1
|
Yang B, Bi J, Zeng W, Chen M, Yao Z, Cheng S, Jiang Z, Zhang C, Liao H, Gu X, Xian Z, Yu Y. Causal effect between telomere length and thirteen types of cancer in Asian population: a bidirectional Mendelian randomization study. Aging Clin Exp Res 2025; 37:134. [PMID: 40299209 PMCID: PMC12041116 DOI: 10.1007/s40520-025-03046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND The relationship between leukocyte telomere length (LTL) and the risk of developing various cancers has always been controversial and predominantly focused on European populations. Hence, Mendelian randomization (MR) was applied to the Asian population to explore the causal relationships between LTL and the risk of developing various cancers. METHODS We explored the causal connection between LTL and the risk of developing thirteen types of cancer in Asian populations using freely available genetic variation data. The primary analytical method employed was the inverse variance weighted (IVW) method, complemented by sensitivity and validation analyses. Following Bonferroni correction, P < 0.0038 was considered to indicate statistical significance, and P values ranging from 0.0038 to 0.05 were considered to indicate a nominally significant association. RESULTS The findings indicated significant positive associations between LTL and the risk of developing lung cancer [odds ratio (OR) = 1.6009, 95% confidence interval (CI) 1.3056-1.9629, P = 6.08 × 10-6] and prostate cancer (OR = 1.4200, 95% CI 1.1489-1.7550, P = 0.0012). Additionally, there was a nominally significant association between LTL and the risk of developing hematological malignancy (OR = 1.5119, 95% CI 1.0810-2.1146, P = 0.0157). No statistically significant relationships between LTL and the risk of developing the other ten kinds of cancer were detected. No causal link between the risk of developing various cancers and LTL was discovered. CONCLUSIONS Asians with longer telomeres are more prone to developing lung and prostate cancer. There is also a nominally significant association between longer telomeres and the risk of developing hematological malignancy.
Collapse
Affiliation(s)
- Bowen Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Junming Bi
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Weinan Zeng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
- Shantou University Medical College, Shantou, 515000, China
| | - Mingquan Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Zhihao Yao
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Shouyu Cheng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
- School of Medicine, South China University of Technology, Guangzhou, 510000, China
| | - Zhaoqiang Jiang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Changzheng Zhang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Hangyu Liao
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Xiaokang Gu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Zhiyong Xian
- Department of Urology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, 341000, China.
- Department of Urology, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, 528200, China.
| | - Yuming Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China.
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Wang Q, Liu F, Cai B, Wang X, Deng Y, Chen T. Telomere Length, Brain Imaging-Derived Phenotypes, and Alzheimer's Disease: Mendelian Randomization Analysis. Mol Neurobiol 2025:10.1007/s12035-025-04913-6. [PMID: 40220244 DOI: 10.1007/s12035-025-04913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Previous studies have reported a correlation between telomere length (TL) and Alzheimer's disease (AD); however, the specific biological mechanisms supporting this association remain unclear. We used two-sample Mendelian randomization (MR) to systematically explore the putative causal relationships between TL, brain imaging-derived phenotypes (IDPs), and AD, while further evaluating the mediating role of IDPs using both two-step MR and multivariable MR. In addition, we utilized several independent validation cohorts to repeat the analysis, further strengthening our inferences. The MR analysis showed that a longer TL was causally associated with a lower risk for AD (OR, 0.84; 95% CI, 0.75 to 0.93; P = 0.001). In addition, the subsequent two-step MR results indicate that nine brain IDPs partially mediate the effect of TL on AD. The inverse association of genetically predicted TL with AD was attenuated after adjusting for these IDPs in multivariable MR. Our study provides further evidence for the causal relationship between TL and AD, with IDPs potentially partially mediating this association. Therefore, telomere biology may be a potential pathway involved in AD development, and identifying the important role of telomeres can draw more attention to the development of telomere-related diagnostics, treatments, and AD therapies.
Collapse
Affiliation(s)
- Qitong Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Fang Liu
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Benchi Cai
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Xinyu Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Yidong Deng
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
| | - Tao Chen
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
- Hainan Provincial Bureau of Disease Prevention and Control, Haikou, 570100, China.
| |
Collapse
|
3
|
Dmitrenko O, Karpova N, Nurbekov M. Increased Preeclampsia Risk in GDM Pregnancies: The Role of SIRT1 rs12778366 Polymorphism and Telomere Length. Int J Mol Sci 2025; 26:2967. [PMID: 40243583 PMCID: PMC11988573 DOI: 10.3390/ijms26072967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Preeclampsia (PE) and gestational diabetes mellitus (GDM) are common pregnancy disorders with shared pathophysiological mechanisms. This study examined the association between SIRT1 polymorphisms (rs12778366 and rs7895833) and relative telomere length (RTL) in women with PE and GDM. The DNA from pregnant women with GDM with and without PE was analyzed. The RTL and genotyping were measured using quantitative real-time PCR. The women with GDM and PE had significantly shorter telomeres. The rs12778366 TC genotype was associated with a 4.48-fold increased risk of PE (OR = 4.48; 95% CI 1.54-13.08; p = 0.003). The PE group had a higher prevalence of the heterozygous TC rs12778366 genotype with short telomeres. The SIRT1 variant rs12778366 is associated with shorter telomeres and an increased risk of developing preeclampsia, suggesting it may be a useful biomarker for preeclampsia risk assessment in GDM pregnancies.
Collapse
Affiliation(s)
| | - Nataliia Karpova
- Federal State Budgetary Institution “Research Institute of Pathology and Pathophysiology”, 125315 Moscow, Russia; (O.D.); (M.N.)
| | | |
Collapse
|
4
|
Sánchez-González JL, Sánchez-Rodríguez JL, González-Sarmiento R, Navarro-López V, Juárez-Vela R, Pérez J, Martín-Vallejo J. Effect of Physical Exercise on Telomere Length: Umbrella Review and Meta-Analysis. JMIR Aging 2025; 8:e64539. [PMID: 39846264 PMCID: PMC11755188 DOI: 10.2196/64539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Telomere length (TL) is a marker of cellular health and aging. Physical exercise has been associated with longer telomeres and, therefore, healthier aging. However, results supporting such effects vary across studies. Our aim was to synthesize existing evidence on the effect of different modalities and durations of physical exercise on TL. Objective The aim of this study was to explore the needs and expectations of individuals with physical disabilities and their interventionists for the use of a virtual reality physical activity platform in a community organization. Methods We performed an umbrella review and meta-analysis. Data sources included PubMed, Embase, Web of Science, Cochrane Library, and Scopus. We selected systematic reviews and meta-analyses of randomized and nonrandomized controlled clinical trials evaluating the effect of physical exercise on TL. Results Our literature search retrieved 12 eligible systematic reviews, 5 of which included meta-analyses. We identified 22 distinct primary studies to estimate the overall effect size of physical exercise on TL. The overall effect size was 0.28 (95% CI 0.118-0.439), with a heterogeneity test value Q of 43.08 (P=.003) and I² coefficient of 51%. The number of weeks of intervention explained part of this heterogeneity (Q_B=8.25; P=.004), with higher effect sizes found in studies with an intervention of less than 30 weeks. Exercise modality explained additional heterogeneity within this subgroup (Q_B=10.28, P=.02). The effect sizes were small for aerobic exercise and endurance training, and moderate for high-intensity interval training. Conclusions Our umbrella review and meta-analysis detected a small-moderate positive effect of physical exercise on TL, which seems to be influenced by the duration and type of physical exercise. High quality studies looking into the impact of standardized, evidence-based physical exercise programs on TL are still warranted.
Collapse
Affiliation(s)
- Juan Luis Sánchez-González
- Faculty of Nursing and Physiotherapy, Department of Physiotherapy, University of Salamanca, Salamanca, Spain
| | - Juan Luis Sánchez-Rodríguez
- Faculty of Psychology, Department of Basic Psychology, Psychobiology and Methodology, University of Salamanca, Salamanca, Spain
| | | | - Víctor Navarro-López
- Faculty of Health Sciences, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Madrid, Spain
| | - Raúl Juárez-Vela
- Faculty of Health Sciences, Department of Nursing, University of La Rioja, Logroño, Spain
| | - Jesús Pérez
- Faculty of Medicine, Department of Psychiatry, University of Salamanca, Avenida Donantes de Sangre s/n, Salamanca, 37007, Spain, 34 7535596578
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Javier Martín-Vallejo
- Faculty of Medicine, Department of Statistics, University of Salamanca, Salamanca, Spain
| |
Collapse
|
5
|
da Cunha Agostini L, da Silva GN. Telomere length as a biomarker for cerebrovascular diseases: current evidence. Mol Biol Rep 2024; 51:1150. [PMID: 39538053 DOI: 10.1007/s11033-024-10077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Cerebrovascular disease (CVD) includes a range of conditions affecting the brain's blood vessels, which can result in reduced blood flow to brain tissue. The most common manifestation of CVD is stroke, the second leading cause of death and the third leading cause of disability worldwide. Major risk factors for CVD encompass gender, age, smoking, hypertension, diabetes, physical inactivity, obesity, alcohol consumption, and metabolic syndrome. Research suggests a link between telomere length and an increased risk of CVD, particularly in ischemic stroke cases. This review highlights key findings on the relationship between telomere length and CVD, underscoring its clinical importance. The analysis utilizes scientific literature from PubMed, Scopus, and SciELO up to 2024. Results show that shorter telomere length is associated with various types of CVD, including stroke, ischemic stroke, hemorrhagic stroke, and cardioembolic stroke. Some studies propose that telomere length measurement could be a valuable biomarker for CVD, potentially improving prevention, diagnosis, and management strategies.
Collapse
Affiliation(s)
- Lívia da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/nº, Ouro Preto, Minas Gerais, CEP 35402-163, Brazil.
| |
Collapse
|
6
|
Sun P, Gu KJ, Zheng G, Sikora AG, Li C, Zafereo M, Wei P, Wu J, Shete S, Liu J, Li G. Genetic variations associated with telomere length predict the risk of recurrence of non-oropharyngeal head and neck squamous cell carcinoma. Mol Carcinog 2024; 63:1722-1737. [PMID: 38837510 DOI: 10.1002/mc.23768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Genetic factors underlying lymphocyte telomere length (LTL) may provide insights into genomic stability and integrity, with direct links to susceptibility to cancer recurrence. Polymorphisms in telomere-associated genes are strongly associated with LTL and cancer risk, while few large studies have explored the associations between LTL-related polymorphisms and recurrence risk of non-oropharyngeal head and neck squamous cell carcinoma (non-OPHNSCC). Totally 1403 non-OPHNSCC patients were recruited and genotyped for 16 LTL-related polymorphisms identified by genome-wide association studies. Univariate and multivariate analyzes were performed to evaluate associations between the polymorphisms and non-OPHNSCC recurrence risk. Patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes exhibited shorter DFS than those with the rs755017 AA, rs2487999 CC, rs2736108 CC, or s6772228 TT genotypes, respectively (all log-rank p < 0.05). Multivariable analysis confirmed an increased risk of recurrence for patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes (adjusted hazard ratio [aHR]: 1.66, 95% confidence interval [CI]: 1.32-2.07; aHR: 1.77, 95% CI: 1.41-2.23; aHR: 1.56, 95% CI: 1.22-1.99; aHR: 1.52, 95% CI: 1.20-1.93, respectively). Further stratified analysis revealed stronger associations between these genotypes and recurrence risk in ever-smokers and patients undergoing chemoradiotherapy. The similar but particularly pronounced results were observed for the combined risk genotypes of the four significant polymorphisms. This is the first large study on non-OPHNSCC patients showing that LTL-related polymorphisms may modify risk of non-OPHNSCC recurrence individually and jointly, particularly when analyzed in the context of smoking status and personized treatment. Larger studies are needed to validate these results.
Collapse
Affiliation(s)
- Peng Sun
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kyle J Gu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Guibin Zheng
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chao Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mark Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jisheng Liu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
Tang L, Li D, Wang J, Su B, Tian Y. Ambient air pollution, genetic risk and telomere length in UK biobank. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:845-852. [PMID: 37550565 DOI: 10.1038/s41370-023-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Telomere length (TL) is a biomarker of genomic aging. The evidence on the association between TL and air pollution was inconsistent. Besides, the modification effect of genetic susceptibility on the air pollution-TL association remains unknown. OBJECTIVE We aimed to evaluate the association of ambient air pollution with TL and further assess the modification effect of genetic susceptibility. METHODS 433,535 participants with complete data of TL and air pollutants in UK Biobank were included. Annual average exposure of NO2, NOx, PM10 and PM2.5 was estimated by applying land use regression models. Genetic risk score (GRS) was constructed using reported telomere-related SNPs. Leukocyte TL was measured by quantitative polymerase chain reaction (qPCR). Multivariable linear regression models were employed to conduct associational analyses. RESULTS Categorical exposure models and RCS models both indicated U-shaped (for NO2 and NOx) and L-shaped (for PM10 and PM2.5) correlations between air pollution and TL. In comparison to the lowest quartile, the 2nd and 3rd quartile of NO2 (q2: -1.3% [-2.1%, -0.4%]; q3: -1.2% [-2.0%, -0.3%], NOx (q2: -1.3% [-2.1%, -0.5%]; q3: -1.4% [-2.2%, -0.5%]), PM2.5 (q2: -0.8% [-1.7%, 0.0%]; q3: -1.3% [-2.2%, -0.5%]), and the third quartile of PM10 (q3: -1.1% [-1.9%, -0.2%]) were inversely associated with TL. The highest quartile of NO2 was positively correlated with TL (q4: 1.0% [0.0%, 2.0%]), whereas the negative correlation between the highest quartile of other pollutants and TL was also attenuated and no longer significant. In the genetic analyses, synergistic interactions were observed between the 4th quartile of three air pollutants (NO2, NOx, and PM2.5) and genetic risk. IMPACT STATEMENT Our study for the first time revealed a non-linear trend for the association between air pollution and telomere length. The genetic analyses suggested synergistic interactions between air pollution and genetic risk on the air pollution-TL association. These findings may shed new light on air pollution's health effects, offer suggestions for identifying at-risk individuals, and provide hints regarding further investigation into gene-environment interactions.
Collapse
Affiliation(s)
- Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No.31, Beijige-3, Dongcheng District, 100730, Beijing, China.
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China.
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China.
| |
Collapse
|
8
|
Wu X, Hu C, Wu T, Du X, Peng Z, Xue W, Chen Y, Dong L. Mendelian randomization evidence based on European ancestry for the causal effects of leukocyte telomere length on prostate cancer. Hum Genomics 2024; 18:56. [PMID: 38831447 PMCID: PMC11145789 DOI: 10.1186/s40246-024-00622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Several lines of evidence suggest that leukocyte telomere length (LTL) can affect the development of prostate cancer (PC). METHODS Here, we employed single nucleoside polymorphisms (SNPs) as instrumental variables (IVs) for LTL (n = 472,174) and conducted Mendelian randomization analysis to estimate their causal impact on PCs (79,148 patients/61,106 controls and 6311 patients/88,902 controls). RESULTS Every 1-s.d extension of LTL increased the risk of PCs by 34%. Additionally, the analysis of candidate mediators between LTL and PCs via two-step Mendelian randomization revealed that among the 23 candidates, Alzheimer's disease, liver iron content, sex hormone binding global levels, naive CD4-CD8-T cell% T cell, and circulating leptin levels played substantial mediating roles. There is no robust evidence to support the reverse causal relationship between LTL and the selected mediators of PCs. Adjusting for the former four mediators, rather than adjusting for circulating leptin levels, decreased the impact of LTL on PCs. CONCLUSION This study provides potential intervention measures for preventing LTL-induced PCs.
Collapse
Affiliation(s)
- Xinrui Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Cong Hu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Tianyang Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Xinxing Du
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Zehong Peng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Yonghui Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
9
|
Keener R, Chhetri SB, Connelly CJ, Taub MA, Conomos MP, Weinstock J, Ni B, Strober B, Aslibekyan S, Auer PL, Barwick L, Becker LC, Blangero J, Bleecker ER, Brody JA, Cade BE, Celedon JC, Chang YC, Cupples LA, Custer B, Freedman BI, Gladwin MT, Heckbert SR, Hou L, Irvin MR, Isasi CR, Johnsen JM, Kenny EE, Kooperberg C, Minster RL, Naseri T, Viali S, Nekhai S, Pankratz N, Peyser PA, Taylor KD, Telen MJ, Wu B, Yanek LR, Yang IV, Albert C, Arnett DK, Ashley-Koch AE, Barnes KC, Bis JC, Blackwell TW, Boerwinkle E, Burchard EG, Carson AP, Chen Z, Chen YDI, Darbar D, de Andrade M, Ellinor PT, Fornage M, Gelb BD, Gilliland FD, He J, Islam T, Kaab S, Kardia SLR, Kelly S, Konkle BA, Kumar R, Loos RJF, Martinez FD, McGarvey ST, Meyers DA, Mitchell BD, Montgomery CG, North KE, Palmer ND, Peralta JM, Raby BA, Redline S, Rich SS, Roden D, Rotter JI, Ruczinski I, Schwartz D, Sciurba F, Shoemaker MB, Silverman EK, Sinner MF, Smith NL, Smith AV, Tiwari HK, Vasan RS, Weiss ST, Williams LK, Zhang Y, Ziv E, Raffield LM, Reiner AP, Arvanitis M, Greider CW, Mathias RA, Battle A. Validation of human telomere length multi-ancestry meta-analysis association signals identifies POP5 and KBTBD6 as human telomere length regulation genes. Nat Commun 2024; 15:4417. [PMID: 38789417 PMCID: PMC11126610 DOI: 10.1038/s41467-024-48394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.
Collapse
Grants
- P30 AG028747 NIA NIH HHS
- R01 DK107786 NIDDK NIH HHS
- R01AG069120 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U01 AG058589 NIA NIH HHS
- U01 HL072518 NHLBI NIH HHS
- P01 HL162607 NHLBI NIH HHS
- UG1 HL139125 NHLBI NIH HHS
- R01 HG010297 NHGRI NIH HHS
- R01 HL079915 NHLBI NIH HHS
- R01 HL149836 NHLBI NIH HHS
- K12 GM123914 NIGMS NIH HHS
- R01 HL112064 NHLBI NIH HHS
- R01 ES021801 NIEHS NIH HHS
- R01HL153805 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG081244 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL139731 NHLBI NIH HHS
- P30 ES007048 NIEHS NIH HHS
- 5K12GM123914 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 AG081244 NIA NIH HHS
- R01 HL120393 NHLBI NIH HHS
- R01 HL087698 NHLBI NIH HHS
- R01 ES016535 NIEHS NIH HHS
- R35CA209974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R35 CA209974 NCI NIH HHS
- R01 HL076647 NHLBI NIH HHS
- R01HL105756 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL092577 NHLBI NIH HHS
- R01HL68959 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL079915 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL158668 NHLBI NIH HHS
- P01 ES009581 NIEHS NIH HHS
- R01HL87681 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 ES022845 NIEHS NIH HHS
- R01 HL061768 NHLBI NIH HHS
- R01 HL153805 NHLBI NIH HHS
- P50 CA180905 NCI NIH HHS
- R01HL-120393 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 AG058921 NIA NIH HHS
- U01 HL153009 NHLBI NIH HHS
- R01 HL105756 NHLBI NIH HHS
- R35 HL135818 NHLBI NIH HHS
- I01 BX005295 BLRD VA
- RC2 HL101651 NHLBI NIH HHS
- P01 ES011627 NIEHS NIH HHS
- R01 AG069120 NIA NIH HHS
- R35GM139580 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- HHSN268201800001C NHLBI NIH HHS
- UM1 AI160040 NIAID NIH HHS
- R01 HL087680 NHLBI NIH HHS
- M01 RR000052 NCRR NIH HHS
- R00 ES027870 NIEHS NIH HHS
- R01 AI132476 NIAID NIH HHS
- U01 HL137162 NHLBI NIH HHS
- R01 AI153239 NIAID NIH HHS
- R01 GM152471 NIGMS NIH HHS
- U01 AG052409 NIA NIH HHS
- R01 ES023262 NIEHS NIH HHS
- R01 HL068959 NHLBI NIH HHS
- R03 ES014046 NIEHS NIH HHS
- R01 DK071891 NIDDK NIH HHS
- R35 GM139580 NIGMS NIH HHS
- U01 AI160018 NIAID NIH HHS
- R01 HL157635 NHLBI NIH HHS
- R01 HL087681 NHLBI NIH HHS
- UG3 HL151865 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Rebecca Keener
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Surya B Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Carla J Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew P Conomos
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Joshua Weinstock
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bohan Ni
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Strober
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | | | - Paul L Auer
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lucas Barwick
- LTRC Data Coordinating Center, The Emmes Company, LLC, Rockville, MD, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eugene R Bleecker
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Juan C Celedon
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Barry I Freedman
- Internal Medicine - Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mark T Gladwin
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jill M Johnsen
- Department of Medicine and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ryan L Minster
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa
- International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | - Satupa'itea Viali
- Oceania University of Medicine, Apia, Samoa
- School of Medicine, National University of Samoa, Apia, Samoa
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, CT, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington DC, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Baojun Wu
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivana V Yang
- Departments of Biomedical Informatics, Medicine, and Epidemiology, University of Colorado, Boulder, CO, USA
| | - Christine Albert
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular, Brigham and Women's Hospital, Boston, MA, USA
| | - Donna K Arnett
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | | | - Kathleen C Barnes
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas W Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MI, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Talat Islam
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stefan Kaab
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, CA, USA
- University of California San Francisco Benioff Children's Hospital, Oakland, CA, USA
| | - Barbara A Konkle
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rajesh Kumar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando D Martinez
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Stephen T McGarvey
- Department of Epidemiology & International Health Institute, Brown University School of Public Health, Providence, RI, USA
| | - Deborah A Meyers
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Courtney G Montgomery
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Benjamin A Raby
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Susan Redline
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Dan Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Schwartz
- Departments of Medicine and Immunology, University of Colorado, Boulder, CO, USA
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Benjamin Shoemaker
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Nicholas L Smith
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama Birmingham, Birmingham, AL, USA
| | | | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Yingze Zhang
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Carol W Greider
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- University Professor Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA.
- Data Science and AI Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
10
|
Tannemann N, Erbel R, Nöthen MM, Jöckel KH, Pechlivanis S. Genetic polymorphisms affecting telomere length and their association with cardiovascular disease in the Heinz-Nixdorf-Recall study. PLoS One 2024; 19:e0303357. [PMID: 38743757 PMCID: PMC11093374 DOI: 10.1371/journal.pone.0303357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Short telomeres are associated with cardiovascular disease (CVD). We aimed to investigate, if genetically determined telomere-length effects CVD-risk in the Heinz-Nixdorf-Recall study (HNRS) population. We selected 14 single-nucleotide polymorphisms (SNPs) associated with telomere-length (p<10-8) from the literature and after exclusion 9 SNPs were included in the analyses. Additionally, a genetic risk score (GRS) using these 9 SNPs was calculated. Incident CVD was defined as fatal and non-fatal myocardial infarction, stroke, and coronary death. We included 3874 HNRS participants with available genetic data and had no known history of CVD at baseline. Cox proportional-hazards regression was used to test the association between the SNPs/GRS and incident CVD-risk adjusting for common CVD risk-factors. The analyses were further stratified by CVD risk-factors. During follow-up (12.1±4.31 years), 466 participants experienced CVD-events. No association between SNPs/GRS and CVD was observed in the adjusted analyses. However, the GRS, rs10936599, rs2487999 and rs8105767 increase the CVD-risk in current smoker. Few SNPs (rs10936599, rs2487999, and rs7675998) showed an increased CVD-risk, whereas rs10936599, rs677228 and rs4387287 a decreased CVD-risk, in further strata. The results of our study suggest different effects of SNPs/GRS on CVD-risk depending on the CVD risk-factor strata, highlighting the importance of stratified analyses in CVD risk-factors.
Collapse
Affiliation(s)
- Nico Tannemann
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Raimund Erbel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Markus M. Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Sonali Pechlivanis
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Asthma and Allergy Prevention, Neuherberg, Germany
| |
Collapse
|
11
|
Salih AM, Galazzo IB, Menegaz G, Altmann A. Leukocyte Telomere Length and Cardiac Structure and Function: A Mendelian Randomization Study. J Am Heart Assoc 2024; 13:e032708. [PMID: 38293941 PMCID: PMC11056120 DOI: 10.1161/jaha.123.032708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Existing research demonstrates the association of shorter leukocyte telomere length with increased risk of age-related health outcomes including cardiovascular diseases. However, the direct causality of these relationships has not been definitively established. Cardiovascular aging at an organ level may be captured using image-derived phenotypes of cardiac anatomy and function. METHODS AND RESULTS In the current study, we use 2-sample Mendelian randomization to assess the causal link between leukocyte telomere length and 54 cardiac magnetic resonance imaging measures representing structure and function across the 4 cardiac chambers. Genetically predicted shorter leukocyte telomere length was causally linked to smaller ventricular cavity sizes including left ventricular end-systolic volume, left ventricular end-diastolic volume, lower left ventricular mass, and pulmonary artery. The association with left ventricular mass (β =0.217, Pfalse discovery rate=0.016) remained significant after multiple testing adjustment, whereas other associations were attenuated. CONCLUSIONS Our findings support a causal role for shorter leukocyte telomere length and faster cardiac aging, with the most prominent relationship with left ventricular mass.
Collapse
Affiliation(s)
- Ahmed M. Salih
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of LondonUK
- Department of Population Health SciencesUniversity of LeicesterUK
- Department of Computer ScienceUniversity of ZakhoKurdistan of IraqIraq
| | | | | | - André Altmann
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonUK
| |
Collapse
|
12
|
Gedvilaite G, Kriauciuniene L, Tamasauskas A, Liutkeviciene R. The Influence of Telomere-Related Gene Variants, Serum Levels, and Relative Leukocyte Telomere Length in Pituitary Adenoma Occurrence and Recurrence. Cancers (Basel) 2024; 16:643. [PMID: 38339395 PMCID: PMC10854692 DOI: 10.3390/cancers16030643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, we examined 130 patients with pituitary adenomas (PAs) and 320 healthy subjects, using DNA samples from peripheral blood leukocytes purified through the DNA salting-out method. Real-time polymerase chain reaction (RT-PCR) was used to assess single nucleotide polymorphisms (SNPs) and relative leukocyte telomere lengths (RLTLs), while enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of TERF1, TERF2, TNKS2, CTC1, and ZNF676 in blood serum. Our findings reveal several significant associations. Genetic associations with pituitary adenoma occurrence: the TERF1 rs1545827 CT + TT genotypes were linked to 2.9-fold decreased odds of PA occurrence. Conversely, the TNKS2 rs10509637 GG genotype showed 6.5-fold increased odds of PA occurrence. Gender-specific genetic associations with PA occurrence: in females, the TERF1 rs1545827 CC + TT genotypes indicated 3.1-fold decreased odds of PA occurrence, while the TNKS2 rs10509637 AA genotype was associated with 4.6-fold increased odds. In males, the presence of the TERF1 rs1545827 T allele was associated with 2.2-fold decreased odds of PA occurrence, while the TNKS2 rs10509637 AA genotype was linked to a substantial 10.6-fold increase in odds. Associations with pituitary adenoma recurrence: the TNKS2 rs10509637 AA genotype was associated with 4.2-fold increased odds of PA recurrence. On the other hand, the TERF1 rs1545827 CT + TT genotypes were linked to 3.5-fold decreased odds of PA without recurrence, while the TNKS2 rs10509637 AA genotype was associated with 6.4-fold increased odds of PA without recurrence. Serum TERF2 and TERF1 levels: patients with PA exhibited elevated serum TERF2 levels compared to the reference group. Conversely, patients with PA had decreased TERF1 serum levels compared to the reference group. Relative leukocyte telomere length (RLTL): a significant difference in RLTL between the PA group and the reference group was observed, with PA patients having longer telomeres. Genetic associations with telomere shortening: the TERF1 rs1545827 T allele was associated with 1.4-fold decreased odds of telomere shortening. In contrast, the CTC1 rs3027234 TT genotype was linked to 4.8-fold increased odds of telomere shortening. These findings suggest a complex interplay between genetic factors, telomere length, and pituitary adenoma occurrence and recurrence, with potential gender-specific effects. Furthermore, variations in TERF1 and TNKS2 genes may play crucial roles in telomere length regulation and disease susceptibility.
Collapse
Affiliation(s)
- Greta Gedvilaite
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, LT-50161 Kaunas, Lithuania; (L.K.); (R.L.)
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, LT-50161 Kaunas, Lithuania; (L.K.); (R.L.)
| | - Arimantas Tamasauskas
- Department of Neurosurgery, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, LT-50161 Kaunas, Lithuania;
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, LT-50161 Kaunas, Lithuania; (L.K.); (R.L.)
| |
Collapse
|
13
|
Jeon HJ, Levine MT, Lampson MA. Telomere Elongation During Pre-Implantation Embryo Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:121-129. [PMID: 39030357 DOI: 10.1007/978-3-031-55163-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The primary mechanism of telomere elongation in mammals is reverse transcription by telomerase. An alternative (ALT) pathway elongates telomeres by homologous recombination in some cancer cells and during pre-implantation embryo development, when telomere length increases rapidly within a few cell cycles. The maternal and paternal telomeres in the zygote are genetically and epigenetically distinct, with differences in telomere length and in chromatin packaging. We discuss models for how these asymmetries may contribute to telomere regulation during the earliest embryonic cell cycles and suggest directions for future research.
Collapse
Affiliation(s)
- Hyuk-Joon Jeon
- Department of Biology and Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA
| | - Mia T Levine
- Department of Biology and Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael A Lampson
- Department of Biology and Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Huang M, Lyu C, Liu N, Nembhard WN, Witte JS, Hobbs CA, Li M, the National Birth Defects Prevention Study. A gene-based association test of interactions for maternal-fetal genotypes identifies genes associated with nonsyndromic congenital heart defects. Genet Epidemiol 2023; 47:475-495. [PMID: 37341229 PMCID: PMC11781787 DOI: 10.1002/gepi.22533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
The risk of congenital heart defects (CHDs) may be influenced by maternal genes, fetal genes, and their interactions. Existing methods commonly test the effects of maternal and fetal variants one-at-a-time and may have reduced statistical power to detect genetic variants with low minor allele frequencies. In this article, we propose a gene-based association test of interactions for maternal-fetal genotypes (GATI-MFG) using a case-mother and control-mother design. GATI-MFG can integrate the effects of multiple variants within a gene or genomic region and evaluate the joint effect of maternal and fetal genotypes while allowing for their interactions. In simulation studies, GATI-MFG had improved statistical power over alternative methods, such as the single-variant test and functional data analysis (FDA) under various disease scenarios. We further applied GATI-MFG to a two-phase genome-wide association study of CHDs for the testing of both common variants and rare variants using 947 CHD case mother-infant pairs and 1306 control mother-infant pairs from the National Birth Defects Prevention Study (NBDPS). After Bonferroni adjustment for 23,035 genes, two genes on chromosome 17, TMEM107 (p = 1.64e-06) and CTC1 (p = 2.0e-06), were identified for significant association with CHD in common variants analysis. Gene TMEM107 regulates ciliogenesis and ciliary protein composition and was found to be associated with heterotaxy. Gene CTC1 plays an essential role in protecting telomeres from degradation, which was suggested to be associated with cardiogenesis. Overall, GATI-MFG outperformed the single-variant test and FDA in the simulations, and the results of application to NBDPS samples are consistent with existing literature supporting the association of TMEM107 and CTC1 with CHDs.
Collapse
Affiliation(s)
- Manyan Huang
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Chen Lyu
- Department of Population Health, New York University Grossman School of Medicine, New York City, New York, USA
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Wendy N. Nembhard
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - John S. Witte
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, California, USA
| | - Charlotte A. Hobbs
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Ming Li
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, Indiana, USA
| | | |
Collapse
|
15
|
Yu W, Mei Y, Lu Z, Zhou L, Jia F, Chen S, Wang Z. The causal relationship between genetically determined telomere length and meningiomas risk. Front Neurol 2023; 14:1178404. [PMID: 37693759 PMCID: PMC10484632 DOI: 10.3389/fneur.2023.1178404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Background Studies have shown that longer leukocyte telomere length (LTL) is significantly associated with increased risk of meningioma. However, there is limited evidence concerning the causal association of LTL with benign and malignant meningiomas or with the location of benign tumors. Methods We used three LTL datasets from different sources, designated by name and sample size as LTL-78592, LTL-9190, and LTL-472174. The linkage disequilibrium score (LDSC) was used to explore the association between LTL and meningioma. We utilized two-sample bidirectional Mendelian randomization (TSMR) to evaluate whether LTL is causally related to meningioma risk. We adjusted for confounders by conducting multivariable Mendelian randomization (MVMR). Results In the LTL-78592, longer LTL was significantly associated with increased risk of malignant [odds ratio (OR) = 5.14, p = 1.04 × 10-5], benign (OR = 4.81, p < 0.05), benign cerebral (OR = 5.36, p < 0.05), and benign unspecified meningioma (OR = 8.26, p < 0.05). The same results were obtained for the LTL-9190. In the LTL-472174, longer LTL was significantly associated with increased risk of malignant (OR = 4.94, p < 0.05), benign (OR = 3.14, p < 0.05), and benign cerebral meningioma (OR = 3.59, p < 0.05). Similar results were obtained in the MVMR. In contrast, only benign cerebral meningioma displayed a possible association with longer LTL (OR = 1.01, p < 0.05). No heterogeneity or horizontal pleiotropy was detected. Conclusion In brief, genetically predicted longer LTL may increase the risk of benign, malignant, and benign cerebral meningiomas, regardless of the LTL measure, in European populations.
Collapse
Affiliation(s)
- Weijie Yu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| | - Yunyun Mei
- Department of Neurosurgery, Fudan University Shanghai Cancer Center (Xiamen Hospital), Xiamen, China
| | - Zhenwei Lu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| | - Liwei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| | - Fang Jia
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Sifang Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| | - Zhanxiang Wang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| |
Collapse
|
16
|
Sun P, Wei P, Liu H, Wu J, Gross ND, Sikora AG, Wei Q, Shete S, Zafereo ME, Liu J, Li G. GWAS-identified telomere length associated genetic variants predict risk of recurrence of HPV-positive oropharyngeal cancer after definitive radiotherapy. EBioMedicine 2023; 94:104722. [PMID: 37487414 PMCID: PMC10382868 DOI: 10.1016/j.ebiom.2023.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Lymphocyte telomere length (LTL)-related genetic variants may modulate LTL and affect recurrence of squamous cell carcinoma of the oropharynx (SCCOP). METHODS A total of 1013 patients with incident SCCOP were recruited and genotyped for 16 genome-wide association study (GWAS)-identified TL-related polymorphisms. Of these patients, 489 had tumour HPV16 status determination. Univariate and multivariate analyses were performed to evaluate associations. FINDINGS Of the 16 TL-related polymorphisms, four were significantly associated with LTL: rs1920116, rs3027234, rs6772228, and rs11125529, and the patients with putatively favourable genotypes had approximately 1.5-3 times the likelihood of shorter LTL compared with patients with the corresponding risk genotypes. Moreover, patients with one to four favourable genotypes of the four combined polymorphisms had approximately 3-11 times the likelihood of shorter LTL compared with patients with no favourable genotype. The four LTL-related polymorphisms were significantly associated with approximately 40% reduced risk (for favourable genotypes) or doubled risk (for risk genotypes) of recurrence, and similar but more pronounced associations were observed in patients with tumour HPV16-positive SCCOP. Similarly, patients with one to four risk genotypes had significantly approximately 2.5-4 times increased recurrence risk compared with patients with no risk genotype, and similar but more pronounced associations were observed in patients with tumour HPV16-positive SCCOP. INTERPRETATION Four LTL-related polymorphisms individually or jointly modify LTL and risk of recurrence of SCCOP, particularly HPV-positive SCCOP. These LTL-related polymorphisms could have potential to further stratify patients with HPV-positive SCCOP for individualized treatment and better survival. FUNDING Not applicable.
Collapse
Affiliation(s)
- Peng Sun
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA; Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Hongliang Liu
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Neil D Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Qingyi Wei
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA; Department of Imaging Physics, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Mark E Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Jisheng Liu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA; Department of Epidemiology, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Mahmoodpoor A, Sanaie S, Eskandari M, Behrouzi N, Taghizadeh M, Roudbari F, Emamalizadeh B, Sohrabifar N, Kazeminasab S. Association between leukocyte telomere length and COVID-19 severity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023; 24:37. [PMID: 37273887 PMCID: PMC10225776 DOI: 10.1186/s43042-023-00415-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Background Inter-individual variations in the clinical manifestations of SARS-CoV-2 infection are among the challenging features of COVID-19. The known role of telomeres in cell proliferation and immune competency highlights their possible function in infectious diseases. Variability in telomere length is an invaluable parameter in the heterogeneity of the clinical presentation of diseases. Result In this study, our aim was to investigate the possible association between leukocyte telomere length (LTL) and COVID-19 severity. LTL was measured in 100 patients with moderate and severe forms of COVID-19 using the quantitative PCR (q-PCR) method. Statistical analysis confirmed a strong inverse correlation between relative LTL and COVID-19 severity. Conclusions These findings suggest that LTL can be a useful parameter for predicting disease severity in patients, as individuals with short telomeres may have a higher risk of developing severe COVID-19. Supplementary Information The online version contains supplementary material available at 10.1186/s43042-023-00415-z.
Collapse
Affiliation(s)
- Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center of Psychiatry and Behavioral Sciences, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maqsoud Eskandari
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Behrouzi
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Taghizadeh
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Babak Emamalizadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Sohrabifar
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Kazeminasab
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Shi J, Shiraishi K, Choi J, Matsuo K, Chen TY, Dai J, Hung RJ, Chen K, Shu XO, Kim YT, Landi MT, Lin D, Zheng W, Yin Z, Zhou B, Song B, Wang J, Seow WJ, Song L, Chang IS, Hu W, Chien LH, Cai Q, Hong YC, Kim HN, Wu YL, Wong MP, Richardson BD, Funderburk KM, Li S, Zhang T, Breeze C, Wang Z, Blechter B, Bassig BA, Kim JH, Albanes D, Wong JYY, Shin MH, Chung LP, Yang Y, An SJ, Zheng H, Yatabe Y, Zhang XC, Kim YC, Caporaso NE, Chang J, Ho JCM, Kubo M, Daigo Y, Song M, Momozawa Y, Kamatani Y, Kobayashi M, Okubo K, Honda T, Hosgood DH, Kunitoh H, Patel H, Watanabe SI, Miyagi Y, Nakayama H, Matsumoto S, Horinouchi H, Tsuboi M, Hamamoto R, Goto K, Ohe Y, Takahashi A, Goto A, Minamiya Y, Hara M, Nishida Y, Takeuchi K, Wakai K, Matsuda K, Murakami Y, Shimizu K, Suzuki H, Saito M, Ohtaki Y, Tanaka K, Wu T, Wei F, Dai H, Machiela MJ, Su J, Kim YH, Oh IJ, Lee VHF, Chang GC, Tsai YH, Chen KY, Huang MS, Su WC, Chen YM, Seow A, Park JY, Kweon SS, et alShi J, Shiraishi K, Choi J, Matsuo K, Chen TY, Dai J, Hung RJ, Chen K, Shu XO, Kim YT, Landi MT, Lin D, Zheng W, Yin Z, Zhou B, Song B, Wang J, Seow WJ, Song L, Chang IS, Hu W, Chien LH, Cai Q, Hong YC, Kim HN, Wu YL, Wong MP, Richardson BD, Funderburk KM, Li S, Zhang T, Breeze C, Wang Z, Blechter B, Bassig BA, Kim JH, Albanes D, Wong JYY, Shin MH, Chung LP, Yang Y, An SJ, Zheng H, Yatabe Y, Zhang XC, Kim YC, Caporaso NE, Chang J, Ho JCM, Kubo M, Daigo Y, Song M, Momozawa Y, Kamatani Y, Kobayashi M, Okubo K, Honda T, Hosgood DH, Kunitoh H, Patel H, Watanabe SI, Miyagi Y, Nakayama H, Matsumoto S, Horinouchi H, Tsuboi M, Hamamoto R, Goto K, Ohe Y, Takahashi A, Goto A, Minamiya Y, Hara M, Nishida Y, Takeuchi K, Wakai K, Matsuda K, Murakami Y, Shimizu K, Suzuki H, Saito M, Ohtaki Y, Tanaka K, Wu T, Wei F, Dai H, Machiela MJ, Su J, Kim YH, Oh IJ, Lee VHF, Chang GC, Tsai YH, Chen KY, Huang MS, Su WC, Chen YM, Seow A, Park JY, Kweon SS, Chen KC, Gao YT, Qian B, Wu C, Lu D, Liu J, Schwartz AG, Houlston R, Spitz MR, Gorlov IP, Wu X, Yang P, Lam S, Tardon A, Chen C, Bojesen SE, Johansson M, Risch A, Bickeböller H, Ji BT, Wichmann HE, Christiani DC, Rennert G, Arnold S, Brennan P, McKay J, Field JK, Shete SS, Le Marchand L, Liu G, Andrew A, Kiemeney LA, Zienolddiny-Narui S, Grankvist K, Johansson M, Cox A, Taylor F, Yuan JM, Lazarus P, Schabath MB, Aldrich MC, Jeon HS, Jiang SS, Sung JS, Chen CH, Hsiao CF, Jung YJ, Guo H, Hu Z, Burdett L, Yeager M, Hutchinson A, Hicks B, Liu J, Zhu B, Berndt SI, Wu W, Wang J, Li Y, Choi JE, Park KH, Sung SW, Liu L, Kang CH, Wang WC, Xu J, Guan P, Tan W, Yu CJ, Yang G, Sihoe ADL, Chen Y, Choi YY, Kim JS, Yoon HI, Park IK, Xu P, He Q, Wang CL, Hung HH, Vermeulen RCH, Cheng I, Wu J, Lim WY, Tsai FY, Chan JKC, Li J, Chen H, Lin HC, Jin L, Liu J, Sawada N, Yamaji T, Wyatt K, Li SA, Ma H, Zhu M, Wang Z, Cheng S, Li X, Ren Y, Chao A, Iwasaki M, Zhu J, Jiang G, Fei K, Wu G, Chen CY, Chen CJ, Yang PC, Yu J, Stevens VL, Fraumeni JF, Chatterjee N, Gorlova OY, Hsiung CA, Amos CI, Shen H, Chanock SJ, Rothman N, Kohno T, Lan Q. Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population. Nat Commun 2023; 14:3043. [PMID: 37236969 PMCID: PMC10220065 DOI: 10.1038/s41467-023-38196-z] [Show More Authors] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications.
Collapse
Affiliation(s)
- Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Research Institute, Tokyo, Japan
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tzu-Yu Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Young Tae Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Dongxin Lin
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bao Song
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Jiucun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Jie Seow
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Li-Hsin Chien
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Nam Kim
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Maria Pik Wong
- Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Brian Douglas Richardson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Karen M Funderburk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Shilan Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown University Medical Center, Washington, DC, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Charles Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jin Hee Kim
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Lap Ping Chung
- Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Yang Yang
- Shanghai Pulmonary Hospital, Shanghai, China
| | - She-Juan An
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yasushi Yatabe
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Young-Chul Kim
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasuneup, Republic of Korea
- Department of Internal Medicine, Chonnam National Univerisity Medical School, Gwangju, Republic of Korea
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jiang Chang
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - James Chung Man Ho
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Medical Oncology and Cancer Center, and Center for Advanced Medicine against Cancer, Shiga University of Medical Science, Shiga, Japan
| | - Minsun Song
- Department of Statistics & Research Institute of Natural Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masashi Kobayashi
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Okubo
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Honda
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dean H Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Hideo Kunitoh
- Department of Medical Oncology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Harsh Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Haruhiko Nakayama
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuichiro Ohe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Graduate School of Medicine, Akita University, Akita, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kimihiro Shimizu
- Department of Surgery, Division of General Thoracic Surgery, Shinshu University School of Medicine Asahi, Nagano, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoichi Ohtaki
- Department of Integrative center of General Surgery, Gunma University Hospital, Gunma, Japan
| | - Kazumi Tanaka
- Department of Integrative center of General Surgery, Gunma University Hospital, Gunma, Japan
| | - Tangchun Wu
- Institute of Occupational Medicine and Ministry of Education Key Lab for Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Fusheng Wei
- China National Environmental Monitoring Center, Beijing, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jian Su
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yeul Hong Kim
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - In-Jae Oh
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasuneup, Republic of Korea
- Department of Internal Medicine, Chonnam National Univerisity Medical School, Gwangju, Republic of Korea
| | - Victor Ho Fun Lee
- Department of Clinical Oncology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Gee-Chen Chang
- School of Medicine and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Division of Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Huang Tsai
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
- Department of Pulmonary and Critical Care, Xiamen Chang Gung Hospital, Xiamen, China
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University and Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wu-Chou Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, and school of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Adeline Seow
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jae Yong Park
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Jeonnam Regional Cancer Center, Chonnam National University, Hwasun, Republic of Korea
| | - Kun-Chieh Chen
- Department of Internal Medicine, Division of Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Biyun Qian
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Chen Wu
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Daru Lu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianjun Liu
- Genome Institute of Singapore, Agency of Science, Technology and Research, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Richard Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Margaret R Spitz
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
| | - Ivan P Gorlov
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
| | - Xifeng Wu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Chu Chen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stig E Bojesen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mattias Johansson
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Angela Risch
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- University of Salzburg and Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - H-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians University, Munich, Germany
- Helmholtz Center Munich, Institute of Epidemiology, Munich, Germany
- Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, Germany
| | | | | | | | - Paul Brennan
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - James McKay
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | - Sanjay S Shete
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Geoffrey Liu
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | | | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | | | | | - Jian-Min Yuan
- UPMC Hillman Cancer Center and Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip Lazarus
- Washington State University College of Pharmacy, Spokane, WA, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hyo-Sung Jeon
- Cancer Research Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jae Sook Sung
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chin-Fu Hsiao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yoo Jin Jung
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Huan Guo
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Jia Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Wei Wu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Junwen Wang
- Department of Biochemistry, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Genomic Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuqing Li
- Department of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Jin Eun Choi
- Cancer Research Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Kyong Hwa Park
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Sook Whan Sung
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Li Liu
- Department of Oncology, Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Hyun Kang
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wen-Chang Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jun Xu
- School of Public Health, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Peng Guan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, China
| | - Wen Tan
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Gong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Ying Chen
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yi Young Choi
- Cancer Research Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Jun Suk Kim
- Department of Internal Medicine, Division of Medical Oncology, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Ho-Il Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - In Kyu Park
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ping Xu
- Department of Oncology, Wuhan Iron and Steel (Group) Corporation Staff-Worker Hospital, Wuhan, China
| | - Qincheng He
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Chih-Liang Wang
- Department of Pulmonary and Critical Care, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiao-Han Hung
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Roel C H Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Junjie Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei-Yen Lim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Jihua Li
- Qujing Center for Diseases Control and Prevention, Qujing, China
| | - Hongyan Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hsien-Chih Lin
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Kathleen Wyatt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Shengchao A Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhehai Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Sensen Cheng
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, China
| | - Yangwu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, China
| | - Ann Chao
- Center for Global Health, National Cancer Institute, Bethesda, MD, USA
| | - Motoki Iwasaki
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Junjie Zhu
- Shanghai Pulmonary Hospital, Shanghai, China
| | | | - Ke Fei
- Shanghai Pulmonary Hospital, Shanghai, China
| | - Guoping Wu
- China National Environmental Monitoring Center, Beijing, China
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Jen Chen
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jinming Yu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | | | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Olga Y Gorlova
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Christopher I Amos
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Research Institute, Tokyo, Japan
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
19
|
Tian YE, Cropley V, Maier AB, Lautenschlager NT, Breakspear M, Zalesky A. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat Med 2023; 29:1221-1231. [PMID: 37024597 DOI: 10.1038/s41591-023-02296-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023]
Abstract
Biological aging of human organ systems reflects the interplay of age, chronic disease, lifestyle and genetic risk. Using longitudinal brain imaging and physiological phenotypes from the UK Biobank, we establish normative models of biological age for three brain and seven body systems. Here we find that an organ's biological age selectively influences the aging of other organ systems, revealing a multiorgan aging network. We report organ age profiles for 16 chronic diseases, where advanced biological aging extends from the organ of primary disease to multiple systems. Advanced body age associates with several lifestyle and environmental factors, leukocyte telomere lengths and mortality risk, and predicts survival time (area under the curve of 0.77) and premature death (area under the curve of 0.86). Our work reveals the multisystem nature of human aging in health and chronic disease. It may enable early identification of individuals at increased risk of aging-related morbidity and inform new strategies to potentially limit organ-specific aging in such individuals.
Collapse
Affiliation(s)
- Ye Ella Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nicola T Lautenschlager
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
- NorthWestern Mental Health, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Michael Breakspear
- Discipline of Psychiatry, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, New South Wales, Australia
- School of Psychological Sciences, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
20
|
Ikemoto K, Fujimoto H, Fujimoto A. Localized assembly for long reads enables genome-wide analysis of repetitive regions at single-base resolution in human genomes. Hum Genomics 2023; 17:21. [PMID: 36895025 PMCID: PMC9996862 DOI: 10.1186/s40246-023-00467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Long-read sequencing technologies have the potential to overcome the limitations of short reads and provide a comprehensive picture of the human genome. However, the characterization of repetitive sequences by reconstructing genomic structures at high resolution solely from long reads remains difficult. Here, we developed a localized assembly method (LoMA) that constructs highly accurate consensus sequences (CSs) from long reads. METHODS We developed LoMA by combining minimap2, MAFFT, and our algorithm, which classifies diploid haplotypes based on structural variants and CSs. Using this tool, we analyzed two human samples (NA18943 and NA19240) sequenced with the Oxford Nanopore sequencer. We defined target regions in each genome based on mapping patterns and then constructed a high-quality catalog of the human insertion solely from the long-read data. RESULTS The assessment of LoMA showed a high accuracy of CSs (error rate < 0.3%) compared with raw data (error rate > 8%) and superiority to a previous study. The genome-wide analysis of NA18943 and NA19240 identified 5516 and 6542 insertions (≥ 100 bp), respectively. Most insertions (~ 80%) were derived from tandem repeats and transposable elements. We also detected processed pseudogenes, insertions in transposable elements, and long insertions (> 10 kbp). Finally, our analysis suggested that short tandem duplications are associated with gene expression and transposons. CONCLUSIONS Our analysis showed that LoMA constructs high-quality sequences from long reads with substantial errors. This study revealed the true structures of the insertions with high accuracy and inferred the mechanisms for the insertions, thus contributing to future human genome studies. LoMA is available at our GitHub page: https://github.com/kolikem/loma .
Collapse
Affiliation(s)
- Ko Ikemoto
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo, Japan
| | - Hinano Fujimoto
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo, Japan
| | - Akihiro Fujimoto
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo, Japan.
| |
Collapse
|
21
|
Ha SJ, Kwag E, Kim S, Park JH, Park SJ, Yoo HS. Effect of Traditional Korean Medicine Oncotherapy on the Survival, Quality of Life, and Telomere Length: A Prospective Cohort Study. Integr Cancer Ther 2023; 22:15347354231154267. [PMID: 37615075 PMCID: PMC10467224 DOI: 10.1177/15347354231154267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/08/2022] [Accepted: 01/16/2023] [Indexed: 08/25/2023] Open
Abstract
A 4-year prospective cohort study on patients with lung, gastric, hepatic, colorectal, breast, uterine, and ovarian cancer was conducted at the East-West Cancer Center (EWCC) of Daejeon Korean Medicine Hospital in Daejeon, Korea. We divided patients into 2 groups based on how long they had been receiving TKM oncotherapy and compared event-free survival (EFS), telomere length change, and quality of life (QoL). The study collected data on 83 patients from October 2016 to June 2020 and discovered no statistical differences in EFS based on the duration of TKM oncotherapy. In the analysis of changes in QoL outcomes, there were no statistically significant group differences between the groups. After controlling for covariates that could affect telomere length, the long-term TKM oncotherapy group had a higher daily telomere attrition rate. The study of the relationship between telomere length and prognostic factors discovered that patients with advanced N stage at the time of diagnosis and who had previously received radiotherapy had shorter telomere length. When examining associations between SNP genotype and percentile score of telomere length, this study was able to confirm an association between telomere length and rs4387287. This study is significant because it is the first to assess the effects of TKM oncotherapy and investigate telomere length-related factors. To assess the effects of TKM oncotherapy on cancer patients' survival and QoL, a longer-term observational study with a larger sample size is required.
Collapse
Affiliation(s)
- Su-Jung Ha
- Daejeon University, Daejeon City, Republic of Korea
| | - Eunbin Kwag
- Daejeon University, Daejeon City, Republic of Korea
| | - Soodam Kim
- Daejeon University, Daejeon City, Republic of Korea
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ji-Hye Park
- Daejeon University, Seoul, Republic of Korea
| | - So-Jung Park
- Pusan National University Yangsan-si, Gyeongsangnam-do, Republic of Korea
| | | |
Collapse
|
22
|
Pepke ML, Kvalnes T, Lundregan S, Boner W, Monaghan P, Saether BE, Jensen H, Ringsby TH. Genetic architecture and heritability of early-life telomere length in a wild passerine. Mol Ecol 2022; 31:6360-6381. [PMID: 34825754 DOI: 10.1111/mec.16288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 01/31/2023]
Abstract
Early-life telomere length (TL) is associated with fitness in a range of organisms. Little is known about the genetic basis of variation in TL in wild animal populations, but to understand the evolutionary and ecological significance of TL it is important to quantify the relative importance of genetic and environmental variation in TL. In this study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and used an animal model to show that there is a small heritable component of early-life TL (h2 = 0.04). Variation in TL among individuals was mainly driven by environmental (annual) variance, but also brood and parental effects. Parent-offspring regressions showed a large maternal inheritance component in TL ( h maternal 2 = 0.44), but no paternal inheritance. We did not find evidence for a negative genetic correlation underlying the observed negative phenotypic correlation between TL and structural body size. Thus, TL may evolve independently of body size and the negative phenotypic correlation is likely to be caused by nongenetic environmental effects. We further used genome-wide association analysis to identify genomic regions associated with TL variation. We identified several putative genes underlying TL variation; these have been inferred to be involved in oxidative stress, cellular growth, skeletal development, cell differentiation and tumorigenesis in other species. Together, our results show that TL has a low heritability and is a polygenic trait strongly affected by environmental conditions in a free-living bird.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sarah Lundregan
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Bernt-Erik Saether
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
23
|
Salih A, Galazzo IB, Petersen SE, Lekadir K, Radeva P, Menegaz G, Altmann A. Telomere length is causally connected to brain MRI image derived phenotypes: A mendelian randomization study. PLoS One 2022; 17:e0277344. [PMID: 36399449 PMCID: PMC9674175 DOI: 10.1371/journal.pone.0277344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
Recent evidence suggests that shorter telomere length (TL) is associated with neuro degenerative diseases and aging related outcomes. The causal association between TL and brain characteristics represented by image derived phenotypes (IDPs) from different magnetic resonance imaging (MRI) modalities remains unclear. Here, we use two-sample Mendelian randomization (MR) to systematically assess the causal relationships between TL and 3,935 brain IDPs. Overall, the MR results suggested that TL was causally associated with 193 IDPs with majority representing diffusion metrics in white matter tracts. 68 IDPs were negatively associated with TL indicating that longer TL causes decreasing in these IDPs, while the other 125 were associated positively (longer TL leads to increased IDPs measures). Among them, ten IDPs have been previously reported as informative biomarkers to estimate brain age. However, the effect direction between TL and IDPs did not reflect the observed direction between aging and IDPs: longer TL was associated with decreases in fractional anisotropy and increases in axial, radial and mean diffusivity. For instance, TL was positively associated with radial diffusivity in the left perihippocampal cingulum tract and with mean diffusivity in right perihippocampal cingulum tract. Our results revealed a causal role of TL on white matter integrity which makes it a valuable factor to be considered when brain age is estimated and investigated.
Collapse
Affiliation(s)
- Ahmed Salih
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Steffen E. Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Karim Lekadir
- Dept. de Matemàtiques i Informàtica, University of Barcelona, Barcelona, Spain
| | - Petia Radeva
- Dept. de Matemàtiques i Informàtica, University of Barcelona, Barcelona, Spain
| | - Gloria Menegaz
- Department of Computer Science, University of Verona, Verona, Italy
| | - André Altmann
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Wang C, Alfano R, Reimann B, Hogervorst J, Bustamante M, De Vivo I, Plusquin M, Nawrot TS, Martens DS. Genetic regulation of newborn telomere length is mediated and modified by DNA methylation. Front Genet 2022; 13:934277. [PMID: 36267401 PMCID: PMC9576874 DOI: 10.3389/fgene.2022.934277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Telomere length at birth determines later life telomere length and potentially predicts ageing-related diseases. However, the genetic and epigenetic settings of telomere length in newborns have not been analyzed. In addition, no study yet has reported how the interplay between genetic variants and genome-wide cytosine methylation explains the variation in early-life telomere length. In this study based on 281 mother-newborn pairs from the ENVIRONAGE birth cohort, telomere length and whole-genome DNA methylation were assessed in cord blood and 26 candidate single nucleotide polymorphism related to ageing or telomere length were genotyped. We identified three genetic variants associated with cord blood telomere length and 57 cis methylation quantitative trait loci (cis-mQTLs) of which 22 mQTLs confirmed previous findings and 35 were newly identified. Five SNPs were found to have significant indirect effects on cord blood telomere length via the mediating CpGs. The association between rs911874 (SOD2) and newborn telomere length was modified by nearby DNA methylation indicated by a significant statistical interaction. Our results suggest that DNA methylation in cis might have a mediation or modification effect on the genetic difference in newborn telomere length. This novel approach warrants future follow-up studies that are needed to further confirm and extend these findings.
Collapse
Affiliation(s)
- Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública, Madrid, Spain
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA, United States
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| | - Dries S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- *Correspondence: Dries S. Martens,
| |
Collapse
|
25
|
Giaccherini M, Gentiluomo M, Arcidiacono PG, Falconi M, Testoni SGG, Apadula L, Lauri G, Di Franco G, Fatucchi LM, Petrone MC, Corradi C, Crippa S, Morelli L, Capurso G, Campa D. A polymorphic variant in telomere maintenance is associated with worrisome features and high-risk stigmata development in IPMNs. Carcinogenesis 2022; 43:728-735. [PMID: 35675759 DOI: 10.1093/carcin/bgac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) are nonobligatory precursor lesions of pancreatic ductal adenocarcinoma (PDAC). The identification of molecular biomarkers able to predict the risk of progression of IPMNs toward malignancy is largely lacking and sorely needed. Telomere length (TL) is associated with the susceptibility of developing cancers, including PDAC. Moreover, several PDAC risk factors have been shown to be associated with IPMN transition to malignancy. TL is genetically determined, and the aim of this study was to use 11 SNPs, alone or combined in a score (teloscore), to estimate the causal relation between genetically determined TL and IPMNs progression. For this purpose, 173 IPMN patients under surveillance were investigated. The teloscore did not show any correlation, however, we observed an association between PXK-rs6772228-A and an increased risk of IPMN transition to malignancy (HR = 3.17; 95%CI 1.47-6.84; P = 3.24 × 10-3). This effect was also observed in a validation cohort of 142 IPMNs even though the association was not statistically significant. The combined analysis was consistent showing an association between PXK-rs6772228-A and increased risk of progression. The A allele of this SNP is strongly associated with shorter LTL that in turn have been reported to be associated with increased risk of developing PDAC. These results clearly highlight the importance of looking for genetic variants as potential biomarkers in this setting in order to further our understanding the etiopathogenesis of PDAC and suggest that genetically determined TL might be an additional marker of IPMN prognosis.
Collapse
Affiliation(s)
| | | | - Paolo Giorgio Arcidiacono
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Sabrina Gloria Giulia Testoni
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Apadula
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Gaetano Lauri
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Gregorio Di Franco
- General Surgery Unit, Cisanello Hospital, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lorenzo Maria Fatucchi
- General Surgery Unit, Cisanello Hospital, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Chiara Petrone
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Stefano Crippa
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Morelli
- General Surgery Unit, Cisanello Hospital, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gabriele Capurso
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Cigan SS, Meredith JJ, Kelley AC, Yang T, Langer EK, Hooten AJ, Lane JA, Cole BR, Krailo M, Frazier AL, Pankratz N, Poynter JN. Predicted leukocyte telomere length and risk of germ cell tumours. Br J Cancer 2022; 127:301-312. [PMID: 35368045 PMCID: PMC9296514 DOI: 10.1038/s41416-022-01798-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Genetically predicted leukocyte telomere length (LTL) has been evaluated in several studies of childhood and adult cancer. We test whether genetically predicted longer LTL is associated with germ cell tumours (GCT) in children and adults. METHODS Paediatric GCT samples were obtained from a Children's Oncology Group study and state biobank programs in California and Michigan (N = 1413 cases, 1220 biological parents and 1022 unrelated controls). Replication analysis included 396 adult testicular GCTs (TGCT) and 1589 matched controls from the UK Biobank. Mendelian randomisation was used to look at the association between genetically predicted LTL and GCTs and TERT variants were evaluated within GCT subgroups. RESULTS We identified significant associations between TERT variants reported in previous adult TGCT GWAS in paediatric GCT: TERT/rs2736100-C (OR = 0.82; P = 0.0003), TERT/rs2853677-G (OR = 0.80; P = 0.001), and TERT/rs7705526-A (OR = 0.81; P = 0.003). We also extended these findings to females and tumours outside the testes. In contrast, we did not observe strong evidence for an association between genetically predicted LTL by other variants and GCT risk in children or adults. CONCLUSION While TERT is a known susceptibility locus for GCT, our results suggest that LTL predicted by other variants is not strongly associated with risk in either children or adults.
Collapse
Affiliation(s)
- Shannon S Cigan
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - John J Meredith
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ava C Kelley
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tianzhong Yang
- Department of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Erica K Langer
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anthony J Hooten
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John A Lane
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Benjamin R Cole
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark Krailo
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - A Lindsay Frazier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Nathan Pankratz
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jenny N Poynter
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
27
|
Andreu-Sánchez S, Aubert G, Ripoll-Cladellas A, Henkelman S, Zhernakova DV, Sinha T, Kurilshikov A, Cenit MC, Jan Bonder M, Franke L, Wijmenga C, Fu J, van der Wijst MGP, Melé M, Lansdorp P, Zhernakova A. Genetic, parental and lifestyle factors influence telomere length. Commun Biol 2022; 5:565. [PMID: 35681050 PMCID: PMC9184499 DOI: 10.1038/s42003-022-03521-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/22/2022] [Indexed: 11/09/2022] Open
Abstract
The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Repeat Diagnostics Inc, Vancouver, BC, Canada
| | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Sandra Henkelman
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, 197101, Russia
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria Carmen Cenit
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Microbial Ecology, Nutrition, and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980, Paterna-Valencia, Spain
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada.
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands.
- Departments of Hematology and Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
28
|
Jiang L, Tang BS, Guo JF, Li JC. Telomere Length and COVID-19 Outcomes: A Two-Sample Bidirectional Mendelian Randomization Study. Front Genet 2022; 13:805903. [PMID: 35677559 PMCID: PMC9168682 DOI: 10.3389/fgene.2022.805903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
Abstract
Observational studies have found a relationship between directly measured short leukocyte telomere length (LTL) and severe coronavirus disease 19 (COVID-19). We investigated the causal association between genetically predicted LTL and COVID-19 susceptibility or severity. A previous genome-wide association study (GWAS) of 78,592 European-ancestry participants identified single nucleotidepolymorphisms (SNPs) that can be utilized to genetically predict LTL. Summary-level data for COVID-19 outcomes were analyzed from the COVID-19 Host Genetics Initiative. A two-sample bidirectional Mendelian randomization (MR) study was designed to evaluate these causal relationships. Using an inverse-weighted MR analysis and population-based controls, genetically predicted LTL did not reveal any significant association with COVID-19 susceptibility (odds ratio (OR): 0.94; 95% CI: 0.85–1.04; p = 0.202) or severity (OR: 0.85; 95% CI: 0.70–1.03; p = 0.099). Similar results were found for five other definitions of cases/controls and/or COVID-19 outcomes. Six additional MR methods and sensitivity analyses were conducted after removing variants with potential horizontal pleiotropy and including variants at a liberal significance level, which produced similar results. Using SNPs identified for the prediction of LTL from another GWAS study, we found a non-significant association for COVID-19 susceptibility or severity with narrower CIs toward the null hypothesis. No proof of genetically predicted COVID-19 phenotypes remained causally associated with genetically predicted LTL, and the null association was consistent with a lack of significant genetic correlation. Genetic evidence does not support shorter LTL as a causal risk factor for COVID-19 susceptibility or severity.
Collapse
Affiliation(s)
- Li Jiang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-sha Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-feng Guo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ji-feng Guo, ; Jin-chen Li,
| | - Jin-chen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ji-feng Guo, ; Jin-chen Li,
| |
Collapse
|
29
|
Taub MA, Conomos MP, Keener R, Iyer KR, Weinstock JS, Yanek LR, Lane J, Miller-Fleming TW, Brody JA, Raffield LM, McHugh CP, Jain D, Gogarten SM, Laurie CA, Keramati A, Arvanitis M, Smith AV, Heavner B, Barwick L, Becker LC, Bis JC, Blangero J, Bleecker ER, Burchard EG, Celedón JC, Chang YPC, Custer B, Darbar D, de las Fuentes L, DeMeo DL, Freedman BI, Garrett ME, Gladwin MT, Heckbert SR, Hidalgo BA, Irvin MR, Islam T, Johnson WC, Kaab S, Launer L, Lee J, Liu S, Moscati A, North KE, Peyser PA, Rafaels N, Seidman C, Weeks DE, Wen F, Wheeler MM, Williams LK, Yang IV, Zhao W, Aslibekyan S, Auer PL, Bowden DW, Cade BE, Chen Z, Cho MH, Cupples LA, Curran JE, Daya M, Deka R, Eng C, Fingerlin TE, Guo X, Hou L, Hwang SJ, Johnsen JM, Kenny EE, Levin AM, Liu C, Minster RL, Naseri T, Nouraie M, Reupena MS, Sabino EC, Smith JA, Smith NL, Lasky-Su J, Taylor JG, Telen MJ, Tiwari HK, Tracy RP, White MJ, Zhang Y, Wiggins KL, Weiss ST, Vasan RS, Taylor KD, Sinner MF, Silverman EK, Shoemaker MB, Sheu WHH, Sciurba F, Schwartz DA, Rotter JI, Roden D, Redline S, Raby BA, et alTaub MA, Conomos MP, Keener R, Iyer KR, Weinstock JS, Yanek LR, Lane J, Miller-Fleming TW, Brody JA, Raffield LM, McHugh CP, Jain D, Gogarten SM, Laurie CA, Keramati A, Arvanitis M, Smith AV, Heavner B, Barwick L, Becker LC, Bis JC, Blangero J, Bleecker ER, Burchard EG, Celedón JC, Chang YPC, Custer B, Darbar D, de las Fuentes L, DeMeo DL, Freedman BI, Garrett ME, Gladwin MT, Heckbert SR, Hidalgo BA, Irvin MR, Islam T, Johnson WC, Kaab S, Launer L, Lee J, Liu S, Moscati A, North KE, Peyser PA, Rafaels N, Seidman C, Weeks DE, Wen F, Wheeler MM, Williams LK, Yang IV, Zhao W, Aslibekyan S, Auer PL, Bowden DW, Cade BE, Chen Z, Cho MH, Cupples LA, Curran JE, Daya M, Deka R, Eng C, Fingerlin TE, Guo X, Hou L, Hwang SJ, Johnsen JM, Kenny EE, Levin AM, Liu C, Minster RL, Naseri T, Nouraie M, Reupena MS, Sabino EC, Smith JA, Smith NL, Lasky-Su J, Taylor JG, Telen MJ, Tiwari HK, Tracy RP, White MJ, Zhang Y, Wiggins KL, Weiss ST, Vasan RS, Taylor KD, Sinner MF, Silverman EK, Shoemaker MB, Sheu WHH, Sciurba F, Schwartz DA, Rotter JI, Roden D, Redline S, Raby BA, Psaty BM, Peralta JM, Palmer ND, Nekhai S, Montgomery CG, Mitchell BD, Meyers DA, McGarvey ST, Fernando D. Martinez on behalf of the NHLBI CARE Network, Mak AC, Loos RJ, Kumar R, Kooperberg C, Konkle BA, Kelly S, Kardia SL, Kaplan R, He J, Gui H, Gilliland FD, Gelb BD, Fornage M, Ellinor PT, de Andrade M, Correa A, Chen YDI, Boerwinkle E, Barnes KC, Ashley-Koch AE, Arnett DK, Albert C, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed Hematology and Hemostasis Working Group, TOPMed Structural Variation Working Group, Laurie CC, Abecasis G, Nickerson DA, Wilson JG, Rich SS, Levy D, Ruczinski I, Aviv A, Blackwell TW, Thornton T, O’Connell J, Cox NJ, Perry JA, Armanios M, Battle A, Pankratz N, Reiner AP, Mathias RA. Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed. CELL GENOMICS 2022; 2:S2666-979X(21)00105-1. [PMID: 35530816 PMCID: PMC9075703 DOI: 10.1016/j.xgen.2021.100084] [Show More Authors] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 09/03/2021] [Accepted: 12/10/2021] [Indexed: 01/16/2023]
Abstract
Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value <5×10-9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes.
Collapse
Affiliation(s)
- Margaret A. Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew P. Conomos
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Rebecca Keener
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Kruthika R. Iyer
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joshua S. Weinstock
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lisa R. Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Lane
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Tyne W. Miller-Fleming
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin P. McHugh
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Stephanie M. Gogarten
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Cecelia A. Laurie
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Ali Keramati
- Department of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Albert V. Smith
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Benjamin Heavner
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Lucas Barwick
- LTRC Data Coordinating Center, The Emmes Company, LLC, Rockville, MD, USA
| | - Lewis C. Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eugene R. Bleecker
- Department of Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yen Pei C. Chang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Barry I. Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Melanie E. Garrett
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Mark T. Gladwin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Bertha A. Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Talat Islam
- Division of Environmental Health, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - W. Craig Johnson
- Department of Biostatistics, Collaborative Health Studies Coordinating Center, University of Washington, Seattle, WA, USA
| | - Stefan Kaab
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilian’s University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Lenore Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jiwon Lee
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Simin Liu
- Department of Epidemiology and Brown Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Patricia A. Peyser
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nicholas Rafaels
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | | | - Daniel E. Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fayun Wen
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Marsha M. Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - L. Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Ivana V. Yang
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul L. Auer
- Zilber School of Public Health, University of Wisconsin, Milwaukee, Milwaukee, WI, USA
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Brian E. Cade
- Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Zhanghua Chen
- Division of Environmental Health, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
| | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Michelle Daya
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Ranjan Deka
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tasha E. Fingerlin
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Denver, Aurora, CO, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jill M. Johnsen
- Bloodworks Northwest Research Institute, Seattle, WA, USA
- University of Washington, Department of Medicine, Seattle, WA, USA
| | - Eimear E. Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Albert M. Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Chunyu Liu
- The National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Ryan L. Minster
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia, Samoa
- Department of Epidemiology & International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | - Mehdi Nouraie
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Ester C. Sabino
- Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jennifer A. Smith
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nicholas L. Smith
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - James G. Taylor
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Marilyn J. Telen
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
- Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Russell P. Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, Larrner College of Medicine, University of Vermont, Colchester, VT, USA
| | - Marquitta J. White
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ramachandran S. Vasan
- The National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Moritz F. Sinner
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilian’s University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - M. Benjamin Shoemaker
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wayne H.-H. Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Frank Sciurba
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A. Schwartz
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Daniel Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Susan Redline
- Division of Sleep Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Benjamin A. Raby
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
| | - Juan M. Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Courtney G. Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Deborah A. Meyers
- Department of Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Stephen T. McGarvey
- Department of Epidemiology & International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | | | - Angel C.Y. Mak
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajesh Kumar
- Division of Allergy and Clinical Immunology, The Ann and Robert H. Lurie Children’s Hospital of Chicago, and Department of Pediatrics, Northwestern University, Chicago, IL, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Barbara A. Konkle
- Bloodworks Northwest Research Institute, Seattle, WA, USA
- University of Washington, Department of Medicine, Seattle, WA, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, CA, USA
- UCSF Benioff Children’s Hospital, Oakland, CA, USA
| | - Sharon L.R. Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Frank D. Gilliland
- Division of Environmental Health, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Departments of Pediatrics and Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick T. Ellinor
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Adolfo Correa
- Jackson Heart Study and Departments of Medicine and Population Health Science, Jackson, MS, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kathleen C. Barnes
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Allison E. Ashley-Koch
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Christine Albert
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | | | | | - Cathy C. Laurie
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Goncalo Abecasis
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MI, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Daniel Levy
- The National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Thomas W. Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Timothy Thornton
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jeff O’Connell
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nancy J. Cox
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James A. Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Armanios
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
- Departments of Computer Science and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Schoepf IC, Thorball CW, Ledergerber B, Kootstra NA, Reiss P, Raffenberg M, Engel T, Braun DL, Hasse B, Thurnheer C, Marzolini C, Seneghini M, Bernasconi E, Cavassini M, Buvelot H, Arribas JR, Kouyos RD, Fellay J, Günthard HF, Tarr PE. Telomere Length Declines In Persons Living With HIV Before Antiretroviral Therapy Start But Not After Viral Suppression: A Longitudinal Study Over >17 Years. J Infect Dis 2021; 225:1581-1591. [PMID: 34910812 DOI: 10.1093/infdis/jiab603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/13/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In people living with HIV (PWH), long-term telomere length (TL) change without/with suppressive antiretroviral therapy (ART) and the contribution of genetic background to TL are incompletely understood. METHODS We measured TL change in peripheral blood mononuclear cells by quantitative PCR in 107 Swiss HIV Cohort Study participants with longitudinal samples available both before and during suppressive ART. We applied mixed effects multi-level regression to obtain uni-/multivariable estimates for longitudinal TL dynamics including age, sex, and CD4:CD8 ratio. We assessed the effect of individual antiretrovirals and of an individual TL-polygenic risk score (TL-PRS; based on 239 single nucleotide polymorphisms) on TL in 798 additional participants from our previous longitudinal studies. RESULTS During untreated HIV infection (median observation, 7.7 [interquartile range, IQR, 4.7-11] years), TL declined significantly (median -2.12%/year; IQR, -3.48% to -0.76%/year; p=0.002). During suppressive ART (median observation, 9.8 [IQR, 7.1-11.1] years), there was no evidence of TL decline or increase (median +0.54%/year; IQR, -0.55% to +1.63%/year; p=0.329). TL-PRS contributed to TL change (global p=0.019) but particular antiretrovirals did not (all p>0.15). DISCUSSION In PWH, TL is associated with an individual polygenic risk score. TL declined significantly during untreated chronic HIV infection but no TL change occurred during suppressive ART.
Collapse
Affiliation(s)
- Isabella C Schoepf
- University Department of Medicine and Infectious Diseases Service, Kantonsspital Baselland, University of Basel, Bruderholz, Switzerland.,Hepatology, Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Switzerland
| | | | - Bruno Ledergerber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Peter Reiss
- Department of Global Health and Division of Infectious Disease, Amsterdam University Medical Centers, University of Amsterdam, and Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Marieke Raffenberg
- University Department of Medicine and Infectious Diseases Service, Kantonsspital Baselland, University of Basel, Bruderholz, Switzerland.,Department of Intensive Care Medicine, Luzerner Kantonsspital, Luzern, Switzerland
| | - Tanja Engel
- University Department of Medicine and Infectious Diseases Service, Kantonsspital Baselland, University of Basel, Bruderholz, Switzerland.,Department of Internal Medicine, Kantonsspital Uri, Altdorf, Switzerland
| | - Dominique L Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Barbara Hasse
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Christine Thurnheer
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Switzerland
| | - Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland
| | - Marco Seneghini
- Division of Infectious Diseases, Kantonsspital St Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ospedale Regionale, University of Geneva and University of Southern Switzerland, Lugano, Switzerland
| | - Matthias Cavassini
- Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Hélène Buvelot
- Division of Infectious Disease, Geneva University Hospital, Switzerland
| | - José R Arribas
- HIV/AIDS and Infectious Diseases Research Group , Department of Internal Medicine, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, CHUV, University of Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Philip E Tarr
- University Department of Medicine and Infectious Diseases Service, Kantonsspital Baselland, University of Basel, Bruderholz, Switzerland
| | | |
Collapse
|
31
|
Xia K, Zhang L, Zhang G, Wang Y, Huang T, Fan D. Leukocyte telomere length and amyotrophic lateral sclerosis: a Mendelian randomization study. Orphanet J Rare Dis 2021; 16:508. [PMID: 34906191 PMCID: PMC8670150 DOI: 10.1186/s13023-021-02135-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022] Open
Abstract
Background Observational studies have suggested that telomere length is associated with amyotrophic lateral sclerosis (ALS). However, whether this association is causal remains unclear. In this study, we aimed to explore the causal relationship between leukocyte telomere length (LTL) and ALS by a two-sample Mendelian randomization (MR) approach. Single-nucleotide polymorphisms (SNPs) for LTL were identified through high-quality genome-wide association studies (GWASs). The ALS GWAS summary data (20,806 cases; 59,804 controls) with largest sample size to date was obtained. We adopted the inverse variance weighted (IVW) method to examine the effect of LTL on ALS and used the weighted median method, simple median method, MR Egger method and MR-PRESSO method to perform sensitivity analyses. Results We found that genetically determined increased LTL was inversely associated with the risk of ALS (odds ratio (OR) = 0.846, 95% confidence interval (CI): 0.744–0.962, P = 0.011), which was mainly driven by rs940209 in the OBFC1 gene, suggesting a potential effect of OBFC1 on ALS. The results were further confirmed by sensitivity analysis with the MR Egger method (OR = 0.647, 95% CI = 0.447–0.936, P = 0.050). Analyses by the weighted median method (OR = 0.893, P = 0.201) and simple median method (OR = 0.935, P = 0.535) also showed a similar trend. The MR Egger analysis did not suggest directional pleiotropy, with an intercept of 0.025 (P = 0.168). Neither the influence of instrumental outliers nor heterogeneity was found. Conclusions Our results suggest that genetically predicted increased LTL has a causal relationship with a lower risk of ALS. Protecting against telomere loss may be of great importance in the prevention and treatment of ALS. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02135-2.
Collapse
Affiliation(s)
- Kailin Xia
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Gan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Yajun Wang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China. .,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China. .,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China.
| |
Collapse
|
32
|
Gialluisi A, Santoro A, Tirozzi A, Cerletti C, Donati MB, de Gaetano G, Franceschi C, Iacoviello L. Epidemiological and genetic overlap among biological aging clocks: New challenges in biogerontology. Ageing Res Rev 2021; 72:101502. [PMID: 34700008 DOI: 10.1016/j.arr.2021.101502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023]
Abstract
Estimators of biological age (BA) - defined as the hypothetical underlying age of an organism - have attracted more and more attention in the last years, especially after the advent of new algorithms based on machine learning and genetic markers. While different aging clocks reportedly predict mortality in the general population, very little is known on their overlap. Here we review the evidence reported so far to support the existence of a partial overlap among different BA acceleration estimators, both from an epidemiological and a genetic perspective. On the epidemiological side, we review evidence supporting shared and independent influence on mortality risk of different aging clocks - including telomere length, brain, blood and epigenetic aging - and provide an overview of how an important exposure like diet may affect the different aging systems. On the genetic side, we apply linkage disequilibrium score regression analyses to support the existence of partly shared genomic overlap among these aging clocks. Through multivariate analysis of published genetic associations with these clocks, we also identified the most associated variants, genes, and pathways, which may affect common mechanisms underlying biological aging of different systems within the body. Based on our analyses, the most implicated pathways were involved in inflammation, lipid and carbohydrate metabolism, suggesting them as potential molecular targets for future anti-aging interventions. Overall, this review is meant as a contribution to the knowledge on the overlap of aging clocks, trying to clarify their shared biological basis and epidemiological implications.
Collapse
Affiliation(s)
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna 40126, Italy
| | - Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | | | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
33
|
Gentiluomo M, Giaccherini M, Gào X, Guo F, Stocker H, Schöttker B, Brenner H, Canzian F, Campa D. Genome-wide association study of mitochondrial copy number. Hum Mol Genet 2021; 31:1346-1355. [PMID: 34964454 DOI: 10.1093/hmg/ddab341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial DNA copy number (mtDNAcn) variation has been associated with increased risk of several human diseases in epidemiological studies. The quantification of mtDNAcn performed with real-time PCR is currently considered the de facto standard among several techniques. However, the heterogeneity of the laboratory methods (DNA extraction, storage, processing) used could give rise to results that are difficult to compare and reproduce across different studies. Several lines of evidence suggest that mtDNAcn is influenced by nuclear and mitochondrial genetic variability, however this relation is largely unexplored. The aim of this work was to elucidate the genetic basis of mtDNAcn variation. We performed a genome-wide association study (GWAS) of mtDNAcn in 6836 subjects from the ESTHER prospective cohort, and included, as replication set, the summary statistics of a GWAS that used 295 150 participants from the UK Biobank. We observed two novel associations with mtDNAcn variation on chromosome 19 (rs117176661), and 12 (rs7136238) that reached statistical significance at the genome-wide level. A polygenic score that we called mitoscore including all known single nucleotide polymorphisms explained 1.11% of the variation of mtDNAcn (p = 5.93 × 10-7). In conclusion, we performed a GWAS on mtDNAcn, adding to the evidence of the genetic background of this trait.
Collapse
Affiliation(s)
- Manuel Gentiluomo
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| | - Matteo Giaccherini
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy.,Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, 69120, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, 69120, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Daniele Campa
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| |
Collapse
|
34
|
Giaccherini M, Gentiluomo M, Fornili M, Lucenteforte E, Baglietto L, Campa D. Association between telomere length and mitochondrial copy number and cancer risk in humans: A meta-analysis on more than 300,000 individuals. Crit Rev Oncol Hematol 2021; 167:103510. [PMID: 34695574 DOI: 10.1016/j.critrevonc.2021.103510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
In the last decades the association of leukocyte telomere length (LTL) and mitochondrial copy number (mtDNAcn) with cancer risk has been the focus of many reports, however the relation is not yet completely understood. A meta-analysis of 112 studies including 64,184 cancer cases and 278,641 controls that analysed LTL and mtDNAcn in relation to cancer risk has been conducted to further our understanding of the topic. Stratified analyses for tumor type were also performed. Overall, no association was observed for all cancer combined neither for LTL nor mtDNAcn. Significant associations were detected for these biomarkers and specific cancer type; however, a large degree of heterogeneity was present, even within the same tumor type. Alternatives approaches based on polymorphic variants, such as polygenic risk scores and mendelian randomization, could be adopted to unravel the causal correlation of telomere length and mitochondrial copy number with cancer risk.
Collapse
Affiliation(s)
| | | | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126, Pisa, Italy.
| |
Collapse
|
35
|
Masselli E, Pozzi G, Carubbi C, Vitale M. The Genetic Makeup of Myeloproliferative Neoplasms: Role of Germline Variants in Defining Disease Risk, Phenotypic Diversity and Outcome. Cells 2021; 10:cells10102597. [PMID: 34685575 PMCID: PMC8534117 DOI: 10.3390/cells10102597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Myeloproliferative neoplasms are hematologic malignancies typified by a substantial heritable component. Germline variants may affect the risk of developing a MPN, as documented by GWAS studies on large patient cohorts. In addition, once the MPN occurred, inherited host genetic factors can be responsible for tuning the disease phenotypic presentation, outcome, and response to therapy. This review covered the polymorphisms that have been variably associated to MPNs, discussing them in the functional perspective of the biological pathways involved. Finally, we reviewed host genetic determinants of clonal hematopoiesis, a pre-malignant state that may anticipate overt hematologic neoplasms including MPNs.
Collapse
Affiliation(s)
- Elena Masselli
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, 43126 Parma, Italy; (E.M.); (G.P.)
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| | - Giulia Pozzi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, 43126 Parma, Italy; (E.M.); (G.P.)
| | - Cecilia Carubbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, 43126 Parma, Italy; (E.M.); (G.P.)
- Correspondence: (C.C.); (M.V.)
| | - Marco Vitale
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, 43126 Parma, Italy; (E.M.); (G.P.)
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
- Correspondence: (C.C.); (M.V.)
| |
Collapse
|
36
|
Saunders CN, Kinnersley B, Culliford R, Cornish AJ, Law PJ, Houlston RS. Relationship between genetically determined telomere length and glioma risk. Neuro Oncol 2021; 24:171-181. [PMID: 34477880 PMCID: PMC8804896 DOI: 10.1093/neuonc/noab208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Telomere maintenance is increasingly recognized as being fundamental to glioma oncogenesis with longer leukocyte telomere length (LTL) reported to increase risk of glioma. To gain further insight into the relationship between telomere genetics and risk of glioma, we conducted several complementary analyses, using genome-wide association studies data on LTL (78 592 individuals) and glioma (12 488 cases and 18 169 controls). Methods We performed both classical and summary Mendelian randomization (SMR), coupled with heterogeneity in dependent instruments tests, at genome-wide significant LTL loci to examine if an association was mediated by the same causal variant in glioma. To prioritize genes underscoring glioma-LTL associations, we analyzed gene expression and DNA methylation data. Results Genetically increased LTL was significantly associated with increased glioma risk, random-effects inverse variance weighted ORs per 1 SD unit increase in the putative risk factor (odds ratio [OR]SD) 4.79 (95% confidence interval: 2.11-10.85; P = 1.76 × 10−4). SMR confirmed the previously reported LTL associations at 3q26.2 (TERC; PSMR = 1.33 × 10−5), 5p15.33 (TERT; PSMR = 9.80 × 10−27), 10q24.33 (STN1 alias OBFC1; PSMR = 4.31 × 10−5), and 20q13.3 (STMN3/RTEL1; PSMR = 2.47 × 10−4) glioma risk loci. Our analysis implicates variation at 1q42.12 (PSMR = 1.55 × 10−2), 6p21.3 (PSMR = 9.76 × 10−3), 6p22.2 (PSMR = 5.45 × 10−3), 7q31.33 (PSMR = 6.52 × 10−3), and 11q22.3 (PSMR = 8.89 × 10−4) as risk factors for glioma risk. While complicated by patterns of linkage disequilibrium, genetic variation involving PARP1, PRRC2A, CARMIL1, POT1, and ATM-NPAT1 was implicated in the etiology of glioma. Conclusions These observations extend the role of telomere-related genes in the development of glioma.
Collapse
Affiliation(s)
- Charlie N Saunders
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Richard Culliford
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| |
Collapse
|
37
|
A Genome-Wide Profiling of Glioma Patients with an IDH1 Mutation Using the Catalogue of Somatic Mutations in Cancer Database. Cancers (Basel) 2021; 13:cancers13174299. [PMID: 34503108 PMCID: PMC8428353 DOI: 10.3390/cancers13174299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Glioma patients that present a somatic mutation in the isocitrate dehydrogenase 1 (IDH1) gene have a significantly better prognosis and overall survival than patients with the wild-type genotype. An IDH1 mutation is hypothesized to occur early during cellular transformation and leads to further genetic instability. A genome-wide profiling of glioma patients in the Catalogue of Somatic Mutations in Cancer (COSMIC) database was performed to classify the genetic differences in IDH1-mutant versus IDH1-wildtype patients. This classification will aid in a better understanding of how this specific mutation influences the genetic make-up of glioma and the resulting prognosis. Key differences in co-mutation and gene expression levels were identified that correlate with an improved prognosis. Abstract Gliomas are differentiated into two major disease subtypes, astrocytoma or oligodendroglioma, which are then characterized as either IDH (isocitrate dehydrogenase)-wild type or IDH-mutant due to the dramatic differences in prognosis and overall survival. Here, we investigated the genetic background of IDH1-mutant gliomas using the Catalogue of Somatic Mutations in Cancer (COSMIC) database. In astrocytoma patients, we found that IDH1 is often co-mutated with TP53, ATRX, AMBRA1, PREX1, and NOTCH1, but not CHEK2, EGFR, PTEN, or the zinc finger transcription factor ZNF429. The majority of the mutations observed in these genes were further confirmed to be either drivers or pathogenic by the Cancer-Related Analysis of Variants Toolkit (CRAVAT). Gene expression analysis showed down-regulation of DRG2 and MSN expression, both of which promote cell proliferation and invasion. There was also significant over-expression of genes such as NDRG3 and KCNB1 in IDH1-mutant astrocytoma patients. We conclude that IDH1-mutant glioma is characterized by significant genetic changes that could contribute to a better prognosis in glioma patients.
Collapse
|
38
|
Demanelis K, Tong L, Pierce BL. Genetically Increased Telomere Length and Aging-Related Traits in the U.K. Biobank. J Gerontol A Biol Sci Med Sci 2021; 76:15-22. [PMID: 31603979 DOI: 10.1093/gerona/glz240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 12/28/2022] Open
Abstract
Telomere length (TL) shortens over time in most human cell types and is a potential biomarker of aging. However, the causal association of TL on physical and cognitive traits that decline with age has not been extensively examined in middle-aged adults. Using a Mendelian randomization (MR) approach, we utilized genetically increased TL (GI-TL) to estimate the impact of TL on aging-related traits among U.K. Biobank (UKB) participants (age 40-69 years). We manually curated 53 aging-related traits from the UKB and restricted to unrelated participants of British ancestry (n = 337,522). We estimated GI-TL as a linear combination of nine TL-associated single nucleotide polymorphisms (SNPs), each weighted by its previously-reported association with leukocyte TL. Regression models were used to assess the associations between GI-TL and each trait. We obtained MR estimates using the two-sample inverse variance weighted (IVW) approach. We identified six age-related traits associated with GI-TL (Bonferroni-corrected threshold p < .001): pulse pressure (PP) (p = 5.2 × 10-14), systolic blood pressure (SBP) (p = 2.9 × 10-15), diastolic blood pressure (DBP) (p = 5.5 × 10-6), hypertension (p = 5.5 × 10-11), forced expiratory volume (FEV1) (p = .0001), and forced vital capacity (FVC) (p = 3.8 × 10-6). Under MR assumptions, one standard deviation increase in TL (~1,200 base pairs) increased PP, SBP, and DBP by 1.5, 2.3, and 0.8 mmHg, respectively, while FEV1 and FVC increased by 34.7 and 52.2 mL, respectively. The observed associations appear unlikely to be due to selection bias based on analyses including inverse probability weights and analyses of simulated data. These findings suggest that longer TL increases pulmonary function and blood pressure traits among middle-aged UKB participants.
Collapse
Affiliation(s)
| | - Lin Tong
- Department of Public Health Sciences
| | - Brandon L Pierce
- Department of Public Health Sciences.,Department of Human Genetics, University of Chicago, Illinois.,University of Chicago Comprehensive Cancer Center University of Chicago, University of Chicago, Illinois
| |
Collapse
|
39
|
Kim EJ, Koh SH, Ha J, Na DL, Seo SW, Kim HJ, Park KW, Lee JH, Roh JH, Kwon JC, Yoon SJ, Jung NY, Jeong JH, Jang JW, Kim HJ, Park KH, Choi SH, Kim S, Park YH, Kim BC, Kim YE, Kwon HS, Park HH, Jin JH. Increased telomere length in patients with frontotemporal dementia syndrome. J Neurol Sci 2021; 428:117565. [PMID: 34311139 DOI: 10.1016/j.jns.2021.117565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Telomeres are repetitive DNA sequences of TTAGGG at the ends of chromosomes. Many studies have shown that telomere shortening is associated with aging-related diseases, such as cardiovascular diseases, hypertension, diabetes, cancer, and various neurodegenerative diseases, including Alzheimer's disease, vascular dementia, Parkinson's disease, and dementia with Lewy bodies. However, changes in telomere length (TL) in patients with frontotemporal dementia (FTD) syndrome are unclear. Accordingly, in this study, we assessed TL in blood samples from patients with FTD syndrome. METHODS Absolute TL was measured in peripheral blood leukocytes from 53 patients with FTD syndromes (25 with behavioral variant FTD, 19 with semantic variant primary progressive aphasia [PPA], six with nonfluent/agrammatic variant PPA, and three with amyotrophic lateral sclerosis [ALS] plus) and 28 cognitively unimpaired (CU) controls using terminal restriction fragment analysis. RESULTS TL was significantly longer in the FTD group than in the CU group. All FTD subtypes had significantly longer TL than controls. There were no significant differences in TL among FTD syndromes. No significant correlations were found between TL and demographic factors in the FTD group. CONCLUSIONS Longer telomeres were associated with FTD syndrome, consistent with a recent report demonstrating that longer telomeres are related to ALS. Therefore, our results may support a shared biology between FTD and ALS. More studies with larger sample sizes are needed.
Collapse
Affiliation(s)
- Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea.
| | - Jungsoon Ha
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea; GemVax & Kael Co., Ltd, Gyeonggi-do, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A Medical Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jee Hoon Roh
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jay C Kwon
- Department of Neurology, Changwon Fatima Hospital, Changwon, Republic of Korea
| | - Soo Jin Yoon
- Department of Neurology, Eulgi University Hospital, Daejeon, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology, Busan, Republic of Korea
| | - Jee H Jeong
- Department of Neurology, Ewha Womans University Hospital, Seoul, Republic of Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kee Hyung Park
- Department of Neurology, Gachon University Gil Hospital, Incheon, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyuk Sung Kwon
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Jeong-Hwa Jin
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| |
Collapse
|
40
|
Giaccherini M, Macauda A, Orciuolo E, Rymko M, Gruenpeter K, Dumontet C, Raźny M, Moreno V, Buda G, Beider K, Varkonyi J, Avet-Loiseau H, Martinez-Lopez J, Marques H, Watek M, Sarasquete ME, Andersen V, Karlin L, Suska A, Kruszewski M, Abildgaard N, Dudziński M, Butrym A, Nagler A, Vangsted AJ, Kadar K, Waldemar T, Jamroziak K, Jacobsen SEH, Ebbesen LH, Taszner M, Mazur G, Lesueur F, Pelosini M, Garcia-Sanz R, Jurczyszyn A, Demangel D, Reis RM, Iskierka-Jażdżewska E, Markiewicz M, Gemignani F, Subocz E, Zawirska D, Druzd-Sitek A, Stępień A, Alonso MH, Sainz J, Canzian F, Campa D. Genetically determined telomere length and multiple myeloma risk and outcome. Blood Cancer J 2021; 11:74. [PMID: 33854038 PMCID: PMC8046773 DOI: 10.1038/s41408-021-00462-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Telomeres are involved in processes like cellular growth, chromosomal stability, and proper segregation to daughter cells. Telomere length measured in leukocytes (LTL) has been investigated in different cancer types, including multiple myeloma (MM). However, LTL measurement is prone to heterogeneity due to sample handling and study design (retrospective vs. prospective). LTL is genetically determined; genome-wide association studies identified 11 SNPs that, combined in a score, can be used as a genetic instrument to measure LTL and evaluate its association with MM risk. This approach has been already successfully attempted in various cancer types but never in MM. We tested the "teloscore" in 2407 MM patients and 1741 controls from the International Multiple Myeloma rESEarch (IMMeNSE) consortium. We observed an increased risk for longer genetically determined telomere length (gdTL) (OR = 1.69; 95% CI 1.36-2.11; P = 2.97 × 10-6 for highest vs. lowest quintile of the score). Furthermore, in a subset of 1376 MM patients we tested the relationship between the teloscore and MM patients survival, observing a better prognosis for longer gdTL compared with shorter gdTL (HR = 0.93; 95% CI 0.86-0.99; P = 0.049). In conclusion, we report convincing evidence that longer gdTL is a risk marker for MM risk, and that it is potentially involved in increasing MM survival.
Collapse
Affiliation(s)
| | - Angelica Macauda
- Department of Biology, University of Pisa, Pisa, Italy.,Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Enrico Orciuolo
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marcin Rymko
- Department of Hematology, Copernicus Hospital, Torun, Poland
| | - Karolina Gruenpeter
- Department of Haematology and Bone Marrow Transplantation, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Malgorzata Raźny
- Department of Hematology, Rydygier Specialistic Hospital, Cracow, Poland
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), IDIBELL, CIBERESP and Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Gabriele Buda
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Katia Beider
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | - Hervé Avet-Loiseau
- Laboratory for Genomics in Myeloma, Institut Universitaire du Cancer and University Hospital, Centre de Recherche en Cancerologie de Toulouse, Toulouse, France
| | | | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marzena Watek
- Department of Hematology, Holy Cross Cancer Center, Kielce, Poland.,Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Vibeke Andersen
- Department of Biochemistry, University Hospital of Southern Jutland, Sønderborg, Denmark.,IRS-Center Soenderjylland, University Hospital of Southern Jutland, Aabenraa, Denmark
| | | | - Anna Suska
- Department of Hematology, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Kruszewski
- Department of Hematology, University Hospital No. 2 in Bydgoszcz, Bydgoszcz, Poland
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Marek Dudziński
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, Rzeszow, Poland
| | - Aleksandra Butrym
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Arnold Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | | | - Tomczak Waldemar
- Department of Haemato-oncology and Bone Marrow Transplantation and Department of Internal Medicine in Nursing, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | | | - Michał Taszner
- Department of Hematology and Transplantology Medical University of Gdansk, Gdańsk, Poland
| | - Grzegorz Mazur
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Matteo Pelosini
- U.O. Dipartimento di Ematologia, Azienda USL Toscana Nord Ovest, Livorno, Italy, currently Ospedale Santa Chiara, Pisa, Italy
| | - Ramon Garcia-Sanz
- Hematology Department, University Hospital of Salamanca, CIBERONC, Salamanca, Spain
| | - Artur Jurczyszyn
- Department of Hematology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Miroslaw Markiewicz
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, Rzeszow, Poland
| | | | - Edyta Subocz
- Department of Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Daria Zawirska
- Department of Haematology, University Hospital in Cracow, Cracow, Poland
| | - Agnieszka Druzd-Sitek
- Department of Lymphoid Malignancies, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Stępień
- Laboratory of Clinical and Transplant Immunology and Genetics, Copernicus Memorial Hospital, Łódź, Poland
| | - M Henar Alonso
- Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), IDIBELL, CIBERESP and Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain.,Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Gentiluomo M, Luddi A, Cingolani A, Fornili M, Governini L, Lucenteforte E, Baglietto L, Piomboni P, Campa D. Telomere Length and Male Fertility. Int J Mol Sci 2021; 22:ijms22083959. [PMID: 33921254 PMCID: PMC8069448 DOI: 10.3390/ijms22083959] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Over the past decade, telomeres have attracted increasing attention due to the role they play in human fertility. However, conflicting results have been reported on the possible association between sperm telomere length (STL) and leukocyte telomere length (LTL) and the quality of the sperm parameters. The aim of this study was to run a comprehensive study to investigate the role of STL and LTL in male spermatogenesis and infertility. Moreover, the association between the sperm parameters and 11 candidate single nucleotide polymorphisms (SNPs), identified in the literature for their association with telomere length (TL), was investigated. We observed no associations between sperm parameters and STL nor LTL. For the individual SNPs, we observed five statistically significant associations with sperm parameters: considering a p < 0.05. Namely, ACYP2˗rs11125529 and decreased sperm motility (p = 0.03); PXK˗rs6772228 with a lower sperm count (p = 0.02); NAF1˗rs7675998 with increased probability of having abnormal acrosomes (p = 0.03) and abnormal flagellum (p = 0.04); ZNF208˗rs8105767 and reduction of sperms with normal heads (p = 0.009). This study suggests a moderate involvement of telomere length in male fertility; however, in our analyses four SNPs were weakly associated with sperm variables, suggesting the SNPs to be pleiotropic and involved in other regulatory mechanisms independent of telomere homeostasis, but involved in the spermatogenic process.
Collapse
Affiliation(s)
- Manuel Gentiluomo
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.); (A.C.); (D.C.)
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (L.G.)
| | - Annapaola Cingolani
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.); (A.C.); (D.C.)
| | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (E.L.); (L.B.)
| | - Laura Governini
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (L.G.)
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (E.L.); (L.B.)
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (E.L.); (L.B.)
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (L.G.)
- Correspondence: ; Tel.: +39-057-758-6632
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.); (A.C.); (D.C.)
| |
Collapse
|
42
|
Gorenjak V, Petrelis AM, Stathopoulou MG, Visvikis-Siest S. Telomere length determinants in childhood. Clin Chem Lab Med 2021; 58:162-177. [PMID: 31465289 DOI: 10.1515/cclm-2019-0235] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/30/2019] [Indexed: 01/16/2023]
Abstract
Telomere length (TL) is a dynamic marker that reflects genetic predispositions together with the environmental conditions of an individual. It is closely related to longevity and a number of pathological conditions. Even though the extent of telomere research in children is limited compared to that of adults, there have been a substantial number of studies providing first insights into child telomere biology and determinants. Recent discoveries revealed evidence that TL is, to a great extent, determined already in childhood and that environmental conditions in adulthood have less impact than first believed. Studies have demonstrated that large inter-individual differences in TL are present among newborns and are determined by diverse factors that influence intrauterine development. The first years of child growth are associated with high cellular turnover, which results in fast shortening of telomeres. The rate of telomere loss becomes stable in early adulthood. In this review article we summarise the existing knowledge on telomere dynamics during the first years of childhood, highlighting the conditions that affect newborn TL. We also warn about the knowledge gaps that should be filled to fully understand the regulation of telomeres, in order to implement them as biomarkers for use in diagnostics or treatment.
Collapse
Affiliation(s)
| | | | | | - Sophie Visvikis-Siest
- University of Lorraine, Inserm, IGE-PCV, Nancy, France.,Department of Internal Medicine and Geriatrics, CHU Technopôle Nancy-Brabois, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
43
|
Duckworth A, Gibbons MA, Allen RJ, Almond H, Beaumont RN, Wood AR, Lunnon K, Lindsay MA, Wain LV, Tyrrell J, Scotton CJ. Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease: a mendelian randomisation study. THE LANCET. RESPIRATORY MEDICINE 2021; 9:285-294. [PMID: 33197388 DOI: 10.1016/s2213-2600(20)30364-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease accounting for 1% of UK deaths. In the familial form of pulmonary fibrosis, causal genes have been identified in about 30% of cases, and a majority of these causal genes are associated with telomere maintenance. Prematurely shortened leukocyte telomere length is associated with IPF and chronic obstructive pulmonary disease (COPD), a disease with similar demographics and shared risk factors. Using mendelian randomisation, we investigated evidence supporting a causal role for short telomeres in IPF and COPD. METHODS Mendelian randomisation inference of telomere length causality was done for IPF (up to 1369 cases) and COPD (13 538 cases) against 435 866 controls of European ancestry in UK Biobank. Polygenic risk scores were calculated and two-sample mendelian randomisation analyses were done using seven genetic variants previously associated with telomere length, with replication analysis in an IPF cohort (2668 cases vs 8591 controls) and COPD cohort (15 256 cases vs 47 936 controls). FINDINGS In the UK Biobank, a genetically instrumented one-SD shorter telomere length was associated with higher odds of IPF (odds ratio [OR] 4·19, 95% CI 2·33-7·55; p=0·0031) but not COPD (1·07, 0·88-1·30; p=0·51). Similarly, an association was found in the IPF replication cohort (12·3, 5·05-30·1; p=0·0015) and not in the COPD replication cohort (1·04, 0·71-1·53; p=0·83). Meta-analysis of the two-sample mendelian randomisation results provided evidence inferring that shorter telomeres cause IPF (5·81 higher odds of IPF, 95% CI 3·56-9·50; p=2·19 × 10-12). There was no evidence to infer that telomere length caused COPD (OR 1·07, 95% CI 0·90-1·27; p=0·46). INTERPRETATION Cellular senescence is hypothesised as a major driving force in IPF and COPD; telomere shortening might be a contributory factor in IPF, suggesting divergent mechanisms in COPD. Defining a key role for telomere shortening enables greater focus in telomere-related diagnostics, treatments, and the search for a cure in IPF. Investigation of therapies that improve telomere length is warranted. FUNDING Medical Research Council.
Collapse
Affiliation(s)
- Anna Duckworth
- Institute of Biomedical & Clinical Science, College of Medicine & Health, University of Exeter, Exeter, UK; Exeter Patients in Collaboration for PF, Exeter, UK
| | - Michael A Gibbons
- Institute of Biomedical & Clinical Science, College of Medicine & Health, University of Exeter, Exeter, UK; Exeter Patients in Collaboration for PF, Exeter, UK; Respiratory Medicine Department, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Richard J Allen
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Robin N Beaumont
- Institute of Biomedical & Clinical Science, College of Medicine & Health, University of Exeter, Exeter, UK
| | - Andrew R Wood
- Institute of Biomedical & Clinical Science, College of Medicine & Health, University of Exeter, Exeter, UK
| | - Katie Lunnon
- Institute of Biomedical & Clinical Science, College of Medicine & Health, University of Exeter, Exeter, UK
| | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jess Tyrrell
- Institute of Biomedical & Clinical Science, College of Medicine & Health, University of Exeter, Exeter, UK
| | - Chris J Scotton
- Institute of Biomedical & Clinical Science, College of Medicine & Health, University of Exeter, Exeter, UK; Exeter Patients in Collaboration for PF, Exeter, UK.
| |
Collapse
|
44
|
Crocco P, De Rango F, Dato S, Rose G, Passarino G. Telomere length as a function of age at population level parallels human survival curves. Aging (Albany NY) 2021; 13:204-218. [PMID: 33431711 PMCID: PMC7835060 DOI: 10.18632/aging.202498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/23/2020] [Indexed: 01/20/2023]
Abstract
Telomeres are subject to age related shortening which can be accelerated by oxidative stress and inflammation. Many studies have reported an inverse correlation between telomere length and survival, but such inverse correlation has not been always confirmed in different populations. We analyzed the trend of Leukocyte Telomere Length (LTL) as a function of age in a cohort of 516 subjects aged 65-106 years from Southern Italy. The trend of LTL obtained was quite similar to demographic survival curves reported with data of western societies. We observed a decrease of LTL after 70 years of age and then an increase after 92 years, in agreement with the sharp decrease of survival after 70 years of age and its increase after 90 years, due to the deceleration of mortality at old ages. Our data suggest that a generalized LTL attrition after 70 years of age, associated to organismal decline, affects most of the population. Such generalized attrition may exacerbate senescence in these subjects, predisposing them to high mortality risk. Conversely, the subjects with better physical conditions, experience a lower attrition and, consequently, a delayed senescence, contributing to the deceleration of mortality which has been observed among very old subjects in modern societies.
Collapse
Affiliation(s)
- Paolina Crocco
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| | - Serena Dato
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| |
Collapse
|
45
|
Li Y, Cheang I, Zhang Z, Yao W, Zhou Y, Zhang H, Liu Y, Zuo X, Li X, Cao Q. Prognostic Association of TERC, TERT Gene Polymorphism, and Leukocyte Telomere Length in Acute Heart Failure: A Prospective Study. Front Endocrinol (Lausanne) 2021; 12:650922. [PMID: 33763035 PMCID: PMC7982721 DOI: 10.3389/fendo.2021.650922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Telomere length and telomerase are associated in development of cardiovascular diseases. Study aims to investigate the associations of TERC and TERT gene polymorphism and leukocyte telomere length (LTL) in the prognosis of acute heart failure (AHF). METHODS Total 322 patients with AHF were enrolled and divided into death and survival group according to all-cause mortality within 18 months. Seven single nucleotide polymorphisms (SNPs) of TERC and TERT were selected. Baseline characteristics, genotype distribution and polymorphic allele frequency, and genetic model were initially analyzed. Genotypes and the LTL were determined for further analysis. RESULTS Compared to carrying homozygous wild genotype, the risk of death in patients with mutated alleles of four SNPs- rs12696304(G>C), rs10936599(T>C), rs1317082(G>A), and rs10936601(T>C) of TERC were significantly higher. The dominant models of above were independently associated with mortality. In recessive models, rs10936599 and rs1317082 of TERC, rs7726159 of TERT were independently associated with long-term mortality. Further analysis showed, in haplotype consisting with TERC - rs12696304, rs10936599, rs1317082, and rs10936601, mutant alleles CCAC and wild alleles GTGT were significant difference between groups (P<0.05). CCAC is a risk factor and GTGT is a protective factor for AHF patients. Relative LTL decreased over age, but showed no difference between groups and genotypes. CONCLUSIONS The SNPs of TERC and TERT are associated with the prognosis of AHF, and are the independent risk factors for predicting 18-month mortality in AHF.
Collapse
Affiliation(s)
- Yanxiu Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongwen Zhang
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Wenming Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zuo
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Quan Cao, ; Xinli Li,
| | - Quan Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Quan Cao, ; Xinli Li,
| |
Collapse
|
46
|
Codd V, Wang Q, Allara E, Musicha C, Kaptoge S, Stoma S, Jiang T, Hamby SE, Braund PS, Bountziouka V, Budgeon CA, Denniff M, Swinfield C, Papakonstantinou M, Sheth S, Nanus DE, Warner SC, Wang M, Khera AV, Eales J, Ouwehand WH, Thompson JR, Di Angelantonio E, Wood AM, Butterworth AS, Danesh JN, Nelson CP, Samani NJ. Polygenic basis and biomedical consequences of telomere length variation. Nat Genet 2021; 53:1425-1433. [PMID: 34611362 PMCID: PMC8492471 DOI: 10.1038/s41588-021-00944-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Telomeres, the end fragments of chromosomes, play key roles in cellular proliferation and senescence. Here we characterize the genetic architecture of naturally occurring variation in leukocyte telomere length (LTL) and identify causal links between LTL and biomedical phenotypes in 472,174 well-characterized UK Biobank participants. We identified 197 independent sentinel variants associated with LTL at 138 genomic loci (108 new). Genetically determined differences in LTL were associated with multiple biological traits, ranging from height to bone marrow function, as well as several diseases spanning neoplastic, vascular and inflammatory pathologies. Finally, we estimated that, at the age of 40 years, people with an LTL >1 s.d. shorter than the population mean had a 2.5-year-lower life expectancy compared with the group with ≥1 s.d. longer LDL. Overall, we furnish new insights into the genetic regulation of LTL, reveal wide-ranging influences of LTL on physiological traits, diseases and longevity, and provide a powerful resource available to the global research community.
Collapse
Affiliation(s)
- Veryan Codd
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Qingning Wang
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Elias Allara
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Crispin Musicha
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stephen Kaptoge
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Svetlana Stoma
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Tao Jiang
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Stephen E. Hamby
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Peter S. Braund
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Vasiliki Bountziouka
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Charley A. Budgeon
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK ,grid.1012.20000 0004 1936 7910School of Population and Global Health, University of Western Australia, Perth, Western Australia Australia
| | - Matthew Denniff
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Chloe Swinfield
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Manolo Papakonstantinou
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Shilpi Sheth
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Dominika E. Nanus
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Sophie C. Warner
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Minxian Wang
- grid.66859.34Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA
| | - Amit V. Khera
- grid.66859.34Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA ,grid.32224.350000 0004 0386 9924Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA USA
| | - James Eales
- grid.5379.80000000121662407Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Willem H. Ouwehand
- grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge, UK ,grid.436365.10000 0000 8685 6563NHS Blood and Transplant, Cambridge, UK ,grid.52996.310000 0000 8937 2257University College London Hospitals NHS Foundation Trust, London, UK
| | - John R. Thompson
- grid.9918.90000 0004 1936 8411Department of Health Sciences, University of Leicester, Leicester, UK
| | - Emanuele Di Angelantonio
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK
| | - Angela M. Wood
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK ,grid.499548.d0000 0004 5903 3632The Alan Turing Institute, London, UK
| | - Adam S. Butterworth
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK
| | - John N. Danesh
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Christopher P. Nelson
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nilesh J. Samani
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
47
|
Mendelian randomization study of telomere length and bone mineral density. Aging (Albany NY) 2020; 13:2015-2030. [PMID: 33323545 PMCID: PMC7880394 DOI: 10.18632/aging.202197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/22/2020] [Indexed: 11/25/2022]
Abstract
Purpose: Some epidemiological studies and animal studies have reported a relationship between leukocyte telomere length (LTL) and bone mineral density (BMD). However, the causality underlying the purported relationship has not been determined. Here we performed a two-sample MR analysis to test the causal link between telomere length and BMD. Results: Our research suggested no causal link of LTL and BMD using IVW method. The weighted median, MR-Egger regression and MR.RAPS method yielded a similar pattern of effects. MR-Egger intercept test demonstrated our results were not influenced by pleiotropy. Heterogeneities among the genetic variants on heel estimated BMD and TB-BMD vanished after excluding rs6028466. “Leave-one-out” sensitivity analysis confirmed the stability of our results. Conclusion: Our MR analysis did not support causal effect of telomere length on BMD. Methods: We utilized 5 independent SNPs robustly associated with LTL as instrument variables. The outcome results were obtained from GWAS summary data of BMD. The two-sample MR analysis was conducted using IVW, weighted median, MR-Egger regression and MR.RAPS method. MR-Egger intercept test, Cochran’s Q test and I2 statistics and “leave-one-out” sensitivity analysis were performed to evaluate the horizontal pleiotropy, heterogeneities and stability of these genetic variants on BMD.
Collapse
|
48
|
Hunt SC, Hansen MEB, Verhulst S, McQuillan MA, Beggs W, Lai TP, Mokone GG, Mpoloka SW, Meskel DW, Belay G, Nyambo TB, Abnet CC, Yeager M, Chanock SJ, Province MA, Williams SM, Aviv A, Tishkoff SA. Genetics and geography of leukocyte telomere length in sub-Saharan Africans. Hum Mol Genet 2020; 29:3014-3020. [PMID: 32821950 PMCID: PMC7645709 DOI: 10.1093/hmg/ddaa187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/09/2020] [Accepted: 08/15/2020] [Indexed: 01/10/2023] Open
Abstract
Leukocyte telomere length (LTL) might be causal in cardiovascular disease and major cancers. To elucidate the roles of genetics and geography in LTL variability across humans, we compared LTL measured in 1295 sub-Saharan Africans (SSAs) with 559 African-Americans (AAms) and 2464 European-Americans (EAms). LTL differed significantly across SSAs (P = 0.003), with the San from Botswana (with the oldest genomic ancestry) having the longest LTL and populations from Ethiopia having the shortest LTL. SSAs had significantly longer LTL than AAms [P = 6.5(e-16)] whose LTL was significantly longer than EAms [P = 2.5(e-7)]. Genetic variation in SSAs explained 52% of LTL variance versus 27% in AAms and 34% in EAms. Adjustment for genetic variation removed the LTL differences among SSAs. LTL genetic variation among SSAs, with the longest LTL in the San, supports the hypothesis that longer LTL was ancestral in humans. Identifying factors driving LTL variation in Africa may have important ramifications for LTL-associated diseases.
Collapse
Affiliation(s)
- Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Michael A McQuillan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William Beggs
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tsung-Po Lai
- Center of Human Development and Aging, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Gaonyadiwe G Mokone
- Faculty of Medicine, Department of Biomedical Sciences, University of Botswana, Gaborone, Botswana
| | | | | | - Gurja Belay
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Thomas B Nyambo
- Department of Biochemistry, Kampala International University, Tanzania
| | - Christian C Abnet
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892,USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892,USA
| | - Stephen J Chanock
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892,USA
| | - Michael A Province
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Abraham Aviv
- Center of Human Development and Aging, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
49
|
Gao Y, Wei Y, Zhou X, Huang S, Zhao H, Zeng P. Assessing the Relationship Between Leukocyte Telomere Length and Cancer Risk/Mortality in UK Biobank and TCGA Datasets With the Genetic Risk Score and Mendelian Randomization Approaches. Front Genet 2020; 11:583106. [PMID: 33193711 PMCID: PMC7644901 DOI: 10.3389/fgene.2020.583106] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/24/2020] [Indexed: 11/27/2022] Open
Abstract
Background Telomere length is an important indicator of tumor progression and survival for cancer patients. Previous work investigated the associations between genetically predicted telomere length and cancers; however, the types of cancers investigated in those studies were relatively limited or the telomere length-associated genetic variants employed often came from genome-wide association studies (GWASs) with small sample sizes. Methods We constructed the genetic risk score (GRS) for leukocyte telomere length based on 17 associated genetic variants available from the largest telomere length GWAS up to 78,592 individuals. Then, a comprehensive analysis was undertaken to evaluate the association between the constructed GRS and the risk or mortality of a wide range of cancers [i.e., 37 cancers in the UK Biobank and 33 cancers in The Cancer Genome Atlas (TCGA)]. We further applied the two-sample Mendelian randomization (MR) to estimate the causal effect of leukocyte telomere length on UK Biobank cancers via summary statistics. Results In the UK Biobank dataset, we found that the GRS of leukocyte telomere length was associated with a decreased risk of nine types of cancer (i.e., significant association with multiple myeloma, chronic lymphocytic leukemia, kidney/renal cell cancer, bladder cancer, malignant melanoma, basal cell carcinoma, and prostate cancer and suggestive association with sarcoma/fibrosarcoma and Hodgkin’s lymphoma/Hodgkin’s disease). In addition, we found that the GRS was suggestively associated with an increased risk of leukemia. In the TCGA dataset, we observed suggestive evidence that the GRS was associated with a high death hazard of rectum adenocarcinoma (READ), sarcoma (SARC), and skin cutaneous melanoma (SKCM), while the GRS was associated with a low death hazard of kidney renal papillary cell carcinoma (KIRP). The results of MR further supported the association for leukocyte telomere length on the risk of malignant melanoma, Hodgkin’s lymphoma/Hodgkin’s disease, chronic lymphocytic leukemia and multiple myeloma. Conclusion Our study reveals that telomere played diverse roles in different types of cancers. However, further validations in large-scale prospective studies and deeper investigations of the biologic mechanisms are warranted.
Collapse
Affiliation(s)
- Yixin Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Shuiping Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Huashuo Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
50
|
Protsenko E, Rehkopf D, Prather AA, Epel E, Lin J. Are long telomeres better than short? Relative contributions of genetically predicted telomere length to neoplastic and non-neoplastic disease risk and population health burden. PLoS One 2020; 15:e0240185. [PMID: 33031470 PMCID: PMC7544094 DOI: 10.1371/journal.pone.0240185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Background Mendelian Randomization (MR) studies exploiting single nucleotide polymorphisms (SNPs) predictive of leukocyte telomere length (LTL) have suggested that shorter genetically determined telomere length (gTL) is associated with increased risks of degenerative diseases, including cardiovascular and Alzheimer’s diseases, while longer gTL is associated with increased cancer risks. These varying directions of disease risk have long begged the question: when it comes to telomeres, is it better to be long or short? We propose to operationalize and answer this question by considering the relative impact of long gTL vs. short gTL on disease incidence and burden in a population. Methods and findings We used odds ratios (OR) of disease associated with gTL from a recently published MR meta-analysis to approximate the relative contributions of gTL to the incidence and burden of neoplastic and non-neoplastic disease in a European population. We obtained incidence data of the 9 cancers associated with long gTL and 4 non-neoplastic diseases associated with short gTL from the Institute of Health Metrics (IHME). Incidence rates of individual cancers from SEER, a database of United States cancer records, were used to weight the ORs in order to align with the available IHME data. These data were used to estimate the excess incidences due to long vs. short gTL, expressed as per 100,000 persons per standard deviation (SD) change in gTL. To estimate the population disease burden, we used the Disability Adjusted Life Years (DALY) metric from the IHME, a measure of overall disease burden that accounts for both mortality and morbidity, and similarly calculated the excess DALY associated with long vs. short gTL. Results Our analysis shows that, despite the markedly larger ORs of neoplastic disease, the large incidence of degenerative diseases causes the excess incidence attributable to gTL to balance that of neoplastic diseases. Long gTL is associated with an excess incidence of 94.04 cases/100,000 persons/SD (45.49–168.84, 95%CI) from the 9 cancer, while short gTL is associated with an excess incidence of 121.49 cases/100,000 persons/SD (48.40–228.58, 95%CI) from the 4 non-neoplastic diseases. When considering disease burden using the DALY metric, long gTL is associated with an excess 1255.25 DALYs/100,000 persons/SD (662.71–2163.83, 95%CI) due to the 9 cancers, while short gTL is associated with an excess 1007.75 DALYs/100,000 persons/SD (411.63–1847.34, 95%CI) due to 4 non-neoplastic diseases. Conclusions Our results show that genetically determined long and short telomere length are associated with disease risk and burden of approximately equal magnitude. These results provide quantitative estimates of the relative impact of genetically-predicted short vs. long TL in a human population, and provide evidence in support of the cancer-aging paradox, wherein human telomere length is balanced by opposing evolutionary forces acting to minimize both neoplastic and non-neoplastic diseases. Importantly, our results indicate that odds ratios alone can be misleading in different clinical scenarios, and disease risk should be assessed from both an individual and population level in order to draw appropriate conclusions about the risk factor’s role in human health.
Collapse
Affiliation(s)
| | - David Rehkopf
- Stanford Department of Primary Care and Population Health, Stanford, CA, United States of America
| | - Aric A. Prather
- UCSF Department of Psychiatry, San Francisco, CA, United States of America
| | - Elissa Epel
- UCSF Department of Psychiatry, San Francisco, CA, United States of America
| | - Jue Lin
- UCSF Department of Biochemistry and Biophysics, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|