1
|
Altunoglu U, Turgut GT, Özturan EK, Kalaycı T, Kaya M, Toksoy G, Baş F, Kayserili H, Darendeliler F. Expanding the Clinical and Mutational Spectrum of Biallelic POC1A Variants: Characterization of Four Patients and a Comprehensive Review of POC1A-Related Phenotypes. Clin Genet 2025; 107:390-401. [PMID: 39662966 DOI: 10.1111/cge.14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
SOFT syndrome (SOFTS) is an autosomal recessive disorder caused by biallelic POC1A variants, characterized by short stature, distinctive facial features, onychodysplasia, and hypotrichosis. To date, 21 pathogenic POC1A variants have been reported in 26 families. This study aims to broaden the phenotypic and genotypic spectrum of SOFTS with emphasis on the long-term effects of growth hormone (GH) therapy. We report four unrelated patients with three homozygous POC1A variants and demonstrate the transcriptional effects of two canonical splicing variants. All four patients had severe growth retardation, sparse hair/eyebrows, high/prominent forehead, long/triangular face, prominent nose, short middle/distal phalanges, puffy/tapering fingers, and prominent heels. Endocrine abnormalities included insulin resistance and impaired glucose tolerance, dyslipidemia, GH deficiency, central hypothyroidism, and precocious puberty. Two patients treated long-term with recombinant human GH showed insufficient responses. We also provide an extensive review of 43 cases including those we report, contributing to a better understanding of the full clinical and endocrinological spectrum of SOFTS.
Collapse
Affiliation(s)
- Umut Altunoglu
- Medical Genetics Department, Koc University School of Medicine (KUSOM), Istanbul, Turkey
| | - Gozde Tutku Turgut
- Medical Genetics Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Karakılıç Özturan
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tuğba Kalaycı
- Medical Genetics Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mert Kaya
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Güven Toksoy
- Medical Genetics Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Firdevs Baş
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hülya Kayserili
- Medical Genetics Department, Koc University School of Medicine (KUSOM), Istanbul, Turkey
| | - Feyza Darendeliler
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Perge K, Capel E, Senée V, Julier C, Vigouroux C, Nicolino M. Ciliopathies are responsible for short stature and insulin resistance: A systematic review of this clinical association regarding SOFT syndrome. Rev Endocr Metab Disord 2024; 25:827-838. [PMID: 39017987 PMCID: PMC11470920 DOI: 10.1007/s11154-024-09894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
SOFT syndrome (Short stature-Onychodysplasia-Facial dysmorphism-hypoTrichosis) is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A encoding a centriolar protein. To refine the phenotypic spectrum of SOFT syndrome, recently shown to include metabolic features, we conducted a systematic review of all published cases (19 studies, including 42 patients). The SOFT tetrad affected only 24 patients (57%), while all cases presented with short stature from birth (median height: -5.5SDS([-8.5]-[-2.8])/adult height: 132.5 cm(103.5-148)), which was most often disproportionate (90.5%), with relative macrocephaly. Bone involvement resulted in short hands and feet (100%), brachydactyly (92.5%), metaphyseal (92%) or epiphyseal (84%) anomalies, and/or sacrum/pelvis hypoplasia (58%). Serum IGF-I was increased (median IGF-I level: + 2 SDS ([-0.5]-[+ 3])). Recombinant human growth hormone (rhGH) therapy was stopped for absence/poor growth response (7/9 patients, 78%) and/or hyperglycemia (4/9 patients, 45%). Among 11 patients evaluated, 10 (91%) presented with central distribution of fat (73%), clinical (64%) and/or biological insulin resistance (IR) (100%, median HOMA-IR: 18), dyslipidemia (80%), and hepatic steatosis (100%). Glucose tolerance abnormalities affected 58% of patients aged over 10 years. Patients harbored biallelic missense (52.4%) or truncating (45.2%) POC1A variants. Biallelic null variants, affecting 36% of patients, were less frequently associated with the SOFT tetrad (33% vs 70% respectively, p = 0.027) as compared to other variants, without difference in the prevalence of metabolic abnormalities. POC1A should be sequenced in children with short stature, altered glucose/insulin homeostasis and/or centripetal fat distribution. In patients with SOFT syndrome, rhGH treatment is not indicated, and IR-related complications should be regularly screened and monitored.PROSPERO registration: CRD42023460876.
Collapse
Affiliation(s)
- Kevin Perge
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France.
- Claude Bernard University, Lyon 1, Lyon, France.
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France.
| | - Emilie Capel
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Valérie Senée
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Cécile Julier
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
| | - Marc Nicolino
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France
- Claude Bernard University, Lyon 1, Lyon, France
| |
Collapse
|
3
|
Li Z, Li J, Wu Z, Zhu Y, Zhuo T, Nong J, Qian J, Peng H, Dai L, Wang Y, Chen M, Zeng X. Upregulation of POC1A in lung adenocarcinoma promotes tumour progression and predicts poor prognosis. J Cell Mol Med 2024; 28:e18135. [PMID: 38429900 PMCID: PMC10907829 DOI: 10.1111/jcmm.18135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 03/03/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is characterized by a high incidence rate and mortality. Recently, POC1 centriolar protein A (POC1A) has emerged as a potential biomarker for various cancers, contributing to cancer onset and development. However, the association between POC1A and LUAD remains unexplored. We extracted The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data sets to analyse the differential expression of POC1A and its relationship with clinical stage. Additionally, we performed diagnostic receiver operator characteristic (ROC) curve analysis and Kaplan-Meier (KM) survival analysis to assess the diagnostic and prognostic value of POC1A in LUAD. Furthermore, we investigated the correlation between POC1A expression and immune infiltration, tumour mutation burden (TMB), immune checkpoint expression and drug sensitivity. Finally, we verified POC1A expression using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Cell experiments were conducted to validate the effect of POC1A expression on the proliferation, migration and invasion of lung cancer cells. POC1A exhibited overexpression in most tumour tissues, and its overexpression in LUAD was significantly correlated with late-stage presentation and poor prognosis. The high POC1A expression group showed lower levels of immune infiltration but higher levels of immune checkpoint expression and TMB. Moreover, the high POC1A expression group demonstrated sensitivity to multiple drugs. In vitro experiments confirmed that POC1A knockdown led to decreased proliferation, migration, and invasion of lung cancer cells. Our findings suggest that POC1A may contribute to tumour development by modulating the cell cycle and immune cell infiltration. It also represents a potential therapeutic target and marker for the diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Zi‐Hao Li
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Jia‐Yi Li
- Geriatrics Department of Endocrinology and MetabolismThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Zuo‐Tao Wu
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Yong‐Jie Zhu
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Ting Zhuo
- Department of Respiratory MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Ju‐Sen Nong
- Department of Pediatric SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Jing Qian
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Hua‐Jian Peng
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Lei Dai
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Yong‐Yong Wang
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Ming‐Wu Chen
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Xiao‐Chun Zeng
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| |
Collapse
|
4
|
Perge K, Capel E, Villanueva C, Gautheron J, Diallo S, Auclair M, Rondeau S, Morichon R, Brioude F, Jéru I, Rossi M, Nicolino M, Vigouroux C. Ciliopathy due to POC1A deficiency: clinical and metabolic features, and cellular modeling. Eur J Endocrinol 2024; 190:151-164. [PMID: 38245004 DOI: 10.1093/ejendo/lvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVE SOFT syndrome (MIM#614813), denoting Short stature, Onychodysplasia, Facial dysmorphism, and hypoTrichosis, is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A, encoding a centriolar protein. SOFT syndrome, characterized by severe growth failure of prenatal onset and dysmorphic features, was recently associated with insulin resistance. This study aims to further explore its endocrinological features and pathophysiological mechanisms. DESIGN/METHODS We present clinical, biochemical, and genetic features of 2 unrelated patients carrying biallelic pathogenic POC1A variants. Cellular models of the disease were generated using patients' fibroblasts and POC1A-deleted human adipose stem cells. RESULTS Both patients present with clinical features of SOFT syndrome, along with hyperinsulinemia, diabetes or glucose intolerance, hypertriglyceridemia, liver steatosis, and central fat distribution. They also display resistance to the effects of IGF-1. Cellular studies show that the lack of POC1A protein expression impairs ciliogenesis and adipocyte differentiation, induces cellular senescence, and leads to resistance to insulin and IGF-1. An altered subcellular localization of insulin receptors and, to a lesser extent, IGF1 receptors could also contribute to resistance to insulin and IGF1. CONCLUSIONS Severe growth retardation, IGF-1 resistance, and centripetal fat repartition associated with insulin resistance-related metabolic abnormalities should be considered as typical features of SOFT syndrome caused by biallelic POC1A null variants. Adipocyte dysfunction and cellular senescence likely contribute to the metabolic consequences of POC1A deficiency. SOFT syndrome should be included within the group of monogenic ciliopathies with metabolic and adipose tissue involvement, which already encompasses Bardet-Biedl and Alström syndromes.
Collapse
Affiliation(s)
- Kevin Perge
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron F69500, France
- Claude Bernard University, Lyon 1, Lyon F69100, France
| | - Emilie Capel
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
| | - Carine Villanueva
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron F69500, France
| | - Jérémie Gautheron
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
| | - Safiatou Diallo
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
| | - Martine Auclair
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
| | - Sophie Rondeau
- Department of Molecular Biology, Assistance Publique-Hôpitaux de Paris, Necker Enfants Malades Hospital, Paris F75015, France
| | - Romain Morichon
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
- Cytometry and Imagery platform Saint-Antoine (CISA), Inserm UMS30 Lumic, Paris F75012, France
| | - Frédéric Brioude
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Armand Trousseau University Hospital, Paris F75012, France
| | - Isabelle Jéru
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris F75012, France
| | - Massimiliamo Rossi
- Genetics Department, Referral Center for Skeletal Dysplasias, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Lyon F69500, France
- UMR5292, Lyon Neuroscience Research Center, INSERM U1028, CNRS, GENDEV Team, Bron F69500, France
| | - Marc Nicolino
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron F69500, France
- Claude Bernard University, Lyon 1, Lyon F69100, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris F75012, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris F75012, France
| |
Collapse
|
5
|
Zhao Q, Gao S, Chen X, Zhu X. POC1A, prognostic biomarker of immunosuppressive microenvironment in cancer. Aging (Albany NY) 2022; 14:5195-5210. [PMID: 35748773 PMCID: PMC9271305 DOI: 10.18632/aging.204141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
POC1 centriolar protein A (POC1A) effect in pan-cancer remains uncertain. The POC1A expression in normal and tumor tissues underwent analysis in this study utilizing data from the Genotype-Tissue Expression (GTEx) project and the Cancer Genome Atlas (TCGA) database. POC1A prognostic value and clinicopathological features were assessed utilizing the TCGA cohort. The relationship between immunological cell infiltration and POC1A of TCGA samples downloaded from TIMER2 and ImmuCellAI databases were observed. The relation between POC1A and immunological checkpoints genes, microsatellite instability (MSI) as well as tumor mutation burden (TMB) was also evaluated. Additionally, gene set enrichment analysis (GSEA) was utilized for exploring POC1A potential molecular mechanism in pan-cancer. In almost all 33 tumors, POCA1 showed a high expression. In most cases, high POC1A expression was linked significantly with a poor prognosis. Additionally, Tumor immune infiltration and tumors microenvironment were correlated with the expression of POC1A. In addition, TMB and MSI, as well as immune checkpoint genes in pan-cancer, were related to POC1A expression. In GSEA analysis, POC1A is implicated in cell cycle and immune-related pathways. These results might elucidate the crucial roles of POC1A in pan-cancer as a prognostic biomarker and immunotherapy target.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Shuping Gao
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Xin Chen
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Xiyan Zhu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|
6
|
Mericq V, Huang-Doran I, Al-Naqeb D, Basaure J, Castiglioni C, de Bruin C, Hendriks Y, Bertini E, Alkuraya FS, Losekoot M, Al-Rubeaan K, Semple RK, Wit JM. Biallelic POC1A variants cause syndromic severe insulin resistance with muscle cramps. Eur J Endocrinol 2022; 186:543-552. [PMID: 35234134 PMCID: PMC9010808 DOI: 10.1530/eje-21-0609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To describe clinical, laboratory, and genetic characteristics of three unrelated cases from Chile, Portugal, and Saudi Arabia with severe insulin resistance, SOFT syndrome, and biallelic pathogenic POC1A variants. DESIGN Observational study. METHODS Probands' phenotypes, including short stature, dysmorphism, and insulin resistance, were compared with previous reports. RESULTS Cases 1 (female) and 3 (male) were homozygous for known pathogenic POC1A variants: c.649C>T, p.(Arg217Trp) and c.241C>T, p.(Arg81*), respectively. Case 2 (male) was compound heterozygous for p.(Arg217Trp) variant and the rare missense variant c.370G>A, p.(Asp124Asn). All three cases exhibited severe insulin resistance, acanthosis nigricans, elevated serum triglycerides and decreased HDL, and fatty liver, resembling three previously reported cases. All three also reported severe muscle cramps. Aggregate analysis of the six known cases with biallelic POC1A variants and insulin resistance showed decreased birth weight and length mean (s.d.): -2.8 (0.9) and -3.7 (0.9) SDS, respectively), severe short stature mean (s.d.) height: -4.9 (1.7) SDS) and moderate microcephaly (mean occipitofrontal circumference -3.0 (range: -4.7 to -1.2)). These findings were similar to those reported for patients with SOFT syndrome without insulin resistance. Muscle biopsy in Case 3 showed features of muscle involvement secondary to a neuropathic process. CONCLUSIONS Patients with SOFT syndrome can develop severe dyslipidaemic insulin resistance, independent of the exonic position of the POC1A variant. They also can develop severe muscle cramps. After diagnosis, patients should be regularly screened for insulin resistance and muscle complaints.
Collapse
Affiliation(s)
- Veronica Mericq
- Institute of Maternal and Child Research, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Pediatrics, Clinica Las Condes, Santiago, Chile
- Correspondence should be addressed to V Mericq or R K Semple; or
| | - Isabel Huang-Doran
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Dhekra Al-Naqeb
- Department of Medicine, Medical Genetic Clinic, Sultan Bin Abdulaziz Humanitarian City, Riyadh, Saudi Arabia
| | | | | | - Christiaan de Bruin
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Yvonne Hendriks
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, Netherlands
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, Netherlands
| | - Khalid Al-Rubeaan
- Research and Scientific Centre Director, Sultan Bin Abdulaziz Humanitarian City, Riyadh, Saudi Arabia
| | - Robert K Semple
- Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Correspondence should be addressed to V Mericq or R K Semple; or
| | - Jan M Wit
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
Li G, Chang G, Wang C, Yu T, Li N, Huang X, Wang X, Wang J, Wang J, Yao R. Identification of SOFT syndrome caused by a pathogenic homozygous splicing variant of POC1A: a case report. BMC Med Genomics 2021; 14:207. [PMID: 34419044 PMCID: PMC8379828 DOI: 10.1186/s12920-021-01055-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pathogenic variants in POC1A led to SOFT syndrome and variant POC1A-related (vPOC1A) syndrome. SOFT syndrome is a rare primordial dwarfism condition characterized by short stature, onychodysplasia, facial dysmorphism and hypotrichosis.The main clinical differences between SOFT and vPOC1A syndrome include dyslipidemia with insulin resistance and acanthosis nigricans. To our knowledge, this is the first report of a SOFT syndrome patient diagnosed with a homozygous splicing variant, which could help to extend our understanding of the genotypic and phenotypic information of the disease. CASE PRESENTATION We reported a seven-year-old boy with SOFT syndrome. The patient presented symmetrical short stature and facial features, including prominent forehead, inverted triangular face, epicanthal fold, small teeth and enlarged ears. Laboratory tests displayed mild insulin resistance. Whole-exome sequencing (WES) led to the identification of a homozygous splicing variant (c.981+1G>A) in POC1A gene of the patient, which was inherited from his heterozygous parents confirmed by Sanger sequencing. Further transcriptional experiments of the splicing variant revealed aberrant percentage of exon 9 skipping transcripts. CONCLUSIONS This is the firstly reported case of a SOFT syndrome patient with a novel homozygous splicing variant and detailed delineation of the aberrant transcript in proband and carrier of the variant in Chinese. Our study enriched mutational spectrum of POC1A which could help in further genetic diagnosis and counselling of SOFT syndrome patients.
Collapse
Affiliation(s)
- Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Guoying Chang
- Department of Endocrine and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Chen Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Xiaodong Huang
- Department of Endocrine and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Xiumin Wang
- Department of Endocrine and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jiwen Wang
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
8
|
Li S, Zhong Y, Yang Y, He S, He W. Further phenotypic features and two novel POC1A variants in a patient with SOFT syndrome: A case report. Mol Med Rep 2021; 24:494. [PMID: 33955509 PMCID: PMC8127052 DOI: 10.3892/mmr.2021.12133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/09/2021] [Indexed: 11/05/2022] Open
Abstract
Short stature, onychodysplasia, facial dysmorphism and hypotrichosis (SOFT) syndrome is a rare autosomal recessive disease caused by POC1 centriolar protein A (POC1A) pathogenic variants. However, knowledge of genotypic and phenotypic features of SOFT syndrome remain limited as few families have been examined; therefore, the clinical identification of SOFT syndrome remains a challenge. The aim of the present case report was to investigate the genetic cause of this syndrome in a patient with a short stature, unusual facial appearance, skeletal dysplasia and sparse body hair. Giemsa banding and exome sequencing were performed to investigate the genetic background of the family. Spiral computed tomography and magnetic resonance imaging were used for investigating further phenotypic features of the patient. Exome sequencing identified that POC1A had two compound heterozygous variants, namely c.850_851insG and c.593_605delGTGGGACGTGCAT, which, to the best of our knowledge, have not been reported elsewhere. Novel phenotypes were also identified as follows: i) Metaphyseal dysplasia was alleviated (and/or even disappeared) with age; ii) the density of the femoral neck was uneven and the hyperintensity signal of the metaphysis was stripe‑like. Thus, the present case report expands the knowledge regarding phenotypic and genotypic features of SOFT syndrome.
Collapse
Affiliation(s)
- Songting Li
- Children's Healthcare Institute, Hunan Children's Hospital, University of South China, Changsha, Hunan 410007, P.R. China
| | - Yan Zhong
- Children's Healthcare Institute, Hunan Children's Hospital, University of South China, Changsha, Hunan 410007, P.R. China
| | - Yongjia Yang
- The Laboratory of Genetics and Metabolism, Hunan Children's Research Institute, Hunan Children's Hospital, University of South China, Changsha, Hunan 410007, P.R. China
| | - Siping He
- Department of Radiology, Hunan Children's Hospital, University of South China, Changsha, Hunan 410007, P.R. China
| | - Wenjuan He
- Children's Healthcare Institute, Hunan Children's Hospital, University of South China, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
9
|
Majore S, Agolini E, Micale L, Pascolini G, Zuppi P, Cocciadiferro D, Morlino S, Mattiuzzo M, Valiante M, Castori M, Novelli A, Grammatico P. Clinical presentation and molecular characterization of a novel patient with variant POC1A-related syndrome. Clin Genet 2021; 99:540-546. [PMID: 33372278 DOI: 10.1111/cge.13911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
Biallelic pathogenic variants in POC1A result in SOFT (Short-stature, Onychodysplasia, Facial-dysmorphism, and hypoTrichosis) and variant POC1A-related (vPOC1A) syndromes. The latter, nowadays described in only two unrelated subjects, is associated with a restricted spectrum of variants falling in exon 10, which is naturally skipped in a specific POC1A mRNA. The synthesis of an amount of a POC1A isoform from this transcript in individuals with vPOC1A syndrome has been believed as the likely explanation for such a genotype-phenotype correlation. Here, we illustrate the clinical and molecular findings in a woman who resulted to be compound heterozygous for a recurrent frameshift variant in exon 10 and a novel variant in exon 9 of POC1A. Phenotypic characteristics of this woman included severe hyperinsulinemic dyslipidemia, acanthosis nigricans, moderate growth restriction, and dysmorphisms. These manifestations overlap the clinical features of the two previously published individuals with vPOC1A syndrome. RT-PCR analysis on peripheral blood and subsequent sequencing of the obtained amplicons demonstrated a variety of POC1A alternative transcripts that resulted to be expressed in the proband, in the healthy mother, and in controls. We illustrate the possible consequences of the two POC1A identified variants in an attempt to explain pleiotropy in vPOC1A syndrome.
Collapse
Affiliation(s)
- Silvia Majore
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Giulia Pascolini
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Paolo Zuppi
- Endocrinology Unit, San Camillo-Forlanini Hospital, Rome, Italy
| | - Dario Cocciadiferro
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Silvia Morlino
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Matteo Mattiuzzo
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Michele Valiante
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Grammatico
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
10
|
Lu J, Huang XY, Wang YH, Xie JW, Wang JB, Lin JX, Chen QY, Cao LL, Li P, Huang CM, Zheng CH. POC1A acts as a promising prognostic biomarker associated with high tumor immune cell infiltration in gastric cancer. Aging (Albany NY) 2020; 12:18982-19011. [PMID: 33052878 PMCID: PMC7732308 DOI: 10.18632/aging.103624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/04/2020] [Indexed: 01/24/2023]
Abstract
The effect of POC1 centriolar protein A (POC1A) on gastric cancer (GC) has not been clearly defined. In this study, POC1A expression and clinical information in patients with GC were analyzed. Multiple databases were used to investigate the genes that were co-expressed with POC1A and genes whose changes co-occurred with genetic alternations of POC1A. Moreover, the TISIDB and TIMER databases were used to analyze immune infiltration. The GSE54129 GC dataset and LASSO regression model (tumor vs. normal) were employed, and 6 significant differentially expressed genes (LAMP5, CEBPB, ARMC9, PAOX, VMP1, POC1A) were identified. POC1A was selected for its high expression in adjacent tissues, which was confirmed with IHC. High POC1A expression was related to better overall and recurrence-free survival. GO and KEGG analyses demonstrated that POC1A may regulate the cell cycle, DNA replication and cell growth. Furthermore, POC1A was found to be correlated with immune infiltration levels in GC according to the TISIDB and TIMER databases. These findings indicate that POC1A acts as a tumor suppressor in GC by regulating the cell cycle and cell growth. In addition, POC1A preferentially regulates the immune infiltration of GC via several immune genes. However, the specific mechanism requires further study.
Collapse
Affiliation(s)
- Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Xiao-Yan Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yao-Hui Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Brigant B, Demont Y, Ouled-Haddou H, Metzinger-Le Meuth V, Testelin S, Garçon L, Metzinger L, Rochette J. TRIM37 is highly expressed during mitosis in CHON-002 chondrocytes cell line and is regulated by miR-223. Bone 2020; 137:115393. [PMID: 32353567 DOI: 10.1016/j.bone.2020.115393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Multiple molecular disorders can affect mechanisms regulating proliferation and differentiation of growth plate chondrocytes. Mutations in the TRIM37 gene cause the Mulibrey nanism, a heritable growth disorder. Since chondrocytes are instrumental in long bone growth that is deficient in nanism, we hypothesized that TRIM37 defect could contribute to dysregulation of the chondrocyte cell cycle. Western blotting, confocal microscopy and imaging flow cytometry determined TRIM37 expression in CHON-002 cell lineage. We showed that TRIM37 is expressed during mitosis of chondrocytes and directly impacted their proliferation. During the chondrocyte cell cycle, TRIM37 was present in both nucleus and cytoplasm. During M phase we observed an increase of the TRIM37-Tubulin co-localization in comparison with G1, S and G2 phases. TRIM37 knock down inhibited proliferation, together with cell cycle anomalies and increased autophagy, while overexpression accordingly enhanced cell proliferation. We demonstrated that microRNA-223 directly targets TRIM37, and suggest that miR-223 regulates TRIM37 gene expression during the cell cycle. In summary, our results give clues to explain why TRIM37 deficiency in chondrocytes impacts bone growth. Modulating TRIM37 using miR-223 could be an approach to increase chondrogenesis.
Collapse
Affiliation(s)
- Benjamin Brigant
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Yohann Demont
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Hakim Ouled-Haddou
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | | | - Sylvie Testelin
- Maxillo-Facial Surgery Department, Centre Hospitalo-Universitaire d'Amiens, Avenue Laennec, 80000 Amiens, France; EA CHIMERE, université de Picardie-Jules-Verne, Avenue Laennec, 80000 Amiens, France; Facing Faces Institute, Avenue Laennec, 80000 Amiens, France
| | - Loïc Garçon
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Laurent Metzinger
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Jacques Rochette
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| |
Collapse
|
12
|
Ling C, Zhang D, Zhang J, Sun H, Du Q, Li X. Updates on the molecular genetics of primary congenital glaucoma (Review). Exp Ther Med 2020; 20:968-977. [PMID: 32742340 PMCID: PMC7388405 DOI: 10.3892/etm.2020.8767] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Primary congenital glaucoma (PCG) is one of the primary causes of blindness in children and is characterized by congenital trabecular meshwork and anterior chamber angle dysplasia. While being a rare condition, PCG severely impairs the quality of life of affected patients. However, the pathogenesis of PCG remains to be fully elucidated. It has previously been indicated that genetic factors serve a critical role in the pathogenesis of PCG, although patients with PCG exhibit significant genetic heterogeneity. Mutations in the cytochrome P450 family 1 subfamily B member 1 gene have been implicated in PCG and further genes that have been reported to be involved in PCG are myocilin, forkhead box C1, collagen type I α1 chain and latent transforming growth factor β binding protein 2. The present review aims to provide an up to date understanding of the genes associated with PCG and the use of molecular technologies in the identification of such genes and mutations. This may pave the way for the development of preventative methods, early diagnosis and improved therapeutic strategies in PCG.
Collapse
Affiliation(s)
- Chen Ling
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, P.R. China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, P.R. China
| | - Jing Zhang
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Huanxin Sun
- Department of Immunology, North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China
| | - Qiu Du
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xuefei Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
13
|
A novel POC1A variant in an alternatively spliced exon causes classic SOFT syndrome: clinical presentation of seven patients. J Hum Genet 2019; 65:193-197. [DOI: 10.1038/s10038-019-0693-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/30/2019] [Accepted: 11/05/2019] [Indexed: 11/08/2022]
|
14
|
Tomar S, Sethi R, Lai PS. Specific phenotype semantics facilitate gene prioritization in clinical exome sequencing. Eur J Hum Genet 2019; 27:1389-1397. [PMID: 31053788 DOI: 10.1038/s41431-019-0412-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 02/21/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Selection and prioritization of phenotype-centric variants remains a challenging part of variant analysis and interpretation in clinical exome sequencing. Phenotype-driven shortlisting of patient-specific gene lists can avoid missed diagnosis. Here, we analyzed the relevance of using primary Human Phenotype Ontology identifiers (HPO IDs) in prioritizing Mendelian disease genes across 30 in-house, 10 previously reported, and 10 recently published cases using three popular web-based gene prioritization tools (OMIMExplorer, VarElect & Phenolyzer). We assessed partial HPO-based gene prioritization using randomly chosen and top 10%, 30%, and 50% HPO IDs based on information content and found high variance within rank ratios across the former vs the latter. This signified that randomly selected less-specific HPO IDs for a given disease phenotype performed poorly by ranking probe gene farther away from the top rank. In contrast, the use of top 10%, 30%, and 50% HPO IDs individually could rank the probe gene among the top 1% in the ranked list of genes that was equivalent to the results when the full list of HPO IDs were used. Hence, we conclude that use of just the top 10% of HPO IDs chosen based on information content is sufficient for ranking the probe gene at top position. Our findings provide practical guidance for utilizing structured phenotype semantics and web-based gene-ranking tools to aid in identifying known as well unknown candidate gene associations in Mendelian disorders.
Collapse
Affiliation(s)
- Swati Tomar
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System (NUHS), 1E Kent Ridge Road, 119228, Singapore
| | - Raman Sethi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System (NUHS), 1E Kent Ridge Road, 119228, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System (NUHS), 1E Kent Ridge Road, 119228, Singapore.
| |
Collapse
|
15
|
Saida K, Silva S, Solar B, Fujita A, Hamanaka K, Mitsuhashi S, Koshimizu E, Mizuguchi T, Miyatake S, Takata A, Miyake N, Matsumoto N. SOFT syndrome in a patient from Chile. Am J Med Genet A 2018; 179:338-340. [PMID: 30569574 DOI: 10.1002/ajmg.a.61015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022]
Abstract
SOFT syndrome (MIM614813) is an extremely rare primordial dwarfism caused by biallelic mutations in the POC1A gene. It is characterized by prenatal short stature, onychodysplasia, facial dysmorphism, hypotrichosis, and variable skeletal abnormalities including hypoplastic pelvis and sacrum, small hands, and cone-shaped epiphyses, as well as delayed bone age. To the best of our knowledge, only eight POC1A mutations have been reported in humans to date. We report a 7-year-old Chilean girl with SOFT syndrome arising from a novel POC1A mutation c. 649C>T, p.Arg217Trp. Although her clinical features were largely compatible with SOFT syndrome, hand X-ray examinations at 3.5 and 6 years unexpectedly showed normal bone age. Automated bone age determination was performed using image analysis software, BoneXpert. This case highlights the importance of the accumulation of patients with POC1A mutations to further elucidate the detailed clinical features of SOFT syndrome.
Collapse
Affiliation(s)
- Ken Saida
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Sebastian Silva
- Servicio de Neurología Infantil, Hospital de Puerto Montt, Puerto Montt, Chile
| | - Benjamin Solar
- Servicio de Neurología Infantil, Hospital de Puerto Montt, Puerto Montt, Chile
| | - Atsushi Fujita
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Atsushi Takata
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
16
|
Abstract
Primordial dwarfism (PD) is a group of rare genetically heterogeneous disorders consisted of disorders with intrauterine growth retardation continued through the life. SOFT syndrome with characteristics of short stature, onychodysplasia, facial dysmorphism, and hypotrichosis has been presented as a subtype of PD. Only 20 cases of SOFT syndrome have been reported in world to date, but none of them were not in Iran. Our case was 6.5-year-old girl with a complaint of growth retardation including height of 97 cm (Z = −4.6 standard deviation [SD]) and weight of 14 kg (Z = −4 SD) referred to growth clinic. She had a prominent forehead, triangular face, short limbs, malformed nails, and crowded teeth and her psychomotor function was normal. Laboratory and karyotype tests were normal while she was homozygous for c.G491A mutation of POC1A gene thus SOFT syndrome diagnosis was confirmed for her and recombinant growth hormone therapy was discontinued.
Collapse
Affiliation(s)
- Neda Mostofizadeh
- Endocrine and Metabolism Research Center, Department of Pediatrics, Imam Hossein Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Gheidarloo
- Endocrine and Metabolism Research Center, Department of Pediatrics, Imam Hossein Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Hashemipour
- Endocrine and Metabolism Research Center, Department of Pediatrics, Imam Hossein Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Hashemi Dehkordi
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Imbert-Bouteille M, Mau Them FT, Thevenon J, Guignard T, Gatinois V, Riviere JB, Boland A, Meyer V, Deleuze JF, Sanchez E, Apparailly F, Geneviève D, Willems M. LARP7 variants and further delineation of the Alazami syndrome phenotypic spectrum among primordial dwarfisms: 2 sisters. Eur J Med Genet 2018; 62:161-166. [PMID: 30006060 DOI: 10.1016/j.ejmg.2018.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/20/2018] [Accepted: 07/09/2018] [Indexed: 11/18/2022]
Abstract
Alazami syndrome (AS) (MIM# 615071) is an autosomal recessive microcephalic primordial dwarfism (PD) with recognizable facial features and severe intellectual disability due to depletion or loss of function variants in LARP7. To date, 15 patients with AS have been reported. Here we describe two consanguineous Algerian sisters with Alazami PD due to LARP7 homozygous pathogenic variants detected by whole exome sequencing. By comparing these two additional cases with those previously reported, we strengthen the key features of AS: severe growth restriction, severe intellectual disability and some distinguishing facial features such as broad nose, malar hypoplasia, wide mouth, full lips and abnormally set teeth. We also report significant new findings enabling further delineation of this syndrome: disproportionately mild microcephaly, stereotypic hand wringing and severe anxiety, thickened skin over the hands and feet, and skeletal, eye and heart malformations. From previous reviews, we summarize the main etiologies of PD according to the involved mechanisms and cellular pathways, highlighting their clinical core features.
Collapse
Affiliation(s)
- Marion Imbert-Bouteille
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France
| | - Frédéric Tran Mau Them
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France; Unité Inserm, U1183, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France; Equipe Génétique des Anomalies du Développement, INSERM UMR1231, Université de Bourgogne-Franche Comté, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon et Université de Bourgogne, France
| | - Julien Thevenon
- Equipe Génétique des Anomalies du Développement, INSERM UMR1231, Université de Bourgogne-Franche Comté, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon et Université de Bourgogne, France; Centre de Génétique, Hôpital Couple-Enfant, CHU Grenoble-Alpes, La Tronche, France
| | - Thomas Guignard
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France
| | - Vincent Gatinois
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France
| | - Jean-Baptiste Riviere
- Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie - CHU Dijon, Dijon, France
| | - Anne Boland
- Centre National de Génotypage, Institut de Génomique, Commissariat à l'Energie Atomique, Evry, France
| | - Vincent Meyer
- Centre National de Génotypage, Institut de Génomique, Commissariat à l'Energie Atomique, Evry, France
| | - Jean-François Deleuze
- Centre National de Génotypage, Institut de Génomique, Commissariat à l'Energie Atomique, Evry, France
| | - Elodie Sanchez
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France; Unité Inserm, U1183, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - Florence Apparailly
- Unité Inserm, U1183, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - David Geneviève
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France; Unité Inserm, U1183, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - Marjolaine Willems
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, CHU de Montpellier, Université de Montpellier, France; Unité Inserm, U1183, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
18
|
Giorgio E, Rubino E, Bruselles A, Pizzi S, Rainero I, Duca S, Sirchia F, Pasini B, Tartaglia M, Brusco A. A syndromic extreme insulin resistance caused by biallelic POC1A mutations in exon 10. Eur J Endocrinol 2017; 177:K21-K27. [PMID: 28819016 DOI: 10.1530/eje-17-0431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/27/2017] [Accepted: 08/17/2017] [Indexed: 11/08/2022]
Abstract
POC1A encodes a protein with a role in centriole assembly and stability, and in ciliogenesis. Biallelic loss-of-function mutations affecting POC1A cause SOFT syndrome, an ultra-rare condition characterized by short stature, onychodysplasia, facial dysmorphism and hypotrichosis. Using exome sequencing, we identified a homozygous frameshift mutation (c.1047_1048dupC; p.G337Rfs*25) in a patient presenting with short stature, facial hirsutism, alopecia, dyslipidemia and extreme insulin resistance. The truncating variant affected exon 10, which is retained in only two of the three POC1A-mature RNAs, due to alternative processing of the transcript. Clinical discrepancies with SOFT syndrome support the hypothesis that POC1A mutations affecting exon 10 are associated with a distinct condition, corroborating a previous hypothesis based on a similar case. Furthermore, this report provides an additional example of a genetic condition presenting with clinical heterogeneity due to alternative transcript processing. In conclusion, POC1A mutations in exon 10 should be taken into account in patients with extreme insulin resistance and short stature.
Collapse
Affiliation(s)
- Elisa Giorgio
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Elisa Rubino
- Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Torino, Italy
- Koelliker Hospital, Torino, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCSS, Rome, Italy
| | - Innocenzo Rainero
- Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Torino, Italy
| | | | - Fabio Sirchia
- Department of Medical Sciences, University of Torino, Torino, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Barbara Pasini
- Department of Medical Sciences, University of Torino, Torino, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCSS, Rome, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| |
Collapse
|
19
|
Nano M, Basto R. Consequences of Centrosome Dysfunction During Brain Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:19-45. [PMID: 28600781 DOI: 10.1007/978-3-319-57127-0_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development requires cell proliferation, differentiation and spatial organization of daughter cells to occur in a highly controlled manner. The mode of cell division, the extent of proliferation and the spatial distribution of mitosis allow the formation of tissues of the right size and with the correct structural organization. All these aspects depend on cell cycle duration, correct chromosome segregation and spindle orientation. The centrosome, which is the main microtubule-organizing centre (MTOC) of animal cells, contributes to all these processes. As one of the most structurally complex organs in our body, the brain is particularly susceptible to centrosome dysfunction. Autosomal recessive primary microcephaly (MCPH), primordial dwarfism disease Seckel syndrome (SCKS) and microcephalic osteodysplastic primordial dwarfism type II (MOPD-II) are often connected to mutations in centrosomal genes. In this chapter, we discuss the consequences of centrosome dysfunction during development and how they can contribute to the etiology of human diseases.
Collapse
Affiliation(s)
- Maddalena Nano
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France.
| |
Collapse
|
20
|
Whole-genome sequencing reveals a potential causal mutation for dwarfism in the Miniature Shetland pony. Mamm Genome 2016; 28:143-151. [DOI: 10.1007/s00335-016-9673-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
|
21
|
Grandone A, Torella A, Santoro C, Giugliano T, Del Vecchio Blanco F, Mutarelli M, Cirillo M, Cirillo G, Piluso G, Capristo C, Festa A, Marzuillo P, Miraglia Del Giudice E, Perrone L, Nigro V. Expanding the phenotype of RTTN variations: a new family with primary microcephaly, severe growth failure, brain malformations and dermatitis. Clin Genet 2016; 90:445-450. [PMID: 26940245 DOI: 10.1111/cge.12771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 01/03/2023]
Abstract
Primary autosomal recessive microcephaly (MCPH) is a developmental disorder characterized by prenatal onset of abnormal brain growth. MCPH occurs both alone and as part of a broad range of neurodevelopmental syndromes with or without cortical malformations and growth retardation. Here we report a consanguineous Moroccan family with two siblings affected by severe primary microcephaly, failure to thrive, congenital dermatitis and severe developmental delay. Brain magnetic resonance imaging showed lissencephaly of frontal lobes and periventricular heterotopia of the gray matter. We performed both Comparative Genomic Hybridization array and whole exome sequencing (WES) analyses of the kindred. No quantitative defects were detected. However, WES identified a new homozygous missense variation in the penultimate nucleotide of exon 23 of RTTN gene (c.2953A>G;pArg985Gly). cDNA sequencing revealed two abnormal spliced products, one lacking only exon 23 and the other lacking exons 22 and 23 (out-of-frame). RTTN is a protein involved in cilia structure and function. Homozygous mutations in RTTN gene have been described in bilateral diffuse isolated polymicrogyria and, more recently, in microcephalic primordial dwarfism (PD). We found a novel homozygous mutation in RTTN associated with microcephalic PD as well as complex brain malformations and congenital dermatitis, thus expanding the phenotypic spectrum of both RTTN-associated diseases and ciliary dysfunction.
Collapse
Affiliation(s)
- A Grandone
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - A Torella
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - C Santoro
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - T Giugliano
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - F Del Vecchio Blanco
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - M Mutarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - M Cirillo
- Dipartimento di Scienze Mediche, Chirurgiche, Neurologiche, Metaboliche e dell'Invecchiamento, Seconda Università degli Studi di Napoli, Naples, Italy
| | - G Cirillo
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - G Piluso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - C Capristo
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - A Festa
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - P Marzuillo
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - E Miraglia Del Giudice
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - L Perrone
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - V Nigro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy. ,
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy. ,
| |
Collapse
|
22
|
Meehl JB, Bayless BA, Giddings TH, Pearson CG, Winey M. Tetrahymena Poc1 ensures proper intertriplet microtubule linkages to maintain basal body integrity. Mol Biol Cell 2016; 27:2394-403. [PMID: 27251062 PMCID: PMC4966981 DOI: 10.1091/mbc.e16-03-0165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/27/2016] [Indexed: 12/31/2022] Open
Abstract
Basal bodies comprise nine symmetric triplet microtubules that anchor forces produced by the asymmetric beat pattern of motile cilia. The ciliopathy protein Poc1 stabilizes basal bodies through an unknown mechanism. In poc1∆ cells, electron tomography reveals subtle defects in the organization of intertriplet linkers (A-C linkers) that connect adjacent triplet microtubules. Complete triplet microtubules are lost preferentially near the posterior face of the basal body. Basal bodies that are missing triplets likely remain competent to assemble new basal bodies with nine triplet microtubules, suggesting that the mother basal body microtubule structure does not template the daughter. Our data indicate that Poc1 stabilizes basal body triplet microtubules through linkers between neighboring triplets. Without this stabilization, specific triplet microtubules within the basal body are more susceptible to loss, probably due to force distribution within the basal body during ciliary beating. This work provides insights into how the ciliopathy protein Poc1 maintains basal body integrity.
Collapse
Affiliation(s)
- Janet B Meehl
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Brian A Bayless
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas H Giddings
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045
| | - Mark Winey
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| |
Collapse
|
23
|
Akgün M, Faruk Gerdan Ö, Görmez Z, Demirci H. FMFilter: A fast model based variant filtering tool. J Biomed Inform 2016; 60:319-27. [PMID: 26925517 DOI: 10.1016/j.jbi.2016.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/11/2016] [Accepted: 02/21/2016] [Indexed: 11/25/2022]
Abstract
The availability of whole exome and genome sequencing has completely changed the structure of genetic disease studies. It is now possible to solve the disease causing mechanisms within shorter time and budgets. For this reason, mining out the valuable information from the huge amount of data produced by next generation techniques becomes a challenging task. Current tools analyze sequencing data in various methods. However, there is still need for fast, easy to use and efficacious tools. Considering genetic disease studies, there is a lack of publicly available tools which support compound heterozygous and de novo models. Also, existing tools either require advanced IT expertise or are inefficient for handling large variant files. In this work, we provide FMFilter, an efficient sieving tool for next generation sequencing data produced by genetic disease studies. We develop a software which allows to choose the inheritance model (recessive, dominant, compound heterozygous and de novo), the affected and control individuals. The program provides a user friendly Graphical User Interface which eliminates the requirement of advanced computer techniques. It has various filtering options which enable to eliminate the majority of the false alarms. FMFilter requires negligible memory, therefore it can easily handle very large variant files like multiple whole genomes with ordinary computers. We demonstrate the variant reduction capability and effectiveness of the proposed tool with public and in-house data for different inheritance models. We also compare FMFilter with the existing filtering software. We conclude that FMFilter provides an effective and easy to use environment for analyzing next generation sequencing data from Mendelian diseases.
Collapse
Affiliation(s)
- Mete Akgün
- Advanced Genomics and Bioinformatics Research Center (İGBAM), Informatics and Information Security Research Center (BİLGEM), The Scientific and Technological Research Council of Turkey (TÜBİTAK), 41470 Gebze, Kocaeli, Turkey.
| | - Ö Faruk Gerdan
- Advanced Genomics and Bioinformatics Research Center (İGBAM), Informatics and Information Security Research Center (BİLGEM), The Scientific and Technological Research Council of Turkey (TÜBİTAK), 41470 Gebze, Kocaeli, Turkey.
| | - Zeliha Görmez
- Advanced Genomics and Bioinformatics Research Center (İGBAM), Informatics and Information Security Research Center (BİLGEM), The Scientific and Technological Research Council of Turkey (TÜBİTAK), 41470 Gebze, Kocaeli, Turkey.
| | - Hüseyin Demirci
- Advanced Genomics and Bioinformatics Research Center (İGBAM), Informatics and Information Security Research Center (BİLGEM), The Scientific and Technological Research Council of Turkey (TÜBİTAK), 41470 Gebze, Kocaeli, Turkey.
| |
Collapse
|
24
|
SOFT syndrome caused by compound heterozygous mutations of POC1A and its skeletal manifestation. J Hum Genet 2016; 61:561-4. [DOI: 10.1038/jhg.2015.174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 01/12/2023]
|
25
|
Chen JH, Segni M, Payne F, Huang-Doran I, Sleigh A, Adams C, Savage DB, O'Rahilly S, Semple RK, Barroso I. Truncation of POC1A associated with short stature and extreme insulin resistance. J Mol Endocrinol 2015; 55:147-58. [PMID: 26336158 PMCID: PMC4722288 DOI: 10.1530/jme-15-0090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe a female proband with primordial dwarfism, skeletal dysplasia, facial dysmorphism, extreme dyslipidaemic insulin resistance and fatty liver associated with a novel homozygous frameshift mutation in POC1A, predicted to affect two of the three protein products of the gene. POC1A encodes a protein associated with centrioles throughout the cell cycle and implicated in both mitotic spindle and primary ciliary function. Three homozygous mutations affecting all isoforms of POC1A have recently been implicated in a similar syndrome of primordial dwarfism, although no detailed metabolic phenotypes were described. Primary cells from the proband we describe exhibited increased centrosome amplification and multipolar spindle formation during mitosis, but showed normal DNA content, arguing against mitotic skipping, cleavage failure or cell fusion. Despite evidence of increased DNA damage in cells with supernumerary centrosomes, no aneuploidy was detected. Extensive centrosome clustering both at mitotic spindles and in primary cilia mitigated the consequences of centrosome amplification, and primary ciliary formation was normal. Although further metabolic studies of patients with POC1A mutations are warranted, we suggest that POC1A may be added to ALMS1 and PCNT as examples of centrosomal or pericentriolar proteins whose dysfunction leads to extreme dyslipidaemic insulin resistance. Further investigation of links between these molecular defects and adipose tissue dysfunction is likely to yield insights into mechanisms of adipose tissue maintenance and regeneration that are critical to metabolic health.
Collapse
Affiliation(s)
- Jian-Hua Chen
- The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK
| | - Maria Segni
- The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK
| | - Felicity Payne
- The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK
| | - Isabel Huang-Doran
- The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK
| | - Alison Sleigh
- The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK
| | - Claire Adams
- The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK
| | | | - David B Savage
- The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK
| | - Stephen O'Rahilly
- The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK
| | - Robert K Semple
- The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK
| | - Inês Barroso
- The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK
| |
Collapse
|