1
|
Gizer M, Önen S, Erol ÖD, Aerts-Kaya F, Reçber T, Nemutlu E, Korkusuz P. Endocannabinoid system upregulates the enrichment and differentiation of human iPSC- derived spermatogonial stem cells via CB2R agonism. Biol Res 2025; 58:13. [PMID: 40069895 PMCID: PMC11900634 DOI: 10.1186/s40659-025-00596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Male factor infertility (MFI) is responsible for 50% of infertility cases and in 15% of the cases sperm is absent due to germ cell aplasia. Human induced pluripotent stem cell (hiPSC)-derived spermatogonial stem cells (hSSCs) could serve as an autologous germ cell source for MFI in patients with an insufficient sperm yield for assisted reproductive technology (ART). The endocannabinoid system (ECS) has been implicated to play a role in mouse embryonic stem cells (mESCs) and the human testicular environment. However, the contribution of the ECS in hiPSCs and hiPSC-derived hSSCs is currently unknown. Here, we aimed to assess whether hiPSCs and hiPSC-derived hSSCs are regulated by components of the ECS and whether manipulation of the ECS could increase the yield of hiPSC-derived SSCs and serve as an autologous cell-based source for treatment of MFI. METHODS We reprogrammed human dermal fibroblasts (hDFs) to hiPSCs, induced differentiation of hSSC from hiPSCs and evaluated the presence of ECS ligands (AEA, 2-AG) by LC/MS, receptors (CB1R, CB2R, TRPV1, GPR55) by qPCR, flow cytometry and immunofluorescent labeling. We then examined the efficacy of endogenous and synthetic selective ligands (ACPA, CB65, CSP, ML184) on proliferation of hiPSCs using real-time cell analysis (RTCA) and assessed the effects of on CB2R agonism on hiPSC pluripotency and differentiation to hSSCs. RESULTS hiPSCs from hDFs expressed the pluripotency markers OCT4, SOX2, NANOG, SSEA4 and TRA-1-60; and could be differentiated into ID4+, PLZF + hSSCs. hiPSCs and hiPSC-derived hSSCs secreted AEA and 2-AG at 10- 10 - 10- 9 M levels. Broad expression of all ECS receptors was observed in both hiPSCs and hiPSC-derived hSSCs, with a higher CB2R expression in hSSCs in comparison to hiPSCs. CB2R agonist CB65 promoted proliferation and differentiation of hiPSCs to hiPSC-hSSCs in comparison to AEA, 2-AG, ACPA, CSP and ML184. The EC50 of CB65 was determined to be 2.092 × 10- 8 M for support of pluripotency and preservation of stemness on hiPSCs from 78 h. CB65 stimulation at EC50 also increased the yield of ID4 + hSSCs, PLZF + SSPCs and SCP3 + spermatocytes from day 10 to 12. CONCLUSIONS We demonstrated here for the first time that stimulation of CB2R results in an increased yield of hiPSCs and hiPSC-derived hSSCs. CB65 is a potent CB2R agonist that can be used to increase the yield of hiPSC-derived hSSCs offering an alternative source of autologous male germ cells for patients with MFI. Increasing the male germ/stem cell pool by CB65 supplementation could be part of the ART-associated protocols in MFI patients with complete germ cell aplasia.
Collapse
Affiliation(s)
- Merve Gizer
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, 06100, Turkey
- METU MEMS Center, Ankara, 06530, Turkey
| | | | - Özgür Doğuş Erol
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, 06100, Turkey
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, 06100, Turkey
- Hacettepe University Advanced Technologies Application and Research Center (HÜNİTEK), Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, 06100, Turkey
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, 06100, Turkey
- Hacettepe University Advanced Technologies Application and Research Center (HÜNİTEK), Ankara, Turkey
- Hacettepe University Laboratory Animals Research and Research Center (HÜDHAM), Ankara, Turkey
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, 06100, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, 06100, Turkey
| | - Petek Korkusuz
- METU MEMS Center, Ankara, 06530, Turkey.
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06100, Turkey.
| |
Collapse
|
2
|
von Rohden E, Jensen CFS, Andersen CY, Sønksen J, Fedder J, Thorup J, Ohl DA, Fode M, Hoffmann ER, Mamsen LS. Male fertility restoration: in vivo and in vitro stem cell-based strategies using cryopreserved testis tissue: a scoping review. Fertil Steril 2024; 122:828-843. [PMID: 38992744 DOI: 10.1016/j.fertnstert.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
IMPORTANCE Advances in the treatment of childhood cancer have significantly improved survival rates, with more than 80% of survivors reaching adulthood. However, gonadotoxic cancer treatments endanger future fertility, and prepubertal males have no option to preserve fertility by sperm cryopreservation. In addition, boys with cryptorchidism are at risk of compromised fertility in adulthood. OBJECTIVE To investigate current evidence for male fertility restoration strategies, explore barriers to clinical implementation, and outline potential steps to overcome these barriers, a scoping review was conducted. This knowledge synthesis is particularly relevant for prepubertal male cancer survivors and boys with cryptorchidism. EVIDENCE REVIEW The review was conducted after the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews criteria and previously published guidelines and examined studies using human testis tissue of prepubertal boys or healthy male adults. A literature search in PubMed was conducted, and 72 relevant studies were identified, including in vivo and in vitro approaches. FINDINGS In vivo strategies, such as testis tissue engraftment and spermatogonial stem cell transplantation, hold promise for promoting cell survival and differentiation. Yet, complete spermatogenesis has not been achieved. In vitro approaches focus on the generation of male germ cells from direct germ cell maturation in various culture systems, alongside human induced pluripotent stem cells and embryonic stem cells. These approaches mark significant advancements in understanding and promoting spermatogenesis, but achieving fully functional spermatozoa in vitro remains a challenge. Barriers to clinical implementation include the risk of reintroducing malignant cells and introduction of epigenetic changes. CONCLUSION Male fertility restoration is an area in rapid development. On the basis of the reviewed studies, the most promising and advanced strategy for restoring male fertility using cryopreserved testis tissue is direct testis tissue transplantation. RELEVANCE This review identifies persistent barriers to the clinical implementation of male fertility restoration. However, direct transplantation of frozen-thawed testis tissue remains a promising strategy that is on the verge of clinical application.
Collapse
Affiliation(s)
- Elena von Rohden
- Department of Urology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | - Claus Yding Andersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Sønksen
- Department of Urology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Fedder
- Department of Gynecology and Obstetrics, Centre of Andrology & Fertility Clinic, Odense University Hospital, Odense, Denmark; Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jørgen Thorup
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pediatric Surgery, Surgical Clinic, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Dana A Ohl
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Mikkel Fode
- Department of Urology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva R Hoffmann
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Molecular and Cellular Medicine, DNRF Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Gizer M, Önen S, Korkusuz P. The Evolutionary Route of in vitro Human Spermatogenesis: What is the Next Destination? Stem Cell Rev Rep 2024; 20:1406-1419. [PMID: 38684571 PMCID: PMC11319530 DOI: 10.1007/s12015-024-10726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Malfunction in spermatogenesis due to genetic diseases, trauma, congenital disorders or gonadotoxic treatments results in infertility in approximately 7% of males. The behavior of spermatogonial stem cells (SSCs) within three-dimensional, multifactorial, and dynamic microenvironment implicates a niche that serves as a repository for fertility, since can serve as a source of mature and functional male germ cells. Current protocols enable reprogramming of mature somatic cells into induced pluripotent stem cells (iPSCs) and their limited differentiation to SSCs within the range of 0-5%. However, the resulting human iPSC-derived haploid spermatogenic germ cell yield in terms of number and functionality is currently insufficient for transfer to infertility clinic as a therapeutic tool. In this article, we reviewed the evolution of experimental culture platforms and introduced a novel iPSCs-based approach for in vitro spermatogenesis based on a niche perspective bearing cellular, chemical, and physical factors that provide the complex arrangement of testicular seminiferous tubules embedded within a vascularized stroma. We believe that bioengineered organoids supported by smart bio-printed tubules and microfluidic organ-on-a-chip systems offer efficient, precise, personalized platforms for autologous pluripotent stem cell sources to undergo the spermatogenetic cycle, presenting a promising tool for infertile male patients with complete testicular aplasia.
Collapse
Affiliation(s)
- Merve Gizer
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, 06100, Ankara, Turkey
- METU MEMS Center, 06530, Ankara, Turkey
| | | | - Petek Korkusuz
- METU MEMS Center, 06530, Ankara, Turkey.
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
| |
Collapse
|
4
|
Gül M, Russo GI, Kandil H, Boitrelle F, Saleh R, Chung E, Kavoussi P, Mostafa T, Shah R, Agarwal A. Male Infertility: New Developments, Current Challenges, and Future Directions. World J Mens Health 2024; 42:502-517. [PMID: 38164030 PMCID: PMC11216957 DOI: 10.5534/wjmh.230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 01/03/2024] Open
Abstract
There have been many significant scientific advances in the diagnostics and treatment modalities in the field of male infertility in recent decades. Examples of these include assisted reproductive technologies, sperm selection techniques for intracytoplasmic sperm injection, surgical procedures for sperm retrieval, and novel tests of sperm function. However, there is certainly a need for new developments in this field. In this review, we discuss advances in the management of male infertility, such as seminal oxidative stress testing, sperm DNA fragmentation testing, genetic and epigenetic tests, genetic manipulations, artificial intelligence, personalized medicine, and telemedicine. The role of the reproductive urologist will continue to expand in future years to address different topzics related to diverse questions and controversies of pathophysiology, diagnosis, and therapy of male infertility, training researchers and physicians in medical and scientific research in reproductive urology/andrology, and further development of andrology as an independent specialty.
Collapse
Affiliation(s)
- Murat Gül
- Department of Urology, Selcuk University School of Medicine, Konya, Turkey
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Giorgio Ivan Russo
- Urology Section, University of Catania, Catania, Italy
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Hussein Kandil
- Fakih IVF Fertility Center, Abu Dhabi, UAE
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Parviz Kavoussi
- Department of Reproductive Urology, Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Taymour Mostafa
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
- Well Women's Centre, Sir HN Reliance Foundation Hospital, Mumbai, India
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA
- Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
5
|
Chen Y, Li M, Wu Y. The occurrence and development of induced pluripotent stem cells. Front Genet 2024; 15:1389558. [PMID: 38699229 PMCID: PMC11063328 DOI: 10.3389/fgene.2024.1389558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc (OSKM), known as "Yamanaka factors," can reprogram or stimulate the production of induced pluripotent stem cells (iPSCs). Although OSKM is still the gold standard, there are multiple ways to reprogram cells into iPSCs. In recent years, significant progress has been made in improving the efficiency of this technology. Ten years after the first report was published, human pluripotent stem cells have gradually been applied in clinical settings, including disease modeling, cell therapy, new drug development, and cell derivation. Here, we provide a review of the discovery of iPSCs and their applications in disease and development.
Collapse
Affiliation(s)
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Sharma P, Kaushal N, Saleth LR, Ghavami S, Dhingra S, Kaur P. Oxidative stress-induced apoptosis and autophagy: Balancing the contrary forces in spermatogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166742. [PMID: 37146914 DOI: 10.1016/j.bbadis.2023.166742] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Spermatogenesis is a complex process in the testis and is a cornerstone of male infertility. The abundance of unsaturated fatty acid and high cell division rate make male germs cells prone to DNA deterioration. ROS-mediated oxidative stress triggers DNA damage, autophagy, and apoptosis in male germ cells, which are critical causative factors that lead to male infertility. The complex connection and molecular crosstalk between apoptosis and autophagy is seen at multifaceted levels that interconnect the signaling pathways of these two processes. Multilevel interaction between apoptosis and autophagy is a seamless state of survival and death in response to various stressors. Interaction between multiple genes and proteins such as the mTor signaling pathway, Atg12 proteins, and the death adapter proteins, such as Beclin 1, p53, and Bcl-2 family proteins, validates such a link between these two phenomena. Testicular cells being epigenetically different from somatic cells, undergo numerous significant epigenetic transitions, and ROS modulates the epigenetic framework of mature sperm. Epigenetic deregulation of apoptosis and autophagy under oxidative stress conditions can cause sperm cell damage. The current review recapitulates the current role of prevailing stressors that generate oxidative stress leading to the induction of apoptosis and autophagy in the male reproductive system. Considering the pathophysiological consequences of ROS-mediated apoptosis and autophagy, a combinatorial approach, including apoptosis inhibition and autophagy activation, a therapeutic strategy to treat male idiopathic infertility. Understanding the crosslink between apoptosis and autophagy under stress conditions in male germ cells may play an essential role in developing therapeutic strategies to treat infertility.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Parminder Kaur
- Department of Biotechnology, University Institute of Engineering & Technology, Panjab University, Chandigarh 160024, India.
| |
Collapse
|
7
|
Wang X, Liu X, Qu M, Li H. Sertoli cell-only syndrome: advances, challenges, and perspectives in genetics and mechanisms. Cell Mol Life Sci 2023; 80:67. [PMID: 36814036 PMCID: PMC11072804 DOI: 10.1007/s00018-023-04723-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
Male infertility can be caused by quantitative and/or qualitative abnormalities in spermatogenesis, which affects men's physical and mental health. Sertoli cell-only syndrome (SCOS) is the most severe histological phenotype of male infertility characterized by the depletion of germ cells with only Sertoli cells remaining in the seminiferous tubules. Most SCOS cases cannot be explained by the already known genetic causes including karyotype abnormalities and microdeletions of the Y chromosome. With the development of sequencing technology, studies on screening new genetic causes for SCOS are growing in recent years. Directly sequencing of target genes in sporadic cases and whole-exome sequencing applied in familial cases have identified several genes associated with SCOS. Analyses of the testicular transcriptome, proteome, and epigenetics in SCOS patients provide explanations regarding the molecular mechanisms of SCOS. In this review, we discuss the possible relationship between defective germline development and SCOS based on mouse models with SCO phenotype. We also summarize the advances and challenges in the exploration of genetic causes and mechanisms of SCOS. Knowing the genetic factors of SCOS offers a better understanding of SCO and human spermatogenesis, and it also has practical significance for improving diagnosis, making appropriate medical decisions, and genetic counseling. For therapeutic implications, SCOS research, along with the achievements in stem cell technologies and gene therapy, build the foundation to develop novel therapies for SCOS patients to produce functional spermatozoa, giving them hope to father children.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinyu Liu
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China.
- Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430000, China.
| |
Collapse
|
8
|
Munyoki SK, Orwig KE. Perspectives: Methods for Evaluating Primate Spermatogonial Stem Cells. Methods Mol Biol 2023; 2656:341-364. [PMID: 37249880 DOI: 10.1007/978-1-0716-3139-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian spermatogenesis is a complex, highly productive process generating millions of sperm per day. Spermatogonial stem cells (SSCs) are at the foundation of spermatogenesis and can either self-renew, producing more SSCs, or differentiate to initiate spermatogenesis and produce sperm. The biological potential of SSCs to produce and maintain spermatogenesis makes them a promising tool for the treatment of male infertility. However, translating knowledge from rodents to higher primates (monkeys and humans) is challenged by different vocabularies that are used to describe stem cells and spermatogenic lineage development in those species. Furthermore, while rodent SSCs are defined by their biological potential to produce and maintain spermatogenesis in a transplant assay, there is no equivalent routine and accessible bioassay to test monkey and human SSCs or replicate their functions in vitro. This chapter describes progress characterizing, isolating, culturing, and transplanting SSCs in higher primates.
Collapse
Affiliation(s)
- Sarah K Munyoki
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Fang F, Iaquinta PJ, Xia N, Liu L, Diao L, Reijo Pera RA. Transcriptional control of human gametogenesis. Hum Reprod Update 2022; 28:313-345. [PMID: 35297982 PMCID: PMC9071081 DOI: 10.1093/humupd/dmac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
The pathways of gametogenesis encompass elaborate cellular specialization accompanied by precise partitioning of the genome content in order to produce fully matured spermatozoa and oocytes. Transcription factors are an important class of molecules that function in gametogenesis to regulate intrinsic gene expression programs, play essential roles in specifying (or determining) germ cell fate and assist in guiding full maturation of germ cells and maintenance of their populations. Moreover, in order to reinforce or redirect cell fate in vitro, it is transcription factors that are most frequently induced, over-expressed or activated. Many reviews have focused on the molecular development and genetics of gametogenesis, in vivo and in vitro, in model organisms and in humans, including several recent comprehensive reviews: here, we focus specifically on the role of transcription factors. Recent advances in stem cell biology and multi-omic studies have enabled deeper investigation into the unique transcriptional mechanisms of human reproductive development. Moreover, as methods continually improve, in vitro differentiation of germ cells can provide the platform for robust gain- and loss-of-function genetic analyses. These analyses are delineating unique and shared human germ cell transcriptional network components that, together with somatic lineage specifiers and pluripotency transcription factors, function in transitions from pluripotent stem cells to gametes. This grand theme review offers additional insight into human infertility and reproductive disorders that are linked predominantly to defects in the transcription factor networks and thus may potentially contribute to the development of novel treatments for infertility.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Phillip J Iaquinta
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Ninuo Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Renee A Reijo Pera
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
- McLaughlin Research Institute, Great Falls, MT, USA
| |
Collapse
|
10
|
Tran KTD, Valli-Pulaski H, Colvin A, Orwig KE. Male fertility preservation and restoration strategies for patients undergoing gonadotoxic therapies†. Biol Reprod 2022; 107:382-405. [PMID: 35403667 PMCID: PMC9382377 DOI: 10.1093/biolre/ioac072] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Medical treatments for cancers or other conditions can lead to permanent infertility. Infertility is an insidious disease that impacts not only the ability to have a biological child but also the emotional well-being of the infertile individuals, relationships, finances, and overall health. Therefore, all patients should be educated about the effects of their medical treatments on future fertility and about fertility preservation options. The standard fertility preservation option for adolescent and adult men is sperm cryopreservation. Sperms can be frozen and stored for a long period, thawed at a later date, and used to achieve pregnancy with existing assisted reproductive technologies. However, sperm cryopreservation is not applicable for prepubertal patients who do not yet produce sperm. The only fertility preservation option available to prepubertal boys is testicular tissue cryopreservation. Next-generation technologies are being developed to mature those testicular cells or tissues to produce fertilization-competent sperms. When sperm and testicular tissues are not available for fertility preservation, inducing pluripotent stem cells derived from somatic cells, such as blood or skin, may provide an alternative path to produce sperms through a process call in vitro gametogenesis. This review describes standard and experimental options to preserve male fertility as well as the experimental options to produce functional spermatids or sperms from immature cryopreserved testicular tissues or somatic cells.
Collapse
Affiliation(s)
- Kien T D Tran
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Amanda Colvin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Correspondence: Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA. Tel: 412-641-2460; E-mail:
| |
Collapse
|
11
|
Hu X, Wang H, Tian GG, Hou C, Xu B, Zhao X, Zhao Y, Fang Q, Li X, He L, Chen X, Li S, Wu J. Offspring production of haploid spermatid-like cells derived from mouse female germline stem cells with chromatin condensation. Cell Biosci 2022; 12:5. [PMID: 34983631 PMCID: PMC8729121 DOI: 10.1186/s13578-021-00697-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022] Open
Abstract
Background During male meiosis, the Y chromosome can form perfect pairing with the X chromosome. However, it is unclear whether mammalian Female germline stem cells (FGSCs) without a Y chromosome can transdifferentiate into functional haploid spermatid-like cells (SLCs). Results We found that spermatogenesis was restarted by transplanting FGSCs into Kitw/wv mutant testes. Complete meiosis and formation of SLCs was induced in vitro by testicular cells of Kitw/wv mutant mice, cytokines and retinoic acid. Healthy offspring were produced by sperm and SLCs derived from the in vivo and in vitro transdifferentiation of FGSCs, respectively. Furthermore, high-throughput chromosome conformation capture sequencing(Hi-C-seq) and “bivalent” (H3K4me3-H3K27me3) micro chromatin immunoprecipitation sequencing (μChIP-seq) experiments showed that stimulated by retinoic acid gene 8 (STRA8)/protamine 1 (PRM1)-positive transdifferentiated germ cells (tGCs) and male germ cells (mGCs) display similar chromatin dynamics and chromatin condensation during in vitro spermatogenesis. Conclusion This study demonstrates that sperm can be produced from FGSCs without a Y chromosome. This suggests a strategy for dairy cattle breeding to produce only female offspring with a high-quality genetic background. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00697-z.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Hu Wang
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Geng G Tian
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Changliang Hou
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Bo Xu
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xinyan Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Yongqiang Zhao
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Qian Fang
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xinyue Li
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Lin He
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China. .,Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Ji Wu
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China. .,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China. .,Shanghai Key Laboratory of Reproductive Medicine, Shanghai, 200025, China.
| |
Collapse
|
12
|
Doungkamchan C, Orwig KE. Recent advances: fertility preservation and fertility restoration options for males and females. Fac Rev 2021; 10:55. [PMID: 34195694 PMCID: PMC8204761 DOI: 10.12703/r/10-55] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fertility preservation is the process of saving gametes, embryos, gonadal tissues and/or gonadal cells for individuals who are at risk of infertility due to disease, medical treatments, age, genetics, or other circumstances. Adult patients have the options to preserve eggs, sperm, or embryos that can be used in the future to produce biologically related offspring with assisted reproductive technologies. These options are not available to all adults or to children who are not yet producing mature eggs or sperm. Gonadal cells/tissues have been frozen for several thousands of those patients worldwide with anticipation that new reproductive technologies will be available in the future. Therefore, the fertility preservation medical and research communities are obligated to responsibly develop next-generation reproductive technologies and translate them into clinical practice. We briefly describe standard options to preserve and restore fertility, but the emphasis of this review is on experimental options, including an assessment of readiness for translation to the human fertility clinic.
Collapse
Affiliation(s)
- Chatchanan Doungkamchan
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kyle E Orwig
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Brannigan RE, Fantus RJ, Halpern JA. Fertility preservation in men: a contemporary overview and a look toward emerging technologies. Fertil Steril 2021; 115:1126-1139. [PMID: 33933174 DOI: 10.1016/j.fertnstert.2021.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
Abstract
Cancer and oncologic therapies can have significant adverse effects on male reproductive potential, leaving many men permanently infertile. Fertility preservation has emerged as a key survivorship issue over the past 20 years, and numerous professional societies have published guidelines calling for fertility preservation to become a routine component of oncologic care. Most males with cancer are able to produce a semen specimen for fertility preservation, but numerous other methods of sperm procurement are available for patients who cannot provide a sufficient sample. Despite these options, fertility preservation will remain a challenge for prepubertal boys and men without sperm production. For these patients, experimental and investigational approaches offer the hope that one day they will translate to the clinical arena, offering additional pathways for successful fertility preservation care.
Collapse
Affiliation(s)
- Robert E Brannigan
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Richard J Fantus
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Joshua A Halpern
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
14
|
Mall EM, Rotte N, Yoon J, Sandhowe-Klaverkamp R, Röpke A, Wistuba J, Hübner K, Schöler HR, Schlatt S. A novel xeno-organoid approach: exploring the crosstalk between human iPSC-derived PGC-like and rat testicular cells. Mol Hum Reprod 2020; 26:879-893. [PMID: 33049038 DOI: 10.1093/molehr/gaaa067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Specification of germ cell-like cells from induced pluripotent stem cells has become a clinically relevant tool for research. Research on initial embryonic processes is often limited by the access to foetal tissue, and in humans, the molecular events resulting in primordial germ cell (PGC) specification and sex determination remain to be elucidated. A deeper understanding of the underlying processes is crucial to describe pathomechanisms leading to impaired reproductive function. Several protocols have been established for the specification of human pluripotent stem cell towards early PGC-like cells (PGCLC), currently representing the best model to mimic early human germline developmental processes in vitro. Further sex determination towards the male lineage depends on somatic gonadal cells providing the necessary molecular cues. By establishing a culture system characterized by the re-organization of somatic cells from postnatal rat testes into cord-like structures and optimizing efficient PGCLC specification protocols, we facilitated the co-culture of human germ cell-like cells within a surrogate testicular microenvironment. Specified conditions allowed the survival of rat somatic testicular and human PGCLCs for 14 days. Human cells maintained the characteristic expression of octamer-binding transcription factor 4, SRY-box transcription factor 17, and transcription factor AP-2 gamma and were recovered from the xeno-organoids by cell sorting. This novel xeno-organoid approach will allow the in vitro exploration of early sex determination of human PGCLCs.
Collapse
Affiliation(s)
- E M Mall
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - N Rotte
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany.,Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - J Yoon
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - R Sandhowe-Klaverkamp
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - A Röpke
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - J Wistuba
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - K Hübner
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - H R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Medical Faculty, University of Münster, Münster, Germany
| | - S Schlatt
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| |
Collapse
|
15
|
Abstract
Infertility caused by chemotherapy or radiation treatments negatively impacts patient-survivor quality of life. The only fertility preservation option available to prepubertal boys who are not making sperm is cryopreservation of testicular tissues that contain spermatogonial stem cells (SSCs) with potential to produce sperm and/or restore fertility. SSC transplantation to regenerate spermatogenesis in infertile adult survivors of childhood cancers is a mature technology. However, the number of SSCs obtained in a biopsy of a prepubertal testis may be small. Therefore, methods to expand SSC numbers in culture before transplantation are needed. Here we review progress with human SSC culture.
Collapse
Affiliation(s)
- Sherin David
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
16
|
Adaptation of Human Testicular Niche Cells for Pluripotent Stem Cell and Testis Development Research. Tissue Eng Regen Med 2020; 17:223-235. [PMID: 32114677 DOI: 10.1007/s13770-020-00240-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human testicular cells are greatly valuable to the research community as tools for studying testicular physiology and the effects of environmental pollutants. Because adult testicular cells have a limited self-organization capacity and life span, we investigated whether human pluripotent stem cells (hPSCs) can be used together with testicular cells to move a step closer toward making an optimal model of the human testis. METHODS We used in vitro culture of donor testicular cells under serum-containing and chemically defined conditions. CRISPR-Cas9 technology was applied to introduce fluorescent transgenes (mCherry2 and EGFP) into hPSCs and testicular cells. hPSC-derived spheroids were co-cultured with human testicular cells in mini-spin bioreactors. RESULTS Traditional cell culture conditions used for maintenance of testicular somatic cells generally contain serum and pose limitations on evaluating the role of active molecules on cell functions. We established that chemically defined culture conditions can be used to maintain testicular cells without the loss of proliferative activity. These cultures demonstrate marker expression which is characteristic of common testicular cell types: Sertoli, Leydig, endothelial, myoid cells, and macrophages. In order to model testicular physiology, it is important to be able to perform live cell microscopy. Thus, we generated fluorescent protein-expressing human testicular cells and hPSCs and demonstrated that these cell types can be successfully co-cultured for prolonged periods of time in a three-dimensional microenvironment. CONCLUSION Our research extends the possible applications of human testis-derived somatic cells and shows that they can be used together with hPSCs for further studies of human male reproductive biology.
Collapse
|
17
|
Ghanbari E, Khazaei M, Ghahremani-Nasab M, Mehdizadeh A, Yousefi M. Novel therapeutic approaches of tissue engineering in male infertility. Cell Tissue Res 2020; 380:31-42. [PMID: 32043209 DOI: 10.1007/s00441-020-03178-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/23/2020] [Indexed: 12/25/2022]
Abstract
Male reproductive organ plays an important role in sperm production, maintenance and entry to the female reproductive tract, as well as generation and secretion of male sex hormones responsible for the health of male reproductive system. The purpose of this paper is to discuss the experimental and clinical evidence on the utilization of tissue engineering techniques in treating male infertility. Tissue engineering (TE) and regenerative medicine have developed new approaches to treat patients with reproductive disorders such as iatrogenic injuries, congenital abnormalities, and trauma. In some cases, including congenital defects and undescended testis or hypogonadism, the sperm samples are not retrieved. This makes TE a possible future strategy for restoration of male fertility. Here, we have summarized the recent advances in experimental and clinical application of cell-, tissue-, and organ-based regenerative medicine in male reproductive disorders.
Collapse
Affiliation(s)
- Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Comprehensive Health Laboratory, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Murphy AJ, Chen X, Pinto EM, Williams JS, Clay MR, Pounds SB, Cao X, Shi L, Lin T, Neale G, Morton CL, Woolard MA, Mulder HL, Gil HJ, Rehg JE, Billups CA, Harlow ML, Dome JS, Houghton PJ, Easton J, Zhang J, George RE, Zambetti GP, Davidoff AM. Forty-five patient-derived xenografts capture the clinical and biological heterogeneity of Wilms tumor. Nat Commun 2019; 10:5806. [PMID: 31862972 PMCID: PMC6925259 DOI: 10.1038/s41467-019-13646-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
The lack of model systems has limited the preclinical discovery and testing of therapies for Wilms tumor (WT) patients who have poor outcomes. Herein, we establish 45 heterotopic WT patient-derived xenografts (WTPDX) in CB17 scid-/- mice that capture the biological heterogeneity of Wilms tumor (WT). Among these 45 total WTPDX, 6 from patients with diffuse anaplastic tumors, 9 from patients who experienced disease relapse, and 13 from patients with bilateral disease are included. Early passage WTPDX show evidence of clonal selection, clonal evolution and enrichment of blastemal gene expression. Favorable histology WTPDX are sensitive, whereas unfavorable histology WTPDX are resistant to conventional chemotherapy with vincristine, actinomycin-D, and doxorubicin given singly or in combination. This WTPDX library is a unique scientific resource that retains the spectrum of biological heterogeneity present in WT and provides an essential tool to test targeted therapies for WT patient groups with poor outcomes. The progress in pre-clinical drug discovery for Wilms tumor (WT) is limited by a lack of disease models. Here, the authors develop 45 heterotopic WT patient-derived xenografts including several anaplastic models that recapitulate the biological heterogeneity of WT, and propose this as a resource for evaluating future therapeutics for WT.
Collapse
Affiliation(s)
- Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA. .,Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, 910 Madison Ave. 2nd floor, Memphis, TN, 38163, USA.
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Emilia M Pinto
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Justin S Williams
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Michael R Clay
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Stanley B Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Xueyuan Cao
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.,College of Nursing, University of Tennessee Health Science Center, 920 Madison Ave, Memphis, TN, 38163, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Tong Lin
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Christopher L Morton
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mary A Woolard
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Hyea Jin Gil
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Catherine A Billups
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Matthew L Harlow
- Department of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Room D640E, Boston, MA, 02215, USA
| | - Jeffrey S Dome
- Division of Oncology, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, 20010, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Rani E George
- Department of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Room D640E, Boston, MA, 02215, USA
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.,Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, 910 Madison Ave. 2nd floor, Memphis, TN, 38163, USA
| |
Collapse
|
19
|
Genome imprinting in stem cells: A mini-review. Gene Expr Patterns 2019; 34:119063. [PMID: 31279979 DOI: 10.1016/j.gep.2019.119063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 06/30/2019] [Indexed: 12/19/2022]
Abstract
Genomic imprinting is an epigenetic process result in silencing of one of the two alleles (maternal or paternal) based on the parent of origin. Dysregulation of imprinted genes results in detectable developmental and differential abnormalities. Epigenetics erasure is required for resetting the cell identity to a ground state during the production of induced pluripotent stem (iPS) cells from somatic cells. There are some contradictory reports regarding the status of the imprinting marks in the genome of iPS cells. Additionally, many studies highlighted the existence of subtle differences in the imprinting loci between different types of iPS cells and embryonic stem (ES) cells. These observations could ultimately undermine the use of patient-derived iPS cells for regenerative medicine.
Collapse
|
20
|
Rahmani F, Movahedin M, Mazaheri Z, Soleimani M. Transplantation of mouse iPSCs into testis of azoospermic mouse model: in vivo and in vitro study. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1585-1594. [PMID: 31007064 DOI: 10.1080/21691401.2019.1594854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study aimed to induce spermatogenesis in azoospermic testis through induced pluripotent stem cells (iPSCs) derived spermatogonial stem cell-like cells (SSCLCs) after iPSCs in vivo and in vitro transplantation and three-dimensional organ culture. DiI-labelled mouse iPSCs were transplanted to azoospermic testis mouse model (pretreated by busulfan 40 mg/kg). This study was designed based on two experimental groups. In experimental group 1(in vivo) labelled iPSCs were transplanted to azoospermic host testis. In experimental group 2 (in vitro) after cell transplantation, fragments of host testes were set as 3D organ culture and testis without cells transplantation served as the control group by the same method. The samples were evaluated by tracing DiI, cell homing, immunohistochemistry, and quantitative RT PCR assays. 2 weeks after iPSCs transplantation, the molecular assessment showed that Plzf, Thy1, Vasa and Gfra1 expression were increased significantly (p ≤ .05) in host testis and labelled iPSCs co-localized by the Plzf and Thy1 markers expression in the base of seminiferous tubules. These findings suggest the ability of iPSCs to achieve homing in the testis niche and indicate the critical inductive role of microenvironment signals in the differentiation of iPSCs to spermatogonial stem cell-like cells.
Collapse
Affiliation(s)
- Forouzan Rahmani
- a Department of Anatomical Sciences, Faculty of Medical Science , Tarbiat Modares University , Tehran , Iran
| | - Mansoureh Movahedin
- a Department of Anatomical Sciences, Faculty of Medical Science , Tarbiat Modares University , Tehran , Iran
| | - Zohreh Mazaheri
- b Department of Anatomical Sciences, Basic Medical Research Center , Histogenotech Company , Tehran , Iran
| | - Masoud Soleimani
- c Department of Hematology and Stem Cell Therapy, Faculty of Medical Science , Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
21
|
Fang F, Li Z, Zhao Q, Li H, Xiong C. Human induced pluripotent stem cells and male infertility: an overview of current progress and perspectives. Hum Reprod 2019; 33:188-195. [PMID: 29315416 PMCID: PMC5850345 DOI: 10.1093/humrep/dex369] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 01/30/2023] Open
Abstract
Recently, significant progress has been made in ART for the treatment of male infertility. However, current ART has failed to help infertile patients with non-obstructive azoospermia, unless donor sperm is used. In fact, most couples wish to have their own genetically related child. Human induced pluripotent stem cells (hiPSCs) can be generated from patients’ somatic cells and in vitro derivation of functional germ cells from patient-specific iPSCs may provide new therapeutic strategies for infertile couples. The overall developmental dynamics of human primordial germ cells are similar to that in mice, but accumulating evidence suggests that there are crucial differences between human and mouse PGC specification. Unlike mouse iPSCs (miPSCs) in naive state, hiPSCs exhibit a primed pluripotency which possess less potential for the germ cell fate. Based on research in mice, male germ cells at different stages have been derived from hiPSCs with different protocols, including spontaneous differentiation, overexpression of germ cell regulators, addition of cytokines, co-culture with gonadal cells in vitro and xeno-transplantation. The aim of this review is to summarize the current advances in derivation of male germ cells from hiPSCs and raise the perspectives of hiPSCs in medical application for male infertility, as well as in basic research for male germ cell development.
Collapse
Affiliation(s)
- Fang Fang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Zili Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Center for Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| | - Qian Zhao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Honggang Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Center for Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| |
Collapse
|
22
|
Sosa E, Chen D, Rojas EJ, Hennebold JD, Peters KA, Wu Z, Lam TN, Mitchell JM, Sukhwani M, Tailor RC, Meistrich ML, Orwig KE, Shetty G, Clark AT. Differentiation of primate primordial germ cell-like cells following transplantation into the adult gonadal niche. Nat Commun 2018; 9:5339. [PMID: 30559363 PMCID: PMC6297357 DOI: 10.1038/s41467-018-07740-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/16/2018] [Indexed: 11/17/2022] Open
Abstract
A major challenge in stem cell differentiation is the availability of bioassays to prove cell types generated in vitro are equivalent to cells in vivo. In the mouse, differentiation of primordial germ cell-like cells (PGCLCs) from pluripotent cells was validated by transplantation, leading to the generation of spermatogenesis and to the birth of offspring. Here we report the use of xenotransplantation (monkey to mouse) and homologous transplantation (monkey to monkey) to validate our in vitro protocol for differentiating male rhesus (r) macaque PGCLCs (rPGCLCs) from induced pluripotent stem cells (riPSCs). Specifically, transplantation of aggregates containing rPGCLCs into mouse and nonhuman primate testicles overcomes a major bottleneck in rPGCLC differentiation. These findings suggest that immature rPGCLCs once transplanted into an adult gonadal niche commit to differentiate towards late rPGCs that initiate epigenetic reprogramming but do not complete the conversion into ENO2-positive spermatogonia. Human embryonic stem cells can be differentiated in vitro into primordial germ cell-like cells (PGCLCs) that resemble early primordial germ cells (PGCs). Here the authors transplant PGCLCs generated from rhesus macaque iPSCs into mouse and rhesus macaque seminiferous tubules, which matures these into late PGCs and spermatogonia-like cells.
Collapse
Affiliation(s)
- Enrique Sosa
- Department of Molecular, Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Di Chen
- Department of Molecular, Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ernesto J Rojas
- Department of Molecular, Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, 97006, USA.,Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Karen A Peters
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Zhuang Wu
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Truong N Lam
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer M Mitchell
- Department of Veterinary Medicine and Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ramesh C Tailor
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Marvin L Meistrich
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Gunapala Shetty
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amander T Clark
- Department of Molecular, Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
23
|
Gustin SLF, Wang G, Baker VM, Latham G, Sebastiano V. Use of human-derived stem cells to create a novel, in vitro model designed to explore FMR1 CGG repeat instability amongst female premutation carriers. J Assist Reprod Genet 2018; 35:1443-1455. [PMID: 29926373 DOI: 10.1007/s10815-018-1237-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/08/2018] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Create a model, using reprogrammed cells, to provide a platform to identify the mechanisms of CGG repeat instability amongst female fragile X mental retardation 1 gene (FMR1) premutation (PM) carriers. METHODS Female PM carriers (with and without POI) and healthy controls were enrolled from June 2013 to April 2014. Patient-derived fibroblasts (FB) were reprogrammed to induced pluripotent stem cells (iPSC) using viral vectors, encoding KLF4, OCT4, SOX2, and MYC. FMR1 CGG repeat-primed PCR was used to assess the triplet repeat structure of the FMR1 gene. FMR1 promoter methylation (%) was determined using FMR1 methylation PCR (mPCR). Quantification of FMR1 transcripts by RT-qPCR was used to evaluate the effect of reprogramming on gene transcription, as well as to correlate patient phenotype with FMR1 expression. Production of FMR1 protein (FMRP) was determined using a liquid bead array-based immunoassay. RESULTS Upon induction to pluripotency, all control clones exhibited maintenance of progenitor cell CGG repeat number, whereas 10 of 12 clones derived from PM carriers maintained their input CGG repeat number, one of which expanded and one contracted. As compared to parent FB, iPSC clones exhibited a skewed methylation pattern; however, downstream transcription and translation appeared unaffected. Further, the PM carriers, regardless of phenotype, exhibited similar FMR1 transcription and translation to the controls. CONCLUSIONS This is the first study to establish a stem cell model aimed to understand FMR1 CGG repeat instability amongst female PM carriers. Our preliminary data indicate that CGG repeat number, transcription, and translation are conserved upon induction to pluripotency.
Collapse
Affiliation(s)
- Stephanie L F Gustin
- Department Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Guangwen Wang
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Valerie M Baker
- Department Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gary Latham
- Research and Technology Development, Asuragen, Inc., Austin, TX, 78744, USA
| | - Vittorio Sebastiano
- Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
24
|
Fang F, Angulo B, Xia N, Sukhwani M, Wang Z, Carey CC, Mazurie A, Cui J, Wilkinson R, Wiedenheft B, Irie N, Surani MA, Orwig KE, Reijo Pera RA. A PAX5-OCT4-PRDM1 developmental switch specifies human primordial germ cells. Nat Cell Biol 2018; 20:655-665. [PMID: 29713018 PMCID: PMC5970969 DOI: 10.1038/s41556-018-0094-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/23/2018] [Indexed: 02/02/2023]
Abstract
Dysregulation of genetic pathways during human germ cell development leads to infertility. Here, we analysed bona fide human primordial germ cells (hPGCs) to probe the developmental genetics of human germ cell specification and differentiation. We examined the distribution of OCT4 occupancy in hPGCs relative to human embryonic stem cells (hESCs). We demonstrated that development, from pluripotent stem cells to germ cells, is driven by switching partners with OCT4 from SOX2 to PAX5 and PRDM1. Gain- and loss-of-function studies revealed that PAX5 encodes a critical regulator of hPGC development. Moreover, an epistasis analysis indicated that PAX5 acts upstream of OCT4 and PRDM1. The PAX5-OCT4-PRDM1 proteins form a core transcriptional network that activates germline and represses somatic programmes during human germ cell differentiation. These findings illustrate the power of combined genome editing, cell differentiation and engraftment for probing human developmental genetics that have historically been difficult to study.
Collapse
Affiliation(s)
- Fang Fang
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| | - Benjamin Angulo
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Ninuo Xia
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine, Magee Women's Research Institute, Pittsburgh, PA, USA
| | - Zhengyuan Wang
- Genomic Medicine Division, Hematology Branch, NHLBI/NIH, Rockville, MD, USA
| | - Charles C Carey
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Aurélien Mazurie
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Jun Cui
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Royce Wilkinson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Naoko Irie
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine, Magee Women's Research Institute, Pittsburgh, PA, USA
| | - Renee A Reijo Pera
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| |
Collapse
|
25
|
Fayomi AP, Orwig KE. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res 2018; 29:207-214. [PMID: 29730571 PMCID: PMC6010318 DOI: 10.1016/j.scr.2018.04.009] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Continuous spermatogenesis in post-pubertal mammals is dependent on spermatogonial stem cells (SSCs), which balance self-renewing divisions that maintain stem cell pool with differentiating divisions that sustain continuous sperm production. Rodent stem and progenitor spermatogonia are described by their clonal arrangement in the seminiferous epithelium (e.g., Asingle, Apaired or Aaligned spermatogonia), molecular markers (e.g., ID4, GFRA1, PLZF, SALL4 and others) and most importantly by their biological potential to produce and maintain spermatogenesis when transplanted into recipient testes. In contrast, stem cells in the testes of higher primates (nonhuman and human) are defined by description of their nuclear morphology and staining with hematoxylin as Adark and Apale spermatogonia. There is limited information about how dark and pale descriptions of nuclear morphology in higher primates correspond with clone size, molecular markers or transplant potential. Do the apparent differences in stem cells and spermatogenic lineage development between rodents and primates represent true biological differences or simply differences in the volume of research and the vocabulary that has developed over the past half century? This review will provide an overview of stem, progenitor and differentiating spermatogonia that support spermatogenesis; identifying parallels between rodents and primates where they exist as well as features unique to higher primates.
Collapse
Affiliation(s)
- Adetunji P Fayomi
- Molecular Genetics and Developmental Biology Graduate Program, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Kyle E Orwig
- Molecular Genetics and Developmental Biology Graduate Program, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States.
| |
Collapse
|
26
|
Zhao Y, Ye S, Liang D, Wang P, Fu J, Ma Q, Kong R, Shi L, Gong X, Chen W, Ding W, Yang W, Zhu Z, Chen H, Sun X, Zhu J, Li Z, Wang Y. In Vitro Modeling of Human Germ Cell Development Using Pluripotent Stem Cells. Stem Cell Reports 2018; 10:509-523. [PMID: 29398481 PMCID: PMC5830957 DOI: 10.1016/j.stemcr.2018.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
Abstract
Due to differences across species, the mechanisms of cell fate decisions determined in mice cannot be readily extrapolated to humans. In this study, we developed a feeder- and xeno-free culture protocol that efficiently induced human pluripotent stem cells (iPSCs) into PLZF+/GPR125+/CD90+ spermatogonium-like cells (SLCs). These SLCs were enriched with key genes in germ cell development such as MVH, DAZL, GFRα1, NANOS3, and DMRT1. In addition, a small fraction of SLCs went through meiosis in vitro to develop into haploid cells. We further demonstrated that this chemically defined induction protocol faithfully recapitulated the features of compromised germ cell development of PSCs with NANOS3 deficiency or iPSC lines established from patients with non-obstructive azoospermia. Taken together, we established a powerful experimental platform to investigate human germ cell development and pathology related to male infertility.
Collapse
Affiliation(s)
- Yuncheng Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shicheng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dongli Liang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jing Fu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Qing Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ruijiao Kong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Linghong Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xueping Gong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wubin Ding
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zijue Zhu
- Department of Andrology, Urologic Medical Center, Shanghai Key Lab of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Huixing Chen
- Department of Andrology, Urologic Medical Center, Shanghai Key Lab of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Xiaoxi Sun
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zheng Li
- Department of Andrology, Urologic Medical Center, Shanghai Key Lab of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Yuan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Department of Animal Science, Michigan State University, Lansing, MI 48824, USA.
| |
Collapse
|
27
|
Medrano JV, Andrés MDM, García S, Herraiz S, Vilanova-Pérez T, Goossens E, Pellicer A. Basic and Clinical Approaches for Fertility Preservation and Restoration in Cancer Patients. Trends Biotechnol 2018; 36:199-215. [DOI: 10.1016/j.tibtech.2017.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022]
|
28
|
Clark AT, Gkountela S, Chen D, Liu W, Sosa E, Sukhwani M, Hennebold JD, Orwig KE. Primate Primordial Germ Cells Acquire Transplantation Potential by Carnegie Stage 23. Stem Cell Reports 2017; 9:329-341. [PMID: 28579394 PMCID: PMC5511048 DOI: 10.1016/j.stemcr.2017.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/04/2022] Open
Abstract
Primordial germ cells (PGCs) are the earliest embryonic progenitors in the germline. Correct formation of PGCs is critical to reproductive health as an adult. Recent work has shown that primate PGCs can be differentiated from pluripotent stem cells; however, a bioassay that supports their identity as transplantable germ cells has not been reported. Here, we adopted a xenotransplantation assay by transplanting single-cell suspensions of human and nonhuman primate embryonic Macaca mulatta (rhesus macaque) testes containing PGCs into the seminiferous tubules of adult busulfan-treated nude mice. We discovered that both human and nonhuman primate embryonic testis are xenotransplantable, generating colonies while not generating tumors. Taken together, this work provides two critical references (molecular and functional) for defining transplantable primate PGCs. These results provide a blueprint for differentiating pluripotent stem cells to transplantable PGC-like cells in a species that is amenable to transplantation and fertility studies. Rhesus PGCs in Carnegie stage 23 correspond to human PGCs at 8–10 weeks Carnegie stage 23 PGCs co-express cKIT, OCT4, TFAP2C, BLIMP1, SOX17, and VASA Carnegie stage 23 PGCs generate colonies following xenotransplantation Carnegie stage 23 PGCs do not yield tumors following xenotransplantation
Collapse
Affiliation(s)
- Amander T Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Sofia Gkountela
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Di Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wanlu Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Enrique Sosa
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
29
|
Malolina EA, Kulibin AY, Kushch AA. Neonatal testicular cell transplantation restores murine spermatogenesis damaged in the course of herpes simplex virus-induced orchitis. Reprod Fertil Dev 2017; 28:757-64. [PMID: 25399480 DOI: 10.1071/rd14255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/19/2014] [Indexed: 01/15/2023] Open
Abstract
Genital tract infection and inflammation may affect male fertility, causing germ and Sertoli cell loss. We determined if testicular cell transplantation is effective at repairing testicular injury induced by herpes simplex virus (HSV) orchitis. ROSA26 mice were used as donors and the recipients were C57BL/6 mice after HSV testicular inoculation; some of the recipients were treated with the antiviral drug acyclovir (ACV). ACV reduced the amount of HSV antigen in testes on Day 3 after transplantation and enhanced the efficacy of transplantation at Day 30. In recipient testes, donor Sertoli cells formed new seminiferous tubules; significantly more new tubules were observed in the testes of ACV-treated mice compared with mice not treated with ACV (17.8% vs 3.6%). Over half (50.4%) of new tubules in ACV-treated testes contained germ cells and round spermatids were detected in 14.2% of new tubules compared with 15.9% and 5.3% in testes not treated with ACV, respectively. At Day 150 the seminiferous epithelium was completely recovered in some donor tubules and elongated spermatids were observed inside it. Thus, our findings reveal the effectiveness of the combination of antiviral therapy with neonatal testis-cell transplantation for the restoration of spermatogenesis damaged by viral infection.
Collapse
Affiliation(s)
- Ekaterina A Malolina
- Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, Gamaleya str. 16, 123098, Moscow, The Russian Federation
| | - Andrey Yu Kulibin
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, 119071, Moscow, The Russian Federation
| | - Alla A Kushch
- Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, Gamaleya str. 16, 123098, Moscow, The Russian Federation
| |
Collapse
|
30
|
Panula S, Reda A, Stukenborg JB, Ramathal C, Sukhwani M, Albalushi H, Edsgärd D, Nakamura M, Söder O, Orwig KE, Yamanaka S, Reijo Pera RA, Hovatta O. Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells. PLoS One 2016; 11:e0165268. [PMID: 27768780 PMCID: PMC5074499 DOI: 10.1371/journal.pone.0165268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/07/2016] [Indexed: 12/05/2022] Open
Abstract
The mechanisms underlying human germ cell development are largely unknown, partly due to the scarcity of primordial germ cells and the inaccessibility of the human germline to genetic analysis. Human embryonic stem cells can differentiate to germ cells in vitro and can be genetically modified to study the genetic requirements for germ cell development. Here, we studied NANOS3 and DAZL, which have critical roles in germ cell development in several species, via their over expression in human embryonic stem cells using global transcriptional analysis, in vitro germ cell differentiation, and in vivo germ cell formation assay by xenotransplantation. We found that NANOS3 over expression prolonged pluripotency and delayed differentiation. In addition, we observed a possible connection of NANOS3 with inhibition of apoptosis. For DAZL, our results suggest a post-transcriptional regulation mechanism in hES cells. In addition, we found that DAZL suppressed the translation of OCT4, and affected the transcription of several genes associated with germ cells, cell cycle arrest, and cell migration. Furthermore, DAZL over expressed cells formed spermatogonia-like colonies in a rare instance upon xenotransplantation. These data can be used to further elucidate the role of NANOS3 and DAZL in germ cell development both in vitro and in vivo.
Collapse
Affiliation(s)
- Sarita Panula
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86, Stockholm, Sweden
| | - Ahmed Reda
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Cyril Ramathal
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA, 94305, United States of America
| | - Meena Sukhwani
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, 15213, United States of America
| | - Halima Albalushi
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Sultan Qaboos University, College of Medicine and Health Sciences, Muscat, Oman
| | - Daniel Edsgärd
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Michiko Nakamura
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Olle Söder
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Kyle E. Orwig
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, 15213, United States of America
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, United States of America
| | - Renee A. Reijo Pera
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA, 94305, United States of America
- Department of Cell Biology and Neurosciences and Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, United States of America
| | - Outi Hovatta
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
31
|
Wang H, Xiang J, Zhang W, Li J, Wei Q, Zhong L, Ouyang H, Han J. Induction of Germ Cell-like Cells from Porcine Induced Pluripotent Stem Cells. Sci Rep 2016; 6:27256. [PMID: 27264660 PMCID: PMC4893677 DOI: 10.1038/srep27256] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022] Open
Abstract
The ability to generate germ cells from pluripotent stem cells (PSCs) is valuable for human regenerative medicine and animal breeding. Germ cell-like cells (GCLCs) have been differentiated from mouse and human PSCs, but not from porcine PSCs, which are considered an ideal model for stem cell applications. Here, we developed a defined culture system for the induction of primordial germ cell-like cells (PGCLCs) from porcine induced PSCs (piPSCs). The identity of the PGCLCs was characterized by observing cell morphology, detecting germ cell marker gene expression and evaluating epigenetic properties. PGCLCs could further differentiate into spermatogonial stem cell-like cells (SSCLCs) in vitro. Importantly, meiosis occurred during SSCLC induction. Xenotransplantation of GCLCs into seminiferous tubules of infertile immunodeficient mice resulted in immunohistochemically identifiable germ cells in vivo. Overall, our study provides a feasible strategy for directing piPSCs to the germ cell fate and lays a foundation for exploring germ cell development mechanisms.
Collapse
Affiliation(s)
- Hanning Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinzhu Xiang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Zhang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junhong Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qingqing Wei
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Zhong
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Jianyong Han
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
32
|
Human somatic cells subjected to genetic induction with six germ line-related factors display meiotic germ cell-like features. Sci Rep 2016; 6:24956. [PMID: 27112843 PMCID: PMC4844986 DOI: 10.1038/srep24956] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/06/2016] [Indexed: 01/01/2023] Open
Abstract
The in vitro derivation of human germ cells has attracted interest in the last years, but their direct conversion from human somatic cells has not yet been reported. Here we tested the ability of human male somatic cells to directly convert into a meiotic germ cell-like phenotype by inducing them with a combination of selected key germ cell developmental factors. We started with a pool of 12 candidates that were reduced to 6, demonstrating that ectopic expression of the germ line-related genes PRDM1, PRDM14, LIN28A, DAZL, VASA and SYCP3 induced direct conversion of somatic cells (hFSK (46, XY), and hMSC (46, XY)) into a germ cell-like phenotype in vitro. Induced germ cell-like cells showed a marked switch in their transcriptomic profile and expressed several post-meiotic germ line related markers, showed meiotic progression, evidence of epigenetic reprogramming, and approximately 1% were able to complete meiosis as demonstrated by their haploid status and the expression of several post-meiotic markers. Furthermore, xenotransplantation assays demonstrated that a subset of induced cells properly colonize the spermatogonial niche. Knowledge obtained from this work can be used to create in vitro models to study gamete-related diseases in humans.
Collapse
|
33
|
Malaver-Ortega LF, Sumer H, Jain K, Verma PJ. Bone morphogenetic protein 4 and retinoic acid trigger bovine VASA homolog expression in differentiating bovine induced pluripotent stem cells. Mol Reprod Dev 2016; 83:149-61. [PMID: 26660942 DOI: 10.1002/mrd.22607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022]
Abstract
Primordial germ cells (PGCs) are the earliest identifiable and completely committed progenitors of female and male gametes. They are obvious targets for genome editing because they assure the transmission of desirable or introduced traits to future generations. PGCs are established at the earliest stages of embryo development and are difficult to propagate in vitro--two characteristics that pose a problem for their practical application. One alternative method to enrich for PGCs in vitro is to differentiate them from pluripotent stem cells derived from adult tissues. Here, we establish a reporter system for germ cell identification in bovine pluripotent stem cells based on green fluorescent protein expression driven by the minimal essential promoter of the bovine Vasa homolog (BVH) gene, whose regulatory elements were identified by orthologous modelling of regulatory units. We then evaluated the potential of bovine induced pluripotent stem cell (biPSC) lines carrying the reporter construct to differentiate toward the germ cell lineage. Our results showed that biPSCs undergo differentiation as embryoid bodies, and a fraction of the differentiating cells expressed BVH. The rate of differentiation towards BVH-positive cells increased up to tenfold in the presence of bone morphogenetic protein 4 or retinoic acid. Finally, we determined that the expression of key PGC genes, such as BVH or SOX2, can be modified by pre-differentiation cell culture conditions, although this increase is not necessarily mirrored by an increase in the rate of differentiation.
Collapse
Affiliation(s)
| | - Huseyin Sumer
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Kanika Jain
- Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Paul J Verma
- South Australian Research and Development Institute (SARDI), Turretfield Research Centre, Rosedale, SA, Australia
| |
Collapse
|
34
|
Gassei K, Orwig KE. Experimental methods to preserve male fertility and treat male factor infertility. Fertil Steril 2015; 105:256-66. [PMID: 26746133 DOI: 10.1016/j.fertnstert.2015.12.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
Infertility is a prevalent condition that has insidious impacts on the infertile individuals, their families, and society, which extend far beyond the inability to have a biological child. Lifestyle changes, fertility treatments, and assisted reproductive technology (ART) are available to help many infertile couples achieve their reproductive goals. All of these technologies require that the infertile individual is able to produce at least a small number of functional gametes (eggs or sperm). It is not possible for a person who does not produce gametes to have a biological child. This review focuses on the infertile man and describes several stem cell-based methods and gene therapy approaches that are in the research pipeline and may lead to new fertility treatment options for men with azoospermia.
Collapse
Affiliation(s)
- Kathrin Gassei
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
35
|
Ramathal C, Angulo B, Sukhwani M, Cui J, Durruthy-Durruthy J, Fang F, Schanes P, Turek PJ, Orwig KE, Reijo Pera R. DDX3Y gene rescue of a Y chromosome AZFa deletion restores germ cell formation and transcriptional programs. Sci Rep 2015; 5:15041. [PMID: 26456624 PMCID: PMC4601010 DOI: 10.1038/srep15041] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/09/2015] [Indexed: 11/08/2022] Open
Abstract
Deletions of the AZFa region (AZoospermia Factor-a) region of the human Y chromosome cause irreversible spermatogenic failure that presents clinically in men as Sertoli-cell only (SCO) pathology of the testis. Deletions of the AZFa region typically encompass two genes: DDX3Y and USP9Y. However, human genetic evidence indicates that SCO is most tightly linked to deletion of DDX3Y and that deletions/mutations of USP9Y can be transmitted from one generation to the next. Here, we generated stable iPSC lines with AZFa deletions, tested complementation via introduction of DDX3Y, and assessed ability to form germ cells in vivo in a xenotransplantation model. We observed a quantifiable improvement in formation of germ cell like cells (GCLCs) from complemented donor iPSCs. Moreover, expression of UTF1, a prospermatogonial protein, was restored in cells complemented by introduction of DDX3Y on the AZFa background. Whole-genome RNA sequencing of purified GCLCs revealed an enrichment of genes involved in translational suppression and transcriptional control in DDX3Y-rescued GCLCs over mutant GCLCs, which maintained a molecular phenotype more similar to undifferentiated iPSCs. This study demonstrates the ability to probe fundamental genetics of human germ cell formation by complementation and indicates that DDX3Y functions in the earliest stages of human germ cell development.
Collapse
Affiliation(s)
- Cyril Ramathal
- Institute for Stem Cell Biology and Regenerative Medicine & Department of Genetics, Stanford University, Stanford, CA, USA
| | - Benjamin Angulo
- Institute for Stem Cell Biology and Regenerative Medicine & Department of Genetics, Stanford University, Stanford, CA, USA
- Departments of Cell Biology & Neuroscience and Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | | | - Jun Cui
- Institute for Stem Cell Biology and Regenerative Medicine & Department of Genetics, Stanford University, Stanford, CA, USA
- Departments of Cell Biology & Neuroscience and Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Jens Durruthy-Durruthy
- Institute for Stem Cell Biology and Regenerative Medicine & Department of Genetics, Stanford University, Stanford, CA, USA
| | - Fang Fang
- Institute for Stem Cell Biology and Regenerative Medicine & Department of Genetics, Stanford University, Stanford, CA, USA
- Departments of Cell Biology & Neuroscience and Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Paula Schanes
- Institute for Stem Cell Biology and Regenerative Medicine & Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Kyle E. Orwig
- Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Renee Reijo Pera
- Institute for Stem Cell Biology and Regenerative Medicine & Department of Genetics, Stanford University, Stanford, CA, USA
- Departments of Cell Biology & Neuroscience and Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| |
Collapse
|
36
|
Saito S, Lin YC, Murayama Y, Nakamura Y, Eckner R, Niemann H, Yokoyama KK. Retracted article: In vitro derivation of mammalian germ cells from stem cells and their potential therapeutic application. Cell Mol Life Sci 2015; 72:4545-60. [PMID: 26439925 PMCID: PMC4628088 DOI: 10.1007/s00018-015-2020-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/27/2015] [Accepted: 08/07/2015] [Indexed: 01/12/2023]
Abstract
Pluripotent stem cells (PSCs) are a unique type of cells because they
exhibit the characteristics of self-renewal and pluripotency. PSCs may be induced to
differentiate into any cell type, even male and female germ cells, suggesting their
potential as novel cell-based therapeutic treatment for infertility problems.
Spermatogenesis is an intricate biological process that starts from self-renewal of
spermatogonial stem cells (SSCs) and leads to differentiated haploid spermatozoa.
Errors at any stage in spermatogenesis may result in male infertility. During the
past decade, much progress has been made in the derivation of male germ cells from
various types of progenitor stem cells. Currently, there are two main approaches for
the derivation of functional germ cells from PSCs, either the induction of in vitro
differentiation to produce haploid cell products, or combination of in vitro
differentiation and in vivo transplantation. The production of mature and fertile
spermatozoa from stem cells might provide an unlimited source of autologous gametes
for treatment of male infertility. Here, we discuss the current state of the art
regarding the differentiation potential of SSCs, embryonic stem cells, and induced
pluripotent stem cells to produce functional male germ cells. We also discuss the
possible use of livestock-derived PSCs as a novel option for animal reproduction and
infertility treatment.
Collapse
Affiliation(s)
- Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita, Tochigi, 329-1571, Japan. .,SPK Co., Ltd., Aizuwakamatsu, Fukushima, 965-0025, Japan. .,College of Engineering, Nihon University, Koriyama, Fukushima, 963-8642, Japan.
| | - Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaoshiung Medical University, 100 Shin-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Yoshinobu Murayama
- College of Engineering, Nihon University, Koriyama, Fukushima, 963-8642, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, 3050074, Japan
| | - Richard Eckner
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07101, USA
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Löffler-Institut, Mariensee, 31535, Neustadt, Germany.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Center of Stem Cell Research, Center of Environmental Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, San Ming District, Kaohsiung, 807, Taiwan. .,Faculty of Science and Engineering, Tokushima Bunri University, Sanuki, 763-2193, Japan. .,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
37
|
Martínez-Arroyo AM, Míguez-Forján JM, Remohí J, Pellicer A, Medrano JV. Understanding Mammalian Germ Line Development with In Vitro Models. Stem Cells Dev 2015; 24:2101-13. [DOI: 10.1089/scd.2015.0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ana M. Martínez-Arroyo
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Jose M. Míguez-Forján
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Jose Remohí
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Antonio Pellicer
- Fundación Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Jose V. Medrano
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
- Fundación Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
38
|
Differentiation of early germ cells from human skin-derived stem cells without exogenous gene integration. Sci Rep 2015; 5:13822. [PMID: 26347377 PMCID: PMC4561906 DOI: 10.1038/srep13822] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/05/2015] [Indexed: 02/06/2023] Open
Abstract
Infertility has long been a difficult issue for many couples. The successful differentiation of germ cells and live progeny from pluripotent stem cells brings new hope to the couples suffering with infertility. Here we successfully isolated human fetus skin-derived stem cells (hfSDSCs) from fetus skin tissue and demonstrated that hfSDSCs can be differentiated into early human germ cell-like cells (hGCLCs). These cells express human germ cell markers DAZL and VASA. Moreover, these pluripotent stem cell-derived hGCLCs are free of exogenous gene integration. When hfSDSCs were differentiated in porcine follicle fluid (PFF) conditioned media, which has been shown to promote the differentiation of mouse and porcine SDSCs into oocyte-like cells (OLCs), we observed some vesicular structures formed from hfSDSCs. Moreover, when hfSDSCs were cultured with specific conditioned media, we observed punctate and elongated SCP3 staining foci, indicating the initiation of meiosis. Ploidy analysis and fluorescent in situ hybridization (FISH) analysis indicated that a small percentage of putative 1N populations formed from hfSDSCs when compared with positive controls. In conclusion, our data here, for the first time, demonstrated that hfSDSCs possess the differentiation potential into germ lines, and they may differentiate both male and female hGCLCs in vitro under appropriate conditions.
Collapse
|
39
|
Dhamodaran K, Subramani M, Jeyabalan N, Ponnalagu M, Chevour P, Shetty R, Matalia H, Shetty R, Prince SE, Das D. Characterization of ex vivo cultured limbal, conjunctival, and oral mucosal cells: A comparative study with implications in transplantation medicine. Mol Vis 2015; 21:828-45. [PMID: 26283864 PMCID: PMC4522244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Limbal epithelial stem cell deficiency is caused by exposure of the cornea to thermal, chemical, or radiation burns or by diseases (aniridia and Stevens-Johnson syndrome). Autologous cell transplantation is a widely used therapeutic modality for restoring the corneal surface in such pathological conditions. Ex vivo cultured limbal, conjunctival, and oral biopsies have been widely used to reconstruct the corneal surface with variable outcomes. Culture characterization of the ex vivo cultured cells would provide insight and clues into the underlying signaling mechanisms that would aid in determining the probable transplantation outcome. Comparison of the vital proteins and genes among the three ex vivo cultured tissues has implications in clinical practice. To address this issue, we characterized and compared the proliferative and differentiated properties of ex vivo cultured limbal, conjunctival, and oral biopsies used for cell-based therapy for corneal surface restoration. METHODS Limbal, conjunctival, and oral biopsies were collected with informed patient consent. Explant cultures were established on the denuded human amniotic membrane with corneal lineage differentiation medium. The day 14 cultures were characterized for epithelial and corneal lineage-specific markers using reverse transcription (RT)-PCR for cytokeratin 3, 4, 12, 13, 15, connexin 43, vimentin, p63α, and ABCG2 markers. mRNA expression was estimated in day 14 cultures with real-time quantitative real time (qRT)-PCR for pluripotency markers (OCT4, SOX2, NANOG), putative corneal stem cell markers (ABCG2 and p63α), proliferation markers (cyclin d1, Ki-67, PCNA, and CDC20), apoptotic markers (BCL2, BAX, caspase 3, and caspase 9), Notch signaling pathway markers (Notch1, Jagged1, Hes1, Hes3, Hes5, and Hey1), and autophagic markers (LC3A, LC3B, ATG7, RAB7, LAMP1, and LAMP2). Fluorescence-activated cell sorter profiling was performed for pluripotent markers and putative corneal stem cell markers ABCG2 and p63α. RESULTS The protein and mRNA expression levels of the pluripotent markers were lower, whereas those of the putative stem/progenitor markers ABCG2, ΔNp63α, and Notch signaling molecules (Notch1 and Jagged1) were elevated in limbal cultures. The gene expression levels of the autophagy markers (LC3A, LC3B, and LAMP1) were significantly increased in the limbal cultures compared to the oral and conjunctival cultures. CONCLUSIONS In conclusion, the limbal epithelial cultures showed higher expression of proliferative, limbal stem cell marker, Notch signaling, and autophagy markers suggesting a role in stem cell maintenance and differentiation. This implicates the probable factors that might drive a successful transplantation. Our findings provide the initial steps toward understanding transplantation medicine in an ex vivo model.
Collapse
Affiliation(s)
- Kamesh Dhamodaran
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India,School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Murali Subramani
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India,Post-graduate & Research Department of Biotechnology, Jamal Mohamed College, Bharathidasan University, Tiruchirappalli, India
| | - Nallathambi Jeyabalan
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Murugeswari Ponnalagu
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Priyanka Chevour
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Reshma Shetty
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Himanshu Matalia
- Department of Cornea and Refractive surgery, Narayana Nethralaya Post Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive surgery, Narayana Nethralaya Post Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, India
| | - Sabina Evan Prince
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| |
Collapse
|
40
|
Moreno I, Míguez-Forjan JM, Simón C. Artificial gametes from stem cells. Clin Exp Reprod Med 2015; 42:33-44. [PMID: 26161331 PMCID: PMC4496429 DOI: 10.5653/cerm.2015.42.2.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
The generation of artificial gametes is a real challenge for the scientific community today. In vitro development of human eggs and sperm will pave the way for the understanding of the complex process of human gametogenesis and will provide with human gametes for the study of infertility and the onset of some inherited disorders. However, the great promise of artificial gametes resides in their future application on reproductive treatments for all these people wishing to have genetically related children and for which gamete donation is now their unique option of parenthood. This is the case of infertile patients devoid of suitable gametes, same sex couples, singles and those fertile couples in a high risk of transmitting serious diseases to their progeny. In the search of the best method to obtain artificial gametes, many researchers have successfully obtained human germ cell-like cells from stem cells at different stages of differentiation. In the near future, this field will evolve to new methods providing not only viable but also functional and safe artificial germ cells. These artificial sperm and eggs should be able to recapitulate all the genetic and epigenetic processes needed for the correct gametogenesis, fertilization and embryogenesis leading to the birth of a healthy and fertile newborn.
Collapse
Affiliation(s)
- Inmaculada Moreno
- Department of Research and Development, Igenomix S.L., Paternam, Spain
| | | | - Carlos Simón
- Department of Research and Development, Igenomix S.L., Paternam, Spain. ; Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia, Spain. ; Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
41
|
Zeng F, Huang F, Guo J, Hu X, Liu C, Wang H. Emerging methods to generate artificial germ cells from stem cells. Biol Reprod 2015; 92:89. [PMID: 25715792 DOI: 10.1095/biolreprod.114.124800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/16/2015] [Indexed: 12/29/2022] Open
Abstract
Germ cells are responsible for the transmission of genetic and epigenetic information across generations. At present, the number of infertile couples is increasing worldwide; these infertility problems can be traced to environmental pollutions, infectious diseases, cancer, psychological or work-related stress, and other factors, such as lifestyle and genetics. Notably, lack of germ cells and germ cell loss present real obstacles in infertility treatment. Recent research aimed at producing gametes through artificial germ cell generation from stem cells may offer great hope for affected couples to treat infertility in the future. Therefore, this rapidly emerging area of artificial germ cell generation from nongermline cells has gained considerable attention from basic and clinical research in the fields of stem cell biology, developmental biology, and reproductive biology. Here, we review the state of the art in artificial germ cell generation.
Collapse
Affiliation(s)
- Fanhui Zeng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Fajun Huang
- School of Medical Science, Hubei University for Nationalities, Enshi, China
| | - Jingjing Guo
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xingchang Hu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Changbai Liu
- The Institute of Molecular Biology, China Three Gorges University, Yichang, China
| | - Hu Wang
- Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|
42
|
Affiliation(s)
- F Kent Hamra
- Department of Pharmacology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
43
|
Durruthy JD, Sebastiano V. Derivation of GMP-compliant integration-free hiPSCs using modified mRNAs. Methods Mol Biol 2015; 1283:31-42. [PMID: 25304205 DOI: 10.1007/7651_2014_124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The clinical use of human induced pluripotent stem cells (hiPSCs) and the development of patients-specific gene and cell therapies rely on the development of fast, reliable, and integration-free methods of derivation of pluripotent stem cells from somatic tissues. Here we describe an integration-free protocol for the rapid derivation of hiPSCs from dermal fibroblasts using modified mRNAs. This method is inexpensive, highly efficient, and makes use of reagents that are xeno-free and chemically defined and can therefore be adopted by any Good Manufacturing Practice (GMP) facility.
Collapse
Affiliation(s)
- Jens Durruthy Durruthy
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, 94305, USA
| | | |
Collapse
|
44
|
Barr J, Gordon D, Schedl P, Deshpande G. Xenotransplantation exposes the etiology of azoospermia factor (AZF) induced male sterility. Bioessays 2014; 37:278-83. [PMID: 25524208 DOI: 10.1002/bies.201400134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ramathal et al. have employed an elegant xenotransplantation technique to study the fate of human induced pluripotent stem cells (hiPSCs) from fertile males and from males carrying Y chromosome deletions of the azoospermia factor (AZF) region. When placed in a mouse testis niche, hiPSCs from fertile males differentiate into germ cell-like cells (GCLCs). Highlighting the crucial role of cell autonomous factors in male sterility, hiPSCs derived from azoospermic males prove to be less successful under similar circumstances. Their studies argue that the agametic "Sertoli cell only" phenotype of two of the AZF deletions likely arises from a defect in the maintenance of germline stem cells (GSCs) rather than from a defect in their specification. These observations underscore the importance of the dialogue between the somatic niche and its inhabitant stem cells, and open up interesting questions concerning the functioning of the somatic niche and how it communicates to the GSCs.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, NJ
| | | | | | | |
Collapse
|
45
|
Martínez-Arroyo AM, Medrano JV, Remohí J, Simón C. Germ line development: lessons learned from pluripotent stem cells. Curr Opin Genet Dev 2014; 28:64-70. [PMID: 25461452 DOI: 10.1016/j.gde.2014.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/28/2022]
Abstract
Current knowledge about mammalian germ line development is mainly based on the mouse model and little is known about how this fundamental process occurs in humans. This review summarizes our current knowledge of genetic and epigenetic germ line development in mammals, mainly focusing on primordial germ cell (PGC) specification events, comparing the differences between mouse and human models. We also emphasize the knowledge derived from the most successful strategies used to generate germ cell-like cells in vitro in both models and major obstacles to obtaining bona fide in vitro-derived gametes are considered.
Collapse
Affiliation(s)
- Ana M Martínez-Arroyo
- Fundación Instituto Valenciano de Infertilidad (FIVI), Dept. Obst. & Gynec., Valencia University, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia 46015, Spain
| | - Jose V Medrano
- Fundación Instituto Valenciano de Infertilidad (FIVI), Dept. Obst. & Gynec., Valencia University, Valencia, Spain; Fundación Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain
| | - José Remohí
- Fundación Instituto Valenciano de Infertilidad (FIVI), Dept. Obst. & Gynec., Valencia University, Valencia, Spain; Fundación Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain
| | - Carlos Simón
- Fundación Instituto Valenciano de Infertilidad (FIVI), Dept. Obst. & Gynec., Valencia University, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia 46015, Spain; Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Dominguez AA, Chiang HR, Sukhwani M, Orwig KE, Reijo Pera RA. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies. Sci Rep 2014; 4:6432. [PMID: 25242416 PMCID: PMC4170197 DOI: 10.1038/srep06432] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022] Open
Abstract
Turner syndrome is caused by complete or partial loss of the second sex chromosome and is characterized by spontaneous fetal loss in >90% of conceptions. Survivors possess an array of somatic and germline clinical characteristics. Induced pluripotent stem cells (iPSCs) offer an opportunity for insight into genetic requirements of the X chromosome linked to Turner syndrome. We derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We demonstrate that two X chromosomes are not necessary for reprogramming or maintenance of pluripotency and that there are minimal differences in gene expression, at the single cell level, linked to X chromosome aneuploidies. Formation of germ cells, as assessed in vivo through a murine xenotransplantation model, indicated that undifferentiated iPSCs, independent of X chromosome composition, are capable of forming germ-cell-like cells (GCLCs) in vivo. In combination with clinical data regarding infertility in women with X chromosome aneuploidies, results suggest that two intact X chromosomes are not required for human germ cell formation, qualitatively or quantitatively, but rather are likely to be required for maintenance of human germ cells to adulthood.
Collapse
Affiliation(s)
- Antonia A Dominguez
- 1] Department of Genetics; Department of Obstetrics and Gynecology; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA, USA [2]
| | - H Rosaria Chiang
- Department of Genetics; Department of Obstetrics and Gynecology; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Renee A Reijo Pera
- 1] Department of Genetics; Department of Obstetrics and Gynecology; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA, USA [2]
| |
Collapse
|
47
|
Ramathal C, Durruthy-Durruthy J, Sukhwani M, Arakaki JE, Turek PJ, Orwig KE, Reijo Pera RA. Fate of iPSCs derived from azoospermic and fertile men following xenotransplantation to murine seminiferous tubules. Cell Rep 2014; 7:1284-97. [PMID: 24794432 DOI: 10.1016/j.celrep.2014.03.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/27/2014] [Accepted: 03/27/2014] [Indexed: 01/10/2023] Open
Abstract
Historically, spontaneous deletions and insertions have provided means to probe germline developmental genetics in Drosophila, mouse and other species. Here, induced pluripotent stem cell (iPSC) lines were derived from infertile men with deletions that encompass three Y chromosome azoospermia factor (AZF) regions and are associated with production of few or no sperm but normal somatic development. AZF-deleted iPSC lines were compromised in germ cell development in vitro. Undifferentiated iPSCs transplanted directly into murine seminiferous tubules differentiated extensively to germ-cell-like cells (GCLCs) that localized near the basement membrane, demonstrated morphology indistinguishable from fetal germ cells, and expressed germ-cell-specific proteins diagnostic of primordial germ cells. Alternatively, all iPSCs that exited tubules formed primitive tumors. iPSCs with AZF deletions produced significantly fewer GCLCs in vivo with distinct defects in gene expression. Findings indicate that xenotransplantation of human iPSCs directs germ cell differentiation in a manner dependent on donor genetic status.
Collapse
Affiliation(s)
- Cyril Ramathal
- Institute for Stem Cell Biology & Regenerative Medicine, Departments of Genetics and Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA
| | - Jens Durruthy-Durruthy
- Institute for Stem Cell Biology & Regenerative Medicine, Departments of Genetics and Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh PA 15213
| | - Joy E Arakaki
- Institute for Stem Cell Biology & Regenerative Medicine, Departments of Genetics and Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA
| | | | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh PA 15213
| | - Renee A Reijo Pera
- Institute for Stem Cell Biology & Regenerative Medicine, Departments of Genetics and Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|