1
|
Yang Y, Dalvie NC, Brady JR, Naranjo CA, Lorgeree T, Rodriguez‐Aponte SA, Johnston RS, Tracey MK, Elenberger CM, Lee E, Tié M, Love KR, Love JC. Adaptation of Aglycosylated Monoclonal Antibodies for Improved Production in Komagataella phaffii. Biotechnol Bioeng 2025; 122:361-372. [PMID: 39543843 PMCID: PMC11718428 DOI: 10.1002/bit.28878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals manufactured by well-established processes using Chinese Hamster Ovary (CHO) cells. Next-generation biomanufacturing using alternative hosts like Komagataella phaffii could improve the accessibility of these medicines, address broad societal goals for sustainability, and offer financial advantages for accelerated development of new products. Antibodies produced by K. phaffii, however, may manifest unique molecular quality attributes, like host-dependent, product-related variants, that could raise potential concerns for clinical use. We demonstrate here conservative modifications to the amino acid sequence of aglycosylated antibodies based on the human IgG1 isotype that minimize product-related variations when secreted by K. phaffii. A combination of 2-3 changes of amino acids reduced variations across six different aglycosylated versions of commercial mAbs. Expression of a modified sequence of NIST mAb in both K. phaffii and CHO cells showed comparable biophysical properties and molecular variations. These results suggest a path toward the production of high-quality mAbs that could be expressed interchangeably by either yeast or mammalian cells. Improving molecular designs of proteins to enable a range of manufacturing strategies for well-characterized biopharmaceuticals could accelerate global accessibility and innovations.
Collapse
Affiliation(s)
- Yuchen Yang
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Neil C. Dalvie
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Joseph R. Brady
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Christopher A. Naranjo
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Timothy Lorgeree
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sergio A. Rodriguez‐Aponte
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ryan S. Johnston
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Mary K. Tracey
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Carmen M. Elenberger
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | | | - Kerry R. Love
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - J. Christopher Love
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
2
|
Sookhoo JRV, Schiffman Z, Ambagala A, Kobasa D, Pardee K, Babiuk S. Protein Expression Platforms and the Challenges of Viral Antigen Production. Vaccines (Basel) 2024; 12:1344. [PMID: 39772006 PMCID: PMC11680109 DOI: 10.3390/vaccines12121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Several protein expression platforms exist for a wide variety of biopharmaceutical needs. A substantial proportion of research and development into protein expression platforms and their optimization since the mid-1900s is a result of the production of viral antigens for use in subunit vaccine research. This review discusses the seven most popular forms of expression systems used in the past decade-bacterial, insect, mammalian, yeast, algal, plant and cell-free systems-in terms of advantages, uses and limitations for viral antigen production in the context of subunit vaccine research. Post-translational modifications, immunogenicity, efficacy, complexity, scalability and the cost of production are major points discussed. Examples of licenced and experimental vaccines are included along with images which summarize the processes involved.
Collapse
Affiliation(s)
- Jamie R. V. Sookhoo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
3
|
Tsuda M, Nonaka K. Recent progress on heterologous protein production in methylotrophic yeast systems. World J Microbiol Biotechnol 2024; 40:200. [PMID: 38730212 PMCID: PMC11087369 DOI: 10.1007/s11274-024-04008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Recombinant protein production technology is widely applied to the manufacture of biologics used as drug substances and industrial proteins such as recombinant enzymes and bioactive proteins. Various heterologous protein production systems have been developed using prokaryotic and eukaryotic hosts. Especially methylotrophic yeast in eukaryotic hosts is suggested to be particularly valuable because such systems have the following advantages: protein secretion into culture broth, eukaryotic quality control systems, a post-translational modification system, rapid growth, and established recombinant DNA tools and technologies such as strong promoters, effective selection markers, and gene knock-in and -out systems. Many methylotrophic yeasts such as the genera Candida, Ogataea, and Komagataella have been studied since methylotrophic yeast was first isolated in 1969. The methanol-consumption-related genes in methylotrophic yeast are strongly and strictly regulated under methanol-containing conditions. The well-regulated gene expression systems under the methanol-inducible gene promoter lead to the potential application of heterologous protein production in methylotrophic yeast. In this review, we describe the recent progress of heterologous protein production technology in methylotrophic yeast and introduce Ogataea minuta as an alternative production host as a substitute for K. phaffii and O. polymorpha.
Collapse
Affiliation(s)
- Masashi Tsuda
- Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda, Gunma, 370-0503, Japan.
| | - Koichi Nonaka
- Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda, Gunma, 370-0503, Japan
| |
Collapse
|
4
|
Das PK, Sahoo A, Veeranki VD. Recombinant monoclonal antibody production in yeasts: Challenges and considerations. Int J Biol Macromol 2024; 266:131379. [PMID: 38580014 DOI: 10.1016/j.ijbiomac.2024.131379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Monoclonal antibodies (mAbs) are laboratory-based engineered protein molecules with a monovalent affinity or multivalent avidity towards a specific target or antigen, which can mimic natural antibodies that are produced in the human immune systems to fight against detrimental pathogens. The recombinant mAb is one of the most effective classes of biopharmaceuticals produced in vitro by cloning and expressing synthetic antibody genes in a suitable host. Yeast is one of the potential hosts among others for the successful production of recombinant mAbs. However, there are very few yeast-derived mAbs that got the approval of the regulatory agencies for direct use for treatment purposes. Certain challenges encountered by yeasts for recombinant antibody productions need to be overcome and a few considerations related to antibody structure, host engineering, and culturing strategies should be followed for the improved production of mAbs in yeasts. In this review, the drawbacks related to the metabolic burden of the host, culturing conditions including induction mechanism and secretion efficiency, solubility and stability, downstream processing, and the pharmacokinetic behavior of the antibody are discussed, which will help in developing the yeast hosts for the efficient production of recombinant mAbs.
Collapse
Affiliation(s)
- Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Venkata Dasu Veeranki
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
5
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Pathway engineering facilitates efficient protein expression in Pichia pastoris. Appl Microbiol Biotechnol 2022; 106:5893-5912. [PMID: 36040488 DOI: 10.1007/s00253-022-12139-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Pichia pastoris has been recognized as an important platform for the production of various heterologous proteins in recent years. The strong promoter AOX1, induced by methanol, with the help of the α-pre-pro signal sequence, can lead to a high expression level of extracellular protein. However, this combination was not always efficient, as protein secretion in P. pastoris involves numerous procedures mediated by several cellular proteins, including folding assisted by endoplasmic reticulum (ER) molecular chaperones, degradation through ubiquitination, and an efficient vesicular transport system. Efficient protein expression requires the cooperation of various intracellular pathways. This article summarizes the process of protein secretion, modification, and transportation in P. pastoris. In addition, the roles played by the key proteins in these processes and the corresponding co-expression effects are also listed. It is expected to lay the foundation for the industrial protein production of P. pastoris. KEY POINTS: • Mechanisms of chaperones in protein folding and their co-expression effects are summarized. • Protein glycosylation modifications are comprehensively reviewed. • Current dilemmas in the overall protein secretion pathway of Pichia pastoris and corresponding solutions are demonstrated.
Collapse
|
7
|
Li X, Shen J, Chen X, Chen L, Wan S, Qiu X, Chen K, Chen C, Tan H. Humanization of Yeasts for Glycan-Type End-Products. Front Microbiol 2022; 13:930658. [PMID: 35875538 PMCID: PMC9300968 DOI: 10.3389/fmicb.2022.930658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Yeasts are often considered microorganisms for producing human therapeutic glycosylated end-products at an industrial scale. However, the products with non-humanized glycans limited their usage. Therefore, various methods to develop humanized glycosylated end-products have been widely reported in yeasts. To make full use of these methods, it is necessary to summarize the present research to find effective approaches to producing humanized products. The present research focuses on yeast species selection, glycosyltransferase deletion, expression of endoglycosidase, and expression of proteins with galactosylated and or sialylated glycans. Nevertheless, the yeasts will have growth defects with low bioactivity when the key enzymes are deleted. It is necessary to express the corresponding repairing protein. Compared with N-glycosylation, the function of yeast protein O-glycosylation is not well-understood. Yeast proteins have a wide variety of O-glycans in different species, and it is difficult to predict glycosylation sites, which limits the humanization of O-glycosylated yeast proteins. The future challenges include the following points: there are still many important potential yeasts that have never been tried to produce glycosylated therapeutic products. Their glycosylation pathway and related mechanisms for producing humanized glycosylated proteins have rarely been reported. On the other hand, the amounts of key enzymes on glycan pathways in human beings are significantly more than those in yeasts. Therefore, there is still a challenge to produce a large body of humanized therapeutic end-products in suitable yeast species, especially the protein with complex glycans. CRISPR-Cas9 system may provide a potential approach to address the important issue.
Collapse
|
8
|
Yeast-produced RBD-based recombinant protein vaccines elicit broadly neutralizing antibodies and durable protective immunity against SARS-CoV-2 infection. Cell Discov 2021; 7:71. [PMID: 34408130 PMCID: PMC8372230 DOI: 10.1038/s41421-021-00315-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Massive production of efficacious SARS-CoV-2 vaccines is essential for controlling the ongoing COVID-19 pandemic. We report here the preclinical development of yeast-produced receptor-binding domain (RBD)-based recombinant protein SARS-CoV-2 vaccines. We found that monomeric RBD of SARS-CoV-2 could be efficiently produced as a secreted protein from transformed Pichia pastoris (P. pastoris) yeast. Yeast-derived RBD-monomer possessed functional conformation and was able to elicit protective level of neutralizing antibodies in mice. We further designed and expressed a genetically linked dimeric RBD protein in yeast. The engineered dimeric RBD was more potent than the monomeric RBD in inducing long-lasting neutralizing antibodies. Mice immunized with either monomeric RBD or dimeric RBD were effectively protected from live SARS-CoV-2 virus challenge even at 18 weeks after the last vaccine dose. Importantly, we found that the antisera raised against the RBD of a single SARS-CoV-2 prototype strain could effectively neutralize the two predominant circulating variants B.1.1.7 and B.1.351, implying broad-spectrum protective potential of the RBD-based vaccines. Our data demonstrate that yeast-derived RBD-based recombinant SARS-CoV-2 vaccines are feasible and efficacious, opening up a new avenue for rapid and cost-effective production of SARS-CoV-2 vaccines to achieve global immunization.
Collapse
|
9
|
Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up. Microb Cell Fact 2021; 20:124. [PMID: 34193127 PMCID: PMC8246677 DOI: 10.1186/s12934-021-01617-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The manufacture of recombinant therapeutics is a fastest-developing section of therapeutic pharmaceuticals and presently plays a significant role in disease management. Yeasts are established eukaryotic host for heterologous protein production and offer distinctive benefits in synthesising pharmaceutical recombinants. Yeasts are proficient of vigorous growth on inexpensive media, easy for gene manipulations, and are capable of adding post translational changes of eukaryotes. Saccharomyces cerevisiae is model yeast that has been applied as a main host for the manufacture of pharmaceuticals and is the major tool box for genetic studies; nevertheless, numerous other yeasts comprising Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Yarrowia lipolytica have attained huge attention as non-conventional partners intended for the industrial manufacture of heterologous proteins. Here we review the advances in yeast gene manipulation tools and techniques for heterologous pharmaceutical protein synthesis. Application of secretory pathway engineering, glycosylation engineering strategies and fermentation scale-up strategies in customizing yeast cells for the synthesis of therapeutic proteins has been meticulously described.
Collapse
|
10
|
Aw R, De Wachter C, Laukens B, De Rycke R, De Bruyne M, Bell D, Callewaert N, Polizzi KM. Knockout of RSN1, TVP18 or CSC1-2 causes perturbation of Golgi cisternae in Pichia pastoris. Traffic 2020; 22:48-63. [PMID: 33263222 DOI: 10.1111/tra.12773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022]
Abstract
The structural organization of the Golgi stacks in mammalian cells is intrinsically linked to function, including glycosylation, but the role of morphology is less clear in lower eukaryotes. Here we investigated the link between the structural organization of the Golgi and secretory pathway function using Pichia pastoris as a model system. To unstack the Golgi cisternae, we disrupted 18 genes encoding proteins in the secretory pathway without loss of viability. Using biosensors, confocal microscopy and transmission electron microscopy we identified three strains with irreversible perturbations in the stacking of the Golgi cisternae, all of which had disruption in genes that encode proteins with annotated function as or homology to calcium/calcium permeable ion channels. Despite this, no variation in the secretory pathway for ER size, whole cell glycomics or recombinant protein glycans was observed. Our investigations showed the robust nature of the secretory pathway in P. pastoris and suggest that Ca2+ concentration, homeostasis or signalling may play a significant role for Golgi stacking in this organism and should be investigated in other organisms.
Collapse
Affiliation(s)
- Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Charlot De Wachter
- VIB-UGent, Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bram Laukens
- VIB-UGent, Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research and BioImaging Core, Ghent, Belgium
| | - Michiel De Bruyne
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research and BioImaging Core, Ghent, Belgium
| | - David Bell
- Section for Structural Biology, Department of Medicine, Imperial College London, London, United Kingdom.,London Biofoundry, Imperial College London, London, United Kingdom
| | - Nico Callewaert
- VIB-UGent, Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Radoman B, Grünwald-Gruber C, Schmelzer B, Zavec D, Gasser B, Altmann F, Mattanovich D. The Degree and Length of O-Glycosylation of Recombinant Proteins Produced in Pichia pastoris Depends on the Nature of the Protein and the Process Type. Biotechnol J 2020; 16:e2000266. [PMID: 32975831 DOI: 10.1002/biot.202000266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/09/2020] [Indexed: 12/16/2022]
Abstract
The methylotrophic yeast Pichia pastoris is known as an efficient host for the production of heterologous proteins. While N-linked protein glycosylation is well characterized in P. pastoris there is less knowledge of the patterns of O-glycosylation. O-glycans produced by P. pastoris consist of short linear mannose chains, which in the case of recombinant biopharmaceuticals can trigger an immune response in humans. This study aims to reveal the influence of different cultivation strategies on O-mannosylation profiles in P. pastoris. Sixteen different model proteins, produced by different P. pastoris strains, are analyzed for their O-glycosylation profile. Based on the obtained data, human serum albumin (HSA) is chosen to be produced in fast and slow growth fed batch fermentations by using common promoters, PGAP and PAOX1 . After purification and protein digestion, glycopeptides are analyzed by LC/ESI-MS. In the samples expressed with PGAP it is found that the degree of glycosylation is slightly higher when a slow growth rate is used, regardless of the efficiency of the producing strain. The highest glycosylation intensity is observed in HSA produced with PAOX1 . The results indicate that the O-glycosylation level is markedly higher when the protein is produced in a methanol-based expression system.
Collapse
Affiliation(s)
- Bojana Radoman
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Bernhard Schmelzer
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Domen Zavec
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Friedrich Altmann
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| |
Collapse
|
12
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Thak EJ, Yoo SJ, Moon HY, Kang HA. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins. FEMS Yeast Res 2020; 20:5721243. [DOI: 10.1093/femsyr/foaa009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Yeasts are prominent hosts for the production of recombinant proteins from industrial enzymes to therapeutic proteins. Particularly, the similarity of protein secretion pathways between these unicellular eukaryotic microorganisms and higher eukaryotic organisms has made them a preferential host to produce secretory recombinant proteins. However, there are several bottlenecks, in terms of quality and quantity, restricting their use as secretory recombinant protein production hosts. In this mini-review, we discuss recent developments in synthetic biology approaches to constructing yeast cell factories endowed with enhanced capacities of protein folding and secretion as well as designed targeted post-translational modification process functions. We focus on the new genetic tools for optimizing secretory protein expression, such as codon-optimized synthetic genes, combinatory synthetic signal peptides and copy number-controllable integration systems, and the advanced cellular engineering strategies, including endoplasmic reticulum and protein trafficking pathway engineering, synthetic glycosylation, and cell wall engineering, for improving the quality and yield of secretory recombinant proteins.
Collapse
Affiliation(s)
- Eun Jung Thak
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Su Jin Yoo
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hye Yun Moon
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hyun Ah Kang
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
14
|
Amann T, Schmieder V, Faustrup Kildegaard H, Borth N, Andersen MR. Genetic engineering approaches to improve posttranslational modification of biopharmaceuticals in different production platforms. Biotechnol Bioeng 2019; 116:2778-2796. [PMID: 31237682 DOI: 10.1002/bit.27101] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
The number of approved biopharmaceuticals, where product quality attributes remain of major importance, is increasing steadily. Within the available variety of expression hosts, the production of biopharmaceuticals faces diverse limitations with respect to posttranslational modifications (PTM), while different biopharmaceuticals demand different forms and specifications of PTMs for proper functionality. With the growing toolbox of genetic engineering technologies, it is now possible to address general as well as host- or biopharmaceutical-specific product quality obstacles. In this review, we present diverse expression systems derived from mammalians, bacteria, yeast, plants, and insects as well as available genetic engineering tools. We focus on genes for knockout/knockdown and overexpression for meaningful approaches to improve biopharmaceutical PTMs and discuss their applicability as well as future trends in the field.
Collapse
Affiliation(s)
- Thomas Amann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valerie Schmieder
- acib GmbH-Austrian Centre of Industrial Biotechnology, Graz, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicole Borth
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Pekarsky A, Veiter L, Rajamanickam V, Herwig C, Grünwald-Gruber C, Altmann F, Spadiut O. Production of a recombinant peroxidase in different glyco-engineered Pichia pastoris strains: a morphological and physiological comparison. Microb Cell Fact 2018; 17:183. [PMID: 30474550 PMCID: PMC6260843 DOI: 10.1186/s12934-018-1032-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
Background The methylotrophic yeast Pichia pastoris is a common host for the production of recombinant proteins. However, hypermannosylation hinders the use of recombinant proteins from yeast in most biopharmaceutical applications. Glyco-engineered yeast strains produce more homogeneously glycosylated proteins, but can be physiologically impaired and show tendencies for cellular agglomeration, hence are hard to cultivate. Further, comprehensive data regarding growth, physiology and recombinant protein production in the controlled environment of a bioreactor are scarce. Results A Man5GlcNAc2 glycosylating and a Man8–10GlcNAc2 glycosylating strain showed similar morphological traits during methanol induced shake-flask cultivations to produce the recombinant model protein HRP C1A. Both glyco-engineered strains displayed larger single and budding cells than a wild type strain as well as strong cellular agglomeration. The cores of these agglomerates appeared to be less viable. Despite agglomeration, the Man5GlcNAc2 glycosylating strain showed superior growth, physiology and HRP C1A productivity compared to the Man8–10GlcNAc2 glycosylating strain in shake-flasks and in the bioreactor. Conducting dynamic methanol pulsing revealed that HRP C1A productivity of the Man5GlcNAc2 glycosylating strain is best at a temperature of 30 °C. Conclusion This study provides the first comprehensive evaluation of growth, physiology and recombinant protein production of a Man5GlcNAc2 glycosylating strain in the controlled environment of a bioreactor. Furthermore, it is evident that cellular agglomeration is likely triggered by a reduced glycan length of cell surface glycans, but does not necessarily lead to lower metabolic activity and recombinant protein production. Man5GlcNAc2 glycosylated HRP C1A production is feasible, yields active protein similar to the wild type strain, but thermal stability of HRP C1A is negatively affected by reduced glycosylation. Electronic supplementary material The online version of this article (10.1186/s12934-018-1032-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Pekarsky
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Lukas Veiter
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.,Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Vignesh Rajamanickam
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.,Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Christoph Herwig
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.,Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| |
Collapse
|
16
|
High level expression and glycosylation of recombinant Mycobacterium tuberculosis Ala-Pro-rich antigen in Pichia pastoris. Protein Expr Purif 2018; 150:67-71. [PMID: 29753122 DOI: 10.1016/j.pep.2018.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/02/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022]
Abstract
The Ala-Pro-rich Antigen (Apa) from Mycobacterium tuberculosis is a mannosylated protein with immunogenic and antigenic properties. The O-mannosylation is essential for its biological function in the process of colonization and invasion of host cells by M. tuberculosis. In this work, the gene encoding Apa was cloned from M. tuberculosis and expressed in Pichia pastoris GS115. In shake-flasks, the recombinant Apa was secreted into the culture media and purified with a yield of 0.6 g/L. Both N- and O-glycans were found in recombinant Apa. In P. pastoris the known M. tuberculosis-derived O-glycosites of Apa were modified with short chains of mannose units, and a few additional glycosylation sites were also observed. Therefore, the recombinant Apa expressed in P. pastoris has similar but not identical O-mannose patterns to the native protein from M. tuberculosis. P. pastoris and mycobacteria share similarities in the protein O-glycosylation pathway. Thus P. pastoris could be a potential powerful expression system to produce mycobacteria-derived glycoproteins.
Collapse
|
17
|
Metabolic engineering of Pichia pastoris. Metab Eng 2018; 50:2-15. [PMID: 29704654 DOI: 10.1016/j.ymben.2018.04.017] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Besides its use for efficient production of recombinant proteins the methylotrophic yeast Pichia pastoris (syn. Komagataella spp.) has been increasingly employed as a platform to produce metabolites of varying origin. We summarize here the impressive methodological developments of the last years to model and analyze the metabolism of P. pastoris, and to engineer its genome and metabolic pathways. Efficient methods to insert, modify or delete genes via homologous recombination and CRISPR/Cas9, supported by modular cloning techniques, have been reported. An outstanding early example of metabolic engineering in P. pastoris was the humanization of protein glycosylation. More recently the cell metabolism was engineered also to enhance the productivity of heterologous proteins. The last few years have seen an increased number of metabolic pathway design and engineering in P. pastoris, mainly towards the production of complex (secondary) metabolites. In this review, we discuss the potential role of P. pastoris as a platform for metabolic engineering, its strengths, and major requirements for future developments of chassis strains based on synthetic biology principles.
Collapse
|
18
|
Engineering of Yeast Glycoprotein Expression. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:93-135. [DOI: 10.1007/10_2018_69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Matthews CB, Wright C, Kuo A, Colant N, Westoby M, Love JC. Reexamining opportunities for therapeutic protein production in eukaryotic microorganisms. Biotechnol Bioeng 2017; 114:2432-2444. [DOI: 10.1002/bit.26378] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/19/2017] [Accepted: 07/03/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Catherine B. Matthews
- Department of Chemical Engineering; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge Massachusetts
| | | | - Angel Kuo
- Department of Chemical Engineering; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge Massachusetts
| | - Noelle Colant
- Department of Chemical Engineering; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge Massachusetts
| | | | - J. Christopher Love
- Department of Chemical Engineering; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge Massachusetts
| |
Collapse
|
20
|
Slámová K, Bojarová P. Engineered N-acetylhexosamine-active enzymes in glycoscience. Biochim Biophys Acta Gen Subj 2017; 1861:2070-2087. [PMID: 28347843 DOI: 10.1016/j.bbagen.2017.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND In recent years, enzymes modifying N-acetylhexosamine substrates have emerged in numerous theoretical studies as well as practical applications from biology, biomedicine, and biotechnology. Advanced enzyme engineering techniques converted them into potent synthetic instruments affording a variety of valuable glycosides. SCOPE OF REVIEW This review presents the diversity of engineered enzymes active with N-acetylhexosamine carbohydrates: from popular glycoside hydrolases and glycosyltransferases to less known oxidases, epimerases, kinases, sulfotransferases, and acetylases. Though hydrolases in natura, engineered chitinases, β-N-acetylhexosaminidases, and endo-β-N-acetylglucosaminidases were successfully employed in the synthesis of defined natural and derivatized chitooligomers and in the remodeling of N-glycosylation patterns of therapeutic antibodies. The genes of various N-acetylhexosaminyltransferases were cloned into metabolically engineered microorganisms for producing human milk oligosaccharides, Lewis X structures, and human-like glycoproteins. Moreover, mutant N-acetylhexosamine-active glycosyltransferases were applied, e.g., in the construction of glycomimetics and complex glycostructures, industrial production of low-lactose milk, and metabolic labeling of glycans. In the synthesis of biotechnologically important compounds, several innovative glycoengineered systems are presented for an efficient bioproduction of GlcNAc, UDP-GlcNAc, N-acetylneuraminic acid, and of defined glycosaminoglycans. MAJOR CONCLUSIONS The above examples demonstrate that engineering of N-acetylhexosamine-active enzymes was able to solve complex issues such as synthesis of tailored human-like glycoproteins or industrial-scale production of desired oligosaccharides. Due to the specific catalytic mechanism, mutagenesis of these catalysts was often realized through rational solutions. GENERAL SIGNIFICANCE Specific N-acetylhexosamine glycosylation is crucial in biological, biomedical and biotechnological applications and a good understanding of its details opens new possibilities in this fast developing area of glycoscience.
Collapse
Affiliation(s)
- Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
21
|
Diethard M, Gasser B, Egermeier M, Marx H, Sauer M. Industrial Microorganisms: Saccharomyces cerevisiaeand other Yeasts. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mattanovich Diethard
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
| | - Brigitte Gasser
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
| | - Michael Egermeier
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- BOKU - University of Natural Resources and Life Sciences; CD-Laboratory for Biotechnology of Glycerol; Muthgasse 18 1190 Vienna Austria
| | - Hans Marx
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
| | - Michael Sauer
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
- BOKU - University of Natural Resources and Life Sciences; CD-Laboratory for Biotechnology of Glycerol; Muthgasse 18 1190 Vienna Austria
| |
Collapse
|
22
|
Mattanovich D, Sauer M, Gasser B. Industrial Microorganisms: Pichia pastoris. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Diethard Mattanovich
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
| | - Michael Sauer
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
- BOKU - University of Natural Resources and Life Sciences; CD-Laboratory for Biotechnology of Glycerol; Muthgasse 18 1190 Vienna Austria
| | - Brigitte Gasser
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
| |
Collapse
|
23
|
Templar A, Woodhouse S, Keshavarz-Moore E, Nesbeth DN. Influence of Pichia pastoris cellular material on polymerase chain reaction performance as a synthetic biology standard for genome monitoring. J Microbiol Methods 2016; 127:111-122. [PMID: 27211507 DOI: 10.1016/j.mimet.2016.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 02/08/2023]
Abstract
Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard.
Collapse
Affiliation(s)
- Alexander Templar
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT, United Kingdom
| | - Stefan Woodhouse
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT, United Kingdom
| | - Eli Keshavarz-Moore
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT, United Kingdom
| | - Darren N Nesbeth
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
24
|
Dai M, Yu C, Fang T, Fu L, Wang J, Zhang J, Ren J, Xu J, Zhang X, Chen W. Identification and Functional Characterization of Glycosylation of Recombinant Human Platelet-Derived Growth Factor-BB in Pichia pastoris. PLoS One 2015; 10:e0145419. [PMID: 26701617 PMCID: PMC4689512 DOI: 10.1371/journal.pone.0145419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/03/2015] [Indexed: 01/02/2023] Open
Abstract
Yeast Pichia pastoris is a widely used system for heterologous protein expression. However, post-translational modifications, especially glycosylation, usually impede pharmaceutical application of recombinant proteins because of unexpected alterations in protein structure and function. The aim of this study was to identify glycosylation sites on recombinant human platelet-derived growth factor-BB (rhPDGF-BB) secreted by P. pastoris, and investigate possible effects of O-linked glycans on PDGF-BB functional activity. PDGF-BB secreted by P. pastoris is very heterogeneous and contains multiple isoforms. We demonstrated that PDGF-BB was O-glycosylated during the secretion process and detected putative O-glycosylation sites using glycosylation staining and immunoblotting. By site-directed mutagenesis and high-resolution LC/MS analysis, we, for the first time, identified two threonine residues at the C-terminus as the major O-glycosylation sites on rhPDGF-BB produced in P. pastoris. Although O-glycosylation resulted in heterogeneous protein expression, the removal of glycosylation sites did not affect rhPDGF-BB mitogenic activity. In addition, the unglycosylated PDGF-BBΔGly mutant exhibited the immunogenicity comparable to that of the wild-type form. Furthermore, antiserum against PDGF-BBΔGly also recognized glycosylated PDGF-BB, indicating that protein immunogenicity was unaltered by glycosylation. These findings elucidate the effect of glycosylation on PDGF-BB structure and biological activity, and can potentially contribute to the design and production of homogeneously expressed unglycosylated or human-type glycosylated PDGF-BB in P. pastoris for pharmaceutical applications.
Collapse
Affiliation(s)
- Mengmeng Dai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
- Clinical Laboratory, The 148th Hospital of PLA, Zibo, China
| | - Changming Yu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ting Fang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jing Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Ren
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaopeng Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
- * E-mail: (WC); (XZ)
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
- * E-mail: (WC); (XZ)
| |
Collapse
|
25
|
Chen R. The sweet branch of metabolic engineering: cherry-picking the low-hanging sugary fruits. Microb Cell Fact 2015; 14:197. [PMID: 26655367 PMCID: PMC4674990 DOI: 10.1186/s12934-015-0389-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023] Open
Abstract
In the first science review on the then nascent Metabolic Engineering field in 1991, Dr. James E. Bailey described how improving erythropoietin (EPO) glycosylation can be achieved via metabolic engineering of Chinese hamster ovary (CHO) cells. In the intervening decades, metabolic engineering has brought sweet successes in glycoprotein engineering, including antibodies, vaccines, and other human therapeutics. Today, not only eukaryotes (CHO, plant, insect, yeast) are being used for manufacturing protein therapeutics with human-like glycosylation, newly elucidated bacterial glycosylation systems are enthusiastically embraced as potential breakthrough to revolutionize the biopharmaceutical industry. Notwithstanding these excitement in glycoprotein, the sweet metabolic engineering reaches far beyond glycoproteins. Many different types of oligo- and poly-saccharides are synthesized with metabolically engineered cells. For example, several recombinant hyaluronan bioprocesses are now in commercial production, and the titer of 2′-fucosyllactose, the most abundant fucosylated trisaccharide in human milk, reaches over 20 g/L with engineered E. coli cells. These successes represent only the first low hanging fruits, which have been appreciated scientifically, medically and fortunately, commercially as well. As one of the four building blocks of life, sugar molecules permeate almost all aspects of life. They are also unique in being intimately associated with all major types of biopolymers (including DNA/RNA, proteins, lipids) meanwhile they stand alone as bioactive polysaccharides, or free soluble oligosaccharides. As such, all sugar moieties in biological components, small or big and free or bound, are important targets for metabolic engineering. Opportunities abound at the interface of glycosciences and metabolic engineering. Continued investment and successes in this branch of metabolic engineering will make vastly diverse sugar-containing molecules (a.k.a. glycoconjugates) available for biomedical applications, sustainable technology development, and as invaluable tools for basic scientific research. This short review focuses on the most recent development in the field, with emphasis on the synthesis technology for glycoprotein, polysaccharide, and oligosaccharide.
Collapse
Affiliation(s)
- Rachel Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, NW, Atlanta, GA, 30332-0100, USA.
| |
Collapse
|
26
|
Abstract
INTRODUCTION Glycans are increasingly important in the development of new biopharmaceuticals with optimized efficacy, half-life, and antigenicity. Current expression platforms for recombinant glycoprotein therapeutics typically do not produce homogeneous glycans and frequently display non-human glycans which may cause unwanted side effects. To circumvent these issues, glyco-engineering has been applied to different expression systems including mammalian cells, insect cells, yeast, and plants. AREAS COVERED This review summarizes recent developments in glyco-engineering focusing mainly on in vivo expression systems for recombinant proteins. The highlighted strategies aim at producing glycoproteins with homogeneous N- and O-linked glycans of defined composition. EXPERT OPINION Glyco-engineering of expression platforms is increasingly recognized as an important strategy to improve biopharmaceuticals. A better understanding and control of the factors leading to glycan heterogeneity will allow simplified production of recombinant glycoprotein therapeutics with less variation in terms of glycosylation. Further technological advances will have a major impact on manufacturing processes and may provide a completely new class of glycoprotein therapeutics with customized functions.
Collapse
Affiliation(s)
- Martina Dicker
- a 1 University of Natural Resources and Life Sciences , Department of Applied Genetics and Cell Biology , Muthgasse 18, Vienna, Austria
| | - Richard Strasser
- b 2 University of Natural Resources and Life Sciences, Department of Applied Genetics and Cell Biology , Muthgasse 18, Vienna, Austria +43 1 47654 6705 ; +43 1 47654 6392 ;
| |
Collapse
|
27
|
Kim H, Thak EJ, Lee DJ, Agaphonov MO, Kang HA. Hansenula polymorpha Pmt4p Plays Critical Roles in O-Mannosylation of Surface Membrane Proteins and Participates in Heteromeric Complex Formation. PLoS One 2015; 10:e0129914. [PMID: 26134523 PMCID: PMC4489896 DOI: 10.1371/journal.pone.0129914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/14/2015] [Indexed: 01/09/2023] Open
Abstract
O-mannosylation, the addition of mannose to serine and threonine residues of secretory proteins, is a highly conserved post-translational modification found in organisms ranging from bacteria to humans. Here, we report the functional and molecular characterization of the HpPMT4 gene encoding a protein O-mannosyltransferase in the thermotolerant methylotrophic yeast Hansenula polymorpha, an emerging host for the production of therapeutic recombinant proteins. Compared to the deletion of HpPMT1, deletion of another major PMT gene, HpPMT4, resulted in more increased sensitivity to the antibiotic hygromycin B, caffeine, and osmotic stresses, but did not affect the thermotolerance of H. polymorpha. Notably, the deletion of HpPMT4 generated severe defects in glycosylation of the surface sensor proteins HpWsc1p and HpMid2p, with marginal effects on secreted glycoproteins such as chitinase and HpYps1p lacking a GPI anchor. However, despite the severely impaired mannosylation of surface sensor proteins in the Hppmt4∆ mutant, the phosphorylation of HpMpk1p and HpHog1p still showed a high increase upon treatment with cell wall disturbing agents or high concentrations of salts. The conditional Hppmt1pmt4∆ double mutant strains displayed severely impaired growth, enlarged cell size, and aberrant cell separation, implying that the loss of HpPMT4 function might be lethal to cells in the absence of HpPmt1p. Moreover, the HpPmt4 protein was found to form not only a homomeric complex but also a heteromeric complex with either HpPmt1p or HpPmt2p. Altogether, our results support the function of HpPmt4p as a key player in O-mannosylation of cell surface proteins and its participation in the formation of heterodimers with other PMT members, besides homodimer formation, in H. polymorpha.
Collapse
Affiliation(s)
- Hyunah Kim
- Department of Life Science, Chung-Ang University, Seoul 156–756, Korea
| | - Eun Jung Thak
- Department of Life Science, Chung-Ang University, Seoul 156–756, Korea
| | - Dong-Jik Lee
- Department of Life Science, Chung-Ang University, Seoul 156–756, Korea
| | - Michael O. Agaphonov
- A.N. Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul 156–756, Korea
- * E-mail:
| |
Collapse
|
28
|
Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris. Appl Microbiol Biotechnol 2015; 99:2925-38. [DOI: 10.1007/s00253-015-6470-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 10/23/2022]
|
29
|
Kim H, Yoo SJ, Kang HA. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 2015; 15:1-16. [PMID: 25130199 DOI: 10.1111/1567-1364.12195] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/12/2014] [Accepted: 08/05/2014] [Indexed: 11/29/2022] Open
Abstract
The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins.
Collapse
Affiliation(s)
- Hyunah Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Korea
| |
Collapse
|
30
|
Laukens B, De Visscher C, Callewaert N. Engineering yeast for producing human glycoproteins: where are we now? Future Microbiol 2015; 10:21-34. [PMID: 25598335 PMCID: PMC7617146 DOI: 10.2217/fmb.14.104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Yeast has advanced as an alternative for mammalian cell culture for the production of recombinant therapeutic glycoproteins. Engineered yeast strains not only allow to mimic the human N-glycosylation pathway but also specific types of human O-glycosylation. This is of great value for therapeutic protein production and indispensable to determine the structure-function relationships of glycans on recombinant proteins. However, as the technology matures, some limitations have come up that may hamper biomedical applications and must be considered to exploit the full potential of the unprecedented glycan homogeneity obtained on relevant biopharmaceuticals. In this special report, we focus on the recent developments in N- and O-glycosylation engineering in yeasts of industrial importance, to produce recombinant therapeutics with customized glycans.
Collapse
Affiliation(s)
- Bram Laukens
- Unit for Medical Biotechnology, Inflammation Research Centre (IRC), VIB-UGent, Technologiepark 927, B-9052 Ghent-Zwijnaarde, Belgium
- Department of Biochemistry & Microbiology, Laboratory for Protein Biochemistry & Biomolecular Engineering, Ghent University, K.L.-Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Charlotte De Visscher
- Unit for Medical Biotechnology, Inflammation Research Centre (IRC), VIB-UGent, Technologiepark 927, B-9052 Ghent-Zwijnaarde, Belgium
- Department of Biochemistry & Microbiology, Laboratory for Protein Biochemistry & Biomolecular Engineering, Ghent University, K.L.-Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Nico Callewaert
- Unit for Medical Biotechnology, Inflammation Research Centre (IRC), VIB-UGent, Technologiepark 927, B-9052 Ghent-Zwijnaarde, Belgium
- Department of Biochemistry & Microbiology, Laboratory for Protein Biochemistry & Biomolecular Engineering, Ghent University, K.L.-Ledeganckstraat 35, B-9000 Ghent, Belgium
- Department of Medical Protein Research, VIB-UGent, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| |
Collapse
|
31
|
Fidan O, Zhan J. Recent advances in engineering yeast for pharmaceutical protein production. RSC Adv 2015. [DOI: 10.1039/c5ra13003d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Currently available systems and synthetic biology tools can be applied to yeast engineering for improved biopharmaceutical protein production.
Collapse
Affiliation(s)
- Ozkan Fidan
- Department of Biological Engineering
- Utah State University
- Logan
- USA
| | - Jixun Zhan
- Department of Biological Engineering
- Utah State University
- Logan
- USA
| |
Collapse
|
32
|
Abstract
While yeast are lower eukaryotic organisms, they share many common features and biological processes with higher eukaryotes. As such, yeasts have been used as model organisms to facilitate our understanding of such features and processes. To this end, a large number of powerful genetic tools have been developed to investigate and manipulate these organisms. Going hand-in-hand with these genetic tools is the ability to efficiently scale up the fermentation of these organisms, thus making them attractive hosts for the production of recombinant proteins. A key feature of producing recombinant proteins in yeast is that these proteins can be readily secreted into the culture supernatant, simplifying any downstream processing. A consequence of this secretion is that the proteins typically pass through the secretory pathway, during which they may be exposed to various posttranslational modifications. The addition of glycans is one such modification. Unfortunately, while certain aspects of glycosylation are shared between lower and higher eukaryotes, significant differences exist. Over the last two decades much research has focused on engineering the glycosylation pathways of yeast to more closely resemble those of higher eukaryotes, particularly those of humans for the production of therapeutic proteins. In the current review we shall highlight some of the key achievements in yeast glyco-engineering which have led to humanization of both the N- and O-linked glycosylation pathways.
Collapse
|
33
|
Hopkins D, Gomathinayagam S, Hamilton SR. A practical approach for O-linked mannose removal: the use of recombinant lysosomal mannosidase. Appl Microbiol Biotechnol 2014; 99:3913-27. [PMID: 25381909 DOI: 10.1007/s00253-014-6189-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 11/30/2022]
Abstract
The methylotrophic yeast Pichia pastoris is an attractive expression system due to its ability to secrete large amounts of recombinant protein, with the potential for glycosylation. Advances in glycoengineering of P. pastoris have successfully demonstrated the humanization of both the N- and O-linked glycosylation pathways in this organism. However, in certain cases, the presence of O-linked glycans on a therapeutic protein may not be desirable. Recently, we have reported the in vitro utility of jack bean α-1,2/3/6-mannosidase to remove O-linked mannose from intact undenatured glycoproteins produced in glycoengineered P. pastoris. However, one caveat of this strategy is that jack bean mannosidase has yet to be cloned and as such is only available as crude cellular extracts. This raises several concerns for using this reagent to treat large preparations of therapeutic proteins generated in P. pastoris. Therefore, we postulated that lysosomal mannosidases which have been cloned and demonstrated to have similar activities to jack bean mannosidase on N-linked glycans would also process O-linked glycans in a similar fashion. To this end, we screened a panel of recombinant lysosomal mannosidases from different organisms and identified several which cannot only reduce extended O-linked mannose chains but which can also hydrolyze the Man-α-O-Ser/Thr glycosidic bond on intact glycoproteins. As such, not only do we show for the first time the utility of lysosomal mannosidase for O-linked mannose processing, but since this is a recombinant enzyme, it has several benefits over the use of crude jack bean mannosidase extracts.
Collapse
Affiliation(s)
- Daniel Hopkins
- GlycoFi, Inc. (a wholly owned subsidiary of Merck & Co., Inc.), Biologics Discovery, Merck Research Laboratories, 16 Cavendish Court, Lebanon, NH, 03766, USA
| | | | | |
Collapse
|
34
|
Meehl MA, Stadheim TA. Biopharmaceutical discovery and production in yeast. Curr Opin Biotechnol 2014; 30:120-7. [PMID: 25014890 DOI: 10.1016/j.copbio.2014.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/15/2014] [Accepted: 06/08/2014] [Indexed: 01/02/2023]
Abstract
The selection of an expression platform for recombinant biopharmaceuticals is often centered upon suitable product titers and critical quality attributes, including post-translational modifications. Although notable differences between microbial, yeast, plant, and mammalian host systems exist, recent advances have greatly mitigated any inherent liabilities of yeasts. Yeast expression platforms are important to both the supply of marketed biopharmaceuticals and the pipelines of novel therapeutics. In this review, recent advances in yeast-based expression of biopharmaceuticals will be discussed. The advantages of using glycoengineered yeast as a production host and in the discovery space will be illustrated. These advancements, in turn, are transforming yeast platforms from simple production systems to key technological assets in the discovery and selection of biopharmaceutical lead candidates.
Collapse
Affiliation(s)
- Michael A Meehl
- GlycoFi, Biologics Research, Merck & Co., Inc., 16 Cavendish Court, Lebanon, NH 03766, USA
| | - Terrance A Stadheim
- GlycoFi, Biologics Research, Merck & Co., Inc., 16 Cavendish Court, Lebanon, NH 03766, USA.
| |
Collapse
|
35
|
Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 2014; 98:5301-17. [PMID: 24743983 PMCID: PMC4047484 DOI: 10.1007/s00253-014-5732-5] [Citation(s) in RCA: 645] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/29/2022]
Abstract
Pichia pastoris is an established protein expression host mainly applied for the production of biopharmaceuticals and industrial enzymes. This methylotrophic yeast is a distinguished production system for its growth to very high cell densities, for the available strong and tightly regulated promoters, and for the options to produce gram amounts of recombinant protein per litre of culture both intracellularly and in secretory fashion. However, not every protein of interest is produced in or secreted by P. pastoris to such high titres. Frequently, protein yields are clearly lower, particularly if complex proteins are expressed that are hetero-oligomers, membrane-attached or prone to proteolytic degradation. The last few years have been particularly fruitful because of numerous activities in improving the expression of such complex proteins with a focus on either protein engineering or on engineering the protein expression host P. pastoris. This review refers to established tools in protein expression in P. pastoris and highlights novel developments in the areas of expression vector design, host strain engineering and screening for high-level expression strains. Breakthroughs in membrane protein expression are discussed alongside numerous commercial applications of P. pastoris derived proteins.
Collapse
|
36
|
Hopkins D, Gomathinayagam S, Lynaugh H, Stadheim TA, Hamilton SR. Elimination of diaminopeptidase activity in Pichia pastoris for therapeutic protein production. Appl Microbiol Biotechnol 2014; 98:2573-83. [PMID: 24526360 DOI: 10.1007/s00253-013-5468-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
Yeast are important production platforms for the generation of recombinant proteins. Nonetheless, their use has been restricted in the production of therapeutic proteins due to differences in their glycosylation profile with that of higher eukaryotes. The yeast strain Pichia pastoris is an industrially important organism. Recent advances in the glycoengineering of this strain offer the potential to produce therapeutic glycoproteins with sialylated human-like N- and O-linked glycans. However, like higher eukaryotes, yeast also express numerous proteases, many of which are either localized to the secretory pathway or pass through it en route to their final destination. As a consequence, nondesirable proteolysis of some recombinant proteins may occur, with the specific cleavage being dependent on the class of protease involved. Dipeptidyl aminopeptidases (DPP) are a class of proteolytic enzymes which remove a two-amino acid peptide from the N-terminus of a protein. In P. pastoris, two such enzymes have been identified, Ste13p and Dap2p. In the current report, we demonstrate that while the knockout of STE13 alone may protect certain proteins from N-terminal clipping, other proteins may require the double knockout of both STE13 and DAP2. As such, this understanding of DPP activity enhances the utility of the P. pastoris expression system, thus facilitating the production of recombinant therapeutic proteins with their intact native sequences.
Collapse
Affiliation(s)
- Daniel Hopkins
- GlycoFi, Inc. (a wholly owned subsidiary of Merck & Co., Inc.), Biologics Discovery, Merck Research Laboratories, 16 Cavendish Court, Lebanon, NH, 03766, USA
| | | | | | | | | |
Collapse
|
37
|
In vitro enzymatic treatment to remove O-linked mannose from intact glycoproteins. Appl Microbiol Biotechnol 2014; 98:2545-54. [DOI: 10.1007/s00253-013-5478-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 11/25/2022]
|