1
|
Feng X, Zhu ZA, Wang HT, Zhou HW, Liu JW, Shen Y, Zhang YX, Xiong ZQ. A Novel Mouse Model Unveils Protein Deficiency in Truncated CDKL5 Mutations. Neurosci Bull 2025; 41:805-820. [PMID: 40042769 PMCID: PMC12014890 DOI: 10.1007/s12264-024-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/25/2024] [Indexed: 04/23/2025] Open
Abstract
Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) cause a severe neurodevelopmental disorder, yet the impact of truncating mutations remains unclear. Here, we introduce the Cdkl5492stop mouse model, mimicking C-terminal truncating mutations in patients. 492stop/Y mice exhibit altered dendritic spine morphology and spontaneous seizure-like behaviors, alongside other behavioral deficits. After creating cell lines with various Cdkl5 truncating mutations, we found that these mutations are regulated by the nonsense-mediated RNA decay pathway. Most truncating mutations result in CDKL5 protein loss, leading to multiple disease phenotypes, and offering new insights into the pathogenesis of CDKL5 disorder.
Collapse
Affiliation(s)
- Xue Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Ai Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Tao Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hui-Wen Zhou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Wei Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ya Shen
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu-Xian Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Matteoli G, Alvente S, Bastianini S, Berteotti C, Ciani E, Cinelli E, Lo Martire V, Medici G, Mello T, Miglioranza E, Silvani A, Mutolo D, Zoccoli G. Characterisation of sleep apneas and respiratory circuitry in mice lacking CDKL5. J Sleep Res 2025; 34:e14295. [PMID: 39049436 PMCID: PMC11911053 DOI: 10.1111/jsr.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
CDKL5 deficiency disorder is a rare genetic disease caused by mutations in the CDKL5 gene. Central apneas during wakefulness have been reported in patients with CDKL5 deficiency disorder. Studies on CDKL5-knockout mice, a CDKL5 deficiency disorder model, reported sleep apneas, but it is still unclear whether these events are central (central sleep apnea) or obstructive (obstructive sleep apnea) and may be related to alterations of brain circuits that modulate breathing rhythm. This study aimed to discriminate central sleep apnea and obstructive sleep apnea in CDKL5-knockout mice, and explore changes in the somatostatin neurons expressing high levels of neurokinin-1 receptors within the preBötzinger complex. Ten adult male wild-type and 12 CDKL5-knockout mice underwent electrode implantation for sleep stage discrimination and diaphragmatic activity recording, and were studied using whole-body plethysmography for 7 hr during the light (resting) period. Sleep apneas were categorised as central sleep apnea or obstructive sleep apnea based on the recorded signals. The number of somatostatin neurons in the preBötzinger complex and their neurokinin-1 receptors expression were assessed through immunohistochemistry in a sub-group of animals. CDKL5-knockout mice exhibited a higher apnea occurrence rate and a greater prevalence of obstructive sleep apnea during rapid eye movement sleep, compared with wild-type, whereas no significant difference was observed for central sleep apnea. Moreover, CDKL5-knockout mice showed a reduced number of somatostatin neurons in the preBötzinger complex, and these neurons expressed a lower level of neurokinin-1 receptors compared with wild-type controls. These findings underscore the pivotal role of CDKL5 in regulating normal breathing, suggesting its potential involvement in shaping preBötzinger complex neural circuitry and controlling respiratory muscles during sleep.
Collapse
Affiliation(s)
- Gabriele Matteoli
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Sara Alvente
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Stefano Bastianini
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Elenia Cinelli
- Department of Experimental and Clinical Medicine, Section of PhysiologyUniversity of FlorenceFlorenceItaly
| | - Viviana Lo Martire
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Giorgio Medici
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Tommaso Mello
- Department of Experimental and Clinical Biochemical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Elena Miglioranza
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Donatella Mutolo
- Department of Experimental and Clinical Medicine, Section of PhysiologyUniversity of FlorenceFlorenceItaly
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| |
Collapse
|
3
|
Meshkinkhood N, Barati Dowom P, Noorbakhsh F, Ghadipasha M, Gharehdaghi J, Kellinghaus C, Speckmann E, Khaleghi Ghadiri M, Stummer W, Gorji A. Unveiling Molecular Dynamics of MeCp2, CDKL5 and BDNF in the Hippocampus of Individuals With Intractable Mesial Temporal Lobe Epilepsy. J Cell Mol Med 2025; 29:e70373. [PMID: 39888294 PMCID: PMC11783159 DOI: 10.1111/jcmm.70373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
Mutations occurring in the MeCp2, CDKL5 and BDNF genes have been linked to epileptogenesis in various epilepsy syndromes. This study employed bioinformatics analysis of transcriptomic data to examine the interrelationship among these genes in both epileptic and healthy individuals. Moreover, we assessed the expression of MeCp2, CDKL5 and BDNF at both mRNA and protein levels in human hippocampal tissues obtained from 22 patients undergoing epilepsy surgery for mesial temporal lobe epilepsy (MTLE) as well as from 25 autopsied specimens. Bioinformatics findings suggest that MeCp2, CDKL5 and BDNF genes play a role in regulating genes associated with epilepsy and disruptions in these genes may contribute to epilepsy development. Furthermore, the study reveals significantly lower MeCp2 and CDKL5 protein levels in the epileptic hippocampus compared to controls. Positive correlations are observed between MeCp2 and CDKL5 mRNA expression in autopsied samples and between CDKL5 and BDNF mRNA expression in epileptic hippocampal tissues. Differences in mRNA expression correlation patterns of MeCp2 and CDKL5 with BDNF are found between epileptic and control hippocampal tissues. Moreover, a significant positive correlation between MeCp2 and CDKL5 protein expression is noted in control hippocampal tissues. Our data suggest that altered expression of MeCp2, CDKL5 and BDNF within the hippocampus may contribute to epileptogenic processes in MTLE, impacting seizure characteristics, surgical outcomes and responses to antiepileptic drugs. Alterations in the expression of MeCp2, CDKL5 and BDNF within the hippocampus might contribute to the epileptogenic processes in MTLE. These changes could be linked to distinct functional consequences in epilepsy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Walter Stummer
- Department of NeurosurgeryUniversity of MünsterMünsterGermany
| | - Ali Gorji
- Shefa Neuroscience Research CenterKhatam Alanbia HospitalTehranIran
- Department of NeurosurgeryUniversity of MünsterMünsterGermany
- Epilepsy Research CenterUniversity of MünsterMünsterGermany
- Neuroscience Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
4
|
Glass MR, Whye D, Anderson NC, Wood D, Makhortova NR, Polanco T, Kim KH, Donovan KE, Vaccaro L, Jain A, Cacchiarelli D, Sun L, Olson H, Buttermore ED, Sahin M. Excitatory Cortical Neurons from CDKL5 Deficiency Disorder Patient-Derived Organoids Show Early Hyperexcitability Not Identified in Neurogenin2 Induced Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622878. [PMID: 39605742 PMCID: PMC11601297 DOI: 10.1101/2024.11.11.622878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy resulting from variants in cyclin-dependent kinase-like 5 (CDKL5) that lead to impaired kinase activity or loss of function. CDD is one of the most common genetic etiologies identified in epilepsy cohorts. To study how CDKL5 variants impact human neuronal activity, gene expression and morphology, CDD patient-derived induced pluripotent stem cells and their isogenic controls were differentiated into excitatory neurons using either an NGN2 induction protocol or a guided cortical organoid differentiation. Patient-derived neurons from both differentiation paradigms had decreased phosphorylated EB2, a known molecular target of CDKL5. Induced neurons showed no detectable differences between cases and isogenic controls in network activity using a multielectrode array, or in MAP2+ neurite length, and only two genes were differentially expressed. However, patient-derived neurons from the organoid differentiation showed increased synchrony and weighted mean firing rate on the multielectrode array within the first month of network maturation. CDD patient-derived cortical neurons had lower expression of CDKL5 and HS3ST1, which may change the extracellular matrix around the synapse and contribute to hyperexcitability. Similar to the induced neurons, there were no differences in neurite length across or within patient-control cell lines. Induced neurons have poor cortical specification while the organoid derived neurons expressed cortical markers, suggesting that the changes in neuronal excitability and gene expression are specific to cortical excitatory neurons. Examining molecular mechanisms of early hyperexcitability in cortical neurons is a promising avenue for identification of CDD therapeutics.
Collapse
|
5
|
Li C, Liu Y, Luo S, Yang M, Li L, Sun L. A review of CDKL: An underestimated protein kinase family. Int J Biol Macromol 2024; 277:133604. [PMID: 38964683 DOI: 10.1016/j.ijbiomac.2024.133604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Cyclin-dependent kinase-like (CDKL) family proteins are serine/threonine protein kinases and is a specific branch of CMGC (including CDK, MAPK, GSK). Its name is due to the sequence similarity with CDK and it consists of 5 members. Their function in protein phosphorylation underpins their important role in cellular activities, including cell cycle, apoptosis, autophagy and microtubule dynamics. CDKL proteins have been demonstrated to regulate the length of primary cilium, which is a dynamic and diverse signaling hub and closely associated with multiple diseases. Furthermore, CDKL proteins have been shown to be involved in the development and progression of several diseases, including cancer, neurodegenerative diseases and kidney disease. In this review, we summarize the structural characteristics and discovered functions of CDKL proteins and their role in diseases, which might be helpful for the development of innovative therapeutic strategies for disease.
Collapse
Affiliation(s)
- Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
6
|
Massey S, Ang CS, Davidson NM, Quigley A, Rollo B, Harris AR, Kapsa RMI, Christodoulou J, Van Bergen NJ. Novel CDKL5 targets identified in human iPSC-derived neurons. Cell Mol Life Sci 2024; 81:347. [PMID: 39136782 PMCID: PMC11335273 DOI: 10.1007/s00018-024-05389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Nadia M Davidson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Department of Paediatrics, University of Melbourne, c/o MCRI, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
7
|
Bernardo P, Cuccurullo C, Rubino M, De Vita G, Terrone G, Bilo L, Coppola A. X-Linked Epilepsies: A Narrative Review. Int J Mol Sci 2024; 25:4110. [PMID: 38612920 PMCID: PMC11012983 DOI: 10.3390/ijms25074110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in which epilepsy represents the core symptom, while less phenotypic details have been reported for other recently identified genes. In this review, we comprehensively describe the main features of both X-linked epileptic syndromes thoroughly characterized to date (PCDH19-related DEE, CDKL5-related DEE, MECP2-related disorders), forms of epilepsy related to X-linked neuronal migration disorders (e.g., ARX, DCX, FLNA) and DEEs associated with recently recognized genes (e.g., SLC9A6, SLC35A2, SYN1, ARHGEF9, ATP6AP2, IQSEC2, NEXMIF, PIGA, ALG13, FGF13, GRIA3, SMC1A). It is often difficult to suspect an X-linked mode of transmission in an epilepsy syndrome. Indeed, different models of X-linked inheritance and modifying factors, including epigenetic regulation and X-chromosome inactivation in females, may further complicate genotype-phenotype correlations. The purpose of this work is to provide an extensive and updated narrative review of X-linked epilepsies. This review could support clinicians in the genetic diagnosis and treatment of patients with epilepsy featuring X-linked inheritance.
Collapse
Affiliation(s)
- Pia Bernardo
- Pediatric Psychiatry and Neurology Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy
| | - Claudia Cuccurullo
- Neurology and Stroke Unit, Ospedale del Mare Hospital, ASL Napoli 1 Centro, 80147 Naples, Italy;
| | - Marica Rubino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy (L.B.)
| | - Gabriella De Vita
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Gaetano Terrone
- Child Neuropsychiatry Units, Department of Translational Medical Sciences, University Federico II of Naples, 80131 Naples, Italy;
| | - Leonilda Bilo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy (L.B.)
| | - Antonietta Coppola
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy (L.B.)
| |
Collapse
|
8
|
Zhang X, Smits M, Curfs L, Spruyt K. Sleep and the Social Profiles of Individuals With Rett Syndrome. Pediatr Neurol 2024; 152:153-161. [PMID: 38290182 DOI: 10.1016/j.pediatrneurol.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND This study investigates the distinctive social behaviors observed in individuals with Rett syndrome (RTT), characterized by the loss of spoken language, impaired eye gaze communication, gait abnormalities, and sleep issues. The research aims to identify social profiles in RTT and explore their correlation with sleep, sleep-disordered breathing (SDB), and daytime sleepiness. METHODS Standard overnight sleep macrostructure and respiratory parameters were assessed. Extracting 25 social-related items and one for daytime sleepiness from the Rett Syndrome Behavioral Questionnaire, factor analysis was applied to establish latent social profiles. These profiles were then correlated with sleep parameters. The nonparametric Mann-Whitney U test compared social profiles based on the presence of SDB (defined by an apnea-hypopnea index greater than one per hour) and daytime sleepiness. RESULTS The study involved 12 female subjects with confirmed RTT diagnoses and MECP2 mutations, aged 8.54 ± 5.30 years. The Rett Syndrome Behavioral Questionnaire revealed a total average score of 25.83 ± 12.34, indicating varying degrees of social impairments. Comprising 25 social-related items, factor analysis yielded four social profiles: "interactive motricity," "mood change," "anxiety/agitation," and "gazing." Longer sleep onset latency correlated with increased socio-behavioral impairments, particularly in interactive motricity reduction. Conversely, higher rapid eye movement sleep was associated with fewer interactive socio-motor behaviors. No significant differences in social profiles were found concerning the presence of SDB or daytime sleepiness. CONCLUSIONS The findings suggest four distinct social profiles in RTT individuals, hinting at shared disrupted circuits between sensorimotor functioning and sleep-related neuronal pathways. Despite the absence of differences in SDB or daytime sleepiness, the study highlights the relationship between sleep parameters, such as sleep onset latency and rapid eye movement sleep, and socio-behavioral outcomes in RTT with MECP2 mutations.
Collapse
Affiliation(s)
- Xinyan Zhang
- Université Paris Cité, NeuroDiderot - INSERM, Paris, France
| | - Marcel Smits
- Department of Sleep-Wake Disorders and Chronobiology, Hospital Gelderse Vallei Ede, Ede, Netherlands; Governor Kremers Centre, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Leopold Curfs
- Governor Kremers Centre, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Karen Spruyt
- Université Paris Cité, NeuroDiderot - INSERM, Paris, France.
| |
Collapse
|
9
|
Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.
Collapse
Affiliation(s)
- Santosh R D’Mello
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71104, USA
| |
Collapse
|
10
|
Jiang M, Xu Q, Yang C, Li D, Liu JW, Zhang Y, Zhu YC, Xiong ZQ. Activity-Dependent Phosphorylation of CDKL5 at Serine 407 Regulates Synaptogenesis and Plasticity. Neurosci Bull 2023; 39:1454-1458. [PMID: 37198422 PMCID: PMC10465469 DOI: 10.1007/s12264-023-01066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/05/2023] [Indexed: 05/19/2023] Open
Affiliation(s)
- Mengying Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiwu Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Can Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ji-Wei Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yuxian Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yong-Chuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
11
|
Ong HW, Liang Y, Richardson W, Lowry ER, Wells CI, Chen X, Silvestre M, Dempster K, Silvaroli JA, Smith JL, Wichterle H, Pabla NS, Ultanir SK, Bullock AN, Drewry DH, Axtman AD. Discovery of a Potent and Selective CDKL5/GSK3 Chemical Probe That Is Neuroprotective. ACS Chem Neurosci 2023; 14:1672-1685. [PMID: 37084253 PMCID: PMC10161233 DOI: 10.1021/acschemneuro.3c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a compound that has advanced to phase II clinical trials and is a known inhibitor of several cyclin-dependent kinases (CDKs) and cyclin-dependent kinase-like kinases (CDKLs). We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/β affinity. We next demonstrated the inhibition of downstream CDKL5 and GSK3α/β signaling and solved a co-crystal structure of analog 2 bound to human CDKL5. A structurally similar analog (4) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/β, making it a suitable negative control. Finally, we used our chemical probe pair (2 and 4) to demonstrate that inhibition of CDKL5 and/or GSK3α/β promotes the survival of human motor neurons exposed to endoplasmic reticulum stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.
Collapse
Affiliation(s)
- Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yi Liang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Emily R Lowry
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- The Project ALS Therapeutics Core, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xiangrong Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- The Project ALS Therapeutics Core, Columbia University Irving Medical Center, New York, New York 10032, United States
- Departments of Neurology, Neuroscience, Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, New York 10032, United States
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Cardiac Functional and Structural Abnormalities in a Mouse Model of CDKL5 Deficiency Disorder. Int J Mol Sci 2023; 24:ijms24065552. [PMID: 36982627 PMCID: PMC10059787 DOI: 10.3390/ijms24065552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe neurodevelopmental disease that mostly affects girls, who are heterozygous for mutations in the X-linked CDKL5 gene. Mutations in the CDKL5 gene lead to a lack of CDKL5 protein expression or function and cause numerous clinical features, including early-onset seizures, marked hypotonia, autistic features, gastrointestinal problems, and severe neurodevelopmental impairment. Mouse models of CDD recapitulate several aspects of CDD symptomology, including cognitive impairments, motor deficits, and autistic-like features, and have been useful to dissect the role of CDKL5 in brain development and function. However, our current knowledge of the function of CDKL5 in other organs/tissues besides the brain is still quite limited, reducing the possibility of broad-spectrum interventions. Here, for the first time, we report the presence of cardiac function/structure alterations in heterozygous Cdkl5 +/− female mice. We found a prolonged QT interval (corrected for the heart rate, QTc) and increased heart rate in Cdkl5 +/− mice. These changes correlate with a marked decrease in parasympathetic activity to the heart and in the expression of the Scn5a and Hcn4 voltage-gated channels. Interestingly, Cdkl5 +/− hearts showed increased fibrosis, altered gap junction organization and connexin-43 expression, mitochondrial dysfunction, and increased ROS production. Together, these findings not only contribute to our understanding of the role of CDKL5 in heart structure/function but also document a novel preclinical phenotype for future therapeutic investigation.
Collapse
|
13
|
Ong HW, Liang Y, Richardson W, Lowry ER, Wells CI, Chen X, Silvestre M, Dempster K, Silvaroli JA, Smith JL, Wichterle H, Pabla NS, Ultanir SK, Bullock AN, Drewry DH, Axtman AD. A Potent and Selective CDKL5/GSK3 Chemical Probe is Neuroprotective. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527935. [PMID: 36798313 PMCID: PMC9934649 DOI: 10.1101/2023.02.09.527935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a known inhibitor of several cyclin dependent and cyclin-dependent kinase-like kinases that has been advanced into Phase II clinical trials. We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/β affinity. As confirmation that our chemical probe is a high-quality tool to use in directed biological studies, we demonstrated inhibition of downstream CDKL5 and GSK3α/β signaling and solved a co-crystal structure of analog 2 bound to CDKL5. A structurally similar analog ( 4 ) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/β. Finally, we used our chemical probe pair ( 2 and 4 ) to demonstrate that inhibition of CDKL5 and/or GSK3α/β promotes the survival of human motor neurons exposed to endoplasmic reticulum (ER) stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.
Collapse
Affiliation(s)
- Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Yi Liang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Emily R. Lowry
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, 10032, United States of America; The Project ALS Therapeutics Core, Columbia University Irving Medical Center, New York, New York, 10032, United States of America
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Xiangrong Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Josie A. Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Jeffery L. Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neurology, Neuroscience, Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York, 10032, United States of America; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, New York, 10032, United States of America; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York, 10032, United States of America; The Project ALS Therapeutics Core, Columbia University Irving Medical Center, New York, New York, 10032, United States of America
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Sila K. Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Alex N. Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America; UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| |
Collapse
|
14
|
Zhang X, Smits M, Curfs L, Spruyt K. An investigation of the sleep macrostructure of girls with Rett syndrome. Sleep Med 2023; 101:77-86. [PMID: 36343395 DOI: 10.1016/j.sleep.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE/BACKGROUND Methyl-CpG-binding protein 2 (MeCP2) is of utmost importance in neuronal function. We aim to characterize phenotypic traits in the sleep of individuals with Rett Syndrome (RTT, OMIM # 312750), a rare disorder predominantly caused by mutations of the MECP2 gene. PATIENTS/METHODS An overnight polysomnographic recording was performed. Outcomes investigated were parameters of nocturnal sleep macrostructure, and sample stratification per genetic and clinical characteristics, and six key features of clinical severity was applied. RESULTS The sleep of our 21 RTT female subjects with a mutant MECP2 gene, aged 8.8 ± 5.4 years, showed no significant differences within strata. However, compared to a normative dataset, we found longer duration of wake time after sleep onset and total sleep time (TST) but shorter sleep onset latency, in RTT. Regarding the proportion of sleep stages per TST, higher stage N3 (%) with lower stage N2 (%) and REM (%) were generally seen. Such abnormalities became more uniformly expressed at the severe level of clinical features, particularly for hand functioning and walking. CONCLUSIONS RTT girls with MECP2 mutations in our study demonstrated an increased deep sleep and reduced rapid eye movement sleep proportion, which is mostly allied with their hand dysfunction severity. Poor sleep-on/off switching in RTT since embryogenesis is possibly linked to (psycho)motor impairment in the cases with MECP2 mutations.
Collapse
Affiliation(s)
- Xinyan Zhang
- Université de Paris, NeuroDiderot - INSERM, Paris, France.
| | - Marcel Smits
- Department of Sleep-wake Disorders and Chronobiology, Hospital Gelderse Vallei Ede, Netherlands. Governor Kremers Centre, Maastricht University Medical Centre, Netherlands.
| | - Leopold Curfs
- Governor Kremers Centre, Maastricht University Medical Centre, Netherlands.
| | - Karen Spruyt
- Université de Paris, NeuroDiderot - INSERM, Paris, France.
| |
Collapse
|
15
|
Karalis V, Donovan KE, Sahin M. Primary Cilia Dysfunction in Neurodevelopmental Disorders beyond Ciliopathies. J Dev Biol 2022; 10:54. [PMID: 36547476 PMCID: PMC9782889 DOI: 10.3390/jdb10040054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Primary cilia are specialized, microtubule-based structures projecting from the surface of most mammalian cells. These organelles are thought to primarily act as signaling hubs and sensors, receiving and integrating extracellular cues. Several important signaling pathways are regulated through the primary cilium including Sonic Hedgehog (Shh) and Wnt signaling. Therefore, it is no surprise that mutated genes encoding defective proteins that affect primary cilia function or structure are responsible for a group of disorders collectively termed ciliopathies. The severe neurologic abnormalities observed in several ciliopathies have prompted examination of primary cilia structure and function in other brain disorders. Recently, neuronal primary cilia defects were observed in monogenic neurodevelopmental disorders that were not traditionally considered ciliopathies. The molecular mechanisms of how these genetic mutations cause primary cilia defects and how these defects contribute to the neurologic manifestations of these disorders remain poorly understood. In this review we will discuss monogenic neurodevelopmental disorders that exhibit cilia deficits and summarize findings from studies exploring the role of primary cilia in the brain to shed light into how these deficits could contribute to neurologic abnormalities.
Collapse
Affiliation(s)
- Vasiliki Karalis
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kathleen E. Donovan
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mustafa Sahin
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
16
|
Medici G, Tassinari M, Galvani G, Bastianini S, Gennaccaro L, Loi M, Mottolese N, Alvente S, Berteotti C, Sagona G, Lupori L, Candini G, Baggett HR, Zoccoli G, Giustetto M, Muotri A, Pizzorusso T, Nakai H, Trazzi S, Ciani E. Expression of a Secretable, Cell-Penetrating CDKL5 Protein Enhances the Efficacy of Gene Therapy for CDKL5 Deficiency Disorder. Neurotherapeutics 2022; 19:1886-1904. [PMID: 36109452 PMCID: PMC9723029 DOI: 10.1007/s13311-022-01295-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 12/14/2022] Open
Abstract
Although delivery of a wild-type copy of the mutated gene to cells represents the most effective approach for a monogenic disease, proof-of-concept studies highlight significant efficacy caveats for treatment of brain disorders. Herein, we develop a cross-correction-based strategy to enhance the efficiency of a gene therapy for CDKL5 deficiency disorder, a severe neurodevelopmental disorder caused by CDKL5 gene mutations. We created a gene therapy vector that produces an Igk-TATk-CDKL5 fusion protein that can be secreted via constitutive secretory pathways and, due to the cell-penetration property of the TATk peptide, internalized by cells. We found that, although AAVPHP.B_Igk-TATk-CDKL5 and AAVPHP.B_CDKL5 vectors had similar brain infection efficiency, the AAVPHP.B_Igk-TATk-CDKL5 vector led to higher CDKL5 protein replacement due to secretion and penetration of the TATk-CDKL5 protein into the neighboring cells. Importantly, Cdkl5 KO mice treated with the AAVPHP.B_Igk-TATk-CDKL5 vector showed a behavioral and neuroanatomical improvement in comparison with vehicle or AAVPHP.B_CDKL5 vector-treated Cdkl5 KO mice. In conclusion, we provide the first evidence that a gene therapy based on a cross-correction approach is more effective at compensating Cdkl5-null brain defects than gene therapy based on the expression of the native CDKL5, opening avenues for the development of this innovative approach for other monogenic diseases.
Collapse
Affiliation(s)
- Giorgio Medici
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Stefano Bastianini
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Sara Alvente
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Giulia Sagona
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128, Pisa, Italy
- Department of Neuroscience, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139, Psychology, Italy
| | - Leonardo Lupori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128, Pisa, Italy
- Scuola Normale Superiore, 56126, Pisa, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Helen Rappe Baggett
- Departments of Molecular and Medical Genetics and Molecular Immunology and Microbiology Oregon Health & Science University, OR, 97239, Portland, USA
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Maurizio Giustetto
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, OR, 10126, Turin, Italy
| | - Alysson Muotri
- School of Medicine, Department of Pediatrics/Rady Children's Hospital, University of California San Diego, San Diego, USA
- Department of Cellular & Molecular Medicine, Kavli Institute for Brain and Mind, Archealization Center (ArchC), Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA, 92037, USA
| | - Tommaso Pizzorusso
- Scuola Normale Superiore, 56126, Pisa, Italy
- Institute of Neuroscience, National Research Council, 56126, Pisa, Italy
| | - Hiroyuki Nakai
- Departments of Molecular and Medical Genetics and Molecular Immunology and Microbiology Oregon Health & Science University, OR, 97239, Portland, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy.
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
17
|
Nitschke F, Montalbano AP. Novel Cross-Correction-Enabled Gene Therapy for CDKL5-Deficiency Disorder. Neurotherapeutics 2022; 19:1878-1882. [PMID: 36266502 PMCID: PMC9722985 DOI: 10.1007/s13311-022-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Felix Nitschke
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Alina P Montalbano
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Chakraborty S, Parayil R, Mishra S, Nongthomba U, Clement JP. Epilepsy Characteristics in Neurodevelopmental Disorders: Research from Patient Cohorts and Animal Models Focusing on Autism Spectrum Disorder. Int J Mol Sci 2022; 23:10807. [PMID: 36142719 PMCID: PMC9501968 DOI: 10.3390/ijms231810807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although the field has received much attention from the scientific community recently, the research has not yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1, SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral deficits are highlighted. For these genes, the progress made in developing appropriate and valid rodent models to accelerate basic research is also detailed. Further, we discuss the recent development in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in identifying and testing species-specific epilepsy models.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Rrejusha Parayil
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Shefali Mishra
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| |
Collapse
|
19
|
Van Bergen NJ, Massey S, Quigley A, Rollo B, Harris AR, Kapsa RM, Christodoulou J. CDKL5 deficiency disorder: molecular insights and mechanisms of pathogenicity to fast-track therapeutic development. Biochem Soc Trans 2022; 50:1207-1224. [PMID: 35997111 PMCID: PMC9444073 DOI: 10.1042/bst20220791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022]
Abstract
CDKL5 deficiency disorder (CDD) is an X-linked brain disorder of young children and is caused by pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene. Individuals with CDD suffer infantile onset, drug-resistant seizures, severe neurodevelopmental impairment and profound lifelong disability. The CDKL5 protein is a kinase that regulates key phosphorylation events vital to the development of the complex neuronal network of the brain. Pathogenic variants identified in patients may either result in loss of CDKL5 catalytic activity or are hypomorphic leading to partial loss of function. Whilst the progressive nature of CDD provides an excellent opportunity for disease intervention, we cannot develop effective therapeutics without in-depth knowledge of CDKL5 function in human neurons. In this mini review, we summarize new findings on the function of CDKL5. These include CDKL5 phosphorylation targets and the consequence of disruptions on signaling pathways in the human brain. This new knowledge of CDKL5 biology may be leveraged to advance targeted drug discovery and rapid development of treatments for CDD. Continued development of effective humanized models will further propel our understanding of CDD biology and may permit the development and testing of therapies that will significantly alter CDD disease trajectory in young children.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R. Harris
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Robert M.I. Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
mGluR5 PAMs rescue cortical and behavioural defects in a mouse model of CDKL5 deficiency disorder. Neuropsychopharmacology 2022; 48:877-886. [PMID: 35945276 PMCID: PMC10156697 DOI: 10.1038/s41386-022-01412-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a devastating rare neurodevelopmental disease without a cure, caused by mutations of the serine/threonine kinase CDKL5 highly expressed in the forebrain. CDD is characterized by early-onset seizures, severe intellectual disabilities, autistic-like traits, sensorimotor and cortical visual impairments (CVI). The lack of an effective therapeutic strategy for CDD urgently demands the identification of novel druggable targets potentially relevant for CDD pathophysiology. To this aim, we studied Class I metabotropic glutamate receptors 5 (mGluR5) because of their important role in the neuropathological signs produced by the lack of CDKL5 in-vivo, such as defective synaptogenesis, dendritic spines formation/maturation, synaptic transmission and plasticity. Importantly, mGluR5 function strictly depends on the correct expression of the postsynaptic protein Homer1bc that we previously found atypical in the cerebral cortex of Cdkl5-/y mice. In this study, we reveal that CDKL5 loss tampers with (i) the binding strength of Homer1bc-mGluR5 complexes, (ii) the synaptic localization of mGluR5 and (iii) the mGluR5-mediated enhancement of NMDA-induced neuronal responses. Importantly, we showed that the stimulation of mGluR5 activity by administering in mice specific positive-allosteric-modulators (PAMs), i.e., 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) or RO6807794, corrected the synaptic, functional and behavioral defects shown by Cdkl5-/y mice. Notably, in the visual cortex of 2 CDD patients we found changes in synaptic organization that recapitulate those of mutant CDKL5 mice, including the reduced expression of mGluR5, suggesting that these receptors represent a promising therapeutic target for CDD.
Collapse
|
21
|
Varela T, Varela D, Martins G, Conceição N, Cancela ML. Cdkl5 mutant zebrafish shows skeletal and neuronal alterations mimicking human CDKL5 deficiency disorder. Sci Rep 2022; 12:9325. [PMID: 35665761 PMCID: PMC9167277 DOI: 10.1038/s41598-022-13364-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental condition characterized primarily by seizures and impairment of cognitive and motor skills. Additional phenotypes include microcephaly, dysmorphic facial features, and scoliosis. Mutations in cyclin-dependent kinase-like 5 (CDKL5) gene, encoding a kinase essential for normal brain development and function, are responsible for CDD. Zebrafish is an accepted biomedical model for the study of several genetic diseases and has many advantages over other models. Therefore, this work aimed to characterize the phenotypic, behavioral, and molecular consequences of the Cdkl5 protein disruption in a cdkl5 mutant zebrafish line (sa21938). cdkl5sa21938 mutants displayed a reduced head size, suggesting microcephaly, a feature frequently observed in CDD individuals. Double staining revealed shorter craniofacial cartilage structures and decrease bone mineralization in cdkl5 homozygous zebrafish indicating an abnormal craniofacial cartilage development and impaired skeletal development. Motor behavior analysis showed that cdkl5sa21938 embryos had less frequency of double coiling suggesting impaired glutamatergic neurotransmission. Locomotor behavior analysis revealed that homozygous embryos swim shorter distances, indicative of impaired motor activity which is one of the main traits of CCD. Although no apparent spontaneous seizures were observed in these models, upon treatment with pentylenetetrazole, seizure behavior and an increase in the distance travelled were observed. Quantitative PCR showed that neuronal markers, including glutamatergic genes were dysregulated in cdkl5sa21938 mutant embryos. In conclusion, homozygous cdkl5sa21938 zebrafish mimic several characteristics of CDD, thus validating them as a suitable animal model to better understand the physiopathology of this disorder.
Collapse
Affiliation(s)
- Tatiana Varela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Débora Varela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Gil Martins
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.
- Algarve Biomedical Center, University of Algarve, Faro, Portugal.
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.
- Algarve Biomedical Center, University of Algarve, Faro, Portugal.
| |
Collapse
|
22
|
MeCP2 and transcriptional control of eukaryotic gene expression. Eur J Cell Biol 2022; 101:151237. [DOI: 10.1016/j.ejcb.2022.151237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
|
23
|
Tascini G, Dell'Isola GB, Mencaroni E, Di Cara G, Striano P, Verrotti A. Sleep Disorders in Rett Syndrome and Rett-Related Disorders: A Narrative Review. Front Neurol 2022; 13:817195. [PMID: 35299616 PMCID: PMC8923297 DOI: 10.3389/fneur.2022.817195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Rett Syndrome (RTT) is a rare and severe X-linked developmental brain disorder that occurs primarily in females, with a ratio of 1:10.000. De novo mutations in the Methyl-CpG Binding protein 2 (MECP2) gene on the long arm of X chromosome are responsible for more than 95% cases of classical Rett. In the remaining cases (atypical Rett), other genes are involved such as the cyclin-dependent kinase-like 5 (CDKL5) and the forkhead box G1 (FOXG1). Duplications of the MECP2 locus cause MECP2 duplication syndrome (MDS) which concerns about 1% of male patients with intellectual disability. Sleep disorders are common in individuals with intellectual disability, while the prevalence in children is between 16 and 42%. Over 80% of individuals affected by RTT show sleep problems, with a higher prevalence in the first 7 years of life and some degree of variability in correlation to age and genotype. Abnormalities in circadian rhythm and loss of glutamate homeostasis play a key role in the development of these disorders. Sleep disorders, epilepsy, gastrointestinal problems characterize CDKL5 Deficiency Disorder (CDD). Sleep impairment is an area of overlap between RTT and MECP2 duplication syndrome along with epilepsy, regression and others. Sleep dysfunction and epilepsy are deeply linked. Sleep deprivation could be an aggravating factor of epilepsy and anti-comitial therapy could interfere in sleep structure. Epilepsy prevalence in atypical Rett syndrome with severe clinical phenotype is higher than in classical Rett syndrome. However, RTT present a significant lifetime risk of epilepsy too. Sleep disturbances impact on child's development and patients' families and the evidence for its management is still limited. The aim of this review is to analyze pathophysiology, clinical features, the impact on other comorbidities and the management of sleep disorders in Rett syndrome and Rett-related syndrome.
Collapse
Affiliation(s)
- Giorgia Tascini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | | | | | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS "G. Gaslini" Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | |
Collapse
|
24
|
Zhang XY, Spruyt K. Literature Cases Summarized Based on Their Polysomnographic Findings in Rett Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063422. [PMID: 35329122 PMCID: PMC8955319 DOI: 10.3390/ijerph19063422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/10/2022]
Abstract
Rett syndrome (RTT) is a severe and rare neurodevelopmental disorder affecting mostly girls. In RTT, an impaired sleep pattern is a supportive criterion for the diagnosis, yet little is known regarding the sleep structure and sleep respiratory events. Aiming to delineate sleep by aggregating RTT case (series) data from published polysomnographic studies, seventy-four RTT cases were collected from eleven studies up until 6 February 2022 (PROSPERO: CRD 42020198099). We compared the polysomnographic data within RTT stratifications and to a typically developing population. MECP2 cases demonstrated shortened total sleep time (TST) with increased stage N3 and decreased REM sleep. In cases with CDKL5 mutations, TST was longer and they spent more time in stage N1 but less in stage N3 than those cases affected by MECP2 mutations and a typically developing population. Sleep-disordered breathing was confirmed by the abnormal apnea/hypopnea index of 11.92 ± 23.67/h TST in these aggregated cases. No association of sleep structure with chronological age was found. In RTT, the sleep macrostructure of MECP2 versus CDKL5 cases showed differences, particularly regarding sleep stage N3. A severe REM sleep propensity reduction was found. Aberrant sleep cycling, possibly characterized by a poor REM ‘on switch’ and preponderance in slow and high-voltage sleep, is proposed.
Collapse
|
25
|
Zerbi V, Pagani M, Markicevic M, Matteoli M, Pozzi D, Fagiolini M, Bozzi Y, Galbusera A, Scattoni ML, Provenzano G, Banerjee A, Helmchen F, Basson MA, Ellegood J, Lerch JP, Rudin M, Gozzi A, Wenderoth N. Brain mapping across 16 autism mouse models reveals a spectrum of functional connectivity subtypes. Mol Psychiatry 2021; 26:7610-7620. [PMID: 34381171 PMCID: PMC8873017 DOI: 10.1038/s41380-021-01245-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/30/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Autism Spectrum Disorder (ASD) is characterized by substantial, yet highly heterogeneous abnormalities in functional brain connectivity. However, the origin and significance of this phenomenon remain unclear. To unravel ASD connectopathy and relate it to underlying etiological heterogeneity, we carried out a bi-center cross-etiological investigation of fMRI-based connectivity in the mouse, in which specific ASD-relevant mutations can be isolated and modeled minimizing environmental contributions. By performing brain-wide connectivity mapping across 16 mouse mutants, we show that different ASD-associated etiologies cause a broad spectrum of connectional abnormalities in which diverse, often diverging, connectivity signatures are recognizable. Despite this heterogeneity, the identified connectivity alterations could be classified into four subtypes characterized by discrete signatures of network dysfunction. Our findings show that etiological variability is a key determinant of connectivity heterogeneity in ASD, hence reconciling conflicting findings in clinical populations. The identification of etiologically-relevant connectivity subtypes could improve diagnostic label accuracy in the non-syndromic ASD population and paves the way for personalized treatment approaches.
Collapse
Affiliation(s)
- V Zerbi
- Neural Control of Movement Lab, ETH Zurich, Zurich, Switzerland
| | - M Pagani
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - M Markicevic
- Neural Control of Movement Lab, ETH Zurich, Zurich, Switzerland
| | - M Matteoli
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Mi, Italy
- CNR Institute of Neuroscience, Milano, Italy
| | - D Pozzi
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Mi, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - M Fagiolini
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Y Bozzi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - A Galbusera
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - M L Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - G Provenzano
- Department of Cellular, Computational and Integrative Biology. (CIBIO), University of Trento, Trento, Italy
| | - A Banerjee
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - F Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - M A Basson
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College, London, London, UK
| | - J Ellegood
- Mouse Imaging Ctr., Hosp. For Sick Children, Toronto, ON, Canada
| | - J P Lerch
- Mouse Imaging Ctr., Hosp. For Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M Rudin
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - A Gozzi
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy.
| | - N Wenderoth
- Neural Control of Movement Lab, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Technological Improvements in the Genetic Diagnosis of Rett Syndrome Spectrum Disorders. Int J Mol Sci 2021; 22:ijms221910375. [PMID: 34638716 PMCID: PMC8508637 DOI: 10.3390/ijms221910375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that constitutes the second most common cause of intellectual disability in females worldwide. In the past few years, the advancements in genetic diagnosis brought by next generation sequencing (NGS), have made it possible to identify more than 90 causative genes for RTT and significantly overlapping phenotypes (RTT spectrum disorders). Therefore, the clinical entity known as RTT is evolving towards a spectrum of overlapping phenotypes with great genetic heterogeneity. Hence, simultaneous multiple gene testing and thorough phenotypic characterization are mandatory to achieve a fast and accurate genetic diagnosis. In this review, we revise the evolution of the diagnostic process of RTT spectrum disorders in the past decades, and we discuss the effectiveness of state-of-the-art genetic testing options, such as clinical exome sequencing and whole exome sequencing. Moreover, we introduce recent technological advancements that will very soon contribute to the increase in diagnostic yield in patients with RTT spectrum disorders. Techniques such as whole genome sequencing, integration of data from several “omics”, and mosaicism assessment will provide the tools for the detection and interpretation of genomic variants that will not only increase the diagnostic yield but also widen knowledge about the pathophysiology of these disorders.
Collapse
|
27
|
Saad L, Zwiller J, Kalsbeek A, Anglard P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes (Basel) 2021; 12:1263. [PMID: 34440437 PMCID: PMC8394526 DOI: 10.3390/genes12081263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Based on studies describing an increased prevalence of addictive behaviours in several rare sleep disorders and shift workers, a relationship between circadian rhythms and addiction has been hinted for more than a decade. Although circadian rhythm alterations and molecular mechanisms associated with neuropsychiatric conditions are an area of active investigation, success is limited so far, and further investigations are required. Thus, even though compelling evidence connects the circadian clock to addictive behaviour and vice-versa, yet the functional mechanism behind this interaction remains largely unknown. At the molecular level, multiple mechanisms have been proposed to link the circadian timing system to addiction. The molecular mechanism of the circadian clock consists of a transcriptional/translational feedback system, with several regulatory loops, that are also intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape shows profound changes in the addictive brain, with significant alterations in histone modification, DNA methylation, and small regulatory RNAs. The combination of these two observations raises the possibility that epigenetic regulation is a common plot linking the circadian clocks with addiction, though very little evidence has been reported to date. This review provides an elaborate overview of the circadian system and its involvement in addiction, and we hypothesise a possible connection at the epigenetic level that could further link them. Therefore, we think this review may further improve our understanding of the etiology or/and pathology of psychiatric disorders related to drug addiction.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
| |
Collapse
|
28
|
Van Bergen NJ, Massey S, Stait T, Ellery M, Reljić B, Formosa LE, Quigley A, Dottori M, Thorburn D, Stroud DA, Christodoulou J. Abnormalities of mitochondrial dynamics and bioenergetics in neuronal cells from CDKL5 deficiency disorder. Neurobiol Dis 2021; 155:105370. [PMID: 33905871 DOI: 10.1016/j.nbd.2021.105370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 01/29/2023] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental disorder caused by pathogenic variants in the Cyclin-dependent kinase-like 5 (CDKL5) gene, resulting in dysfunctional CDKL5 protein. It predominantly affects females and causes seizures in the first few months of life, ultimately resulting in severe intellectual disability. In the absence of targeted therapies, treatment is currently only symptomatic. CDKL5 is a serine/threonine kinase that is highly expressed in the brain, with a critical role in neuronal development. Evidence of mitochondrial dysfunction in CDD is gathering, but has not been studied extensively. We used human patient-derived induced pluripotent stem cells with a pathogenic truncating mutation (p.Arg59*) and CRISPR/Cas9 gene-corrected isogenic controls, differentiated into neurons, to investigate the impact of CDKL5 mutation on cellular function. Quantitative proteomics indicated mitochondrial defects in CDKL5 p.Arg59* neurons, and mitochondrial bioenergetics analysis confirmed decreased activity of mitochondrial respiratory chain complexes. Additionally, mitochondrial trafficking velocity was significantly impaired, and there was a higher percentage of stationary mitochondria. We propose mitochondrial dysfunction is contributing to CDD pathology, and should be a focus for development of targeted treatments for CDD.
Collapse
Affiliation(s)
- Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Tegan Stait
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Molly Ellery
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Boris Reljić
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia; Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia; BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3010, Australia; Illawarra Health and Medical Research Institute, Centre for Molecular and Medical Bioscience, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - David Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
29
|
Chaudhary R, Agarwal V, Kaushik AS, Rehman M. Involvement of myocyte enhancer factor 2c in the pathogenesis of autism spectrum disorder. Heliyon 2021; 7:e06854. [PMID: 33981903 PMCID: PMC8082549 DOI: 10.1016/j.heliyon.2021.e06854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2), a family of transcription factor of MADS (minichromosome maintenance 1, agamous, deficiens and serum response factor)-box family needed in the growth and differentiation of a variety of human cells, such as neural, immune, endothelial, and muscles. As per existing literature, MEF2 transcription factors have also been associated with synaptic plasticity, the developmental mechanisms governing memory and learning, and several neurologic conditions, like autism spectrum disorders (ASDs). Recent genomic findings have ascertained a link between MEF2 defects, particularly in the MEF2C isoform and the ASD. In this review, we summarized a concise overview of the general regulation, structure and functional roles of the MEF2C transcription factor. We further outlined the potential role of MEF2C as a risk factor for various neurodevelopmental disorders, such as ASD, MEF2C Haploinsufficiency Syndrome and Fragile X syndrome.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
30
|
Morrison-Levy N, Borlot F, Jain P, Whitney R. Early-Onset Developmental and Epileptic Encephalopathies of Infancy: An Overview of the Genetic Basis and Clinical Features. Pediatr Neurol 2021; 116:85-94. [PMID: 33515866 DOI: 10.1016/j.pediatrneurol.2020.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Our current knowledge of genetically determined forms of epilepsy has shortened the diagnostic pathway usually experienced by the families of infants diagnosed with early-onset developmental and epileptic encephalopathies. Genetic causes can be found in up to 80% of infants presenting with early-onset developmental and epileptic encephalopathies, often in the context of an uneventful perinatal history and with no clear underlying brain abnormalities. Although current disease-specific therapies remain limited and patient outcomes are often guarded, a genetic diagnosis may lead to early therapeutic intervention using new and/or repurposed therapies. In this review, an overview of epilepsy genetics, the indications for genetic testing in infants, the advantages and limitations of each test, and the challenges and ethical implications of genetic testing are discussed. In addition, the following causative genes associated with early-onset developmental and epileptic encephalopathies are discussed in detail: KCNT1, KCNQ2, KCNA2, SCN2A, SCN8A, STXBP1, CDKL5, PIGA, SPTAN1, and GNAO1. The epilepsy phenotypes, comorbidities, electroencephalgraphic findings, neuroimaging findings, and potential targeted therapies for each gene are reviewed.
Collapse
Affiliation(s)
| | - Felippe Borlot
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
31
|
Gennaccaro L, Fuchs C, Loi M, Roncacè V, Trazzi S, Ait-Bali Y, Galvani G, Berardi AC, Medici G, Tassinari M, Ren E, Rimondini R, Giustetto M, Aicardi G, Ciani E. A GABA B receptor antagonist rescues functional and structural impairments in the perirhinal cortex of a mouse model of CDKL5 deficiency disorder. Neurobiol Dis 2021; 153:105304. [PMID: 33621640 DOI: 10.1016/j.nbd.2021.105304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/25/2022] Open
Abstract
CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe neurodevelopmental encephalopathy characterized by early-onset epilepsy and intellectual disability. Studies in mouse models have linked CDKL5 deficiency to defects in neuronal maturation and synaptic plasticity, and disruption of the excitatory/inhibitory balance. Interestingly, increased density of both GABAergic synaptic terminals and parvalbumin inhibitory interneurons was recently observed in the primary visual cortex of Cdkl5 knockout (KO) mice, suggesting that excessive GABAergic transmission might contribute to the visual deficits characteristic of CDD. However, the functional relevance of cortical GABAergic circuits abnormalities in these mutant mice has not been investigated so far. Here we examined GABAergic circuits in the perirhinal cortex (PRC) of Cdkl5 KO mice, where we previously observed impaired long-term potentiation (LTP) associated with deficits in novel object recognition (NOR) memory. We found a higher number of GABAergic (VGAT)-immunopositive terminals in the PRC of Cdkl5 KO compared to wild-type mice, suggesting that increased inhibitory transmission might contribute to LTP impairment. Interestingly, while exposure of PRC slices to the GABAA receptor antagonist picrotoxin had no positive effects on LTP in Cdkl5 KO mice, the selective GABAB receptor antagonist CGP55845 restored LTP magnitude, suggesting that exaggerated GABAB receptor-mediated inhibition contributes to LTP impairment in mutants. Moreover, acute in vivo treatment with CGP55845 increased the number of PSD95 positive puncta as well as density and maturation of dendritic spines in PRC, and restored NOR memory in Cdkl5 KO mice. The present data show the efficacy of limiting excessive GABAB receptor-mediated signaling in improving synaptic plasticity and cognition in CDD mice.
Collapse
Affiliation(s)
- Laura Gennaccaro
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Vincenzo Roncacè
- Department for Life Quality Studies, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Yassine Ait-Bali
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | | | - Giorgio Medici
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Elisa Ren
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Bologna, Italy
| | - Maurizio Giustetto
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Giorgio Aicardi
- Department for Life Quality Studies, University of Bologna, Bologna, Italy.
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy.
| |
Collapse
|
32
|
Lopergolo D, Privitera F, Castello G, Lo Rizzo C, Mencarelli MA, Pinto AM, Ariani F, Currò A, Lamacchia V, Canitano R, Vaghi E, Ferrarini A, Baltodano GM, Lederer D, Van Maldergem L, Serrano M, Pineda M, Fons-Estupina MDC, Van Esch H, Breckpot J, Kumps C, Callewaert B, Mueller S, Ramelli GP, Armstrong J, Renieri A, Mari F. IQSEC2 disorder: A new disease entity or a Rett spectrum continuum? Clin Genet 2021; 99:462-474. [PMID: 33368194 DOI: 10.1111/cge.13908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/12/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022]
Abstract
IQSEC2 mutations are associated with IQSEC2-related intellectual disability (ID). Phenotypic spectrum has been better defined in the last few years by the increasing number of reported cases although the genotype-phenotype relationship for IQSEC2 remains overall complex. As for IQSEC2-related ID a wide phenotypic diversity has been described in Rett syndrome (RTT). Several patients harboring IQSEC2 mutations present with clinical symptoms similar to RTT and some cases meet most of the criteria for classic RTT. With the aim of establishing a genotype-phenotype correlation, we collected data of 16 patients harboring IQSEC2 point mutations (15 of them previously unreported) and of five novel patients carrying CNVs encompassing IQSEC2. Most of our patients surprisingly shared a moderate-to-mild phenotype. The similarities in the clinical course between our mild cases and patients with milder forms of atypical RTT reinforce the hypothesis that also IQSEC2 mutated patients may lay under the wide clinical spectrum of RTT and thus IQSEC2 should be considered in the differential diagnosis. Our data confirm that position, type of variant and gender are crucial for IQSEC2-associated phenotype delineation.
Collapse
Affiliation(s)
- Diego Lopergolo
- Medical Genetics, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | | | - Caterina Lo Rizzo
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesca Ariani
- Medical Genetics, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Aurora Currò
- Medical Genetics, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Vittoria Lamacchia
- Medical Genetics, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Canitano
- Division of Child and Adolescent Neuropsychiatry, University Hospital of Siena, Siena, Italy
| | - Elisabetta Vaghi
- MAS Clinica Generale, Istituto Oncologico della Svizzera Italiana, Ospedale Regionale di Lugano, Italiano, Lugano, Switzerland
| | - Alessandra Ferrarini
- Chief Medical Genetics EOC, CSSI- Ospedale Regionale di Lugano, Italiano, Lugano, Switzerland
| | | | - Damien Lederer
- Department of Clinical Genetics, Centre for Human Genetics, Gosselies, Belgium
| | | | - Mercedes Serrano
- Pediatric Neurology Department, Hospital Sant Joan de Déu, Institut de Recerca, Barcelona, Spain.,U-703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Mercè Pineda
- Department of Neuropediatria, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Maria Del Carmen Fons-Estupina
- U-703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain.,Pediatric Neurology Department, Fetal-Neonatal Neurology Unit and Early Onset Epilepsy, Hospital Sant Joan de Déu, Institut de Recerca, Barcelona, Spain
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Candy Kumps
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sabrina Mueller
- Pediatric Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Gian Paolo Ramelli
- Pediatric Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Judith Armstrong
- Genetics Department, Hospital Sant Joan de Deu, Institut Pediàtric de Recerca and CIBERER, Barcelona, Spain
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
33
|
Gropman AL. Epigenetics and pervasive developmental disorders. EPIGENETICS IN PSYCHIATRY 2021:519-552. [DOI: 10.1016/b978-0-12-823577-5.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
34
|
Currò A, Doddato G, Bruttini M, Zollino M, Marangi G, Zappella M, Renieri A, Pinto AM. CDKL5 mutations may mimic Pitt-Hopkins syndrome phenotype. Eur J Med Genet 2020; 64:104102. [PMID: 33220470 DOI: 10.1016/j.ejmg.2020.104102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 11/28/2022]
Abstract
Genetic conditions comprise a wide spectrum of different phenotypes, rapidly expanding due to new diagnostic methodologies. Patients' facial features and clinical history represent the key elements leading clinicians to the right diagnosis. CDKL5-early onset epilepsy and Pitt-Hopkins syndrome are two well-known genetic conditions, with a defined phenotype sharing some common characteristics like early-onset epilepsy and hyperventilation episodes. Whilst facial features represent a diagnostic handle in patients with Pitt-Hopkins syndrome, clinical history is crucial in patients carrying a mutation in CDKL5. Here we present the clinical case of a girl evaluated for the first time when she was 24-years old, with a clinical phenotype mimicking Pitt-Hopkins syndrome. Her facial features have become coarser while she was growing up, leading geneticists to raise different clinical hypotheses and to perform several molecular tests before getting the diagnosis of CDKL5-early-epileptic encephalopathy. This finding highlights that although typical facial gestalt has not so far extensively been described in CDKL5 mutated adult patients, peculiar facial features could be present later in life and may let CDKL5-related disorder mimic Pitt Hopkins. Thus, considering atypical Rett syndrome in the differential diagnosis of Pitt Hopkins syndrome could be important to solve complex clinical cases.
Collapse
Affiliation(s)
- Aurora Currò
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Gabriella Doddato
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Marcella Zollino
- Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologico, Unità di Genetica Medica, Roma, Italy
| | - Giuseppe Marangi
- Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologico, Unità di Genetica Medica, Roma, Italy
| | | | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy.
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
35
|
Turner TJ, Zourray C, Schorge S, Lignani G. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. J Neurochem 2020; 157:229-262. [PMID: 32880951 PMCID: PMC8436749 DOI: 10.1111/jnc.15168] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Neurodevelopmental disorders can be caused by mutations in neuronal genes fundamental to brain development. These disorders have severe symptoms ranging from intellectually disability, social and cognitive impairments, and a subset are strongly linked with epilepsy. In this review, we focus on those neurodevelopmental disorders that are frequently characterized by the presence of epilepsy (NDD + E). We loosely group the genes linked to NDD + E with different neuronal functions: transcriptional regulation, intrinsic excitability and synaptic transmission. All these genes have in common a pivotal role in defining the brain architecture and function during early development, and when their function is altered, symptoms can present in the first stages of human life. The relationship with epilepsy is complex. In some NDD + E, epilepsy is a comorbidity and in others seizures appear to be the main cause of the pathology, suggesting that either structural changes (NDD) or neuronal communication (E) can lead to these disorders. Furthermore, grouping the genes that cause NDD + E, we review the uses and limitations of current models of the different disorders, and how different gene therapy strategies are being developed to treat them. We highlight where gene replacement may not be a treatment option, and where innovative therapeutic tools, such as CRISPR‐based gene editing, and new avenues of delivery are required. In general this group of genetically defined disorders, supported increasing knowledge of the mechanisms leading to neurological dysfunction serve as an excellent collection for illustrating the translational potential of gene therapy, including newly emerging tools.
Collapse
Affiliation(s)
- Thomas J Turner
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Department of Pharmacology, UCL School of Pharmacy, London, UK
| | | | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
36
|
Zhang X, Lin JS, Spruyt K. Sleep problems in Rett syndrome animal models: A systematic review. J Neurosci Res 2020; 99:529-544. [PMID: 32985711 DOI: 10.1002/jnr.24730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 08/30/2020] [Indexed: 02/01/2023]
Abstract
Due to the discovery of Rett Syndrome (RTT) genetic mutations, animal models have been developed. Sleep research in RTT animal models may unravel novel neural mechanisms for this severe neurodevelopmental heritable rare disease. In this systematic literature review we summarize the findings on sleep research of 13 studies in animal models of RTT. We found disturbed efficacy and continuity of sleep in all genetically mutated models of mice, cynomolgus monkeys, and Drosophila. Models presented highly fragmented sleep with distinct differences in 24-hr sleep/wake cyclicity and circadian arrhythmicity. Overall, animal models mimic sleep complaints reported in individuals with RTT. However, contrary to human studies, in mutant mice, attenuated sleep delta waves, and sleep apneas in non-rapid eye movement sleep were reported. Future studies may focus on sleep structure and EEG alterations, potential central mechanisms involved in sleep fragmentation and the occurrence of sleep apnea across different sleep stages. Given that locomotor dysfunction is characteristic of individuals with RTT, studies may consider to integrate its potential impact on the behavioral analysis of sleep.
Collapse
Affiliation(s)
- Xinyan Zhang
- INSERM - School of Medicine, University Claude Bernard, Lyon, France
| | - Jian-Sheng Lin
- INSERM - School of Medicine, University Claude Bernard, Lyon, France
| | - Karen Spruyt
- INSERM - School of Medicine, University Claude Bernard, Lyon, France
| |
Collapse
|
37
|
MosaicBase: A Knowledgebase of Postzygotic Mosaic Variants in Noncancer Disease-related and Healthy Human Individuals. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:140-149. [PMID: 32911083 PMCID: PMC7646124 DOI: 10.1016/j.gpb.2020.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/18/2020] [Accepted: 05/31/2020] [Indexed: 12/14/2022]
Abstract
Mosaic variants resulting from postzygotic mutations are prevalent in the human genome and play important roles in human diseases. However, except for cancer-related variants, there is no collection of postzygotic mosaic variants in noncancer disease-related and healthy individuals. Here, we present MosaicBase, a comprehensive database that includes 6698 mosaic variants related to 266 noncancer diseases and 27,991 mosaic variants identified in 422 healthy individuals. Genomic and phenotypic information of each variant was manually extracted and curated from 383 publications. MosaicBase supports the query of variants with Online Mendelian Inheritance in Man (OMIM) entries, genomic coordinates, gene symbols, or Entrez IDs. We also provide an integrated genome browser for users to easily access mosaic variants and their related annotations for any genomic region. By analyzing the variants collected in MosaicBase, we find that mosaic variants that directly contribute to disease phenotype show features distinct from those of variants in individuals with mild or no phenotypes, in terms of their genomic distribution, mutation signatures, and fraction of mutant cells. MosaicBase will not only assist clinicians in genetic counseling and diagnosis but also provide a useful resource to understand the genomic baseline of postzygotic mutations in the general human population. MosaicBase is publicly available at http://mosaicbase.com/ or http://49.4.21.8:8000.
Collapse
|
38
|
Cyclin-Dependent Kinase-Like 5 (CDKL5): Possible Cellular Signalling Targets and Involvement in CDKL5 Deficiency Disorder. Neural Plast 2020; 2020:6970190. [PMID: 32587608 PMCID: PMC7293752 DOI: 10.1155/2020/6970190] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5, also known as STK9) is a serine/threonine protein kinase originally identified in 1998 during a transcriptional mapping project of the human X chromosome. Thereafter, a mutation in CDKL5 was reported in individuals with the atypical Rett syndrome, a neurodevelopmental disorder, suggesting that CDKL5 plays an important regulatory role in neuronal function. The disease associated with CDKL5 mutation has recently been recognised as CDKL5 deficiency disorder (CDD) and has been distinguished from the Rett syndrome owing to its symptomatic manifestation. Because CDKL5 mutations identified in patients with CDD cause enzymatic loss of function, CDKL5 catalytic activity is likely strongly associated with the disease. Consequently, the exploration of CDKL5 substrate characteristics and regulatory mechanisms of its catalytic activity are important for identifying therapeutic target molecules and developing new treatment. In this review, we summarise recent findings on the phosphorylation of CDKL5 substrates and the mechanisms of CDKL5 phosphorylation and dephosphorylation. We also discuss the relationship between changes in the phosphorylation signalling pathways and the Cdkl5 knockout mouse phenotype and consider future prospects for the treatment of mental and neurological disease associated with CDKL5 mutations.
Collapse
|
39
|
Jagtap S, Thanos JM, Fu T, Wang J, Lalonde J, Dial TO, Feiglin A, Chen J, Kohane I, Lee JT, Sheridan SD, Perlis RH. Aberrant mitochondrial function in patient-derived neural cells from CDKL5 deficiency disorder and Rett syndrome. Hum Mol Genet 2020; 28:3625-3636. [PMID: 31518399 DOI: 10.1093/hmg/ddz208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 01/09/2023] Open
Abstract
The X-linked neurodevelopmental diseases CDKL5 deficiency disorder (CDD) and Rett syndrome (RTT) are associated with intellectual disability, infantile spasms and seizures. Although mitochondrial dysfunction has been suggested in RTT, less is understood about mitochondrial function in CDD. A comparison of bioenergetics and mitochondrial function between isogenic wild-type and mutant neural progenitor cell (NPC) lines revealed increased oxygen consumption in CDD mutant lines, which is associated with altered mitochondrial function and structure. Transcriptomic analysis revealed differential expression of genes related to mitochondrial and REDOX function in NPCs expressing the mutant CDKL5. Furthermore, a similar increase in oxygen consumption specific to RTT patient-derived isogenic mutant NPCs was observed, though the pattern of mitochondrial functional alterations was distinct from CDKL5 mutant-expressing NPCs. We propose that aberrant neural bioenergetics is a common feature between CDD and RTT disorders. The observed changes in oxidative stress and mitochondrial function may facilitate the development of therapeutic agents for CDD and related disorders.
Collapse
Affiliation(s)
- Smita Jagtap
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica M Thanos
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Ting Fu
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Wang
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Thomas O Dial
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ariel Feiglin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey Chen
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
40
|
Jdila MB, Triki CC, Ghorbel R, Bouchalla W, Ncir SB, Kamoun F, Fakhfakh F. Unusual double mutation in MECP2 and CDKL5 genes in Rett-like syndrome: Correlation with phenotype and genes expression. Clin Chim Acta 2020; 508:287-294. [PMID: 32445745 DOI: 10.1016/j.cca.2020.05.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Rett syndrome (RTT) is a neuro-developmental disorder affecting almost exclusively females and it divided into classical and atypical forms of the disease. RTT-like syndrome was also described and presents an overlapping phenotype of RTT. RTT-like syndrome has been associated with several genes including MECP2 and CDKL5 having common biological pathways and regulatory interactions especially during neural maturation and synaptogenesis. METHODS We report patient with Rett-like syndrome for whom clinical features and their progression guided toward the screening of two candidate genes MECP2 and CDKL5 by sequencing. Severity score was evaluated by "Rett Assessment Rating Scale" (R.A.R.S.). Predictions of pahogenicity and functional effects used several bioinformatic tools and qRT-PCR was conducted to evaluate gene expression. RESULTS Mutational screening revealed two mutations c.1065 C > A (p.S355R) in MECP2 gene and c.616 G > A (p.D206N) mutation in CDKL5 gene in the patient with a high R.A.R.S. Bioinformatic investigations predicted a moderate effect of p.S355R in MECP2 gene but a more pathogenic one of p.D206N mutation in CDKL5. Effect of c.616 G > A mutation on structure and stability of CDKL5 mRNA was confirmed by qRT-PCR. Additionally, analysis of gene expression revealed a drastic effect of CDKL5 mutant on its MeCP2 and Dnmt1 substrates and also on its MYCN regulator. CONCLUSIONS The co-existence of the two mutations in CDKL5 and MECP2 genes could explain the severe phenotype in our patient with RTT-Like and is consistent with the data related to the interactions of CDKL5 with MeCP2 and Dnmt1 proteins.
Collapse
Affiliation(s)
- Marwa Ben Jdila
- Research Laboratory 'NeuroPédiatrie' (LR19ES15), Sfax Medical School, Sfax University, Tunisia; Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax, Sfax University, Tunisia.
| | - Chahnez Charfi Triki
- Research Laboratory 'NeuroPédiatrie' (LR19ES15), Sfax Medical School, Sfax University, Tunisia; Child Neurology Department, Hedi Chaker Universitary Hospital of Sfax, Tunisia
| | - Rania Ghorbel
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax, Sfax University, Tunisia
| | - Wafa Bouchalla
- Research Laboratory 'NeuroPédiatrie' (LR19ES15), Sfax Medical School, Sfax University, Tunisia; Child Neurology Department, Hedi Chaker Universitary Hospital of Sfax, Tunisia
| | - Sihem Ben Ncir
- Research Laboratory 'NeuroPédiatrie' (LR19ES15), Sfax Medical School, Sfax University, Tunisia; Child Neurology Department, Hedi Chaker Universitary Hospital of Sfax, Tunisia
| | - Fatma Kamoun
- Research Laboratory 'NeuroPédiatrie' (LR19ES15), Sfax Medical School, Sfax University, Tunisia; Child Neurology Department, Hedi Chaker Universitary Hospital of Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax, Sfax University, Tunisia.
| |
Collapse
|
41
|
Kim JY, Bai Y, Jayne LA, Hector RD, Persaud AK, Ong SS, Rojesh S, Raj R, Feng MJHH, Chung S, Cianciolo RE, Christman JW, Campbell MJ, Gardner DS, Baker SD, Sparreboom A, Govindarajan R, Singh H, Chen T, Poi M, Susztak K, Cobb SR, Pabla NS. A kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury. Nat Commun 2020; 11:1924. [PMID: 32317630 PMCID: PMC7174303 DOI: 10.1038/s41467-020-15638-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/21/2020] [Indexed: 12/18/2022] Open
Abstract
Renal tubular epithelial cells (RTECs) perform the essential function of maintaining the constancy of body fluid composition and volume. Toxic, inflammatory, or hypoxic-insults to RTECs can cause systemic fluid imbalance, electrolyte abnormalities and metabolic waste accumulation- manifesting as acute kidney injury (AKI), a common disorder associated with adverse long-term sequelae and high mortality. Here we report the results of a kinome-wide RNAi screen for cellular pathways involved in AKI-associated RTEC-dysfunction and cell death. Our screen and validation studies reveal an essential role of Cdkl5-kinase in RTEC cell death. In mouse models, genetic or pharmacological Cdkl5 inhibition mitigates nephrotoxic and ischemia-associated AKI. We propose that Cdkl5 is a stress-responsive kinase that promotes renal injury in part through phosphorylation-dependent suppression of pro-survival transcription regulator Sox9. These findings reveal a surprising non-neuronal function of Cdkl5, identify a pathogenic Cdkl5-Sox9 axis in epithelial cell-death, and support CDKL5 antagonism as a therapeutic approach for AKI. Protein kinases have emerged as critical regulators of disease pathogenesis. Here, the authors have utilized kinome-wide screening approaches to reveal a pathogenic role of CDKL5 kinase in acute kidney injury, which is dependent on suppression of a SOX9-associated transcriptional network.
Collapse
Affiliation(s)
- Ji Young Kim
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Yuntao Bai
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Laura A Jayne
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ralph D Hector
- Simons Initiative for the Developing Brain & Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Avinash K Persaud
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Su Sien Ong
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shreshtha Rojesh
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Radhika Raj
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mei Ji He Ho Feng
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sangwoon Chung
- Pulmonary, Sleep and Critical Care Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, USA
| | - Rachel E Cianciolo
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - John W Christman
- Pulmonary, Sleep and Critical Care Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, USA
| | - Moray J Campbell
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - David S Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, UK
| | - Sharyn D Baker
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Poi
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Stuart R Cobb
- Simons Initiative for the Developing Brain & Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Navjot Singh Pabla
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
42
|
MeCP2 and Chromatin Compartmentalization. Cells 2020; 9:cells9040878. [PMID: 32260176 PMCID: PMC7226738 DOI: 10.3390/cells9040878] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a multifunctional epigenetic reader playing a role in transcriptional regulation and chromatin structure, which was linked to Rett syndrome in humans. Here, we focus on its isoforms and functional domains, interactions, modifications and mutations found in Rett patients. Finally, we address how these properties regulate and mediate the ability of MeCP2 to orchestrate chromatin compartmentalization and higher order genome architecture.
Collapse
|
43
|
Tillotson R, Bird A. The Molecular Basis of MeCP2 Function in the Brain. J Mol Biol 2020; 432:1602-1623. [PMID: 31629770 DOI: 10.1016/j.jmb.2019.10.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
MeCP2 is a reader of the DNA methylome that occupies a large proportion of the genome due to its high abundance and the frequency of its target sites. It has been the subject of extensive study because of its link with 'MECP2-related disorders', of which Rett syndrome is the most prevalent. This review integrates evidence from patient mutation data with results of experimental studies using mouse models, cell lines and in vitro systems to critically evaluate our understanding of MeCP2 protein function. Recent evidence challenges the idea that MeCP2 is a multifunctional hub that integrates diverse processes to underpin neuronal function, suggesting instead that its primary role is to recruit the NCoR1/2 co-repressor complex to methylated sites in the genome, leading to dampening of gene expression.
Collapse
Affiliation(s)
- Rebekah Tillotson
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada; Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
44
|
Gao Y, Irvine EE, Eleftheriadou I, Naranjo CJ, Hearn-Yeates F, Bosch L, Glegola JA, Murdoch L, Czerniak A, Meloni I, Renieri A, Kinali M, Mazarakis ND. Gene replacement ameliorates deficits in mouse and human models of cyclin-dependent kinase-like 5 disorder. Brain 2020; 143:811-832. [DOI: 10.1093/brain/awaa028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 01/04/2023] Open
Abstract
Abstract
Cyclin-dependent kinase-like 5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. It predominantly affects females who typically present with severe early epileptic encephalopathy, global developmental delay, motor dysfunction, autistic features and sleep disturbances. To develop a gene replacement therapy, we initially characterized the human CDKL5 transcript isoforms expressed in the brain, neuroblastoma cell lines, primary astrocytes and embryonic stem cell-derived cortical interneurons. We found that the isoform 1 and to a lesser extent the isoform 2 were expressed in human brain, and both neuronal and glial cell types. These isoforms were subsequently cloned into recombinant adeno-associated viral (AAV) vector genome and high-titre viral vectors were produced. Intrajugular delivery of green fluorescence protein via AAV vector serotype PHP.B in adult wild-type male mice transduced neurons and astrocytes throughout the brain more efficiently than serotype 9. Cdkl5 knockout male mice treated with isoform 1 via intrajugular injection at age 28–30 days exhibited significant behavioural improvements compared to green fluorescence protein-treated controls (1012 vg per animal, n = 10 per group) with PHP.B vectors. Brain expression of the isoform 1 transgene was more abundant in hindbrain than forebrain and midbrain. Transgene brain expression was sporadic at the cellular level and most prominent in hippocampal neurons and cerebellar Purkinje cells. Correction of postsynaptic density protein 95 cerebellar misexpression, a major fine cerebellar structural abnormality in Cdkl5 knockout mice, was found in regions of high transgene expression within the cerebellum. AAV vector serotype DJ efficiently transduced CDKL5-mutant human induced pluripotent stem cell-derived neural progenitors, which were subsequently differentiated into mature neurons. When treating CDKL5-mutant neurons, isoform 1 expression led to an increased density of synaptic puncta, while isoform 2 ameliorated the calcium signalling defect compared to green fluorescence protein control, implying distinct functions of these isoforms in neurons. This study provides the first evidence that gene therapy mediated by AAV vectors can be used for treating CDKL5 disorder.
Collapse
Affiliation(s)
- Yunan Gao
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Elaine E Irvine
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Ioanna Eleftheriadou
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Carlos Jiménez Naranjo
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Francesca Hearn-Yeates
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Leontien Bosch
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Justyna A Glegola
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Leah Murdoch
- CBS Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - Ilaria Meloni
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Kinali
- The Portland Hospital, 205-209 Great Portland Street, London, W1W 5AH, UK
| | - Nicholas D Mazarakis
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| |
Collapse
|
45
|
Aldosary M, Al-Bakheet A, Al-Dhalaan H, Almass R, Alsagob M, Al-Younes B, AlQuait L, Mustafa OM, Bulbul M, Rahbeeni Z, Alfadhel M, Chedrawi A, Al-Hassnan Z, AlDosari M, Al-Zaidan H, Al-Muhaizea MA, AlSayed MD, Salih MA, AlShammari M, Faiyaz-Ul-Haque M, Chishti MA, Al-Harazi O, Al-Odaib A, Kaya N, Colak D. Rett Syndrome, a Neurodevelopmental Disorder, Whole-Transcriptome, and Mitochondrial Genome Multiomics Analyses Identify Novel Variations and Disease Pathways. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:160-171. [PMID: 32105570 DOI: 10.1089/omi.2019.0192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder reported worldwide in diverse populations. RTT is diagnosed primarily in females, with clinical findings manifesting early in life. Despite the variable rates across populations, RTT has an estimated prevalence of ∼1 in 10,000 live female births. Among 215 Saudi Arabian patients with neurodevelopmental and autism spectrum disorders, we identified 33 patients with RTT who were subsequently examined by genome-wide transcriptome and mitochondrial genome variations. To the best of our knowledge, this is the first in-depth molecular and multiomics analyses of a large cohort of Saudi RTT cases with a view to informing the underlying mechanisms of this disease that impact many patients and families worldwide. The patients were unrelated, except for 2 affected sisters, and comprised of 25 classic and eight atypical RTT cases. The cases were screened for methyl-CpG binding protein 2 (MECP2), CDKL5, FOXG1, NTNG1, and mitochondrial DNA (mtDNA) variants, as well as copy number variations (CNVs) using a genome-wide experimental strategy. We found that 15 patients (13 classic and two atypical RTT) have MECP2 mutations, 2 of which were novel variants. Two patients had novel FOXG1 and CDKL5 variants (both atypical RTT). Whole mtDNA sequencing of the patients who were MECP2 negative revealed two novel mtDNA variants in two classic RTT patients. Importantly, the whole-transcriptome analysis of our RTT patients' blood and further comparison with previous expression profiling of brain tissue from patients with RTT revealed 77 significantly dysregulated genes. The gene ontology and interaction network analysis indicated potentially critical roles of MAPK9, NDUFA5, ATR, SMARCA5, RPL23, SRSF3, and mitochondrial dysfunction, oxidative stress response and MAPK signaling pathways in the pathogenesis of RTT genes. This study expands our knowledge on RTT disease networks and pathways as well as presents novel mutations and mtDNA alterations in RTT in a population sample that was not previously studied.
Collapse
Affiliation(s)
- Mazhor Aldosary
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - AlBandary Al-Bakheet
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Hesham Al-Dhalaan
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Banan Al-Younes
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Laila AlQuait
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Osama Mufid Mustafa
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mustafa Bulbul
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Genetics Division, Department of Pediatrics, King Abdullah Specialized Children Hospital, Riyadh, Saudi Arabia
| | - Aziza Chedrawi
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Zuhair Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohammed AlDosari
- Center for Pediatric Neurosciences, Cleveland Clinic, Cleveland, Ohio
| | - Hamad Al-Zaidan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohammad A Al-Muhaizea
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Moeenaldeen D AlSayed
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mai AlShammari
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | - Mohammad Azhar Chishti
- Department of Biochemistry, King Khalid Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Olfat Al-Harazi
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Al-Odaib
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Zhang W, Ham J, Li Q, Deyssenroth MA, Lambertini L, Huang Y, Tsuchiya KJ, Chen J, Nomura Y. Moderate prenatal stress may buffer the impact of Superstorm Sandy on placental genes: Stress in Pregnancy (SIP) Study. PLoS One 2020; 15:e0226605. [PMID: 31995614 PMCID: PMC6988921 DOI: 10.1371/journal.pone.0226605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 11/29/2019] [Indexed: 12/26/2022] Open
Abstract
The placenta plays a central role in the epigenetic programming of neurodevelopment by prenatal stress (PS), but this pathway is not fully understood. It difficult to study in humans because the conditions for intense, traumatic PS are almost impossible to create ethically. This study was able to capitalize on a 2012 disaster that hit New York, Superstorm Sandy, to examine the impact of traumatic stress on placental gene expression while also examining normative PS, and compare the two. Of the 303 expectant mothers participating in the Stress in Pregnancy Study, 95 women were pregnant when Superstorm Sandy struck. During their pregnancy, participants completed self-report measures of PS and distress that were combined, using latent profile analysis, into one global indicator of normative PS. Placental tissue was collected at delivery and frozen for storage. RNA expression was assessed for 40 placental genes known to associate with the stress response system and neurodevelopment in offspring. Results showed that normative PS increased expression of just MECP2, HSD11B2, and ZNF507, whereas Superstorm Sandy PS decreased expression of CDKL5, CFL1, DYRK1A, HSD11B2, MAOA, MAOB, NCOR1, and ZNF507. Interaction analyses indicated that Superstorm Sandy PS was associated with decreased gene expression for the low and high PS group for CFL1, DYRK1A, HSD11B2, MAOA, and NCOR1 and increased expression for the moderate PS group for FOXP1, NR3C1, and NR3C2. This study supports the idea that a moderate amount of normative PS may buffer the impact of traumatic PS, in this case caused by Superstorm Sandy, on placental gene expression, which suggests that the placenta itself mirrors the organism's ability to develop an epigenetic resilience to, and inoculation from, stress.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Psychology, Queens College, CUNY, New York, NY, United States of America
- Department of Psychology, New Jersey City University, Jersey City, NJ, United States of America
| | - Jacob Ham
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Qian Li
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Maya A. Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Luca Lambertini
- Department of Medicine, Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Yonglin Huang
- Department of Psychology, Queens College, CUNY, New York, NY, United States of America
- Department of Psychology, The Graduate Center, CUNY, New York, NY, United States of America
| | - Kenji J. Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Yoko Nomura
- Department of Psychology, Queens College, CUNY, New York, NY, United States of America
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Psychology, The Graduate Center, CUNY, New York, NY, United States of America
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
47
|
Tejada MI, Ibarluzea N. Non-syndromic X linked intellectual disability: Current knowledge in light of the recent advances in molecular and functional studies. Clin Genet 2020; 97:677-687. [PMID: 31898314 DOI: 10.1111/cge.13698] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/09/2019] [Accepted: 12/24/2019] [Indexed: 12/23/2022]
Abstract
Since the discovery of the FMR1 gene and the clinical and molecular characterization of Fragile X Syndrome in 1991, more than 141 genes have been identified in the X-chromosome in these 28 years thanks to applying continuously evolving molecular techniques to X-linked intellectual disability (XLID) families. In the past decade, array comparative genomic hybridization and next generation sequencing technologies have accelerated gene discovery exponentially. Classically, XLID has been subdivided in syndromic intellectual disability (S-XLID)-where intellectual disability (ID) is always associated with other recognizable physical and/or neurological features-and non-specific or non-syndromic intellectual disability (NS-XLID) where the only common feature is ID. Nevertheless, new advances on the study of these entities have showed that this classification is not always clear-cut because distinct variants in several of these XLID genes can result in S-XLID as well as in NS-XLID. This review focuses on the current knowledge on the XLID genes involved in non-syndromic forms, with the emphasis on their pathogenic mechanism, thus allowing the possibility to elucidate why some of them can give both syndromic and non-syndromic phenotypes.
Collapse
Affiliation(s)
- María Isabel Tejada
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain.,Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Group, Centre for Biomedical Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Nekane Ibarluzea
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Group, Centre for Biomedical Research on Rare Diseases (CIBERER), Valencia, Spain
| |
Collapse
|
48
|
Heimer G, van Woerden GM, Barel O, Marek-Yagel D, Kol N, Munting JB, Borghei M, Atawneh OM, Nissenkorn A, Rechavi G, Anikster Y, Elgersma Y, Kushner SA, Ben Zeev B. Netrin-G2 dysfunction causes a Rett-like phenotype with areflexia. Hum Mutat 2019; 41:476-486. [PMID: 31692205 DOI: 10.1002/humu.23945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/17/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
Abstract
We describe the underlying genetic cause of a novel Rett-like phenotype accompanied by areflexia in three methyl-CpG-binding protein 2-negative individuals from two unrelated families. Discovery analysis was performed using whole-exome sequencing followed by Sanger sequencing for validation and segregation. Functional studies using short-hairpin RNA for targeted gene knockdown were implemented by the transfection of mouse cultured primary hippocampal neurons and in vivo by in utero electroporation. All patients shared a common homozygous frameshift mutation (chr9:135073515, c.376dupT, p.(Ser126PhefsTer241)) in netrin-G2 (NTNG2, NM_032536.3) with predicted nonsense-mediated decay. The mutation fully segregated with the disease in both families. The knockdown of either NTNG2 or the related netrin-G family member NTNG1 resulted in severe neurodevelopmental defects of neuronal morphology and migration. While NTNG1 has previously been linked to a Rett syndrome (RTT)-like phenotype, this is the first description of a RTT-like phenotype caused by NTNG2 mutation. Netrin-G proteins have been shown to be required for proper axonal guidance during early brain development and involved in N-methyl- d-aspartate-mediated synaptic transmission. Our results demonstrating that knockdown of murine NTNG2 causes severe impairments of neuronal morphology and cortical migration are consistent with those of RTT animal models and the shared neurodevelopmental phenotypes between the individuals described here and typical RTT patients.
Collapse
Affiliation(s)
- Gali Heimer
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel.,The Pinchas Borenstein Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ortal Barel
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel.,Wohl Institute for Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nitzan Kol
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel.,Wohl Institute for Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Johannes B Munting
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Minoeshka Borghei
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Andreea Nissenkorn
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Rechavi
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel.,Wohl Institute for Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Yair Anikster
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ype Elgersma
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Steven A Kushner
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bruria Ben Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
49
|
Fahmi M, Yasui G, Seki K, Katayama S, Kaneko-Kawano T, Inazu T, Kubota Y, Ito M. In Silico Study of Rett Syndrome Treatment-Related Genes, MECP2, CDKL5, and FOXG1, by Evolutionary Classification and Disordered Region Assessment. Int J Mol Sci 2019; 20:ijms20225593. [PMID: 31717404 PMCID: PMC6888432 DOI: 10.3390/ijms20225593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022] Open
Abstract
Rett syndrome (RTT), a neurodevelopmental disorder, is mainly caused by mutations in methyl CpG-binding protein 2 (MECP2), which has multiple functions such as binding to methylated DNA or interacting with a transcriptional co-repressor complex. It has been established that alterations in cyclin-dependent kinase-like 5 (CDKL5) or forkhead box protein G1 (FOXG1) correspond to distinct neurodevelopmental disorders, given that a series of studies have indicated that RTT is also caused by alterations in either one of these genes. We investigated the evolution and molecular features of MeCP2, CDKL5, and FOXG1 and their binding partners using phylogenetic profiling to gain a better understanding of their similarities. We also predicted the structural order-disorder propensity and assessed the evolutionary rates per site of MeCP2, CDKL5, and FOXG1 to investigate the relationships between disordered structure and other related properties with RTT. Here, we provide insight to the structural characteristics, evolution and interaction landscapes of those three proteins. We also uncovered the disordered structure properties and evolution of those proteins which may provide valuable information for the development of therapeutic strategies of RTT.
Collapse
Affiliation(s)
- Muhamad Fahmi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (M.F.); (G.Y.); (K.S.)
| | - Gen Yasui
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (M.F.); (G.Y.); (K.S.)
| | - Kaito Seki
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (M.F.); (G.Y.); (K.S.)
| | - Syouichi Katayama
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (S.K.); (T.K.-K.); (T.I.)
| | - Takako Kaneko-Kawano
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (S.K.); (T.K.-K.); (T.I.)
| | - Tetsuya Inazu
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (S.K.); (T.K.-K.); (T.I.)
| | - Yukihiko Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan;
| | - Masahiro Ito
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (M.F.); (G.Y.); (K.S.)
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan;
- Correspondence:
| |
Collapse
|
50
|
Liang JS, Huang H, Wang JS, Lu JF. Phenotypic manifestations between male and female children with CDKL5 mutations. Brain Dev 2019; 41:783-789. [PMID: 31122804 DOI: 10.1016/j.braindev.2019.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cyclin-dependent kinase-like 5 (CDKL5), which maps to chromosome Xp22.13 and contains 20 coding exons, has been recognized as the gene responsible for early-onset epileptic encephalopathy (EoEE). A retrospective study is carried out to analyze potential genotypic and phenotypic differences between male and female patients with CDKL5 mutations. MATERIALS AND METHODS Targeted next-generation DNA sequencing was employed to search for mutations in patients with cryptogenic EE. A total of 44 patients with EoEE/infantile spasms (ISs)/West syndrome were enrolled for pathogenic mutation screening. The clinical phenotypes of patients with CDKL5 mutations were analyzed and compared with those of 166 published cases. RESULTS One novel and three recurrent mutations were found in four enrolled patients (two boys and two girls). One female patient had partial seizures during the early infantile period and epileptic spasms and tonic seizures several weeks thereafter. The other female patient had IS with hypsarrhythmia. The two male patients had IS without typical hypsarrhythmia and were bedridden. Brain MRIs of the male patients revealed brain atrophy and white matter hyperintensity. The female patients exhibited autistic features with hand stereotypies. CONCLUSION Our study highlights that both girls and boys with IS harbor CDKL5 mutations. Male children with CDKL5 mutations demonstrate a higher frequency of infantile spasms and brain atrophy, whereas female children often exhibit atypical Rett syndrome with EoEE. In addition, male children have a more severe phenotype than female children.
Collapse
Affiliation(s)
- Jao-Shwann Liang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Hsin Huang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jinn-Shyan Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jyh-Feng Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|