
- Institut Pasteur, Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Paris, France
| | - Sophie Kerneis
- Institut Pasteur, Imagopole, Plate-forme de Microscopie Ultrastructurale, Paris, France
| | - Pascal Frileux
- Hôpital Foch, Chirurgie générale et digestive, Suresnes, France
| | - Olivier Boché
- Hôpital Foch, Chirurgie générale et digestive, Suresnes, France
| | | | | | | | | | - Rivka Bracha
- Weizmann Institute, Department of Biological Chemistry, Rehovot, Israel
| | - David Mirelman
- Weizmann Institute, Department of Biological Chemistry, Rehovot, Israel
| | - Nancy Guillén
- Institut Pasteur, Unité de Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| | - Elisabeth Labruyère
- Institut Pasteur, Unité de Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
- * E-mail:
| |
Collapse
|
50
|
Nakada-Tsukui K, Okada H, Mitra BN, Nozaki T. Phosphatidylinositol-phosphates mediate cytoskeletal reorganization during phagocytosis via a unique modular protein consisting of RhoGEF/DH and FYVE domains in the parasitic protozoonEntamoeba histolytica. Cell Microbiol 2009; 11:1471-91. [DOI: 10.1111/j.1462-5822.2009.01341.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|