1
|
Tatsukawa K, Sakamoto R, Kawasoe Y, Kubota Y, Tsurimoto T, Takahashi T, Ohashi E. Resection of DNA double-strand breaks activates Mre11-Rad50-Nbs1- and Rad9-Hus1-Rad1-dependent mechanisms that redundantly promote ATR checkpoint activation and end processing in Xenopus egg extracts. Nucleic Acids Res 2024; 52:3146-3163. [PMID: 38349040 PMCID: PMC11014350 DOI: 10.1093/nar/gkae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 04/14/2024] Open
Abstract
Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.
Collapse
Affiliation(s)
- Kensuke Tatsukawa
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Reihi Sakamoto
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshitaka Kawasoe
- Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yumiko Kubota
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Toshiki Tsurimoto
- Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tatsuro S Takahashi
- Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Eiji Ohashi
- Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
2
|
The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022; 12:biom12081045. [PMID: 36008939 PMCID: PMC9406135 DOI: 10.3390/biom12081045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Hsp90 is a ubiquitous molecular chaperone involved in many cell signaling pathways, and its interactions with specific chaperones and cochaperones determines which client proteins to fold. Hsp90 has been shown to be involved in the promotion and maintenance of proper protein complex assembly either alone or in association with other chaperones such as the R2TP chaperone complex. Hsp90-R2TP acts through several mechanisms, such as by controlling the transcription of protein complex subunits, stabilizing protein subcomplexes before their incorporation into the entire complex, and by recruiting adaptors that facilitate complex assembly. Despite its many roles in protein complex assembly, detailed mechanisms of how Hsp90-R2TP assembles protein complexes have yet to be determined, with most findings restricted to proteomic analyses and in vitro interactions. This review will discuss our current understanding of the function of Hsp90-R2TP in the assembly, stabilization, and activity of the following seven classes of protein complexes: L7Ae snoRNPs, spliceosome snRNPs, RNA polymerases, PIKKs, MRN, TSC, and axonemal dynein arms.
Collapse
|
3
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Laffitte MCN, Leprohon P, Hainse M, Légaré D, Masson JY, Ouellette M. Chromosomal Translocations in the Parasite Leishmania by a MRE11/RAD50-Independent Microhomology-Mediated End Joining Mechanism. PLoS Genet 2016; 12:e1006117. [PMID: 27314941 PMCID: PMC4912120 DOI: 10.1371/journal.pgen.1006117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/20/2016] [Indexed: 01/15/2023] Open
Abstract
The parasite Leishmania often relies on gene rearrangements to survive stressful environments. However, safeguarding a minimum level of genome integrity is important for cell survival. We hypothesized that maintenance of genomic integrity in Leishmania would imply a leading role of the MRE11 and RAD50 proteins considering their role in DNA repair, chromosomal organization and protection of chromosomes ends in other organisms. Attempts to generate RAD50 null mutants in a wild-type background failed and we provide evidence that this gene is essential. Remarkably, inactivation of RAD50 was possible in a MRE11 null mutant that we had previously generated, providing good evidence that RAD50 may be dispensable in the absence of MRE11. Inactivation of the MRE11 and RAD50 genes led to a decreased frequency of homologous recombination and analysis of the null mutants by whole genome sequencing revealed several chromosomal translocations. Sequencing of the junction between translocated chromosomes highlighted microhomology sequences at the level of breakpoint regions. Sequencing data also showed a decreased coverage at subtelomeric locations in many chromosomes in the MRE11-/-RAD50-/- parasites. This study demonstrates an MRE11-independent microhomology-mediated end-joining mechanism and a prominent role for MRE11 and RAD50 in the maintenance of genomic integrity. Moreover, we suggest the possible involvement of RAD50 in subtelomeric regions stability. The parasite Leishmania relies on gene rearrangements to survive stressful conditions. However, maintaining a minimum level of genomic integrity is crucial for cell survival. Studies in other organisms have provided evidence that the DNA repair proteins MRE11 and RAD50 are involved in chromosomes organization, protection of chromosomes ends and therefore in the maintenance of genomic integrity. In this manuscript, we present the conditional inactivation of the Leishmania infantum RAD50 gene that was only possible in MRE11 deficient cells and suggest the genetic background is crucial for RAD50 inactivation. We demonstrate the occurrence of chromosomal translocations in the MRE11 and RAD50 deficient cells and described a MRE11-independent microhomology-mediated end-joining mechanism at the level of translocation breakpoints. We also suggest a possible involvement of RAD50 in subtelomeric regions stability. Our results highlight that both MRE11 and RAD50 are important for the maintenance of genomic integrity in Leishmania.
Collapse
Affiliation(s)
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie, CRCHU de Québec, Québec City, Québec, Canada
| | - Maripier Hainse
- Genome Stability Laboratory, CRCHU de Québec, Pavillon HDQ Oncology axis, Québec City, Québec, Canada
| | - Danielle Légaré
- Centre de Recherche en Infectiologie, CRCHU de Québec, Québec City, Québec, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CRCHU de Québec, Pavillon HDQ Oncology axis, Québec City, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Centre de recherche sur le Cancer, Université Laval, Québec City, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, CRCHU de Québec, Québec City, Québec, Canada
- * E-mail:
| |
Collapse
|
5
|
Chang L, Huang J, Wang K, Li J, Yan R, Zhu L, Ye J, Wu X, Zhuang S, Li D, Zhang G. Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy. BMC Cancer 2016; 16:190. [PMID: 26951044 PMCID: PMC4782334 DOI: 10.1186/s12885-016-2190-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The Mre11-Rad50-Nbs1 (MRN) complex is well known for its crucial role in initiating DNA double strand breaks (DSBs) repair pathways to resistant irradiation (IR) injury and thus facilitating radioresistance which severely reduces radiocurability of nasopharyngeal cancer (NPC). Targeting native cellular MRN function would sensitize NPC cells to IR. METHODS A recombinant adenovirus containing a mutant Rad50 gene (Ad-RAD50) expressing Rad50 zinc hook domain but lacking the ATPase domain and the Mre11 interaction domain was constructed to disrupt native cellular MRN functions. The effects of Ad-RAD50 on the MRN functions were assessed in NPC cells lines using western blot, co-immunoprecipitation and confocal microscopy analyses. The increased radiosensitivity of transient Ad-RAD50 to IR was examined in NPC cells, including MTT assay, colony formation. The molecular mechanisms of radiosensitization were confirmed by neutral comet assay and western bolts. Nude mice subcutaneous injection, tumor growth curve and TUNEL assay were used to evaluate tumor regression and apoptosis in vivo. RESULTS Rad50 is remarkably upregulated in NPC cells after IR, implying the critical role of Rad50 in MRN functions. The transient expression of this mutant Rad50 decreased the levels of native cellular Rad50, Mre11 and Nbs1, weakened the interactions among these proteins, abrogated the G2/M arrest induced by DSBs and reduced the DNA repair ability in NPC cells. A combination of IR and mutant RAD50 therapy produced significant tumor cytotoxicity in vitro, with a corresponding increase in DNA damage, prevented proliferation and cell viability. Furthermore, Ad-RAD50 sensitized NPC cells to IR by causing dramatic tumor regression and inducing apoptosis in vivo. CONCLUSION Our findings define a novel therapeutic approach to NPC radiosensitization via targeted native cellular Rad50 disruption.
Collapse
Affiliation(s)
- Lihong Chang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Jiancong Huang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Kai Wang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otorhinolaryngology-Head & Neck Surgery, The First People's Hospital of Foshan, Cancheng District, NO.81 Lingnan Bei Road, Foshan, 528000, China.
| | - Jingjia Li
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Ruicheng Yan
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, Zengcheng District People's Hospital of Guangzhou (Boji-Affiliated Hospital of Sun Yat-sen University), Zengcheng District, NO.1 Guangming Dong Road, Guangzhou, 511300, China.
| | - Ling Zhu
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, Nanhai Maternity and Child Healthcare Hospital, Nanhai District, NO.6 Guiping Xi Road, Foshan, 528000, China.
| | - Jin Ye
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Xifu Wu
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Shimin Zhuang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, NO.26 Yuancun Erheng Road, Guangzhou, 510655, China.
| | - Daqing Li
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | - Gehua Zhang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
6
|
Flores-Pérez A, Rafaelli LE, Ramírez-Torres N, Aréchaga-Ocampo E, Frías S, Sánchez S, Marchat LA, Hidalgo-Miranda A, Quintanar-Jurado V, Rodríguez-Cuevas S, Bautista-Piña V, Carlos-Reyes Á, López-Camarillo C. RAD50 targeting impairs DNA damage response and sensitizes human breast cancer cells to cisplatin therapy. Cancer Biol Ther 2014; 15:777-788. [PMID: 24642965 PMCID: PMC4049793 DOI: 10.4161/cbt.28551] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/04/2014] [Accepted: 03/16/2014] [Indexed: 02/06/2023] Open
Abstract
In tumor cells the effectiveness of anti-neoplastic agents that cause cell death by induction of DNA damage is influenced by DNA repair activity. RAD50 protein plays key roles in DNA double strand breaks repair (DSBs), which is crucial to safeguard genome integrity and sustain tumor suppression. However, its role as a potential therapeutic target has not been addressed in breast cancer. Our aim in the present study was to analyze the expression of RAD50 protein in breast tumors, and evaluate the effects of RAD50-targeted inhibition on the cytotoxicity exerted by cisplatin and anthracycline and taxane-based therapies in breast cancer cells. Immunohistochemistry assays on tissue microarrays indicate that the strong staining intensity of RAD50 was reduced in 14% of breast carcinomas in comparison with normal tissues. Remarkably, RAD50 silencing by RNA interference significantly enhanced the cytotoxicity of cisplatin. Combinations of cisplatin with doxorubicin and paclitaxel drugs induced synergistic effects in early cell death of RAD50-deficient MCF-7, SKBR3, and T47D breast cancer cells. Furthermore, we found an increase in the number of DSBs, and delayed phosphorylation of histone H2AX after cisplatin treatment in RAD50-silenced cells. These cellular events were associated to a dramatical increase in the frequency of chromosomal aberrations and a decrease of cell number in metaphase. In conclusion, our data showed that RAD50 abrogation impairs DNA damage response and sensitizes breast cancer cells to cisplatin-combined therapies. We propose that the development and use of inhibitors to manipulate RAD50 levels might represent a promising strategy to sensitize breast cancer cells to DNA damaging agents.
Collapse
Affiliation(s)
- Ali Flores-Pérez
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
| | - Lourdes E Rafaelli
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
| | - Nayeli Ramírez-Torres
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
| | | | - Sara Frías
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
- National Institute of Pediatrics; Biomedical Research Institute; National Autonomous University of Mexico; Mexico DF, Mexico
| | - Silvia Sánchez
- National Institute of Pediatrics; Biomedical Research Institute; National Autonomous University of Mexico; Mexico DF, Mexico
| | - Laurence A Marchat
- Molecular Biomedicine Program and Biotechnology Network; National School of Medicine and Homeopathy; National Polytechnic Institute; Mexico DF, Mexico
| | | | | | | | | | - Ángeles Carlos-Reyes
- Lung Cancer Laboratory; National Institute of Respiratory Diseases; Mexico DF, Mexico
| | - César López-Camarillo
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
| |
Collapse
|
7
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
8
|
Price JC, Pollock LM, Rudd ML, Fogoros SK, Mohamed H, Hanigan CL, Le Gallo M, Program NIHISC(NISCCS, Zhang S, Cruz P, Cherukuri PF, Hansen NF, McManus KJ, Godwin AK, Sgroi DC, Mullikin JC, Merino MJ, Hieter P, Bell DW. Sequencing of candidate chromosome instability genes in endometrial cancers reveals somatic mutations in ESCO1, CHTF18, and MRE11A. PLoS One 2013; 8:e63313. [PMID: 23755103 PMCID: PMC3670891 DOI: 10.1371/journal.pone.0063313] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/01/2013] [Indexed: 01/10/2023] Open
Abstract
Most endometrial cancers can be classified histologically as endometrioid, serous, or clear cell. Non-endometrioid endometrial cancers (NEECs; serous and clear cell) are the most clinically aggressive of the three major histotypes and are characterized by aneuploidy, a feature of chromosome instability. The genetic alterations that underlie chromosome instability in endometrial cancer are poorly understood. In the present study, we used Sanger sequencing to search for nucleotide variants in the coding exons and splice junctions of 21 candidate chromosome instability genes, including 19 genes implicated in sister chromatid cohesion, from 24 primary, microsatellite-stable NEECs. Somatic mutations were verified by sequencing matched normal DNAs. We subsequently resequenced mutated genes from 41 additional NEECs as well as 42 endometrioid ECs (EECs). We uncovered nonsynonymous somatic mutations in ESCO1, CHTF18, and MRE11A in, respectively, 3.7% (4 of 107), 1.9% (2 of 107), and 1.9% (2 of 107) of endometrial tumors. Overall, 7.7% (5 of 65) of NEECs and 2.4% (1 of 42) of EECs had somatically mutated one or more of the three genes. A subset of mutations are predicted to impact protein function. The co-occurrence of somatic mutations in ESCO1 and CHTF18 was statistically significant (P = 0.0011, two-tailed Fisher's exact test). This is the first report of somatic mutations within ESCO1 and CHTF18 in endometrial tumors and of MRE11A mutations in microsatellite-stable endometrial tumors. Our findings warrant future studies to determine whether these mutations are driver events that contribute to the pathogenesis of endometrial cancer.
Collapse
Affiliation(s)
- Jessica C. Price
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lana M. Pollock
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Meghan L. Rudd
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah K. Fogoros
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hassan Mohamed
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christin L. Hanigan
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Matthieu Le Gallo
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Suiyuan Zhang
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pedro Cruz
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Praveen F. Cherukuri
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy F. Hansen
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kirk J. McManus
- Department of Biochemistry and Medical Genetics, University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, Manitoba, Canada
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Dennis C. Sgroi
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - James C. Mullikin
- Intramural Sequencing Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria J. Merino
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daphne W. Bell
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Shiotani B, Nguyen HD, Håkansson P, Maréchal A, Tse A, Tahara H, Zou L. Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. Cell Rep 2013; 3:1651-62. [PMID: 23684611 DOI: 10.1016/j.celrep.2013.04.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/05/2013] [Accepted: 04/19/2013] [Indexed: 11/15/2022] Open
Abstract
The ATM- and Rad3-related (ATR) kinase is a master regulator of the DNA damage response, yet how ATR is activated toward different substrates is still poorly understood. Here, we show that ATR phosphorylates Chk1 and RPA32 through distinct mechanisms at replication-associated DNA double-stranded breaks (DSBs). In contrast to the rapid phosphorylation of Chk1, RPA32 is progressively phosphorylated by ATR at Ser33 during DSB resection prior to the phosphorylation of Ser4/Ser8 by DNA-PKcs. Surprisingly, despite its reliance on ATR and TopBP1, substantial RPA32 Ser33 phosphorylation occurs in a Rad17-independent but Nbs1-dependent manner in vivo and in vitro. Importantly, the role of Nbs1 in RPA32 phosphorylation can be separated from ATM activation and DSB resection, and it is dependent upon the interaction of Nbs1 with RPA. An Nbs1 mutant that is unable to bind RPA fails to support proper recovery of collapsed replication forks, suggesting that the Nbs1-mediated mode of ATR activation is important for the repair of replication-associated DSBs.
Collapse
Affiliation(s)
- Bunsyo Shiotani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Lee J, Dunphy WG. The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks. Mol Biol Cell 2013; 24:1343-53. [PMID: 23468519 PMCID: PMC3639046 DOI: 10.1091/mbc.e13-01-0025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The activation of Chk1 in response to stalled replication forks involves a pathway containing ATR, TopBP1, Rad17, and Claspin. We show that the Mre11-Rad50-Nbs1 (MRN) complex also has an important role in this pathway that is distinct from its role in response to double-stranded DNA breaks. These studies reveal a novel insight into the functions of the MRN complex. The activation of Chk1 in response to stalled replication forks in Xenopus egg extracts involves a complex pathway containing ATM and Rad3-related (ATR), topoisomerase IIβ-binding protein 1 (TopBP1), Rad17, the Rad9-Hus1-Rad1 (9-1-1) complex, and Claspin. We have observed that egg extracts lacking the Mre11-Rad50-Nbs1 (MRN) complex show greatly, although not completely, reduced activation of Chk1 in response to replication blockages. Depletion of both Rad17 and MRN leads to a further, essentially complete, reduction in the activation of Chk1. Thus, Rad17 and MRN act in at least a partially additive manner in promoting activation of Chk1. There was not an obvious change in the binding of RPA, ATR, Rad17, or the 9-1-1 complex to chromatin in aphidicolin (APH)-treated, MRN-depleted extracts. However, there was a substantial reduction in the binding of TopBP1. In structure–function studies of the MRN complex, we found that the Mre11 subunit is necessary for the APH-induced activation of Chk1. Moreover, a nuclease-deficient mutant of Mre11 cannot substitute for wild-type Mre11 in this process. These results indicate that the MRN complex, in particular the nuclease activity of Mre11, plays an important role in the activation of Chk1 in response to stalled replication forks. These studies reveal a previously unknown property of the MRN complex in genomic stability.
Collapse
Affiliation(s)
- Joon Lee
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
11
|
Kobayashi M, Hayashi N, Takata M, Yamamoto KI. NBS1 directly activates ATR independently of MRE11 and TOPBP1. Genes Cells 2013; 18:238-46. [PMID: 23368512 DOI: 10.1111/gtc.12031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/07/2012] [Indexed: 11/29/2022]
Abstract
NBS1 plays unique and essential roles in ATM activation in response to DNA double-strand breaks. We found that CHK1 phosphorylation and FANCD2 ubiquitination induced by various DNA replication-stalling agents were abrogated in Nbs1 knockout DT40 cells but not in conditional Mre11 knockout cells, indicating an MRE11-independent role for NBS1 in ATR activation. The results of in vitro ATR kinase assay indicated that the N-terminal region of NBS1 directly activates ATR independently of TOPBP1, consistent with the findings that this region of NBS1 directly interacts with ATR. This conclusion was furthermore supported by the results of in vivo experiments; the expression of the N-terminal region of NBS1 fused to PCNA induces ATR activation in Rad17 knockout cells, and the expression of the ATR activation domain of TOPBP1 fused to PCNA induces ATR activation in Nbs1 knockout cells. These results therefore indicate that NBS1 and TOPBP1 have the potential to activate ATR independently, although both are required for functional activation of ATR in vivo.
Collapse
Affiliation(s)
- Masahiko Kobayashi
- Department of Molecular Pathology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan.
| | | | | | | |
Collapse
|
12
|
Masutani C. Human DNA Polymerase η and Its Regulatory Mechanisms. Genes Environ 2012. [DOI: 10.3123/jemsge.34.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Brooks JD, Teraoka SN, Reiner AS, Satagopan JM, Bernstein L, Thomas DC, Capanu M, Stovall M, Smith SA, Wei S, Shore RE, Boice JD, Lynch CF, Mellemkjaer L, Malone KE, Liang X, Haile RW, Concannon P, Bernstein JL. Variants in activators and downstream targets of ATM, radiation exposure, and contralateral breast cancer risk in the WECARE study. Hum Mutat 2012; 33:158-64. [PMID: 21898661 PMCID: PMC3240722 DOI: 10.1002/humu.21604] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 08/25/2011] [Indexed: 11/07/2022]
Abstract
Ionizing radiation (IR) is a breast carcinogen that induces DNA double-strand breaks (DSBs), and variation in genes involved in the DNA DSB response has been implicated in radiation-induced breast cancer. The Women's Environmental, Cancer, and Radiation Epidemiology (WECARE) study is a population-based study of cases with contralateral breast cancer (CBC) and matched controls with unilateral breast cancer. The location-specific radiation dose received by the contralateral breast was estimated from radiotherapy records and mathematical models. One hundred fifty-two SNPs in six genes (CHEK2, MRE11A, MDC1, NBN, RAD50, TP53BP1) involved in the DNA DSBs response were genotyped. No variants or haplotypes were associated with CBC risk (649 cases and 1,284 controls) and no variants were found to interact with radiation dose. Carriers of a RAD50 haplotype exposed to ≥1 gray (Gy) had an increased risk of CBC compared with unexposed carriers (Rate ratios [RR] = 4.31 [95% confidence intervals [CI] 1.93-9.62]); with an excess relative risk (ERR) per Gy = 2.13 [95% CI 0.61-5.33]). Although the results of this study were largely null, carriers of a haplotype in RAD50 treated with radiation had a greater CBC risk than unexposed carriers. This suggests that carriers of this haplotype may be susceptible to the DNA-damaging effects of radiation therapy associated with radiation-induced breast cancer.
Collapse
Affiliation(s)
- Jennifer D Brooks
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
NBS1 Recruits RAD18 via a RAD6-like Domain and Regulates Pol η-Dependent Translesion DNA Synthesis. Mol Cell 2011; 43:788-97. [DOI: 10.1016/j.molcel.2011.07.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 06/10/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022]
|
15
|
Bhatti S, Kozlov S, Farooqi AA, Naqi A, Lavin M, Khanna KK. ATM protein kinase: the linchpin of cellular defenses to stress. Cell Mol Life Sci 2011; 68:2977-3006. [PMID: 21533982 PMCID: PMC11115042 DOI: 10.1007/s00018-011-0683-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 01/23/2023]
Abstract
ATM is the most significant molecule involved in monitoring the genomic integrity of the cell. Any damage done to DNA relentlessly challenges the cellular machinery involved in recognition, processing and repair of these insults. ATM kinase is activated early to detect and signal lesions in DNA, arrest the cell cycle, establish DNA repair signaling and faithfully restore the damaged chromatin. ATM activation plays an important role as a barrier to tumorigenesis, metabolic syndrome and neurodegeneration. Therefore, studies of ATM-dependent DNA damage signaling pathways hold promise for treatment of a variety of debilitating diseases through the development of new therapeutics capable of modulating cellular responses to stress. In this review, we have tried to untangle the complex web of ATM signaling pathways with the purpose of pinpointing multiple roles of ATM underlying the complex phenotypes observed in AT patients.
Collapse
Affiliation(s)
- Shahzad Bhatti
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Sergei Kozlov
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| | - Ammad Ahmad Farooqi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Ali Naqi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Martin Lavin
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| | - Kum Kum Khanna
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| |
Collapse
|
16
|
Horton JK, Stefanick DF, Zeng JY, Carrozza MJ, Wilson SH. Requirement for NBS1 in the S phase checkpoint response to DNA methylation combined with PARP inhibition. DNA Repair (Amst) 2011; 10:225-34. [PMID: 21130714 PMCID: PMC3050562 DOI: 10.1016/j.dnarep.2010.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/03/2010] [Accepted: 11/08/2010] [Indexed: 11/19/2022]
Abstract
Treatment of PARP-1-expressing cells with the combination of a DNA methylating agent (MMS) and the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN) leads to an ATR/Chk1-dependent S phase checkpoint and cell death by apoptosis. Activation of ATM/Chk2 is involved in sustaining the S phase checkpoint, and double strand break (DSB) accumulation was demonstrated. NBS1, part of the MRN complex that responds to DSBs, is known to modulate ATR- and ATM-dependent checkpoint responses to UV and IR, but a role in the response to PARP inhibition has not been addressed. Here we show that the S phase checkpoint observed 4-8h after MMS+4-AN treatment was absent in cells deficient in NBS1, but was present in NBS1-complemented (i.e., functionally wild-type) cells, indicating a critical role for NBS1 in this checkpoint response. NBS1 was phosphorylated in response to MMS+4-AN treatment, and this was partially ATR- and ATM-dependent, suggesting involvement of both upstream kinases. NBS1 expression had little effect on ATR-mediated phosphorylation of Chk1 and ATM-mediated phosphorylation of Chk2 in response to MMS+4-AN. Phosphorylation of SMC1 was also observed in response to MMS+4-AN treatment. In the absence of ATM and NBS1, phosphorylation of SMC1 was weak, especially at early times after MMS+4-AN treatment. In the absence of ATR activation, reduced SMC1 phosphorylation was seen over a 24h time course. These results suggested that both ATR and ATM phosphorylate SMC1 in response to MMS+4-AN and that this phosphorylation is enhanced by phospho-NBS1. The loss of the MMS+4-AN-induced S phase checkpoint in NBS1-deficient cells may be due to a reduced cellular level of the critical downstream effector, phospho-SMC1.
Collapse
Affiliation(s)
- Julie K. Horton
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Donna F. Stefanick
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jennifer Y. Zeng
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael J. Carrozza
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samuel H. Wilson
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
17
|
Xu Y, Sun Y, Jiang X, Ayrapetov MK, Moskwa P, Yang S, Weinstock DM, Price BD. The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. ACTA ACUST UNITED AC 2010; 191:31-43. [PMID: 20876283 PMCID: PMC2953432 DOI: 10.1083/jcb.201001160] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
p400 unwinds chromatin from nucleosomes flanking double-strand breaks to facilitate recruitment of the DNA repair components brca1 and 53BP1. The complexity of chromatin architecture presents a significant barrier to the ability of the DNA repair machinery to access and repair DNA double-strand breaks (DSBs). Consequently, remodeling of the chromatin landscape adjacent to DSBs is vital for efficient DNA repair. Here, we demonstrate that DNA damage destabilizes nucleosomes within chromatin regions that correspond to the γ-H2AX domains surrounding DSBs. This nucleosome destabilization is an active process requiring the ATPase activity of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. p400 is recruited to DSBs by a mechanism that is independent of ATM but requires mdc1. Further, the destabilization of nucleosomes by p400 is required for the RNF8-dependent ubiquitination of chromatin, and for the subsequent recruitment of brca1 and 53BP1 to DSBs. These results identify p400 as a novel DNA damage response protein and demonstrate that p400-mediated alterations in nucleosome and chromatin structure promote both chromatin ubiquitination and the accumulation of brca1 and 53BP1 at sites of DNA damage.
Collapse
Affiliation(s)
- Ye Xu
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lamarche BJ, Orazio NI, Weitzman MD. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 2010; 584:3682-95. [PMID: 20655309 PMCID: PMC2946096 DOI: 10.1016/j.febslet.2010.07.029] [Citation(s) in RCA: 319] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 10/25/2022]
Abstract
Genomes are subject to constant threat by damaging agents that generate DNA double-strand breaks (DSBs). The ends of linear chromosomes need to be protected from DNA damage recognition and end-joining, and this is achieved through protein-DNA complexes known as telomeres. The Mre11-Rad50-Nbs1 (MRN) complex plays important roles in detection and signaling of DSBs, as well as the repair pathways of homologous recombination (HR) and non-homologous end-joining (NHEJ). In addition, MRN associates with telomeres and contributes to their maintenance. Here, we provide an overview of MRN functions at DSBs, and examine its roles in telomere maintenance and dysfunction.
Collapse
Affiliation(s)
- Brandon J Lamarche
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nicole I Orazio
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Graduate Program, Division of Biology, University of California, San Diego, CA 92093, USA
| | - Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Alhopuro P, Björklund M, Sammalkorpi H, Turunen M, Tuupanen S, Biström M, Niittymäki I, Lehtonen HJ, Kivioja T, Launonen V, Saharinen J, Nousiainen K, Hautaniemi S, Nuorva K, Mecklin JP, Järvinen H, Orntoft T, Arango D, Lehtonen R, Karhu A, Taipale J, Aaltonen LA. Mutations in the circadian gene CLOCK in colorectal cancer. Mol Cancer Res 2010; 8:952-60. [PMID: 20551151 DOI: 10.1158/1541-7786.mcr-10-0086] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The circadian clock regulates daily variations in physiologic processes. CLOCK acts as a regulator in the circadian apparatus controlling the expression of other clock genes, including PER1. Clock genes have been implicated in cancer-related functions; in this work, we investigated CLOCK as a possible target of somatic mutations in microsatellite unstable colorectal cancers. Combining microarray gene expression data and public gene sequence information, we identified CLOCK as 1 of 790 putative novel microsatellite instability (MSI) target genes. A total of 101 MSI colorectal carcinomas (CRC) were sequenced for a coding microsatellite in CLOCK. The effect of restoring CLOCK expression was studied in LS180 cells lacking wild-type CLOCK by stably expressing GST-CLOCK or glutathione S-transferase empty vector and testing the effects of UV-induced apoptosis and radiation by DNA content analysis using flow cytometry. Putative novel CLOCK target genes were searched by using ChIP-seq. CLOCK mutations occurred in 53% of MSI CRCs. Restoring CLOCK expression in cells with biallelic CLOCK inactivation resulted in protection against UV-induced apoptosis and decreased G(2)-M arrest in response to ionizing radiation. Using ChIP-Seq, novel CLOCK-binding elements were identified near DNA damage genes p21, NBR1, BRCA1, and RAD50. CLOCK is shown to be mutated in cancer, and altered response to DNA damage provides one plausible mechanism of tumorigenesis.
Collapse
Affiliation(s)
- Pia Alhopuro
- Genome-Scale Biology Research Program and Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Feeney KM, Wasson CW, Parish JL. Cohesin: a regulator of genome integrity and gene expression. Biochem J 2010; 428:147-61. [PMID: 20462401 DOI: 10.1042/bj20100151] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following DNA replication, chromatid pairs are held together by a proteinacious complex called cohesin until separation during the metaphase-to-anaphase transition. Accurate segregation is achieved by regulation of both sister chromatid cohesion establishment and removal, mediated by post-translational modification of cohesin and interaction with numerous accessory proteins. Recent evidence has led to the conclusion that cohesin is also vitally important in the repair of DNA lesions and control of gene expression. It is now clear that chromosome segregation is not the only important function of cohesin in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Katherine M Feeney
- Bute Medical School, University of St Andrews, St Andrews, Fife KY16 9TS, Scotland, U.K
| | | | | |
Collapse
|
21
|
Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat Cell Biol 2009; 11:1376-82. [PMID: 19783983 PMCID: PMC2783526 DOI: 10.1038/ncb1982] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/14/2009] [Indexed: 12/14/2022]
|
22
|
Abuzeid WM, Jiang X, Shi G, Wang H, Paulson D, Araki K, Jungreis D, Carney J, O’Malley BW, Li D. Molecular disruption of RAD50 sensitizes human tumor cells to cisplatin-based chemotherapy. J Clin Invest 2009; 119:1974-85. [PMID: 19487811 PMCID: PMC2701852 DOI: 10.1172/jci33816] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 03/19/2009] [Indexed: 11/17/2022] Open
Abstract
Platinum-based drugs that induce DNA damage are commonly used first-line chemotherapy agents for testicular, bladder, head and neck, lung, esophageal, stomach, and ovarian cancers. The inherent resistance of tumors to DNA damage often limits the therapeutic efficacy of these agents, such as cisplatin. An enhanced DNA repair and telomere maintenance response by the Mre11/Rad50/Nbs1 (MRN) complex is critical in driving this chemoresistance. We hypothesized therefore that the targeted impairment of native cellular MRN function could sensitize tumor cells to cisplatin. To test this, we designed what we believe to be a novel dominant-negative adenoviral vector containing a mutant RAD50 gene that significantly downregulated MRN expression and markedly disrupted MRN function in human squamous cell carcinoma cells. A combination of cisplatin and mutant RAD50 therapy produced significant tumor cytotoxicity in vitro, with a corresponding increase in DNA damage and telomere shortening. In cisplatin-resistant human squamous cell cancer xenografts in nude mice, this combination therapy caused dramatic tumor regression with increased apoptosis. Our findings suggest the use of targeted RAD50 disruption as what we believe to be a novel chemosensitizing approach for cancer therapy in the context of chemoresistance. This strategy is potentially applicable to several types of malignant tumors that demonstrate chemoresistance and may positively impact the treatment of these patients.
Collapse
Affiliation(s)
- Waleed M. Abuzeid
- Department of Otorhinolaryngology — Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Otolaryngology — Head and Neck Surgery, and
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaoling Jiang
- Department of Otorhinolaryngology — Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Otolaryngology — Head and Neck Surgery, and
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Guoli Shi
- Department of Otorhinolaryngology — Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Otolaryngology — Head and Neck Surgery, and
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hui Wang
- Department of Otorhinolaryngology — Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Otolaryngology — Head and Neck Surgery, and
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David Paulson
- Department of Otorhinolaryngology — Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Otolaryngology — Head and Neck Surgery, and
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Koji Araki
- Department of Otorhinolaryngology — Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Otolaryngology — Head and Neck Surgery, and
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David Jungreis
- Department of Otorhinolaryngology — Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Otolaryngology — Head and Neck Surgery, and
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James Carney
- Department of Otorhinolaryngology — Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Otolaryngology — Head and Neck Surgery, and
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bert W. O’Malley
- Department of Otorhinolaryngology — Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Otolaryngology — Head and Neck Surgery, and
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daqing Li
- Department of Otorhinolaryngology — Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Otolaryngology — Head and Neck Surgery, and
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Waltes R, Kalb R, Gatei M, Kijas AW, Stumm M, Sobeck A, Wieland B, Varon R, Lerenthal Y, Lavin MF, Schindler D, Dörk T. Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am J Hum Genet 2009; 84:605-16. [PMID: 19409520 PMCID: PMC2681000 DOI: 10.1016/j.ajhg.2009.04.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 03/13/2009] [Accepted: 04/09/2009] [Indexed: 01/24/2023] Open
Abstract
The MRE11/RAD50/NBN (MRN) complex plays a key role in recognizing and signaling DNA double-strand breaks (DSBs). Hypomorphic mutations in NBN (previously known as NBS1) and MRE11A give rise to the autosomal-recessive diseases Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD), respectively. To date, no disease due to RAD50 deficiency has been described. Here, we report on a patient previously diagnosed as probably having NBS, with microcephaly, mental retardation, 'bird-like' face, and short stature. At variance with this diagnosis, she never had severe infections, had normal immunoglobulin levels, and did not develop lymphoid malignancy up to age 23 years. We found that she is compound heterozygous for mutations in the RAD50 gene that give rise to low levels of unstable RAD50 protein. Cells from the patient were characterized by chromosomal instability; radiosensitivity; failure to form DNA damage-induced MRN foci; and impaired radiation-induced activation of and downstream signaling through the ATM protein, which is defective in the human genetic disorder ataxia-telangiectasia. These cells were also impaired in G1/S cell-cycle-checkpoint activation and displayed radioresistant DNA synthesis and G2-phase accumulation. The defective cellular phenotype was rescued by wild-type RAD50. In conclusion, we have identified and characterized a patient with a RAD50 deficiency that results in a clinical phenotype that can be classified as an NBS-like disorder (NBSLD).
Collapse
Affiliation(s)
- Regina Waltes
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, D-30625 Hannover, Germany
- Institute of Radiation Oncology, Hannover Medical School, D-30625 Hannover, Germany
| | - Reinhard Kalb
- Department of Human Genetics, Biozentrum, University of Würzburg, D-97074 Würzburg, Germany
| | - Magtouf Gatei
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland 4029, Australia
| | - Amanda W. Kijas
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland 4029, Australia
| | - Markus Stumm
- Institute of Human Genetics, Otto von Guericke University, D-39120 Magdeburg, Germany
| | - Alexandra Sobeck
- Department of Human Genetics, Biozentrum, University of Würzburg, D-97074 Würzburg, Germany
| | - Britta Wieland
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, D-30625 Hannover, Germany
- Institute of Radiation Oncology, Hannover Medical School, D-30625 Hannover, Germany
| | - Raymonda Varon
- Institute of Human Genetics, Alexander von Humboldt University, D-13353 Berlin, Germany
| | - Yaniv Lerenthal
- Department of Human Genetics and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Martin F. Lavin
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland 4029, Australia
- University of Queensland, Centre for Clinical Research, Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | - Detlev Schindler
- Department of Human Genetics, Biozentrum, University of Würzburg, D-97074 Würzburg, Germany
| | - Thilo Dörk
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
24
|
Singh S, Bala M, Kumar R, Kumar A, Dhiman SC. Modification in the expression of Mre11/Rad50/Nbs1 complex in low dose irradiated human lymphocytes. Dose Response 2009; 7:193-207. [PMID: 19809539 DOI: 10.2203/dose-response.09-001.singh] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Despite the fact that high doses of radiation are detrimental, low dose radiation (LDR) often protects the organism against a subsequent exposure of lethal doses of radiation. Present study was undertaken to understand the role of Mre11, Rad50 and Nbs1 genes in the low dose radio-adapted human peripheral blood mononuclear cells (PBMCs). Optimum time interval between low dose (0.07 Gy) and high dose (5.0 Gy) of (60)Co-gamma-radiation was observed to be 5.0 hours, at which PBMCs showed maximum LDR induced resistance (RIR). At cytogenetic level, micronuclei frequency was found to be reduced in LDR pre-irradiated PBMCs subsequently exposed to high dose radiation (HDR) as compared to controls. At transcriptional level, with reference to sham-irradiated cells significantly (p< or =0.05) altered expression of Mre11, Rad50 and Nbs1 genes was observed in low dose irradiated cells. At protein level, Mre11, Rad50 and Nbs1 were enhanced significantly (p< or =0.05) in low dose pre-irradiated cells subsequently exposed to high dose of radiation as compared to only high dose irradiated cells. Transcriptional as well as translational modulation in the expression of MRN complex components upon low dose irradiation may confer its participation in repair pathways, resulting in induced resistance.
Collapse
Affiliation(s)
- Sompal Singh
- Department of Zoology, M. S. (PG) College, Saharanpur, India.
| | | | | | | | | |
Collapse
|
25
|
Carson CT, Orazio NI, Lee DV, Suh J, Bekker-Jensen S, Araujo FD, Lakdawala SS, Lilley CE, Bartek J, Lukas J, Weitzman MD. Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection. EMBO J 2009; 28:652-62. [PMID: 19197236 PMCID: PMC2666027 DOI: 10.1038/emboj.2009.15] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 12/23/2008] [Indexed: 01/13/2023] Open
Abstract
The protein kinases ataxia-telangiectasia mutated (ATM) and ATM-Rad3 related (ATR) are activated in response to DNA damage, genotoxic stress and virus infections. Here we show that during infection with wild-type adenovirus, ATR and its cofactors RPA32, ATRIP and TopBP1 accumulate at viral replication centres, but there is minimal ATR activation. We show that the Mre11/Rad50/Nbs1 (MRN) complex is recruited to viral centres only during infection with adenoviruses lacking the early region E4 and ATR signaling is activated. This suggests a novel requirement for the MRN complex in ATR activation during virus infection, which is independent of Mre11 nuclease activity and recruitment of RPA/ATR/ATRIP/TopBP1. Unlike other damage scenarios, we found that ATM and ATR signaling are not dependent on each other during infection. We identify a region of the viral E4orf3 protein responsible for immobilization of the MRN complex and show that this prevents ATR signaling during adenovirus infection. We propose that immobilization of the MRN damage sensor by E4orf3 protein prevents recognition of viral genomes and blocks detrimental aspects of checkpoint signaling during virus infection.
Collapse
Affiliation(s)
- Christian T Carson
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Graduate Program, Division of Biology, University of California, San Diego, CA, USA
| | - Nicole I Orazio
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Graduate Program, Division of Biology, University of California, San Diego, CA, USA
| | - Darwin V Lee
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Junghae Suh
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Simon Bekker-Jensen
- Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | - Felipe D Araujo
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Seema S Lakdawala
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Graduate Program, Division of Biology, University of California, San Diego, CA, USA
| | - Caroline E Lilley
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jiri Bartek
- Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | - Jiri Lukas
- Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | - Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
26
|
Sagan D, Müller R, Kröger C, Hematulin A, Mörtl S, Eckardt-Schupp F. The DNA repair protein NBS1 influences the base excision repair pathway. Carcinogenesis 2009; 30:408-15. [PMID: 19126654 DOI: 10.1093/carcin/bgp004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
NBS1 fulfills important functions for the maintenance of genomic stability and cellular survival. Mutations in the NBS1 (Nijmegen Breakage Syndrome 1) gene are responsible for the Nijmegen breakage syndrome (NBS) in humans. The symptoms of this disease and the phenotypes of NBS1-defective cells, especially their enhanced radiosensitivity, can be explained by an impaired DNA double-strand break-induced signaling and a disturbed repair of these DNA lesions. We now provide evidence that NBS1 is also important for cellular survival after oxidative or alkylating stress where it is required for the proper initiation of base excision repair (BER). NBS1 downregulated cells show reduced activation of poly-(adenosine diphosphate-ribose)-polymerase-1 (PARP1) following genotoxic treatment with H(2)O(2) or methyl methanesulfonate, indicating impaired processing of damaged bases by BER as PARP1 activity is stimulated by the single-strand breaks intermediately generated during this repair pathway. Furthermore, extracts of these cells have a decreased capacity for the in vitro repair of a double-stranded oligonucleotide containing either uracil or 8-oxo-7,8-dihydroguanine to trigger BER. Our data presented here highlight for the first time a functional role for NBS1 in DNA maintenance by the BER pathway.
Collapse
Affiliation(s)
- Daniel Sagan
- Institute of Radiation Biology, Helmholtz Centre Munich-German Research Centre for Environmental Health, Neuherberg, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Stiff T, Cerosaletti K, Concannon P, O'Driscoll M, Jeggo PA. Replication independent ATR signalling leads to G2/M arrest requiring Nbs1, 53BP1 and MDC1. Hum Mol Genet 2008; 17:3247-53. [PMID: 18664457 PMCID: PMC3708519 DOI: 10.1093/hmg/ddn220] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 07/11/2008] [Accepted: 07/22/2008] [Indexed: 12/12/2022] Open
Abstract
Ataxia telangiectasia and Rad3-related (ATR) is a phosphoinositol-3-kinase like kinase (PIKK) that initiates a signal transduction response to replication fork stalling. Defects in ATR signalling have been reported in several disorders characterized by microcephaly and growth delay. Here, we gain insight into factors influencing the ATR signalling pathway and consider how they can be exploited for diagnostic purposes. Activation of ATR at stalled replication forks leads to intra-S and G2/M phase checkpoint arrest. ATR also phosphorylates gamma-H2AX at single-stranded (ss) DNA regions generated during nucleotide excision repair (NER) in non-replicating cells, but the critical analysis of any functional consequence has not been reported. Here, we show that UV irradiation of G2 phase cells causes ATR-dependent but replication-independent G2/M checkpoint arrest. This process requires the Nbs1 N-terminus encompassing the FHA and BRCT domains but not the Nbs1 C-terminus in contrast to ATM-dependent activation of G2/M arrest in response to ionizing radiation. Thus, Nbs1 has a function in ATR signalling in a manner distinct to any role at stalled replication forks. Replication-independent ATR signalling also requires the mediator proteins, 53BP1 and MDC1, providing direct evidence for their role in ATR signalling, but not H2AX. Finally, the process is activated in Cockayne's syndrome but not Xeroderma pigmentosum group A cells providing evidence that ssDNA regions generated during NER are the ATR-pathway-specific activating lesion. Replication-independent G2/M checkpoint arrest represents a suitable assay to specifically identify patients with defective ATR signalling, including Seckel syndrome, Nijmegen breakage syndrome and MCPH-1-dependent primary microcephaly.
Collapse
Affiliation(s)
- Tom Stiff
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, UK
| | - Karen Cerosaletti
- Molecular Genetics, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Patrick Concannon
- Department of Biochemistry & Molecular Genetics and Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, UK
| | - Penny A. Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, UK
| |
Collapse
|
28
|
Buis J, Wu Y, Deng Y, Leddon J, Westfield G, Eckersdorff M, Sekiguchi JM, Chang S, Ferguson DO. Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell 2008; 135:85-96. [PMID: 18854157 PMCID: PMC2645868 DOI: 10.1016/j.cell.2008.08.015] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 06/17/2008] [Accepted: 08/06/2008] [Indexed: 11/22/2022]
Abstract
The Mre11/Rad50/NBS1 (MRN) complex maintains genomic stability by bridging DNA ends and initiating DNA damage signaling through activation of the ATM kinase. Mre11 possesses DNA nuclease activities that are highly conserved in evolution but play unknown roles in mammals. To define the functions of Mre11, we engineered targeted mouse alleles that either abrogate nuclease activities or inactivate the entire MRN complex. Mre11 nuclease deficiency causes a striking array of phenotypes indistinguishable from the absence of MRN, including early embryonic lethality and dramatic genomic instability. We identify a crucial role for the nuclease activities in homology-directed double-strand-break repair and a contributing role in activating the ATR kinase. However, the nuclease activities are not required to activate ATM after DNA damage or telomere deprotection. Therefore, nucleolytic processing by Mre11 is an essential function of fundamental importance in DNA repair, distinct from MRN control of ATM signaling.
Collapse
Affiliation(s)
- Jeffrey Buis
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yipin Wu
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yibin Deng
- Departments of Cancer Genetics and Hematopathology, The M.D. Anderson Cancer Center, Houston, TX 77030 USA
| | - Jennifer Leddon
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gerwin Westfield
- Departments of Internal Medicine and Human Genetics, The University of Michigan, Ann Arbor, MI 48109
| | - Mark Eckersdorff
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - JoAnn M. Sekiguchi
- Departments of Internal Medicine and Human Genetics, The University of Michigan, Ann Arbor, MI 48109
| | - Sandy Chang
- Departments of Cancer Genetics and Hematopathology, The M.D. Anderson Cancer Center, Houston, TX 77030 USA
| | - David O. Ferguson
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Distinct requirements of adenovirus E1b55K protein for degradation of cellular substrates. J Virol 2008; 82:9043-55. [PMID: 18614635 DOI: 10.1128/jvi.00925-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1b55K and E4orf6 proteins of adenovirus type 5 (Ad5) assemble into a complex together with cellular proteins including cullin 5, elongins B and C, and Rbx1. This complex possesses E3 ubiquitin ligase activity and targets cellular proteins for proteasome-mediated degradation. The ligase activity has been suggested to be responsible for all functions of E1b55K/E4orf6, including promoting efficient viral DNA replication, preventing a cellular DNA damage response, and stimulating late viral mRNA nuclear export and late protein synthesis. The known cellular substrates for degradation by E1b55K/E4orf6 are the Mre11/Rad50/Nbs1 DNA repair complex, the tumor suppressor p53, and DNA ligase IV. Here we show that the degradation of individual targets can occur independently of other substrates. Furthermore, we identify separation-of-function mutant forms of E1b55K that can distinguish substrates for binding and degradation. Our results identify distinct regions of E1b55K that are involved in substrate recognition but also imply that there are additional requirements beyond protein association. These mutant proteins will facilitate the determination of the relevance of specific substrates to the functions of E1b55K in promoting infection and inactivating host defenses.
Collapse
|
30
|
Schroering AG, Williams KJ. Rapid induction of chromatin-associated DNA mismatch repair proteins after MNNG treatment. DNA Repair (Amst) 2008; 7:951-69. [PMID: 18468964 PMCID: PMC2483959 DOI: 10.1016/j.dnarep.2008.03.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/07/2008] [Accepted: 03/23/2008] [Indexed: 12/18/2022]
Abstract
Treatment with low concentrations of monofunctional alkylating agents induces a G2 arrest only after the second round of DNA synthesis in mammalian cells and requires a proficient mismatch repair (MMR) pathway. Here, we have investigated rapid alkylation-induced recruitment of DNA repair proteins to chromosomal DNA within synchronized populations of MMR proficient cells (HeLa MR) after N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. Within the first hour, the concentrations of MutS alpha and PCNA increase well beyond their constitutive chromosomally bound levels and MutL alpha is newly recruited to the chromatin-bound MutS alpha. Remarkably, immunoprecipitation experiments demonstrate rapid association of these proteins on the alkylation-damaged chromatin, even when DNA replication is completely blocked. The extent of association of PCNA and MMR proteins on the chromatin is dependent upon the concentration of MNNG and on the specific type of replication block. A subpopulation of the MutS alpha-associated PCNA also becomes monoubiquitinated, a known requirement for PCNA to interact with translesion synthesis (TLS) polymerases. In addition, chromatin-bound SMC1 and NBS1 proteins, associated with DNA double-strand-breaks (DSBs), become phosphorylated within 1-2h of exposure to MNNG. However, these activated proteins are not co-localized on the chromatin with MutS alpha in response to MNNG exposure. PCNA, MutS alpha/MutL alpha and activated SMC1/NBS1 remain chromatin-bound for at least 6-8h after alkylation damage. Thus, cells that are exposed to low levels of alkylation treatment undergo rapid recruitment to and/or activation of key proteins already on the chromatin without the requirement for DNA replication, apparently via different DNA-damage signaling pathways.
Collapse
Affiliation(s)
- Allen G. Schroering
- University of Toledo College of Medicine, Health Science Campus, Department of Biochemistry & Cancer Biology, Toledo, OH 43614
| | - Kandace J. Williams
- University of Toledo College of Medicine, Health Science Campus, Department of Biochemistry & Cancer Biology, Toledo, OH 43614
| |
Collapse
|
31
|
Biton S, Barzilai A, Shiloh Y. The neurological phenotype of ataxia-telangiectasia: solving a persistent puzzle. DNA Repair (Amst) 2008; 7:1028-38. [PMID: 18456574 DOI: 10.1016/j.dnarep.2008.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human genomic instability syndromes affect the nervous system to different degrees of severity, attesting to the vulnerability of the CNS to perturbations of genomic integrity and the DNA damage response (DDR). Ataxia-telangiectasia (A-T) is a typical genomic instability syndrome whose major characteristic is progressive neuronal degeneration but is also associated with immunodeficiency, cancer predisposition and acute sensitivity to ionizing radiation and radiomimetic chemicals. A-T is caused by loss or inactivation of the ATM protein kinase, which mobilizes the complex, multi-branched cellular response to double strand breaks in the DNA by phosphorylating numerous DDR players. The link between ATM's function in the DDR and the neuronal demise in A-T has been questioned in the past. However, recent studies of the ATM-mediated DDR in neurons suggest that the neurological phenotype in A-T is indeed caused by deficiency in this function, similar to other features of the disease. Still, major issues concerning this phenotype remain open, including the presumed differences between the DDR in post-mitotic neurons and proliferating cells, the nature of the damage that accumulates in the DNA of ATM-deficient neurons under normal life conditions, the mode of death of ATM-deficient neurons, and the lack of a major neuronal phenotype in the mouse model of A-T. A-T remains a prototype disease for the study of the DDR's role in CNS development and maintenance.
Collapse
Affiliation(s)
- Sharon Biton
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
32
|
Hong Z, Jiang J, Lan L, Nakajima S, Kanno SI, Koseki H, Yasui A. A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell. Nucleic Acids Res 2008; 36:2939-47. [PMID: 18385154 PMCID: PMC2396414 DOI: 10.1093/nar/gkn146] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DNA double-strand breaks (DSBs) represent the most toxic DNA damage arisen from endogenous and exogenous genotoxic stresses and are known to be repaired by either homologous recombination or nonhomologous end-joining processes. Although many proteins have been identified to participate in either of the processes, the whole processes still remain elusive. Polycomb group (PcG) proteins are epigenetic chromatin modifiers involved in gene silencing, cancer development and the maintenance of embryonic and adult stem cells. By screening proteins responding to DNA damage using laser micro-irradiation, we found that PHF1, a human homolog of Drosophila polycomb-like, Pcl, protein, was recruited to DSBs immediately after irradiation and dissociated within 10 min. The accumulation at DSBs is Ku70/Ku80-dependent, and knockdown of PHF1 leads to X-ray sensitivity and increases the frequency of homologous recombination in HeLa cell. We found that PHF1 interacts physically with Ku70/Ku80, suggesting that PHF1 promotes nonhomologous end-joining processes. Furthermore, we found that PHF1 interacts with a number of proteins involved in DNA damage responses, RAD50, SMC1, DHX9 and p53, further suggesting that PHF1, besides the function in PcG, is involved in genome maintenance processes.
Collapse
Affiliation(s)
- Zehui Hong
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Aobaku, Sendai 980-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Gregory DA, Bachenheimer SL. Characterization of mre11 loss following HSV-1 infection. Virology 2008; 373:124-36. [PMID: 18177684 PMCID: PMC2295170 DOI: 10.1016/j.virol.2007.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/10/2007] [Accepted: 12/03/2007] [Indexed: 12/15/2022]
Abstract
Herpes simplex virus induces the activation of the cellular DNA double strand break response pathway dependent upon initiation of viral DNA replication. The MRN complex, consisting of Mre11, Rad50 and Nbs1, is an essential component of the DNA double strand break response and other reports have documented its presence at sites of viral DNA replication, interaction with ICP8 and its contribution to efficient viral DNA replication. During our characterization of the DSB response following infection of normal human fibroblasts and telomerase-immortalized keratinocytes, we observed the loss of Mre11 protein at late times following infection. The loss was not dependent upon ICP0, the proteasome or lysosomal protease activity. Like activation of the DSB response pathway, Mre11 loss was prevented under conditions which inhibited viral DNA replication. Analysis of a series of mutant viruses with defects in cleavage and packaging (UL6, UL15, UL17, UL25, UL28, UL32) of viral DNA or in the maturational protease (UL26) failed to identify a viral gene product necessary for Mre11 loss. Inactivation of ATM, a key effector kinase in the DNA double strand break response, had no effect on Mre11 loss and only a moderate effect on HSV yield. Finally, treatment of uninfected cells with the topoisomerase I inhibitor camptothecin, to induce generation of free DNA ends, also resulted in Mre11 loss. These results suggest that Mre11 loss following infection is caused by the generation of free DNA ends during or following viral DNA replication.
Collapse
Affiliation(s)
- Devon A. Gregory
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7290
| | - Steven L. Bachenheimer
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7290
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290
| |
Collapse
|
34
|
Sivasubramaniam S, Sun X, Pan YR, Wang S, Lee EYHP. Cep164 is a mediator protein required for the maintenance of genomic stability through modulation of MDC1, RPA, and CHK1. Genes Dev 2008; 22:587-600. [PMID: 18283122 DOI: 10.1101/gad.1627708] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The activation of the ataxia telangiectasia mutated (ATM) and ATM/Rad3-related (ATR) kinases triggers a diverse cellular response including the initiation of DNA damage-induced cell cycle checkpoints. Mediator of DNA Damage Checkpoint protein, MDC1, and H2AX are chromatin remodeling factors required for the recruitment of DNA repair proteins to the DNA damage sites. We identified a novel mediator protein, Cep164 (KIAA1052), that interacts with both ATR and ATM. Cep164 is phosphorylated upon replication stress, ultraviolet radiation (UV), and ionizing radiation (IR). Ser186 of Cep164 is phosphorylated by ATR/ATM in vitro and in vivo. The phosphorylation of Ser186 is not affected by RPA knockdown but is severely hampered by MDC1 knockdown. siRNA-mediated silencing of Cep164 significantly reduces DNA damage-induced phosphorylation of RPA, H2AX, MDC1, CHK2, and CHK1, but not NBS1. Analyses of Cep164 knockdown cells demonstrate a critical role of Cep164 in G2/M checkpoint and nuclear divisions. These findings reveal that Cep164 is a key player in the DNA damage-activated signaling cascade.
Collapse
Affiliation(s)
- Sudhakar Sivasubramaniam
- Department of Biological Chemistry and Department of Developmental and Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
35
|
Gatz SA, Keimling M, Baumann C, Dörk T, Debatin KM, Fulda S, Wiesmüller L. Resveratrol modulates DNA double-strand break repair pathways in an ATM/ATR-p53- and -Nbs1-dependent manner. Carcinogenesis 2008; 29:519-27. [PMID: 18174244 DOI: 10.1093/carcin/bgm283] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Resveratrol (RV) inhibits tumour initiation, promotion and progression which has mainly been explained by its properties in cell cycle control and apoptosis induction. So far, ambiguous observations have been published regarding its influence on genomic stability. To study RV's effects on DNA double-strand break (DSB) repair, we applied the established enhanced green fluorescent protein (EGFP)- and I-SceI-based assay system on RV-treated lymphoblastoid cell lines (LCLs). We show that RV inhibits both, homologous recombination (HR) and non-homologous end joining (NHEJ) independently of its known growth and death regulatory functions. Using (i) the isogenic cell lines TK6 and WTK1, which differ in their p53 status, (ii) LCLs from patients with ataxia telangiectasia, (iii) shRNA-mediated p53 knockdown and (iv) chemical inhibition of ATM/ATR by caffeine, we established an ATM-p53-dependent pathway of HR inhibition by RV. Additional use of LCLs from Nijmegen breakage syndrome patients furthermore provided evidence for an ATM/ATR-Nbs1-dependent inhibition of microhomology-mediated NHEJ after RV treatment. We propose that activation of ATM and/or ATR is a central effect of RV. Repression of error-prone recombination subpathways could at least partially explain the chemopreventive effects of this natural plant constituent in animal cancer models.
Collapse
Affiliation(s)
- Susanne Andrea Gatz
- Children's Hospital of the University of Ulm, Eythstrasse 24, D-89075 Ulm, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Schwartz RA, Palacios JA, Cassell GD, Adam S, Giacca M, Weitzman MD. The Mre11/Rad50/Nbs1 complex limits adeno-associated virus transduction and replication. J Virol 2007; 81:12936-45. [PMID: 17898048 PMCID: PMC2169118 DOI: 10.1128/jvi.01523-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 09/17/2007] [Indexed: 12/23/2022] Open
Abstract
Adeno-associated virus (AAV) is a parvovirus with a small single-stranded DNA genome that relies on cellular replication machinery together with functions supplied by coinfecting helper viruses. The impact of host factors on AAV infection is not well understood. We explored the connection between AAV helper functions supplied by adenovirus and cellular DNA repair proteins. The adenoviral E1b55K/E4orf6 proteins induce degradation of the cellular Mre11 repair complex (MRN) to promote productive adenovirus infection. These viral proteins also augment recombinant AAV transduction and provide crucial helper functions for wild-type AAV replication. Here, we show that MRN poses a barrier to AAV and that the helper function provided by E1b55K/E4orf6 involves MRN degradation. Using a fluorescent method to visualize the viral genome, we show an effect at the viral DNA level. MRN components accumulate at AAV replication centers and recognize the viral inverted terminal repeats. Together, our data suggest that AAV is targeted by MRN and has evolved to exploit adenoviral proteins that degrade these cellular factors.
Collapse
Affiliation(s)
- Rachel A Schwartz
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
37
|
Lee AYL, Liu E, Wu X. The Mre11/Rad50/Nbs1 complex plays an important role in the prevention of DNA rereplication in mammalian cells. J Biol Chem 2007; 282:32243-55. [PMID: 17715134 DOI: 10.1074/jbc.m705486200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mre11/Nbs1/Rad50 complex (MRN) plays multiple roles in the maintenance of genome stability, including repair of double-stranded breaks (DSBs) and activation of the S-phase checkpoint. Here we demonstrate that MRN is required for the prevention of DNA rereplication in mammalian cells. DNA replication is strictly regulated by licensing control so that the genome is replicated once and only once per cell cycle. Inactivation of Nbs1 or Mre11 leads to a substantial increase of DNA rereplication induced by overexpression of the licensing factor Cdt1. Our studies reveal that multiple mechanisms are likely involved in the MRN-mediated suppression of rereplication. First, both Mre11 and Nbs1 are required for facilitating ATR activation when Cdt1 is overexpressed, which in turn suppresses rereplication. Second, Cdt1 overexpression induces ATR-mediated phosphorylation of Nbs1 at Ser343 and this phosphorylation depends on the FHA and BRCT domains of Nbs1. Mutations at Ser343 or in the FHA and BRCT domains lead to more severe rereplication when Cdt1 is overexpressed. Third, the interaction of the Mre11 complex with RPA is important for the suppression of rereplication. This suggests that modulating RPA activity via a direct interaction of MRN is likely one of the effector mechanisms to suppress rereplication. Moreover, we demonstrate that MRN is also required for preventing the accumulation of DSBs when rereplication is induced. Therefore, our studies suggest new roles of MRN in the maintenance of genome stability through preventing rereplication and rereplication-associated DSBs when licensing control is compromised.
Collapse
Affiliation(s)
- Alan Yueh-Luen Lee
- Department of Molecular Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
38
|
Olson E, Nievera CJ, Lee AYL, Chen L, Wu X. The Mre11-Rad50-Nbs1 complex acts both upstream and downstream of ataxia telangiectasia mutated and Rad3-related protein (ATR) to regulate the S-phase checkpoint following UV treatment. J Biol Chem 2007; 282:22939-52. [PMID: 17526493 DOI: 10.1074/jbc.m702162200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex is required for mediating the S-phase checkpoint following UV treatment, but the underlying mechanism is not clear. Here we demonstrate that at least two mechanisms are involved in regulating the S-phase checkpoint in an MRN-dependent manner following UV treatment. First, when replication forks are stalled, MRN is required upstream of ataxia telangiectasia mutated and Rad3-related protein (ATR) to facilitate ATR activation in a substrate and dosage-dependent manner. In particular, MRN is required for ATR-directed phosphorylation of RPA2, a critical event in mediating the S-phase checkpoint following UV treatment. Second, MRN is a downstream substrate of ATR. Nbs1 is phosphorylated by ATR at Ser-343 when replication forks are stalled, and this phosphorylation event is also important for down-regulating DNA replication following UV treatment. Moreover, we demonstrate that MRN and ATR/ATR-interacting protein (TRIP) interact with each other, and the forkhead-associated/breast cancer C-terminal domains (FHA/BRCT) of Nbs1 play a significant role in mediating this interaction. Mutations in the FHA/BRCT domains do not prevent ATR activation but specifically impair ATR-mediated Nbs1 phosphorylation at Ser-343, which results in a defect in the S-phase checkpoint. These data suggest that MRN plays critical roles both upstream and downstream of ATR to regulate the S-phase checkpoint when replication forks are stalled.
Collapse
Affiliation(s)
- Erin Olson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
39
|
Durocher F, Labrie Y, Soucy P, Sinilnikova O, Labuda D, Bessette P, Chiquette J, Laframboise R, Lépine J, Lespérance B, Ouellette G, Pichette R, Plante M, Tavtigian SV, Simard J. Mutation analysis and characterization of ATR sequence variants in breast cancer cases from high-risk French Canadian breast/ovarian cancer families. BMC Cancer 2006; 6:230. [PMID: 17010193 PMCID: PMC1599749 DOI: 10.1186/1471-2407-6-230] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 09/29/2006] [Indexed: 02/08/2023] Open
Abstract
Background Ataxia telangiectasia-mutated and Rad3-related (ATR) is a member of the PIK-related family which plays, along with ATM, a central role in cell-cycle regulation. ATR has been shown to phosphorylate several tumor suppressors like BRCA1, CHEK1 and TP53. ATR appears as a good candidate breast cancer susceptibility gene and the current study was designed to screen for ATR germline mutations potentially involved in breast cancer predisposition. Methods ATR direct sequencing was performed using a fluorescent method while widely available programs were used for linkage disequilibrium (LD), haplotype analyses, and tagging SNP (tSNP) identification. Expression analyses were carried out using real-time PCR. Results The complete sequence of all exons and flanking intronic sequences were analyzed in DNA samples from 54 individuals affected with breast cancer from non-BRCA1/2 high-risk French Canadian breast/ovarian families. Although no germline mutation has been identified in the coding region, we identified 41 sequence variants, including 16 coding variants, 3 of which are not reported in public databases. SNP haplotypes were established and tSNPs were identified in 73 healthy unrelated French Canadians, providing a valuable tool for further association studies involving the ATR gene, using large cohorts. Our analyses led to the identification of two novel alternative splice transcripts. In contrast to the transcript generated by an alternative splicing site in the intron 41, the one resulting from a deletion of 121 nucleotides in exon 33 is widely expressed, at significant but relatively low levels, in both normal and tumoral cells including normal breast and ovarian tissue. Conclusion Although no deleterious mutations were identified in the ATR gene, the current study provides an haplotype analysis of the ATR gene polymorphisms, which allowed the identification of a set of SNPs that could be used as tSNPs for large-scale association studies. In addition, our study led to the characterization of a novel Δ33 splice form, which could generate a putative truncated protein lacking several functional domains. Additional studies in large cohorts and other populations will be needed to further evaluate if common and/or rare ATR sequence variants can be associated with a modest or intermediate breast cancer risk.
Collapse
Affiliation(s)
- Francine Durocher
- Cancer Genomics Laboratory, Oncology and Molecular Endocrinology Research Centre, Centre Hospitalier Universitaire de Québec and Laval University, Québec, G1V 4G2, Canada
| | - Yvan Labrie
- Cancer Genomics Laboratory, Oncology and Molecular Endocrinology Research Centre, Centre Hospitalier Universitaire de Québec and Laval University, Québec, G1V 4G2, Canada
| | - Penny Soucy
- Cancer Genomics Laboratory, Oncology and Molecular Endocrinology Research Centre, Centre Hospitalier Universitaire de Québec and Laval University, Québec, G1V 4G2, Canada
| | - Olga Sinilnikova
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | - Damian Labuda
- Centre de cancérologie Charles Bruneau, Ste-Justine Hospital, Montréal, Canada
| | - Paul Bessette
- Service de gynécologie, Centre Hospitalier Universitaire de Sherbrooke, Fleurimont, Canada
| | - Jocelyne Chiquette
- Clinique des maladies du sein Deschênes-Fabia, Hôpital du Saint-Sacrement, Québec, G1S 4L8, Canada
| | - Rachel Laframboise
- Service de médecine génétique, CHUQ, Pavillon CHUL, Québec, G1V 4G2, Canada
| | - Jean Lépine
- Centre hospitalier régional de Rimouski, Rimouski, G5L 5T1, Canada
| | | | - Geneviève Ouellette
- Cancer Genomics Laboratory, Oncology and Molecular Endocrinology Research Centre, Centre Hospitalier Universitaire de Québec and Laval University, Québec, G1V 4G2, Canada
| | - Roxane Pichette
- Service d'hémato-oncologie, Hôpital du Sacré-Cœur, Montréal, Canada
| | - Marie Plante
- Service de gynécologie, CHUQ, L'Hôtel-Dieu de Québec, Québec, G1R 2J6, Canada
| | - Sean V Tavtigian
- Unit of Genetic Cancer Susceptibility, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jacques Simard
- Cancer Genomics Laboratory, Oncology and Molecular Endocrinology Research Centre, Centre Hospitalier Universitaire de Québec and Laval University, Québec, G1V 4G2, Canada
- Canada Research Chair in Oncogenetics, Department of Anatomy and Physiology, Laval University, Québec, Canada
| |
Collapse
|
40
|
Munshi A, Tanaka T, Hobbs ML, Tucker SL, Richon VM, Meyn RE. Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-H2AX foci. Mol Cancer Ther 2006; 5:1967-74. [PMID: 16928817 DOI: 10.1158/1535-7163.mct-06-0022] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vorinostat (suberoylanilide hydroxamic acid) is the prototype of a family of hybrid polar compounds that can induce growth arrest in transformed cells and shows promise for the treatment of cancer. Vorinostat specifically binds to and inhibits the activity of histone deacetylases resulting in acetylation of nucleosomal histones and an activation of gene transcription. Because histone deacetylases modulate chromatin structure and gene expression, both of which can influence radioresponse, this study was designed to examine the capacity of Vorinostat to influence radiation response in human tumor cells and investigate the mechanism underlying these interactions. Vorinostat induced hyperacetylation of histone H4 in a dose-dependent manner. We tested its ability to radiosensitize three human tumor cell lines (A375, MeWo, and A549) using clonogenic cell survival assays. Clonogenic cell survival assay showed that Vorinostat significantly radiosensitized all three tumor cell lines, substantially reducing the surviving fraction at 2 Gy. We examined potential mechanisms that may contribute to the enhanced radiation response induced by Vorinostat. Vorinostat and radiation alone did not induce apoptosis in the melanoma cell line. However, enhanced apoptosis was observed when cells were exposed to both Vorinostat and radiation, suggesting that Vorinostat renders tumor cells more susceptible to radiation-induced apoptosis. Results from DNA damage repair analysis in cultured A375 cells showed that Vorinostat had a strong inhibitory effect on the nonhomologous end joining pathway after radiation. A detailed examination of the involvement of the DNA repair pathway following Vorinostat treatment showed that Vorinostat reduced the expression of the repair-related genes Ku70, Ku80, and Rad50 in A375 cells as detected by Western blot analysis. We also examined gamma-H2AX phosphorylation as a predictive marker of radiotherapy response to Vorinostat and observed that the combination of Vorinostat and radiation caused a prolongation of expression of DNA repair proteins such as gamma-H2AX. Overall, we conclude that Vorinostat enhances tumor radioresponse by multiple mechanisms that may involve antiproliferative growth inhibition and effects on DNA repair after exposure to radiation.
Collapse
Affiliation(s)
- Anupama Munshi
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Box 066, 1515 Holcombe Boulevard, Houston, 77030, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Ciapponi L, Cenci G, Gatti M. The Drosophila Nbs protein functions in multiple pathways for the maintenance of genome stability. Genetics 2006; 173:1447-54. [PMID: 16648644 PMCID: PMC1526684 DOI: 10.1534/genetics.106.058081] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 04/29/2006] [Indexed: 01/09/2023] Open
Abstract
The Mre11/Rad50/Nbs (MRN) complex and the two protein kinases ATM and ATR play critical roles in the response to DNA damage and telomere maintenance in mammalian systems. It has been previously shown that mutations in the Drosophila mre11 and rad50 genes cause both telomere fusion and chromosome breakage. Here, we have analyzed the role of the Drosophila nbs gene in telomere protection and the maintenance of chromosome integrity. Larval brain cells of nbs mutants display telomeric associations (TAs) but the frequency of these TAs is lower than in either mre11 or rad50 mutants. Consistently, Rad50 accumulates in the nuclei of wild-type cells but not in those of nbs cells, indicating that Nbs mediates transport of the Mre11/Rad50 complex in the nucleus. Moreover, epistasis analysis revealed that rad50 nbs, tefu (ATM) nbs, and mei-41 (ATR) nbs double mutants have significantly higher frequencies of TAs than either of the corresponding single mutants. This suggests that Nbs and the Mre11/Rad50 complex play partially independent roles in telomere protection and that Nbs functions in both ATR- and ATM-controlled telomere protection pathways. In contrast, analysis of chromosome breakage indicated that the three components of the MRN complex function in a single pathway for the repair of the DNA damage leading to chromosome aberrations.
Collapse
Affiliation(s)
- Laura Ciapponi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università di Lecce, 73100 Lecce, Italy
| | | | | |
Collapse
|
42
|
Adams KE, Medhurst AL, Dart DA, Lakin ND. Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 2006; 25:3894-904. [PMID: 16474843 PMCID: PMC1852851 DOI: 10.1038/sj.onc.1209426] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/29/2005] [Accepted: 12/29/2005] [Indexed: 11/08/2022]
Abstract
ATM and ATR are two related kinases essential for signalling DNA damage. Although ATM is thought to be the principle kinase responsible for signalling ionising radiation (IR)-induced DNA damage, ATR also contributes to signalling this form of genotoxic stress. However, the molecular basis of differential ATM and ATR activation in response to IR remains unclear. Here, we report that ATR is recruited to sites of IR-induced DNA damage significantly later than activation of ATM. We show that ATR is recruited to IR-induced nuclear foci in G(1) and S phase of the cell cycle, supporting a role for ATR in detecting DNA damage outside of S phase. In addition, we report that recruitment of ATR to sites of IR-induced DNA damage is concomitant with appearance of large tracts of single-stranded DNA (ssDNA) and that this event is dependent on ATM and components of the Mre11/Rad50/Nbs1 (MRN) protein complex.
Collapse
Affiliation(s)
- K E Adams
- Department of Biochemistry, University of Oxford, UK
| | | | | | | |
Collapse
|
43
|
Andreassen PR, Ho GPH, D'Andrea AD. DNA damage responses and their many interactions with the replication fork. Carcinogenesis 2006; 27:883-92. [PMID: 16490739 DOI: 10.1093/carcin/bgi319] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cellular response to DNA damage is composed of cell cycle checkpoint and DNA repair mechanisms that serve to ensure proper replication of the genome prior to cell division. The function of the DNA damage response during DNA replication in S-phase is critical to this process. Recent evidence has suggested a number of interrelationships of DNA replication and cellular DNA damage responses. These include S-phase checkpoints which suppress replication initiation or elongation in response to DNA damage. Also, many components of the DNA damage response are required either for the stabilization of, or for restarting, stalled replication forks. Further, translesion synthesis permits DNA replication to proceed in the presence of DNA damage and can be coordinated with subsequent repair by homologous recombination (HR). Finally, cohesion of sister chromatids is established coincident with DNA replication and is required for subsequent DNA repair by homologous recombination. Here we review these processes, all of which occur at, or are related to, the advancing replication fork. We speculate that these multiple interdependencies of DNA replication and DNA damage responses integrate the many steps necessary to ensure accurate duplication of the genome.
Collapse
Affiliation(s)
- Paul R Andreassen
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
44
|
Myers JS, Cortez D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem 2006; 281:9346-50. [PMID: 16431910 PMCID: PMC1821075 DOI: 10.1074/jbc.m513265200] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases are crucial regulatory proteins in genotoxic stress response pathways that pause the cell cycle to permit DNA repair. Here we show that Chk1 phosphorylation in response to hydroxyurea and ultraviolet radiation is ATR-dependent and ATM- and Mre11-independent. In contrast, Chk1 phosphorylation in response to ionizing radiation (IR) is dependent on ATR, ATM, and Mre11. The ATR and ATM/Mre11 pathways are generally thought to be separate with ATM activation occurring early and ATR activation occurring as a late response to double strand breaks. However, we demonstrate that ATR is activated rapidly by IR, and ATM and Mre11 enhance ATR signaling. ATR-ATR-interacting protein recruitment to double strand breaks is less efficient in the absence of ATM and Mre11. Furthermore, IR-induced replication protein A foci formation is defective in ATM- and Mre11-deficient cells. Thus, ATM and Mre11 may stimulate the ATR signaling pathway by converting DNA damage generated by IR into structures that recruit and activate ATR.
Collapse
Affiliation(s)
- Jeremy S Myers
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
45
|
Smits VAJ, Reaper PM, Jackson SP. Rapid PIKK-dependent release of Chk1 from chromatin promotes the DNA-damage checkpoint response. Curr Biol 2005; 16:150-9. [PMID: 16360315 DOI: 10.1016/j.cub.2005.11.066] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 11/22/2005] [Accepted: 11/24/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Checkpoint signaling pathways are of crucial importance for the maintenance of genomic integrity. Within these pathways, the effector kinase Chk1 plays a central role in mediating cell-cycle arrest in response to DNA damage, and it does so by phosphorylating key cell-cycle regulators. RESULTS By investigating the subcellular distribution of Chk1 by cell fractionation, we observed that around 20% of it localizes to chromatin during all phases of the cell cycle. Furthermore, we found that in response to DNA damage, Chk1 rapidly dissociates from the chromatin. Significantly, we observed a tight correlation between DNA-damage-induced Chk1 phosphorylation and chromatin dissociation, suggesting that phosphorylated Chk1 does not stably associate with chromatin. Consistent with these events being triggered by active checkpoint signaling, inhibition of the DNA-damage-activated kinases ATR and ATM, or siRNA-mediated downregulation of the DNA-damage mediator proteins Claspin and TopBP1, impaired DNA-damage-induced dissociation of Chk1 from chromatin. Finally, we established that Chk1 phosphorylation occurs at localized sites of DNA damage and that constitutive immobilization of Chk1 on chromatin results in a defective DNA-damage-induced checkpoint arrest. CONCLUSIONS Chromatin association and dissociation appears to be important for proper Chk1 regulation. We propose that in response to DNA damage, PIKK-dependent checkpoint signaling leads to phosphorylation of chromatin-bound Chk1, resulting in its rapid release from chromatin and facilitating the transmission of DNA-damage signals to downstream targets, thereby promoting efficient cell-cycle arrest.
Collapse
Affiliation(s)
- Veronique A J Smits
- The Wellcome Trust and Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, United Kingdom.
| | | | | |
Collapse
|