1
|
Dell'Isola GB, Perinelli MG, Frulli A, D'Onofrio G, Fattorusso A, Siciliano M, Ferrara P, Striano P, Verrotti A. Exploring neurodevelopment in CDKL5 deficiency disorder: Current insights and future directions. Epilepsy Behav 2025; 171:110504. [PMID: 40414190 DOI: 10.1016/j.yebeh.2025.110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 05/20/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
CDKL5 Deficiency Disorder (CDD) is a rare and severe neurodevelopmental condition marked by profound developmental delays, early-onset epilepsy, and significant impairments in motor and communication skills. The outcomes in CDD are shaped by various factors, including early-onset epilepsy and environmental influences. Genotype-phenotype correlations reveal that specific CDKL5 mutations impact developmental milestones, although considerable variability persists. Recent advancements have introduced novel antiseizure medications and emerging treatments such as gene therapy and targeted molecular interventions. Despite these promising developments, managing CDD effectively requires a comprehensive approach that integrates pharmacological treatments with neuro-rehabilitation strategies. Research has progressed in developing validated tools for assessing motor and language abilities in CDD, but monitoring neurodevelopment remains challenging due to the absence of longitudinal studies and standardized measures. This study delves into the developmental delays associated with CDD, providing an in-depth analysis of its clinical characteristics, pathogenetic mechanisms, and genetic background. It aims to uncover the pathways disrupted by CDKL5 mutations and their effects on neuronal development and function. Additionally, the study reviews potential therapeutic strategies to mitigate CDD's impact, offering a comprehensive overview of interventions to enhance patient outcomes.
Collapse
Affiliation(s)
- Giovanni Battista Dell'Isola
- Saint Camillus International University of Health Sciences, Rome, Italy; Department of Developmental Disabilities, IRCCS San Raffaele Roma, Rome, Italy.
| | - Martina Giorgia Perinelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| | - Alessia Frulli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| | - Gianluca D'Onofrio
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| | | | - Margherita Siciliano
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Pietro Ferrara
- Unit of Pediatrics, Campus Bio-Medico University, Rome, Italy.
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Giannina Gaslini Institute, Scientific Institute for Research and Health Care, Genoa, Italy.
| | | |
Collapse
|
2
|
Feng X, Zhu ZA, Wang HT, Zhou HW, Liu JW, Shen Y, Zhang YX, Xiong ZQ. A Novel Mouse Model Unveils Protein Deficiency in Truncated CDKL5 Mutations. Neurosci Bull 2025; 41:805-820. [PMID: 40042769 PMCID: PMC12014890 DOI: 10.1007/s12264-024-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/25/2024] [Indexed: 04/23/2025] Open
Abstract
Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) cause a severe neurodevelopmental disorder, yet the impact of truncating mutations remains unclear. Here, we introduce the Cdkl5492stop mouse model, mimicking C-terminal truncating mutations in patients. 492stop/Y mice exhibit altered dendritic spine morphology and spontaneous seizure-like behaviors, alongside other behavioral deficits. After creating cell lines with various Cdkl5 truncating mutations, we found that these mutations are regulated by the nonsense-mediated RNA decay pathway. Most truncating mutations result in CDKL5 protein loss, leading to multiple disease phenotypes, and offering new insights into the pathogenesis of CDKL5 disorder.
Collapse
Affiliation(s)
- Xue Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Ai Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Tao Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hui-Wen Zhou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Wei Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ya Shen
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu-Xian Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Song X, Xia Z, Martinez D, Xu B, Spritzer Z, Zhang Y, Nugent E, Ho Y, Terzic B, Zhou Z. Independent genetic strategies define the scope and limits of CDKL5 deficiency disorder reversal. Cell Rep Med 2025; 6:101926. [PMID: 39855191 PMCID: PMC11866500 DOI: 10.1016/j.xcrm.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/18/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a neurodevelopmental syndrome caused by mutations in the X-linked CDKL5 gene. The early onset of CDD suggests that CDKL5 is essential during development, but post-developmental re-expression rescues multiple CDD-related phenotypes in hemizygous male mice. Since most patients are heterozygous females, studies in clinically relevant female models are essential. Here, we systematically compare phenotype reversal across age and sex using two independent mouse models of CDD. We find that early re-activation of endogenous Cdkl5 in heterozygous females reverses most phenotypes, except working memory. Later re-expression improves several traits but has limited effects on cognitive function. Seizure prevention is more effective with early intervention in heterozygous females but becomes limited after seizure onset. These findings demonstrate the robust potential of CDKL5 re-expression to reverse CDD-related phenotypes in both sexes while underscoring the critical impact of age and disease stage in designing clinical trials.
Collapse
Affiliation(s)
- Xie Song
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Zijie Xia
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Dayne Martinez
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Bing Xu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong 250000, China
| | - Zachary Spritzer
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Yanjie Zhang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Erin Nugent
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Yugong Ho
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Barbara Terzic
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; The Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19102, USA.
| |
Collapse
|
4
|
Yalçın Çapan Ö. Navigating Uncertainty: Assessing Variants of Uncertain Significance in the CDKL5 Gene for Developmental and Epileptic Encephalopathy Using In Silico Prediction Tools and Computational Analysis. J Mol Neurosci 2025; 75:19. [PMID: 39945963 DOI: 10.1007/s12031-024-02299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/06/2024] [Indexed: 04/02/2025]
Abstract
Mutations in the CDKL5 gene are associated with developmental and epileptic encephalopathy (DEE), a severe disorder characterized by developmental delay and epileptic activity. In genetic analyses of DEEs, variants classified as pathogenic confirm the diagnosis of the disease while Variants of Uncertain Significance (VUS) remain in a gray area due to insufficient evidence. This study aimed to optimize the interpretation of VUS in the CDKL5 gene by evaluating the performance of 22 in silico prediction tools using 186 known pathogenic or benign missense variants from the ClinVar database. The best-performing tools were then applied to analyze CDKL5 VUS variants, complemented by the evaluation of evolutionary conservation, structural analyses, and molecular dynamics simulations to assess their impact on protein structure and function. The results identified SNPred as the most reliable tool, achieving 100% accuracy, sensitivity, and specificity. Other high-performing tools, including ESM-1v, AlphaMissense, EVE, and ClinPred, demonstrated over 98% accuracy. Among 44 CDKL5 VUS variants evaluated, 20 were initially classified as pathogenic by these tools. However, further evaluation using stringent criteria-incorporating conservation scores, structural disruptions identified by Missense3D and PyMol, and molecular dynamics simulation results-led to the reclassification of 8 VUS variants as "potentially pathogenic" and the remaining 12 as "variants with conflicting data". This comprehensive approach provides a robust framework for the classification of VUS in the CDKL5 gene, offering critical insights for accurate diagnosis and treatment strategies in DEE. These findings will serve as a valuable resource for clinicians and geneticists in resolving the diagnostic ambiguity associated with VUS.
Collapse
Affiliation(s)
- Özlem Yalçın Çapan
- Department of Medical Biology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Türkiye.
| |
Collapse
|
5
|
Mottolese N, Loi M, Trazzi S, Tassinari M, Uguagliati B, Candini G, Iqbal K, Medici G, Ciani E. Effects of a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic in an in vitro and in vivo model of CDKL5 deficiency disorder. J Neurodev Disord 2024; 16:65. [PMID: 39592934 PMCID: PMC11590213 DOI: 10.1186/s11689-024-09583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Mutations in the X-linked CDKL5 gene underlie a severe epileptic encephalopathy, CDKL5 deficiency disorder (CDD), characterized by gross motor impairment, autistic features and intellectual disability. Absence of Cdkl5 negatively impacts neuronal proliferation, survival, and maturation in in vitro and in vivo models, resulting in behavioral deficits in the Cdkl5 KO mouse. While there is no targeted therapy for CDD, several studies showed that treatments enabling an increase in brain BDNF levels give rise to structural and behavioral improvements in Cdkl5 KO mice. P021, a tetra-peptide derived from the biologically active region of the human ciliary neurotrophic factor (CNTF), was found to enhance neurogenesis and synaptic plasticity by promoting an increase in BDNF expression in preclinical models of brain disorders, such as Alzheimer's disease and Down syndrome, resulting in a beneficial therapeutic effect. Considering the positive actions of P021 on brain development and cognition associated with increased BDNF expression, the present study aimed to evaluate the possible beneficial effect of treatment with P021 in an in vitro and in vivo model of CDD. METHODS We used SH-CDKL5-KO cells as an in vitro model of CDD to test the efficacy of P021 on neuronal proliferation, survival, and maturation. In addition, both young and adult Cdkl5 KO mice were used to evaluate the in vivo effects of P021, on neuroanatomical and behavioral defects. RESULTS We found that P021 treatment was effective in restoring neuronal proliferation, survival, and maturation deficits, as well as alterations in the GSK3β signaling pathway, features that characterize a human neuronal model of CDKL5 deficiency. Unexpectedly, chronic in vivo P021 treatment failed to increase BDNF levels and did not improve neuroanatomical defects in Cdkl5 KO mice, resulting in limited behavioral benefit. CONCLUSIONS At present, it remains to be understood whether initiating the treatment prenatally, or prolonging the duration of treatment will be necessary in order to achieve similar results in vivo in CDD mice to those obtained in vitro.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
- Phanes Biotech Inc, Malvern, PA, 19355, USA
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy.
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy.
| |
Collapse
|
6
|
Beribisky AV, Huber A, Sarne V, Spittler A, Sukhbaatar N, Seipel T, Laccone F, Steinkellner H. MeCP2 is a naturally supercharged protein with cell membrane transduction capabilities. Protein Sci 2024; 33:e5170. [PMID: 39276009 PMCID: PMC11400631 DOI: 10.1002/pro.5170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
The intrinsically disordered protein MeCP2 is a global transcriptional regulator encoded by the MECP2 gene. Although the structured domains of MeCP2 have been the subject of multiple studies, its unstructured regions have not been that extensively characterized. In this work, we show that MeCP2 possesses properties akin to those of supercharged proteins. By utilizing its unstructured portions, MeCP2 can successfully transduce across cell membranes and localize to heterochromatic foci in the nuclei, displaying uptake levels a third lower than a MeCP2 construct fused to the cell-penetrating peptide TAT. MeCP2 uptake can further be enhanced by the addition of compounds that promote endosomal escape following cellular trafficking by means of macropinocytosis. Using a combination of in silico prediction algorithms and live-cell imaging experiments, we mapped the sequence in MeCP2 responsible for its cellular incorporation, which bears a striking resemblance to TAT itself. Transduced MeCP2 was shown to interact with HDAC3. These findings provide valuable insight into the properties of MeCP2 and may be beneficial for devising future protein-based treatment strategies.
Collapse
Affiliation(s)
- Alexander V. Beribisky
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| | - Anna Huber
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of ViennaViennaAustria
| | - Victoria Sarne
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of ViennaViennaAustria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Department of Surgery, Research LaboratoriesViennaAustria
| | - Nyamdelger Sukhbaatar
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| | - Teresa Seipel
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| | - Franco Laccone
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| | - Hannes Steinkellner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| |
Collapse
|
7
|
Mottolese N, Coiffard O, Ferraguto C, Manolis A, Ciani E, Pietropaolo S. Autistic-relevant behavioral phenotypes of a mouse model of cyclin-dependent kinase-like 5 deficiency disorder. Autism Res 2024; 17:1742-1759. [PMID: 39234879 DOI: 10.1002/aur.3226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene and characterized by early-onset epilepsy, intellectual disability, and autistic features. To date, the etiological mechanisms underlying CDD are largely unknown and no effective therapies are available. The Cdkl5 knock-out (KO) mouse has been broadly employed in preclinical studies on CDD; Cdkl5-KO mice display neurobehavioral abnormalities recapitulating most CDD symptoms, including alterations in motor, sensory, cognitive, and social abilities. However, most available preclinical studies have been carried out on adult Cdkl5-KO mice, so little is known about the phenotypic characteristics of this model earlier during development. Furthermore, major autistic-relevant phenotypes, for example, social and communication deficits, have been poorly investigated and mostly in male mutants. Here, we assessed the autistic-relevant behavioral phenotypes of Cdkl5-KO mice during the first three post-natal weeks and in adulthood. Males and females were tested, the latter including both heterozygous and homozygous mutants. Cdkl5 mutant pups showed qualitative and quantitative alterations in ultrasonic communication, detected first at 2 weeks of age and confirmed later in adulthood. Increased levels of anxiety-like behaviors were observed in mutants at 3 weeks and in adulthood, when stereotypies, reduced social interaction and memory deficits were also observed. These behavioral effects of the mutation were evident in both sexes, being more marked and varied in homozygous than heterozygous females. These findings provide novel evidence for the autistic-relevant behavioral profile of the Cdkl5 mouse model, thus supporting its use in future preclinical studies investigating CDD pathology and autism spectrum disorders.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- CNRS, EPHE, INCIA, Univ. Bordeaux, Bordeaux, France
| | | | | | | | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | | |
Collapse
|
8
|
Colarusso A, Lauro C, Canè L, Cozzolino F, Tutino ML. Bacterial Production of CDKL5 Catalytic Domain: Insights in Aggregation, Internal Translation and Phosphorylation Patterns. Int J Mol Sci 2024; 25:8891. [PMID: 39201578 PMCID: PMC11354467 DOI: 10.3390/ijms25168891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a serine/threonine protein kinase involved in human brain development and functioning. Mutations in CDKL5, especially in its catalytic domain, cause a severe developmental condition named CDKL5 deficiency disorder. Nevertheless, molecular studies investigating the structural consequences of such mutations are still missing. The CDKL5 catalytic domain harbors different sites of post-translational modification, such as phosphorylations, but their role in catalytic activity, protein folding, and stability has not been entirely investigated. With this work, we describe the expression pattern of the CDKL5 catalytic domain in Escherichia coli demonstrating that it predominantly aggregates. However, the use of solubility tags, the lowering of the expression temperature, the manual codon optimization to overcome an internal translational start, and the incubation of the protein with K+ and MgATP allow the collection of a soluble catalytically active kinase. Interestingly, the resulting protein exhibits hypophosphorylation compared to its eukaryotic counterpart, proving that bacteria are a useful tool to achieve almost unmodified CDKL5. Posing questions about the CDKL5 autoactivation mechanism and the determinants for its stability, this research provides a valuable platform for comparative biophysical studies between bacterial and eukaryotic-expressed proteins, contributing to our understanding of neurodevelopmental disorders associated with CDKL5 dysfunction.
Collapse
Affiliation(s)
- Andrea Colarusso
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
| | - Luisa Canè
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
- Department of Translational Medical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
- Istituto Nazionale Biostrutture e Biosistemi I.N.B.B., Viale Medaglie D’Oro 305, 00136 Roma, Italy
| |
Collapse
|
9
|
Marotta N, Boland MJ, Prosser BL. Accelerating therapeutic development and clinical trial readiness for STXBP1 and SYNGAP1 disorders. Curr Probl Pediatr Adolesc Health Care 2024; 54:101576. [PMID: 38472035 DOI: 10.1016/j.cppeds.2024.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Gene-targeted therapies for genetic neurodevelopmental disorders (NDDs) are becoming a reality. The Center for Epilepsy and Neurodevelopmental Disorders (ENDD) is currently focused on the development of therapeutics for STXBP1 and SYNGAP1 disorders. Here we review the known clinical features of these disorders, highlight the biological role of STXBP1 and SYNGAP1, and discuss our current understanding of pathogenic mechanisms and therapeutic development. Finally, we provide our perspective as scientists and parents of children with NDDs, and comment on the current challenges for both clinical and basic science endeavors.
Collapse
Affiliation(s)
- Nicolas Marotta
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Epilepsy and Neurodevelopmental Disorders (ENDD), University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael J Boland
- Center for Epilepsy and Neurodevelopmental Disorders (ENDD), University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Benjamin L Prosser
- Center for Epilepsy and Neurodevelopmental Disorders (ENDD), University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Awad PN, Zerbi V, Johnson-Venkatesh EM, Damiani F, Pagani M, Markicevic M, Nickles S, Gozzi A, Umemori H, Fagiolini M. CDKL5 sculpts functional callosal connectivity to promote cognitive flexibility. Mol Psychiatry 2024; 29:1698-1709. [PMID: 36737483 PMCID: PMC11371650 DOI: 10.1038/s41380-023-01962-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
Functional and structural connectivity alterations in short- and long-range projections have been reported across neurodevelopmental disorders (NDD). Interhemispheric callosal projection neurons (CPN) represent one of the major long-range projections in the brain, which are particularly important for higher-order cognitive function and flexibility. However, whether a causal relationship exists between interhemispheric connectivity alterations and cognitive deficits in NDD remains elusive. Here, we focused on CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental disorder caused by mutations in the X-linked Cyclin-dependent kinase-like 5 (CDKL5) gene. We found an increase in homotopic interhemispheric connectivity and functional hyperconnectivity across higher cognitive areas in adult male and female CDKL5-deficient mice by resting-state functional MRI (rs-fMRI) analysis. This was accompanied by an increase in the number of callosal synaptic inputs but decrease in local synaptic connectivity in the cingulate cortex of juvenile CDKL5-deficient mice, suggesting an impairment in excitatory synapse development and a differential role of CDKL5 across excitatory neuron subtypes. These deficits were associated with significant cognitive impairments in CDKL5 KO mice. Selective deletion of CDKL5 in the largest subtype of CPN likewise resulted in an increase of functional callosal inputs, without however significantly altering intracortical cingulate networks. Notably, such callosal-specific changes were sufficient to cause cognitive deficits. Finally, when CDKL5 was selectively re-expressed only in this CPN subtype, in otherwise CDKL5-deficient mice, it was sufficient to prevent the cognitive impairments of CDKL5 mutants. Together, these results reveal a novel role of CDKL5 by demonstrating that it is both necessary and sufficient for proper CPN connectivity and cognitive function and flexibility, and further validates a causal relationship between CPN dysfunction and cognitive impairment in a model of NDD.
Collapse
Affiliation(s)
- Patricia Nora Awad
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valerio Zerbi
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuro-X Institute, School of Engineering (STI), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Erin M Johnson-Venkatesh
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca Damiani
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
| | - Marija Markicevic
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Sarah Nickles
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Hisashi Umemori
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michela Fagiolini
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Hock E. Tan and K. Lisa Yang Center for Autism Research at Harvard University, Boston, MA, USA.
- International Research Center for Neurointelligence (IRCN), University of Tokyo Institutes for Advanced Study, Tokyo, Japan.
| |
Collapse
|
11
|
Sampedro-Castañeda M, Baltussen LL, Lopes AT, Qiu Y, Sirvio L, Mihaylov SR, Claxton S, Richardson JC, Lignani G, Ultanir SK. Epilepsy-linked kinase CDKL5 phosphorylates voltage-gated calcium channel Cav2.3, altering inactivation kinetics and neuronal excitability. Nat Commun 2023; 14:7830. [PMID: 38081835 PMCID: PMC10713615 DOI: 10.1038/s41467-023-43475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of rare childhood disorders characterized by severe epilepsy and cognitive deficits. Numerous DEE genes have been discovered thanks to advances in genomic diagnosis, yet putative molecular links between these disorders are unknown. CDKL5 deficiency disorder (CDD, DEE2), one of the most common genetic epilepsies, is caused by loss-of-function mutations in the brain-enriched kinase CDKL5. To elucidate CDKL5 function, we looked for CDKL5 substrates using a SILAC-based phosphoproteomic screen. We identified the voltage-gated Ca2+ channel Cav2.3 (encoded by CACNA1E) as a physiological target of CDKL5 in mice and humans. Recombinant channel electrophysiology and interdisciplinary characterization of Cav2.3 phosphomutant mice revealed that loss of Cav2.3 phosphorylation leads to channel gain-of-function via slower inactivation and enhanced cholinergic stimulation, resulting in increased neuronal excitability. Our results thus show that CDD is partly a channelopathy. The properties of unphosphorylated Cav2.3 closely resemble those described for CACNA1E gain-of-function mutations causing DEE69, a disorder sharing clinical features with CDD. We show that these two single-gene diseases are mechanistically related and could be ameliorated with Cav2.3 inhibitors.
Collapse
Affiliation(s)
| | - Lucas L Baltussen
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Laboratory for the Research of Neurodegenerative Diseases (VIB-KU Leuven), Department of Neurosciences, ON5 Herestraat 49, 3000, Leuven, Belgium
| | - André T Lopes
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yichen Qiu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Liina Sirvio
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Suzanne Claxton
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jill C Richardson
- Neuroscience, MSD Research Laboratories, 120 Moorgate, London, EC2M 6UR, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Sila K Ultanir
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
12
|
Mottolese N, Uguagliati B, Tassinari M, Cerchier CB, Loi M, Candini G, Rimondini R, Medici G, Trazzi S, Ciani E. Voluntary Running Improves Behavioral and Structural Abnormalities in a Mouse Model of CDKL5 Deficiency Disorder. Biomolecules 2023; 13:1396. [PMID: 37759796 PMCID: PMC10527551 DOI: 10.3390/biom13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. CDD is characterized by a broad spectrum of clinical manifestations, including early-onset refractory epileptic seizures, intellectual disability, hypotonia, visual disturbances, and autism-like features. The Cdkl5 knockout (KO) mouse recapitulates several features of CDD, including autistic-like behavior, impaired learning and memory, and motor stereotypies. These behavioral alterations are accompanied by diminished neuronal maturation and survival, reduced dendritic branching and spine maturation, and marked microglia activation. There is currently no cure or effective treatment to ameliorate the symptoms of the disease. Aerobic exercise is known to exert multiple beneficial effects in the brain, not only by increasing neurogenesis, but also by improving motor and cognitive tasks. To date, no studies have analyzed the effect of physical exercise on the phenotype of a CDD mouse model. In view of the positive effects of voluntary running on the brain of mouse models of various human neurodevelopmental disorders, we sought to determine whether voluntary daily running, sustained over a month, could improve brain development and behavioral defects in Cdkl5 KO mice. Our study showed that long-term voluntary running improved the hyperlocomotion and impulsivity behaviors and memory performance of Cdkl5 KO mice. This is correlated with increased hippocampal neurogenesis, neuronal survival, spine maturation, and inhibition of microglia activation. These behavioral and structural improvements were associated with increased BDNF levels. Given the positive effects of BDNF on brain development and function, the present findings support the positive benefits of exercise as an adjuvant therapy for CDD.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Camilla Bruna Cerchier
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
13
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Lang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin-dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. eLife 2023; 12:e88206. [PMID: 37490324 PMCID: PMC10406435 DOI: 10.7554/elife.88206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.
Collapse
Affiliation(s)
- Anna Castano
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Carla A Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Yi Lang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Isabelle M Genereux
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Navlot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado School of MedicineAuroraUnited States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
14
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Liang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538049. [PMID: 37162893 PMCID: PMC10168277 DOI: 10.1101/2023.04.24.538049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.
Collapse
|
15
|
Saldaris JM, Jacoby P, Leonard H, Benke TA, Demarest S, Marsh ED, Downs J. Psychometric properties of QI-Disability in CDKL5 Deficiency Disorder: Establishing readiness for clinical trials. Epilepsy Behav 2023; 139:109069. [PMID: 36634535 PMCID: PMC9899310 DOI: 10.1016/j.yebeh.2022.109069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
CDKL5 Deficiency Disorder (CDD) is a rare genetic disorder with symptoms of epilepsy, developmental impairments, and other comorbidities. Currently, there are no outcome measures for CDD with comprehensive evidence of validation. This study aimed to evaluate the psychometric properties of the Quality of Life Inventory-Disability (QI-Disability) in CDD. Quality of Life Inventory-Disability was administered to 152 parent caregivers registered with the International CDKL5 Disorder Database (ICDD). Confirmatory factor analysis was conducted and the goodness of fit of the factor structure was assessed. Fixed-effects linear regression models examined the responsiveness of QI-Disability to reported changes in child health. A subset of parent caregivers (n = 56) completed QI-Disability, as well as additional health-related questions, on two occasions separated by four weeks to evaluate test-retest reliability. Test-retest reliability was assessed using intra-class correlations (ICCs) calculated from QI-Disability scores. Based upon adjustments for changes in child health, ICCs were recalculated to estimate responsiveness to change. Confirmatory factor analysis, internal consistency, and divergent validity were mostly satisfactory, except divergent validity was not satisfactory for the Social Interactions and Independence domains. The Physical Health, Social Interactions, Leisure, and Total scores responded to changes in the child's Physical health, and the Negative Emotions and Leisure domains responded to changes in the child's behavior. Unadjusted and adjusted ICC values were above 0.8 for the Positive Emotions, Negative Emotions, Social Interactions, Leisure, Independence domains and Total score, and above 0.6 for the Physical Health domain. Findings suggest that QI-Disability is suitable to assess the quality of life of children and adults with CDD and could be of value for upcoming clinical trials.
Collapse
Affiliation(s)
- Jacinta M Saldaris
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter Jacoby
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Tim A Benke
- Children's Hospital Colorado, Pediatric Neurology, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Scott Demarest
- Children's Hospital Colorado, Pediatric Neurology, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia; School of Allied Health, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
16
|
Colarusso A, Lauro C, Calvanese M, Parrilli E, Tutino ML. Active human full-length CDKL5 produced in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Microb Cell Fact 2022; 21:211. [PMID: 36242022 PMCID: PMC9563788 DOI: 10.1186/s12934-022-01939-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background A significant fraction of the human proteome is still inaccessible to in vitro studies since the recombinant production of several proteins failed in conventional cell factories. Eukaryotic protein kinases are difficult-to-express in heterologous hosts due to folding issues both related to their catalytic and regulatory domains. Human CDKL5 belongs to this category. It is a serine/threonine protein kinase whose mutations are involved in CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental pathology still lacking a therapeutic intervention. The lack of successful CDKL5 manufacture hampered the exploitation of the otherwise highly promising enzyme replacement therapy. As almost two-thirds of the enzyme sequence is predicted to be intrinsically disordered, the recombinant product is either subjected to a massive proteolytic attack by host-encoded proteases or tends to form aggregates. Therefore, the use of an unconventional expression system can constitute a valid alternative to solve these issues. Results Using a multiparametric approach we managed to optimize the transcription of the CDKL5 gene and the synthesis of the recombinant protein in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 applying a bicistronic expression strategy, whose generalization for recombinant expression in the cold has been here confirmed with the use of a fluorescent reporter. The recombinant protein largely accumulated as a full-length product in the soluble cell lysate. We also demonstrated for the first time that full-length CDKL5 produced in Antarctic bacteria is catalytically active by using two independent assays, making feasible its recovery in native conditions from bacterial lysates as an active product, a result unmet in other bacteria so far. Finally, the setup of an in cellulo kinase assay allowed us to measure the impact of several CDD missense mutations on the kinase activity, providing new information towards a better understanding of CDD pathophysiology. Conclusions Collectively, our data indicate that P. haloplanktis TAC125 can be a valuable platform for both the preparation of soluble active human CDKL5 and the study of structural–functional relationships in wild type and mutant CDKL5 forms. Furthermore, this paper further confirms the more general potentialities of exploitation of Antarctic bacteria to produce “intractable” proteins, especially those containing large intrinsically disordered regions. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01939-6.
Collapse
Affiliation(s)
- Andrea Colarusso
- Department of Chemical Sciences, "Federico II" University of Naples, Complesso Universitario Monte S. Angelo-Via Cintia, 80126, Naples, Italy.,Istituto Nazionale Biostrutture e Biosistemi-I.N.B.B., Viale Medaglie d'Oro, 305-00136, Rome, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, "Federico II" University of Naples, Complesso Universitario Monte S. Angelo-Via Cintia, 80126, Naples, Italy.,Istituto Nazionale Biostrutture e Biosistemi-I.N.B.B., Viale Medaglie d'Oro, 305-00136, Rome, Italy
| | - Marzia Calvanese
- Department of Chemical Sciences, "Federico II" University of Naples, Complesso Universitario Monte S. Angelo-Via Cintia, 80126, Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, "Federico II" University of Naples, Complesso Universitario Monte S. Angelo-Via Cintia, 80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, "Federico II" University of Naples, Complesso Universitario Monte S. Angelo-Via Cintia, 80126, Naples, Italy.
| |
Collapse
|
17
|
Medici G, Tassinari M, Galvani G, Bastianini S, Gennaccaro L, Loi M, Mottolese N, Alvente S, Berteotti C, Sagona G, Lupori L, Candini G, Baggett HR, Zoccoli G, Giustetto M, Muotri A, Pizzorusso T, Nakai H, Trazzi S, Ciani E. Expression of a Secretable, Cell-Penetrating CDKL5 Protein Enhances the Efficacy of Gene Therapy for CDKL5 Deficiency Disorder. Neurotherapeutics 2022; 19:1886-1904. [PMID: 36109452 PMCID: PMC9723029 DOI: 10.1007/s13311-022-01295-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 12/14/2022] Open
Abstract
Although delivery of a wild-type copy of the mutated gene to cells represents the most effective approach for a monogenic disease, proof-of-concept studies highlight significant efficacy caveats for treatment of brain disorders. Herein, we develop a cross-correction-based strategy to enhance the efficiency of a gene therapy for CDKL5 deficiency disorder, a severe neurodevelopmental disorder caused by CDKL5 gene mutations. We created a gene therapy vector that produces an Igk-TATk-CDKL5 fusion protein that can be secreted via constitutive secretory pathways and, due to the cell-penetration property of the TATk peptide, internalized by cells. We found that, although AAVPHP.B_Igk-TATk-CDKL5 and AAVPHP.B_CDKL5 vectors had similar brain infection efficiency, the AAVPHP.B_Igk-TATk-CDKL5 vector led to higher CDKL5 protein replacement due to secretion and penetration of the TATk-CDKL5 protein into the neighboring cells. Importantly, Cdkl5 KO mice treated with the AAVPHP.B_Igk-TATk-CDKL5 vector showed a behavioral and neuroanatomical improvement in comparison with vehicle or AAVPHP.B_CDKL5 vector-treated Cdkl5 KO mice. In conclusion, we provide the first evidence that a gene therapy based on a cross-correction approach is more effective at compensating Cdkl5-null brain defects than gene therapy based on the expression of the native CDKL5, opening avenues for the development of this innovative approach for other monogenic diseases.
Collapse
Affiliation(s)
- Giorgio Medici
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Stefano Bastianini
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Sara Alvente
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Giulia Sagona
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128, Pisa, Italy
- Department of Neuroscience, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139, Psychology, Italy
| | - Leonardo Lupori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128, Pisa, Italy
- Scuola Normale Superiore, 56126, Pisa, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Helen Rappe Baggett
- Departments of Molecular and Medical Genetics and Molecular Immunology and Microbiology Oregon Health & Science University, OR, 97239, Portland, USA
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Maurizio Giustetto
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, OR, 10126, Turin, Italy
| | - Alysson Muotri
- School of Medicine, Department of Pediatrics/Rady Children's Hospital, University of California San Diego, San Diego, USA
- Department of Cellular & Molecular Medicine, Kavli Institute for Brain and Mind, Archealization Center (ArchC), Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA, 92037, USA
| | - Tommaso Pizzorusso
- Scuola Normale Superiore, 56126, Pisa, Italy
- Institute of Neuroscience, National Research Council, 56126, Pisa, Italy
| | - Hiroyuki Nakai
- Departments of Molecular and Medical Genetics and Molecular Immunology and Microbiology Oregon Health & Science University, OR, 97239, Portland, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy.
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
18
|
Nitschke F, Montalbano AP. Novel Cross-Correction-Enabled Gene Therapy for CDKL5-Deficiency Disorder. Neurotherapeutics 2022; 19:1878-1882. [PMID: 36266502 PMCID: PMC9722985 DOI: 10.1007/s13311-022-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Felix Nitschke
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Alina P Montalbano
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
mGluR5 PAMs rescue cortical and behavioural defects in a mouse model of CDKL5 deficiency disorder. Neuropsychopharmacology 2022; 48:877-886. [PMID: 35945276 PMCID: PMC10156697 DOI: 10.1038/s41386-022-01412-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a devastating rare neurodevelopmental disease without a cure, caused by mutations of the serine/threonine kinase CDKL5 highly expressed in the forebrain. CDD is characterized by early-onset seizures, severe intellectual disabilities, autistic-like traits, sensorimotor and cortical visual impairments (CVI). The lack of an effective therapeutic strategy for CDD urgently demands the identification of novel druggable targets potentially relevant for CDD pathophysiology. To this aim, we studied Class I metabotropic glutamate receptors 5 (mGluR5) because of their important role in the neuropathological signs produced by the lack of CDKL5 in-vivo, such as defective synaptogenesis, dendritic spines formation/maturation, synaptic transmission and plasticity. Importantly, mGluR5 function strictly depends on the correct expression of the postsynaptic protein Homer1bc that we previously found atypical in the cerebral cortex of Cdkl5-/y mice. In this study, we reveal that CDKL5 loss tampers with (i) the binding strength of Homer1bc-mGluR5 complexes, (ii) the synaptic localization of mGluR5 and (iii) the mGluR5-mediated enhancement of NMDA-induced neuronal responses. Importantly, we showed that the stimulation of mGluR5 activity by administering in mice specific positive-allosteric-modulators (PAMs), i.e., 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) or RO6807794, corrected the synaptic, functional and behavioral defects shown by Cdkl5-/y mice. Notably, in the visual cortex of 2 CDD patients we found changes in synaptic organization that recapitulate those of mutant CDKL5 mice, including the reduced expression of mGluR5, suggesting that these receptors represent a promising therapeutic target for CDD.
Collapse
|
20
|
Tassinari M, Mottolese N, Galvani G, Ferrara D, Gennaccaro L, Loi M, Medici G, Candini G, Rimondini R, Ciani E, Trazzi S. Luteolin Treatment Ameliorates Brain Development and Behavioral Performance in a Mouse Model of CDKL5 Deficiency Disorder. Int J Mol Sci 2022; 23:ijms23158719. [PMID: 35955854 PMCID: PMC9369425 DOI: 10.3390/ijms23158719] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene, is characterized by early-onset epilepsy, intellectual disability, and autistic features. Although pharmacotherapy has shown promise in the CDD mouse model, safe and effective clinical treatments are still far off. Recently, we found increased microglial activation in the brain of a mouse model of CDD, the Cdkl5 KO mouse, suggesting that a neuroinflammatory state, known to be involved in brain maturation and neuronal dysfunctions, may contribute to the pathophysiology of CDD. The present study aims to evaluate the possible beneficial effect of treatment with luteolin, a natural flavonoid known to have anti-inflammatory and neuroprotective activities, on brain development and behavior in a heterozygous Cdkl5 (+/−) female mouse, the mouse model of CDD that best resembles the genetic clinical condition. We found that inhibition of neuroinflammation by chronic luteolin treatment ameliorates motor stereotypies, hyperactive profile and memory ability in Cdkl5 +/− mice. Luteolin treatment also increases hippocampal neurogenesis and improves dendritic spine maturation and dendritic arborization of hippocampal and cortical neurons. These findings show that microglia overactivation exerts a harmful action in the Cdkl5 +/− brain, suggesting that treatments aimed at counteracting the neuroinflammatory process should be considered as a promising adjuvant therapy for CDD.
Collapse
Affiliation(s)
- Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Domenico Ferrara
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
21
|
Chaudry S, Vasudevan N. mTOR-Dependent Spine Dynamics in Autism. Front Mol Neurosci 2022; 15:877609. [PMID: 35782388 PMCID: PMC9241970 DOI: 10.3389/fnmol.2022.877609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Conditions (ASC) are a group of neurodevelopmental disorders characterized by deficits in social communication and interaction as well as repetitive behaviors and restricted range of interests. ASC are complex genetic disorders with moderate to high heritability, and associated with atypical patterns of neural connectivity. Many of the genes implicated in ASC are involved in dendritic spine pruning and spine development, both of which can be mediated by the mammalian target of rapamycin (mTOR) signaling pathway. Consistent with this idea, human postmortem studies have shown increased spine density in ASC compared to controls suggesting that the balance between autophagy and spinogenesis is altered in ASC. However, murine models of ASC have shown inconsistent results for spine morphology, which may underlie functional connectivity. This review seeks to establish the relevance of changes in dendritic spines in ASC using data gathered from rodent models. Using a literature survey, we identify 20 genes that are linked to dendritic spine pruning or development in rodents that are also strongly implicated in ASC in humans. Furthermore, we show that all 20 genes are linked to the mTOR pathway and propose that the mTOR pathway regulating spine dynamics is a potential mechanism underlying the ASC signaling pathway in ASC. We show here that the direction of change in spine density was mostly correlated to the upstream positive or negative regulation of the mTOR pathway and most rodent models of mutant mTOR regulators show increases in immature spines, based on morphological analyses. We further explore the idea that these mutations in these genes result in aberrant social behavior in rodent models that is due to these altered spine dynamics. This review should therefore pave the way for further research on the specific genes outlined, their effect on spine morphology or density with an emphasis on understanding the functional role of these changes in ASC.
Collapse
|
22
|
Leonard H, Downs J, Benke TA, Swanson L, Olson H, Demarest S. CDKL5 deficiency disorder: clinical features, diagnosis, and management. Lancet Neurol 2022; 21:563-576. [PMID: 35483386 PMCID: PMC9788833 DOI: 10.1016/s1474-4422(22)00035-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 12/19/2021] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
CDKL5 deficiency disorder (CDD) was first identified as a cause of human disease in 2004. Although initially considered a variant of Rett syndrome, CDD is now recognised as an independent disorder and classified as a developmental epileptic encephalopathy. It is characterised by early-onset (generally within the first 2 months of life) seizures that are usually refractory to polypharmacy. Development is severely impaired in patients with CDD, with only a quarter of girls and a smaller proportion of boys achieving independent walking; however, there is clinical variability, which is probably genetically determined. Gastrointestinal, sleep, and musculoskeletal problems are common in CDD, as in other developmental epileptic encephalopathies, but the prevalence of cerebral visual impairment appears higher in CDD. Clinicians diagnosing infants with CDD need to be familiar with the complexities of this disorder to provide appropriate counselling to the patients' families. Despite some benefit from ketogenic diets and vagal nerve stimulation, there has been little evidence that conventional antiseizure medications or their combinations are helpful in CDD, but further treatment trials are finally underway.
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia; Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Tim A Benke
- Department of Neurology, Children's Hospital Colorado, Aurora, CO, USA; Department of Pediatrics, University of Colorado at Denver, Aurora, CO, USA; Department of Pharmacology, University of Colorado at Denver, Aurora, CO, USA; Department of Neurology, University of Colorado at Denver, Aurora, CO, USA; Department of Otolaryngology, University of Colorado at Denver, Aurora, CO, USA
| | - Lindsay Swanson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Heather Olson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Scott Demarest
- Department of Neurology, Children's Hospital Colorado, Aurora, CO, USA; Department of Pediatrics, University of Colorado at Denver, Aurora, CO, USA; Department of Neurology, University of Colorado at Denver, Aurora, CO, USA
| |
Collapse
|
23
|
Hong W, Haviland I, Pestana-Knight E, Weisenberg JL, Demarest S, Marsh ED, Olson HE. CDKL5 Deficiency Disorder-Related Epilepsy: A Review of Current and Emerging Treatment. CNS Drugs 2022; 36:591-604. [PMID: 35633486 PMCID: PMC9876658 DOI: 10.1007/s40263-022-00921-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 01/27/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a developmental and epileptic encephalopathy with infantile-onset epilepsy. Most individuals with CDD develop refractory epilepsy with multiple seizure types. Management of seizures in CDD remains challenging for clinicians given the highly refractory nature of seizures and the limited number of disease-specific studies that offer a high level of evidence. Epileptic spasms are the most common seizure type in CDD and are more often refractory to standard first-line treatment than are spasms of other etiologies. In other seizure types, the effectiveness of antiseizure medications is limited and wanes over time. Ketogenic diet and palliative surgical treatments have both had mixed results in observational studies. When treating refractory seizures in CDD, we recommend carefully balancing seizure control and treatment-related side effects to optimize each individual's overall quality of life. Clinical trials of medications targeting epilepsy in CDD have been conducted, and additional investigational small molecules, gene therapy, and other disease-modifying therapies are in development for CDD.
Collapse
Affiliation(s)
- William Hong
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Isabel Haviland
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Elia Pestana-Knight
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Judith L Weisenberg
- Department of Pediatric Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott Demarest
- School of Medicine, Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Eric D Marsh
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heather E Olson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Expression, Purification, Characterization and Cellular Uptake of MeCP2 Variants. Protein J 2022; 41:345-359. [PMID: 35546650 PMCID: PMC9122891 DOI: 10.1007/s10930-022-10054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/05/2022]
Abstract
The transcriptional regulator Methyl-CpG-binding protein 2 (MeCP2) is an intrinsically disordered protein, mutations in which, are implicated in the onset of Rett Syndrome, a severe and debilitating neurodevelopmental disorder. Delivery of this protein fused to the cell-penetrating peptide TAT could allow for the intracellular replenishment of functional MeCP2 and hence potentially serve as a prospective Rett Syndrome therapy. This work outlines the expression, purification and characterization of various TAT-MeCP2 constructs as well as their full-length and shortened eGFP fusion variants. The latter two constructs were used for intracellular uptake studies with subsequent analysis via western blotting and live-cell imaging. All purified MeCP2 samples exhibited high degree of stability and very little aggregation propensity. Full length and minimal TAT-MeCP2-eGFP were found to efficiently transduce into human dermal and murine fibroblasts and localize to cell nuclei. These findings clearly support the utility of MeCP2-based protein replacement therapy as a potential Rett Syndrome treatment option.
Collapse
|
25
|
Adhikari A, Buchanan FKB, Fenton TA, Cameron DL, Halmai JANM, Copping NA, Fink KD, Silverman JL. Touchscreen Cognitive Deficits, Hyperexcitability, and Hyperactivity in Males and Females Using Two Models of Cdkl5 Deficiency. Hum Mol Genet 2022; 31:3032-3050. [PMID: 35445702 PMCID: PMC9476626 DOI: 10.1093/hmg/ddac091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Many neurodevelopmental disorders (NDDs) are the result of mutations on the X chromosome. One severe NDD resulting from mutations on the X chromosome is CDKL5 deficiency disorder (CDD). CDD is an epigenetic, X-linked NDD characterized by intellectual disability (ID), pervasive seizures and severe sleep disruption, including recurring hospitalizations. CDD occurs at a 4:1 ratio, with a female bias. CDD is driven by the loss of cyclin-dependent kinase-like 5 (CDKL5), a serine/threonine kinase that is essential for typical brain development, synapse formation and signal transmission. Previous studies focused on male subjects from animal models, likely to avoid the complexity of X mosaicism. For the first time, we report translationally relevant behavioral phenotypes in young adult (8–20 weeks) females and males with robust signal size, including impairments in learning and memory, substantial hyperactivity and increased susceptibility to seizures/reduced seizure thresholds, in both sexes, and in two models of CDD preclinical mice, one with a general loss-of-function mutation and one that is a patient-derived mutation.
Collapse
Affiliation(s)
- Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - Fiona K B Buchanan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - David L Cameron
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Julian A N M Halmai
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Nycole A Copping
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - Kyle D Fink
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| |
Collapse
|
26
|
Steinkellner H, Kempaiah P, Beribisky AV, Pferschy S, Etzler J, Huber A, Sarne V, Neuhaus W, Kuttke M, Bauer J, Arunachalam JP, Christodoulou J, Dressel R, Mildner A, Prinz M, Laccone F. TAT-MeCP2 protein variants rescue disease phenotypes in human and mouse models of Rett syndrome. Int J Biol Macromol 2022; 209:972-983. [PMID: 35460749 DOI: 10.1016/j.ijbiomac.2022.04.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/02/2023]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by pathogenic variants leading to functional impairment of the MeCP2 protein. Here, we used purified recombinant MeCP2e1 and MeCP2e2 protein variants fused to a TAT protein transduction domain (PTD) to evaluate their transduction ability into RTT patient-derived fibroblasts and the ability to carry out their cellular function. We then assessed their transduction ability and therapeutic effects in a RTT mouse model. In vitro, TAT-MeCP2e2-eGFP reversed the pathological hyperacetylation of histones H3K9 and H4K16, a hallmark of abolition of MeCP2 function. In vivo, intraperitoneal administration of TAT-MeCP2e1 and TAT-MeCP2e2 extended the lifespan of Mecp2-/y mice by >50%. This was accompanied by rescue of hippocampal CA2 neuron size in animals treated with TAT-MeCP2e1. Taken together, these findings provide a strong indication that recombinant TAT-MeCP2 can reach mouse brains following peripheral injection and can ameliorate the phenotype of RTT mouse models. Thus, our study serves as a first step in the development of a potentially novel RTT therapy.
Collapse
Affiliation(s)
- Hannes Steinkellner
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Prakasha Kempaiah
- Institute for Human Genetics, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany; Division of Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Alexander V Beribisky
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Sandra Pferschy
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Etzler
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna Huber
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Victoria Sarne
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Competence Center Molecular Diagnostics, 1210 Vienna, Austria
| | - Mario Kuttke
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jayamuruga P Arunachalam
- Institute for Human Genetics, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany; Division of Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; Department of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada
| | - John Christodoulou
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Discipline of Child & Adolescent Health, Sydney Medical School, Australia
| | - Ralf Dressel
- Department of Cellular and Molecular Immunology, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany
| | - Alexander Mildner
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Franco Laccone
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria; Institute for Human Genetics, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany; Department of Cellular and Molecular Immunology, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
27
|
Barbiero I, Bianchi M, Kilstrup‐Nielsen C. Therapeutic potential of pregnenolone and pregnenolone methyl ether on depressive and CDKL5 deficiency disorders: Focus on microtubule targeting. J Neuroendocrinol 2022; 34:e13033. [PMID: 34495563 PMCID: PMC9286658 DOI: 10.1111/jne.13033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/27/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022]
Abstract
Pregnenolone methyl-ether (PME) is a synthetic derivative of the endogenous neuroactive steroid pregnenolone (PREG), which is an important modulator of several brain functions. In addition to being the precursor of steroids, PREG acts directly on various targets including microtubules (MTs), the functioning of which is fundamental for the development and homeostasis of nervous system. The coordination of MT dynamics is supported by a plethora of MT-associated proteins (MAPs) and by a specific MT code that is defined by the post-translational modifications of tubulin. Defects associated with MAPs or tubulin post-translational modifications are linked to different neurological pathologies including mood and neurodevelopmental disorders. In this review, we describe the beneficial effect of PME in major depressive disorders (MDDs) and in CDKL5 deficiency disorder (CDD), two pathologies that are joint by defective MT dynamics. Growing evidence indeed suggests that PME, as well as PREG, is able to positively affect the MT-binding of MAP2 and the plus-end tracking protein CLIP170 that are both found to be deregulated in the above mentioned pathologies. Furthermore, PME influences the state of MT acetylation, the deregulation of which is often associated with neurological abnormalities including MDDs. By contrast to PREG, PME is not metabolised into other downstream molecules with specific biological properties, an aspect that makes this compound more suitable for therapeutic strategies. Thus, through the analysis of MDDs and CDD, this work focuses attention on the possible use of PME for neuronal pathologies associated with MT defects.
Collapse
Affiliation(s)
- Isabella Barbiero
- Department of Biotechnology and Life Sciences, (DBSV)Centre of NeuroScienceUniversity of InsubriaBusto ArsizioItaly
| | - Massimiliano Bianchi
- Ulysses Neuroscience Ltd.Trinity College DublinDublinIreland
- Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Charlotte Kilstrup‐Nielsen
- Department of Biotechnology and Life Sciences, (DBSV)Centre of NeuroScienceUniversity of InsubriaBusto ArsizioItaly
| |
Collapse
|
28
|
Olson HE, Daniels CI, Haviland I, Swanson LC, Greene CA, Denny AMM, Demarest ST, Pestana-Knight E, Zhang X, Moosa AN, Fidell A, Weisenberg JL, Suter B, Fu C, Neul JL, Percy AK, Marsh ED, Benke TA, Poduri A. Current neurologic treatment and emerging therapies in CDKL5 deficiency disorder. J Neurodev Disord 2021; 13:40. [PMID: 34530725 PMCID: PMC8447578 DOI: 10.1186/s11689-021-09384-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/16/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND CDKL5 deficiency disorder (CDD) is associated with refractory infantile onset epilepsy, global developmental delay, and variable features that include sleep, behavioral disturbances, and movement disorders. Current treatment is primarily symptom-based and informed by experience in caring for this population. METHODS We describe medication and non-medication approaches to treatment of epilepsy and additional key neurologic symptoms (sleep disturbances, behavioral issues, movement disorders, and swallowing dysfunction) in a cohort of 177 individuals meeting criteria for CDD, 154 evaluated at 4 CDKL5 Centers of Excellence in the USA and 40 identified through the NIH Natural History Study of Rett and Related Disorders. RESULTS The four most frequently prescribed anti-seizure medications were broad spectrum, prescribed in over 50% of individuals. While the goal was not to ascertain efficacy, we obtained data from 86 individuals regarding response to treatment, with 2-week response achieved in 14-48% and sustained 3-month response in 5-36%, of those with known response. Additional treatments for seizures included cannabis derivatives, tried in over one-third of individuals, and clinical trial medications. In combination with pharmacological treatment, 50% of individuals were treated with ketogenic diet for attempted seizure control. Surgical approaches included vagus nerve stimulators, functional hemispherectomy, and corpus callosotomy, but numbers were too limited to assess response. Nearly one-third of individuals received pharmacologic treatment for sleep disturbances, 13% for behavioral dysregulation and movement disorders, and 43% had gastrostomy tubes. CONCLUSIONS Treatment for neurologic features of CDD is currently symptom-based and empiric rather than CDD-specific, though clinical trials for CDD are emerging. Epilepsy in this population is highly refractory, and no specific anti-seizure medication was associated with improved seizure control. Ketogenic diet is commonly used in patients with CDD. While behavioral interventions are commonly instituted, information on the use of medications for sleep, behavioral management, and movement disorders is sparse and would benefit from further characterization and optimization of treatment approaches. The heterogeneity in treatment approaches highlights the need for systematic review and guidelines for CDD. Additional disease-specific and disease-modifying treatments are in development.
Collapse
Affiliation(s)
- Heather E Olson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Mailstop 3063, Boston, MA, 02115, USA.
| | - Carolyn I Daniels
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Mailstop 3063, Boston, MA, 02115, USA
| | - Isabel Haviland
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Mailstop 3063, Boston, MA, 02115, USA
| | - Lindsay C Swanson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Mailstop 3063, Boston, MA, 02115, USA
| | - Caitlin A Greene
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Mailstop 3063, Boston, MA, 02115, USA
| | - Anne Marie M Denny
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Mailstop 3063, Boston, MA, 02115, USA
- Division of Pediatric Neurology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott T Demarest
- Children's Hospital Colorado, University of Colorado, School of Medicine, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Elia Pestana-Knight
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoming Zhang
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ahsan N Moosa
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrea Fidell
- Children's Hospital Colorado, University of Colorado, School of Medicine, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Judith L Weisenberg
- Department of Pediatric Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bernhard Suter
- Division of Child Neurology, Texas Children's Hospital, Departments of Neurology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Cary Fu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey L Neul
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan K Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy A Benke
- Children's Hospital Colorado, University of Colorado, School of Medicine, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA
- Departments of Pharmacology, Neurology, and Otolaryngology, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Annapurna Poduri
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Mailstop 3063, Boston, MA, 02115, USA
| |
Collapse
|
29
|
Fondi M, Gonzi S, Dziurzynski M, Turano P, Ghini V, Calvanese M, Colarusso A, Lauro C, Parrilli E, Tutino ML. Modelling hCDKL5 Heterologous Expression in Bacteria. Metabolites 2021; 11:metabo11080491. [PMID: 34436432 PMCID: PMC8401935 DOI: 10.3390/metabo11080491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
hCDKL5 refers to the human cyclin-dependent kinase like 5 that is primarily expressed in the brain. Mutations in its coding sequence are often causative of hCDKL5 deficiency disorder, a devastating neurodevelopmental disorder currently lacking a cure. The large-scale recombinant production of hCDKL5 is desirable to boost the translation of preclinical therapeutic approaches into the clinic. However, this is hampered by the intrinsically disordered nature of almost two-thirds of the hCDKL5 sequence, making this region more susceptible to proteolytic attack, and the observed toxicity when the enzyme is accumulated in the cytoplasm of eukaryotic host cells. The bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) is the only prokaryotic host in which the full-length production of hCDKL5 has been demonstrated. To date, a system-level understanding of the metabolic burden imposed by hCDKL5 production is missing, although it would be crucial for upscaling of the production process. Here, we combined experimental data on protein production and nutrients assimilation with metabolic modelling to infer the global consequences of hCDKL5 production in PhTAC125 and to identify potential overproduction targets. Our analyses showed a remarkable accuracy of the model in simulating the recombinant strain phenotype and also identified priority targets for optimised protein production.
Collapse
Affiliation(s)
- Marco Fondi
- Department of Biology, University of Florence, Sesto F.no Florence, 50019 Florence, Italy;
- Centro Studi Dinamiche Complesse (CSDC), University of Florence, Sesto F.no Florence, 50019 Florence, Italy
- Correspondence:
| | - Stefano Gonzi
- Department of Biology, University of Florence, Sesto F.no Florence, 50019 Florence, Italy;
| | - Mikolaj Dziurzynski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, via Sacconi 6, Sesto Fiorentino, 50019 Fiorentino, Italy; (P.T.); (V.G.)
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019 Fiorentino, Italy
| | - Veronica Ghini
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, via Sacconi 6, Sesto Fiorentino, 50019 Fiorentino, Italy; (P.T.); (V.G.)
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019 Fiorentino, Italy
| | - Marzia Calvanese
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.C.); (A.C.); (C.L.); (E.P.); (M.L.T.)
| | - Andrea Colarusso
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.C.); (A.C.); (C.L.); (E.P.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi—I.N.B.B., Viale Medaglie d’Oro, 305-00136 Roma, Italy
| | - Concetta Lauro
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.C.); (A.C.); (C.L.); (E.P.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi—I.N.B.B., Viale Medaglie d’Oro, 305-00136 Roma, Italy
| | - Ermenegilda Parrilli
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.C.); (A.C.); (C.L.); (E.P.); (M.L.T.)
| | - Maria Luisa Tutino
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.C.); (A.C.); (C.L.); (E.P.); (M.L.T.)
| |
Collapse
|
30
|
Galvani G, Mottolese N, Gennaccaro L, Loi M, Medici G, Tassinari M, Fuchs C, Ciani E, Trazzi S. Inhibition of microglia overactivation restores neuronal survival in a mouse model of CDKL5 deficiency disorder. J Neuroinflammation 2021; 18:155. [PMID: 34238328 PMCID: PMC8265075 DOI: 10.1186/s12974-021-02204-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Background CDKL5 deficiency disorder (CDD), a severe neurodevelopmental disorder characterized by early onset epilepsy, intellectual disability, and autistic features, is caused by mutations in the CDKL5 gene. Evidence in animal models of CDD showed that absence of CDKL5 negatively affects neuronal survival, as well as neuronal maturation and dendritic outgrowth; however, knowledge of the substrates underlying these alterations is still limited. Neuroinflammatory processes are known to contribute to neuronal dysfunction and death. Recent evidence shows a subclinical chronic inflammatory status in plasma from CDD patients. However, to date, it is unknown whether a similar inflammatory status is present in the brain of CDD patients and, if so, whether this plays a causative or exacerbating role in the pathophysiology of CDD. Methods We evaluated microglia activation using AIF-1 immunofluorescence, proinflammatory cytokine expression, and signaling in the brain of a mouse model of CDD, the Cdkl5 KO mouse, which is characterized by an impaired survival of hippocampal neurons that worsens with age. Hippocampal neuron survival was determined by DCX, NeuN, and cleaved caspase-3 immunostaining in Cdkl5 KO mice treated with luteolin (10 mg/kg), a natural anti-inflammatory flavonoid. Since hippocampal neurons of Cdkl5 KO mice exhibit increased susceptibility to excitotoxic stress, we evaluated neuronal survival in Cdkl5 KO mice injected with NMDA (60 mg/kg) after a 7-day treatment with luteolin. Results We found increased microglial activation in the brain of the Cdkl5 KO mouse. We found alterations in microglial cell morphology and number, increased levels of AIF-1 and proinflammatory cytokines, and activation of STAT3 signaling. Remarkably, treatment with luteolin recovers microglia alterations as well as neuronal survival and maturation in Cdkl5 KO mice, and prevents the increase in NMDA-induced cell death in the hippocampus. Conclusions Our results suggest that neuroinflammatory processes contribute to the pathogenesis of CDD and imply the potential usefulness of luteolin as a treatment option in CDD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02204-0.
Collapse
Affiliation(s)
- Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
| |
Collapse
|
31
|
Gennaccaro L, Fuchs C, Loi M, Pizzo R, Alvente S, Berteotti C, Lupori L, Sagona G, Galvani G, Gurgone A, Raspanti A, Medici G, Tassinari M, Trazzi S, Ren E, Rimondini R, Pizzorusso T, Giovanna Z, Maurizio G, Elisabetta C. Age-Related Cognitive and Motor Decline in a Mouse Model of CDKL5 Deficiency Disorder is Associated with Increased Neuronal Senescence and Death. Aging Dis 2021; 12:764-785. [PMID: 34094641 PMCID: PMC8139207 DOI: 10.14336/ad.2020.0827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/27/2020] [Indexed: 01/02/2023] Open
Abstract
CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. Children affected by CDD display a clinical phenotype characterized by early-onset epilepsy, intellectual disability, motor impairment, and autistic-like features. Although the clinical aspects associated with CDKL5 mutations are well described in children, adults with CDD are still under-characterized. Similarly, most animal research has been carried out on young adult Cdkl5 knockout (KO) mice only. Since age represents a risk factor for the worsening of symptoms in many neurodevelopmental disorders, understanding age differences in the development of behavioral deficits is crucial in order to optimize the impact of therapeutic interventions. Here, we compared young adult Cdkl5 KO mice with middle-aged Cdkl5 KO mice, at a behavioral, neuroanatomical, and molecular level. We found an age-dependent decline in motor, cognitive, and social behaviors in Cdkl5 KO mice, as well as in breathing and sleep patterns. The behavioral decline in older Cdkl5 KO mice was not associated with a worsening of neuroanatomical alterations, such as decreased dendritic arborization or spine density, but was paralleled by decreased neuronal survival in different brain regions such as the hippocampus, cortex, and basal ganglia. Interestingly, we found increased β-galactosidase activity and DNA repair protein levels, γH2AX and XRCC5, in the brains of older Cdkl5 KO mice, which suggests that an absence of Cdkl5 accelerates neuronal senescence/death by triggering irreparable DNA damage. In summary, this work provides evidence that CDKL5 may play a fundamental role in neuronal survival during brain aging and suggests a possible worsening with age of the clinical picture in CDD patients.
Collapse
Affiliation(s)
- Laura Gennaccaro
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Fuchs
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Manuela Loi
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Riccardo Pizzo
- 2Department of Neuroscience, University of Turin, Turin, Italy
| | - Sara Alvente
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Leonardo Lupori
- 3BIO@SNS lab, Scuola Normale Superiore di Pisa, Pisa, Italy.,4Institute of Neuroscience, National Research Council, Pisa, Italy
| | - Giulia Sagona
- 4Institute of Neuroscience, National Research Council, Pisa, Italy.,5Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy.,6Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giuseppe Galvani
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Antonia Gurgone
- 2Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Giorgio Medici
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marianna Tassinari
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elisa Ren
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberto Rimondini
- 7Department of Medical and Clinical Sciences, University of Bologna, Bologna, Italy
| | - Tommaso Pizzorusso
- 3BIO@SNS lab, Scuola Normale Superiore di Pisa, Pisa, Italy.,4Institute of Neuroscience, National Research Council, Pisa, Italy.,5Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| | - Zoccoli Giovanna
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giustetto Maurizio
- 2Department of Neuroscience, University of Turin, Turin, Italy.,8National Institute of Neuroscience-Italy, Turin, Italy
| | - Ciani Elisabetta
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
32
|
Loi M, Gennaccaro L, Fuchs C, Trazzi S, Medici G, Galvani G, Mottolese N, Tassinari M, Rimondini Giorgini R, Milelli A, Ciani E. Treatment with a GSK-3β/HDAC Dual Inhibitor Restores Neuronal Survival and Maturation in an In Vitro and In Vivo Model of CDKL5 Deficiency Disorder. Int J Mol Sci 2021; 22:5950. [PMID: 34073043 PMCID: PMC8198396 DOI: 10.3390/ijms22115950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a rare neurodevelopmental disorder characterized by early-onset seizures and severe cognitive, motor, and visual impairments. To date there are no therapies for CDKL5 deficiency disorder (CDD). In view of the severity of the neurological phenotype of CDD patients it is widely assumed that CDKL5 may influence the activity of a variety of cellular pathways, suggesting that an approach aimed at targeting multiple cellular pathways simultaneously might be more effective for CDD. Previous findings showed that a single-target therapy aimed at normalizing impaired GSK-3β or histone deacetylase (HDAC) activity improved neurodevelopmental and cognitive alterations in a mouse model of CDD. Here we tested the ability of a first-in-class GSK-3β/HDAC dual inhibitor, Compound 11 (C11), to rescue CDD-related phenotypes. We found that C11, through inhibition of GSK-3β and HDAC6 activity, not only restored maturation, but also significantly improved survival of both human CDKL5-deficient cells and hippocampal neurons from Cdkl5 KO mice. Importantly, in vivo treatment with C11 restored synapse development, neuronal survival, and microglia over-activation, and improved motor and cognitive abilities of Cdkl5 KO mice, suggesting that dual GSK-3β/HDAC6 inhibitor therapy may have a wider therapeutic benefit in CDD patients.
Collapse
Affiliation(s)
- Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | | | - Andrea Milelli
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| |
Collapse
|
33
|
Specchio N, Curatolo P. Developmental and epileptic encephalopathies: what we do and do not know. Brain 2021; 144:32-43. [PMID: 33279965 DOI: 10.1093/brain/awaa371] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/16/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Developmental encephalopathies, including intellectual disability and autistic spectrum disorder, are frequently associated with infant epilepsy. Epileptic encephalopathy is used to describe an assumed causal relationship between epilepsy and developmental delay. Developmental encephalopathies pathogenesis more independent from epilepsy is supported by the identification of several gene variants associated with both developmental encephalopathies and epilepsy, the possibility for gene-associated developmental encephalopathies without epilepsy, and the continued development of developmental encephalopathies even when seizures are controlled. Hence, 'developmental and epileptic encephalopathy' may be a more appropriate term than epileptic encephalopathy. This update considers the best studied 'developmental and epileptic encephalopathy' gene variants for illustrative support for 'developmental and epileptic encephalopathy' over epileptic encephalopathy. Moreover, the interaction between epilepsy and developmental encephalopathies is considered with respect to influence on treatment decisions. Continued research in genetic testing will increase access to clinical tests, earlier diagnosis, better application of current treatments, and potentially provide new molecular-investigated treatments.
Collapse
Affiliation(s)
- Nicola Specchio
- Department of Neuroscience, Bambino Gesu Children's Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies EpiCARE, Piazza S, 00165 Rome, Italy
| | - Paolo Curatolo
- Systems Medicine Department, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| |
Collapse
|
34
|
Ciccia LM, Scalia B, Venti V, Pizzo F, Pappalardo MG, La Mendola FMC, Falsaperla R, Praticò AD. CDKL5 Gene: Beyond Rett Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
CDKL5 is a gene located in the X-chromosome (Xp22) encoding a serine/threonine kinase involved in various signaling pathways, implicated in cell proliferation, axon development, dendrite growth, synapse formation, and maintenance. Mutations occurring in this gene have been associated with drug-resistant early-onset epilepsy, with multiple seizures type, and deep cognitive and motor development delay with poor or absent speech, ataxic gait or inability to walk, hand stereotypies and in a few cases decrement of head growth. Many aspects remain unclear about the CDKL5 deficiency disorders, research will be fundamental to better understand the pathogenesis of neurological damage and consequently developed more targeted and profitable therapies, as there is not, at the present, a gene-based treatment and the seizures are in most of the cases drug resistant. In this article, we summarize the actual knowledge about CDKL5 gene function and mostly the consequence given by its dysfunction, also examining the possible therapeutic approaches.
Collapse
Affiliation(s)
- Lina Maria Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Grazia Pappalardo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
35
|
Gennaccaro L, Fuchs C, Loi M, Roncacè V, Trazzi S, Ait-Bali Y, Galvani G, Berardi AC, Medici G, Tassinari M, Ren E, Rimondini R, Giustetto M, Aicardi G, Ciani E. A GABA B receptor antagonist rescues functional and structural impairments in the perirhinal cortex of a mouse model of CDKL5 deficiency disorder. Neurobiol Dis 2021; 153:105304. [PMID: 33621640 DOI: 10.1016/j.nbd.2021.105304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/25/2022] Open
Abstract
CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe neurodevelopmental encephalopathy characterized by early-onset epilepsy and intellectual disability. Studies in mouse models have linked CDKL5 deficiency to defects in neuronal maturation and synaptic plasticity, and disruption of the excitatory/inhibitory balance. Interestingly, increased density of both GABAergic synaptic terminals and parvalbumin inhibitory interneurons was recently observed in the primary visual cortex of Cdkl5 knockout (KO) mice, suggesting that excessive GABAergic transmission might contribute to the visual deficits characteristic of CDD. However, the functional relevance of cortical GABAergic circuits abnormalities in these mutant mice has not been investigated so far. Here we examined GABAergic circuits in the perirhinal cortex (PRC) of Cdkl5 KO mice, where we previously observed impaired long-term potentiation (LTP) associated with deficits in novel object recognition (NOR) memory. We found a higher number of GABAergic (VGAT)-immunopositive terminals in the PRC of Cdkl5 KO compared to wild-type mice, suggesting that increased inhibitory transmission might contribute to LTP impairment. Interestingly, while exposure of PRC slices to the GABAA receptor antagonist picrotoxin had no positive effects on LTP in Cdkl5 KO mice, the selective GABAB receptor antagonist CGP55845 restored LTP magnitude, suggesting that exaggerated GABAB receptor-mediated inhibition contributes to LTP impairment in mutants. Moreover, acute in vivo treatment with CGP55845 increased the number of PSD95 positive puncta as well as density and maturation of dendritic spines in PRC, and restored NOR memory in Cdkl5 KO mice. The present data show the efficacy of limiting excessive GABAB receptor-mediated signaling in improving synaptic plasticity and cognition in CDD mice.
Collapse
Affiliation(s)
- Laura Gennaccaro
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Vincenzo Roncacè
- Department for Life Quality Studies, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Yassine Ait-Bali
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | | | - Giorgio Medici
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Elisa Ren
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Bologna, Italy
| | - Maurizio Giustetto
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Giorgio Aicardi
- Department for Life Quality Studies, University of Bologna, Bologna, Italy.
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy.
| |
Collapse
|
36
|
Trovò L, Fuchs C, De Rosa R, Barbiero I, Tramarin M, Ciani E, Rusconi L, Kilstrup-Nielsen C. The green tea polyphenol epigallocatechin-3-gallate (EGCG) restores CDKL5-dependent synaptic defects in vitro and in vivo. Neurobiol Dis 2020; 138:104791. [PMID: 32032735 PMCID: PMC7152796 DOI: 10.1016/j.nbd.2020.104791] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/30/2023] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare X-linked neurodevelopmental disorder that is characterised by early-onset seizures, intellectual disability, gross motor impairment, and autistic-like features. CDD is caused by mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene that encodes a serine/threonine kinase with a predominant expression in the brain. Loss of CDKL5 causes neurodevelopmental alterations in vitro and in vivo, including defective dendritic arborisation and spine maturation, which most likely underlie the cognitive defects and autistic features present in humans and mice. Here, we show that treatment with epigallatocathechin-3-gallate (EGCG), the major polyphenol of green tea, can restore defects in dendritic and synaptic development of primary Cdkl5 knockout (KO) neurons. Furthermore, defective synaptic maturation in the hippocampi and cortices of adult Cdkl5-KO mice can be rescued through the intraperitoneal administration of EGCG, which is however not sufficient to normalise behavioural CDKL5-dependent deficits. EGCG is a pleiotropic compound with numerous cellular targets, including the dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) that is selectively inhibited by EGCG. DYRK1A controls dendritic development and spine formation and its deregulation has been implicated in neurodevelopmental and degenerative diseases. Treatment with another DYRK1A inhibitor, harmine, was capable of correcting neuronal CDKL5-dependent defects; moreover, DYRK1A levels were upregulated in primary Cdkl5-KO neurons in concomitance with increased phosphorylation of Tau, a well-accepted DYRK1A substrate. Altogether, our results indicate that DYRK1A deregulation may contribute, at least in part, to the neurodevelopmental alterations caused by CDKL5 deficiency.
Collapse
Affiliation(s)
- L Trovò
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - C Fuchs
- Dept. Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - R De Rosa
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - I Barbiero
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - M Tramarin
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - E Ciani
- Dept. Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - L Rusconi
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - C Kilstrup-Nielsen
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy.
| |
Collapse
|
37
|
Lupori L, Sagona G, Fuchs C, Mazziotti R, Stefanov A, Putignano E, Napoli D, Strettoi E, Ciani E, Pizzorusso T. Site-specific abnormalities in the visual system of a mouse model of CDKL5 deficiency disorder. Hum Mol Genet 2020; 28:2851-2861. [PMID: 31108505 PMCID: PMC6736061 DOI: 10.1093/hmg/ddz102] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is a neurodevelopmental disorder characterized by a severe global developmental delay and early-onset seizures. Notably, patients show distinctive visual abnormalities often clinically diagnosed as cortical visual impairment. However, the involvement of cerebral cortical dysfunctions in the origin of the symptoms is poorly understood. CDD mouse models also display visual deficits, and cortical visual responses can be used as a robust biomarker in CDKL5 mutant mice. A deeper understanding of the circuits underlying the described visual deficits is essential for directing preclinical research and translational approaches. Here, we addressed this question in two ways: first, we performed an in-depth morphological analysis of the visual pathway, from the retina to the primary visual cortex (V1), of CDKL5 null mice. We found that the lack of CDKL5 produced no alteration in the organization of retinal circuits. Conversely, CDKL5 mutants showed reduced density and altered morphology of spines and decreased excitatory synapse marker PSD95 in the dorsal lateral geniculate nucleus and in V1. An increase in the inhibitory marker VGAT was selectively present in V1. Second, using a conditional CDKL5 knockout model, we showed that selective cortical deletion of CDKL5 from excitatory cells is sufficient to produce abnormalities of visual cortical responses, demonstrating that the normal function of cortical circuits is dependent on CDKL5. Intriguingly, these deficits were associated with morphological alterations of V1 excitatory and inhibitory synaptic contacts. In summary, this work proposes cortical circuit structure and function as a critically important target for studying CDD.
Collapse
Affiliation(s)
- Leonardo Lupori
- BIO@SNS Laboratory, Scuola Normale Superiore, Via Moruzzi 1, Pisa 56124, Italy.,Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Giulia Sagona
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi-Pad. 26, Florence 50135, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa 56128, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Raffaele Mazziotti
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi-Pad. 26, Florence 50135, Italy
| | - Antonia Stefanov
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Debora Napoli
- BIO@SNS Laboratory, Scuola Normale Superiore, Via Moruzzi 1, Pisa 56124, Italy.,Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Enrica Strettoi
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Tommaso Pizzorusso
- BIO@SNS Laboratory, Scuola Normale Superiore, Via Moruzzi 1, Pisa 56124, Italy.,Institute of Neuroscience, National Research Council, Via Moruzzi 1, Pisa 56124, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi-Pad. 26, Florence 50135, Italy
| |
Collapse
|
38
|
Gao Y, Irvine EE, Eleftheriadou I, Naranjo CJ, Hearn-Yeates F, Bosch L, Glegola JA, Murdoch L, Czerniak A, Meloni I, Renieri A, Kinali M, Mazarakis ND. Gene replacement ameliorates deficits in mouse and human models of cyclin-dependent kinase-like 5 disorder. Brain 2020; 143:811-832. [DOI: 10.1093/brain/awaa028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 01/04/2023] Open
Abstract
Abstract
Cyclin-dependent kinase-like 5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. It predominantly affects females who typically present with severe early epileptic encephalopathy, global developmental delay, motor dysfunction, autistic features and sleep disturbances. To develop a gene replacement therapy, we initially characterized the human CDKL5 transcript isoforms expressed in the brain, neuroblastoma cell lines, primary astrocytes and embryonic stem cell-derived cortical interneurons. We found that the isoform 1 and to a lesser extent the isoform 2 were expressed in human brain, and both neuronal and glial cell types. These isoforms were subsequently cloned into recombinant adeno-associated viral (AAV) vector genome and high-titre viral vectors were produced. Intrajugular delivery of green fluorescence protein via AAV vector serotype PHP.B in adult wild-type male mice transduced neurons and astrocytes throughout the brain more efficiently than serotype 9. Cdkl5 knockout male mice treated with isoform 1 via intrajugular injection at age 28–30 days exhibited significant behavioural improvements compared to green fluorescence protein-treated controls (1012 vg per animal, n = 10 per group) with PHP.B vectors. Brain expression of the isoform 1 transgene was more abundant in hindbrain than forebrain and midbrain. Transgene brain expression was sporadic at the cellular level and most prominent in hippocampal neurons and cerebellar Purkinje cells. Correction of postsynaptic density protein 95 cerebellar misexpression, a major fine cerebellar structural abnormality in Cdkl5 knockout mice, was found in regions of high transgene expression within the cerebellum. AAV vector serotype DJ efficiently transduced CDKL5-mutant human induced pluripotent stem cell-derived neural progenitors, which were subsequently differentiated into mature neurons. When treating CDKL5-mutant neurons, isoform 1 expression led to an increased density of synaptic puncta, while isoform 2 ameliorated the calcium signalling defect compared to green fluorescence protein control, implying distinct functions of these isoforms in neurons. This study provides the first evidence that gene therapy mediated by AAV vectors can be used for treating CDKL5 disorder.
Collapse
Affiliation(s)
- Yunan Gao
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Elaine E Irvine
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Ioanna Eleftheriadou
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Carlos Jiménez Naranjo
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Francesca Hearn-Yeates
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Leontien Bosch
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Justyna A Glegola
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Leah Murdoch
- CBS Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - Ilaria Meloni
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Kinali
- The Portland Hospital, 205-209 Great Portland Street, London, W1W 5AH, UK
| | - Nicholas D Mazarakis
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| |
Collapse
|
39
|
CDKL5 Deficiency Disorder-A Complex Epileptic Encephalopathy. Brain Sci 2020; 10:brainsci10020107. [PMID: 32079229 PMCID: PMC7071516 DOI: 10.3390/brainsci10020107] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is a complex of clinical symptoms resulting from the presence of non-functional CDKL5 protein, i.e., serine-threonine kinase (previously referred to as STK9), or its complete absence. The clinical picture is characterized by epileptic seizures (that start within the first three months of life and most often do not respond to pharmacological treatment), epileptic encephalopathy secondary to seizures, and retardation of psychomotor development, which are often observed already in the first months of life. Due to the fact that CDKL5 is located on the X chromosome, the prevalence of CDD among women is four times higher than in men. However, the course is usually more severe among male patients. Recently, many clinical centers have analyzed this condition and provided knowledge on the function of CDKL5 protein, the natural history of the disease, therapeutic options, and their effectiveness and prognosis. The International CDKL5 Disorder Database was established in 2012, which focuses its activity on expanding knowledge related to this condition and disseminating such knowledge to the families of patients.
Collapse
|
40
|
Increased DNA Damage and Apoptosis in CDKL5-Deficient Neurons. Mol Neurobiol 2020; 57:2244-2262. [PMID: 32002787 DOI: 10.1007/s12035-020-01884-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Mutations in the CDKL5 gene, which encodes a serine/threonine kinase, causes a rare encephalopathy, characterized by early-onset epilepsy and severe intellectual disability, named CDKL5 deficiency disorder (CDD). In vitro and in vivo studies in mouse models of Cdkl5 deficiency have highlighted the role of CDKL5 in brain development and, in particular, in the morphogenesis and synaptic connectivity of hippocampal and cortical neurons. Interestingly, Cdkl5 deficiency in mice increases vulnerability to excitotoxic stress in hippocampal neurons. However, the mechanism by which CDKL5 controls neuronal survival is far from being understood. To investigate further the function of CDKL5 and dissect the molecular mechanisms underlying neuronal survival, we generated a human neuronal model of CDKL5 deficiency, using CRISPR/Cas9-mediated genome editing. We demonstrated that CDKL5 deletion in human neuroblastoma SH-SY5Y cells not only impairs neuronal maturation but also reduces cell proliferation and survival, with alterations in the AKT and ERK signaling pathways and an increase in the proapoptotic BAX protein and in DNA damage-associated biomarkers (i.e., γH2AX, RAD50, and PARP1). Furthermore, CDKL5-deficient cells were hypersensitive to DNA damage-associated stress, accumulated more DNA damage foci (γH2AX positive) and were more prone to cell death than the controls. Importantly, increased kainic acid-induced cell death of hippocampal neurons of Cdkl5 KO mice correlated with an increased γH2AX immunostaining. The results suggest a previously unknown role for CDKL5 in DNA damage response that could underlie the pro-survival function of CDKL5.
Collapse
|
41
|
Abstract
The new concept of developmental and epileptic encephalopathy is based on the understanding that many genetic epilepsies are associated with developmental impairment as a direct consequence of the genetic mutation, in addition to the effect of the frequent epileptic activity on brain development. As an example, in infants with KCNQ2 or STXBP1 encephalopathy, seizures may be controlled early after onset or cease spontaneously after a few years, but the developmental consequences tend to remain profound. The term "developmental and epileptic encephalopathy" expresses the concept that the genetic defect may be responsible for both the epilepsy and adverse development which is crucial to understanding the disease process for both families and clinicians. The increased use of EEG monitoring, neuroimaging, and metabolic and genetic testing in the Neonatal Intensive Care Unit has greatly improved our understanding of neonatal-onset epilepsies as seen with the syndromes Ohtahara and Early Myoclonic Encephalopathy outlined in the 1970s into distinct etiology-specific electroclinical phenotypes.
Collapse
Affiliation(s)
- Charbel El Kosseifi
- Catholic University of Louvain, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | | | - Maria Roberta Cilio
- Division of Pediatric Neurology, Saint-Luc University Hospital, and Institute of Experimental and Clinical Research (IREC), University of Louvain, Brussels, Belgium.
| |
Collapse
|
42
|
Fuchs C, Gennaccaro L, Ren E, Galvani G, Trazzi S, Medici G, Loi M, Conway E, Devinsky O, Rimondini R, Ciani E. Pharmacotherapy with sertraline rescues brain development and behavior in a mouse model of CDKL5 deficiency disorder. Neuropharmacology 2019; 167:107746. [PMID: 31469994 DOI: 10.1016/j.neuropharm.2019.107746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a severe neurodevelopmental disorder, CDKL5 deficiency disorder (CDD). CDKL5 is fundamental for correct brain development and function, but the molecular mechanisms underlying aberrant neurologic dysfunction in CDD are incompletely understood. Here we show a dysregulation of hippocampal and cortical serotonergic (5-HT) receptor expression in heterozygous Cdkl5 knockout (KO) female mice, suggesting that impaired 5-HT neurotransmission contributes to CDD. We demonstrate that targeting impaired 5-HT signaling via the selective serotonin reuptake inhibitor (SSRI) sertraline rescues CDD-related neurodevelopmental and behavioral defects in heterozygous Cdkl5 KO female mice. In particular, chronic treatment with sertraline normalized locomotion, stereotypic and autistic-like features, and spatial memory in Cdkl5 KO mice. These positive behavioral effects were accompanied by restored neuronal survival, dendritic development and synaptic connectivity. At a molecular level, sertraline increased brain-derived neurotrophic factor (BDNF) expression and restored abnormal phosphorylation levels of tyrosine kinase B (TrkB) and its downstream target the extracellular signal-regulated kinase (ERK1/2). Since sertraline is an FDA-approved drug with an extensive safety and tolerability data package, even for children, our findings suggest that sertraline may improve neurodevelopment in children with CDD. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Elisa Ren
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Erin Conway
- Department of Neurology, NYU Langone Health, New York, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Health, New York, USA
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
43
|
Demarest S, Pestana-Knight EM, Olson HE, Downs J, Marsh ED, Kaufmann WE, Partridge CA, Leonard H, Gwadry-Sridhar F, Frame KE, Cross JH, Chin RFM, Parikh S, Panzer A, Weisenberg J, Utley K, Jaksha A, Amin S, Khwaja O, Devinsky O, Neul JL, Percy AK, Benke TA. Severity Assessment in CDKL5 Deficiency Disorder. Pediatr Neurol 2019; 97:38-42. [PMID: 31147226 PMCID: PMC6659999 DOI: 10.1016/j.pediatrneurol.2019.03.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pathologic mutations in cyclin-dependent kinase-like 5 cause CDKL5 deficiency disorder, a genetic syndrome associated with severe epilepsy and cognitive, motor, visual, and autonomic disturbances. This disorder is a relatively common genetic cause of early-life epilepsy. A specific severity assessment is lacking, required to monitor the clinical course and needed to define the natural history and for clinical trial readiness. METHODS A severity assessment was developed based on clinical and research experience from the International Foundation for CDKL5 Research Centers of Excellence consortium and the National Institutes of Health Rett and Rett-Related Disorders Natural History Study consortium. An initial draft severity assessment was presented and reviewed at the annual CDKL5 Forum meeting (Boston, 2017). Subsequently it was iterated through four cycles of a modified Delphi process by a group of clinicians, researchers, industry, patient advisory groups, and parents familiar with this disorder until consensus was achieved. The revised version of the severity assessment was presented for review, comment, and piloting to families at the International Foundation for CDKL5 Research-sponsored family meeting (Colorado, 2018). Final revisions were based on this additional input. RESULTS The final severity assessment comprised 51 items that comprehensively describe domains of epilepsy; motor; cognition, behavior, vision, and speech; and autonomic functions. Parental ratings of therapy effectiveness and child and family functioning are also included. CONCLUSIONS A severity assessment was rapidly developed with input from multiple stakeholders. Refinement through ongoing validation is required for future clinical trials. The consensus methods employed for the development of severity assessment may be applicable to similar rare disorders.
Collapse
Affiliation(s)
- Scott Demarest
- Children's Hospital Colorado and University of Colorado School of Medicine Aurora, Colorado; Department of Pediatrics, Aurora, Colorado
| | - Elia M Pestana-Knight
- Cleveland Clinic, Neurological Institute Cleveland, Ohio; Epilepsy Center, Cleveland, Ohio
| | - Heather E Olson
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital Boston, Massachusetts
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia; School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Eric D Marsh
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Walter E Kaufmann
- M.I.N.D. Institute, Department of Neurology, University of California Davis Health System, Sacramento, California; Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Helen Leonard
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Femida Gwadry-Sridhar
- Department of Computer Science, University of Western Ontario and Pulse Infoframe, London, Ontario, Canada
| | | | - J Helen Cross
- UCL Great Ormond Street Institute of Child Health & NIHR GOSH BRC, London, UK
| | - Richard F M Chin
- University of Edinburgh and Royal Hospital for Sick Children, Edinburgh, UK
| | | | | | - Judith Weisenberg
- Neurology, Division of Pediatric Neurology, Epilepsy Section, Washington University School of Medicine, St. Louis Children's Hospital, St Louis, Missouri
| | - Karen Utley
- International Foundation for CDKL5 Research, Wadwsorth, Ohio
| | - Amanda Jaksha
- International Foundation for CDKL5 Research, Wadwsorth, Ohio
| | | | - Omar Khwaja
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development NORD, Basel, Switzerland
| | - Orrin Devinsky
- Department of Neurology, New York University, New York, New York
| | - Jeffery L Neul
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Tennessee
| | - Alan K Percy
- University of Alabama at Birmingham, Pediatrics, Neurology, Neurobiology, Genetics, and Psychology, Birmingham, Alabama
| | - Tim A Benke
- Children's Hospital Colorado and University of Colorado School of Medicine Aurora, Colorado; Department of Pediatrics, Aurora, Colorado; Department of Pharmacology, Aurora, Colorado; Department of Neurology, Aurora, Colorado; Department of Otolaryngology, Aurora, Colorado.
| |
Collapse
|
44
|
Olson HE, Demarest ST, Pestana-Knight EM, Swanson LC, Iqbal S, Lal D, Leonard H, Cross JH, Devinsky O, Benke TA. Cyclin-Dependent Kinase-Like 5 Deficiency Disorder: Clinical Review. Pediatr Neurol 2019; 97:18-25. [PMID: 30928302 PMCID: PMC7120929 DOI: 10.1016/j.pediatrneurol.2019.02.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/21/2019] [Accepted: 02/16/2019] [Indexed: 01/08/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a developmental encephalopathy caused by pathogenic variants in the gene CDKL5. This unique disorder includes early infantile onset refractory epilepsy, hypotonia, developmental intellectual and motor disabilities, and cortical visual impairment. We review the clinical presentations and genetic variations in CDD based on a systematic literature review and experience in the CDKL5 Centers of Excellence. We propose minimum diagnostic criteria. Pathogenic variants include deletions, truncations, splice variants, and missense variants. Pathogenic missense variants occur exclusively within the kinase domain or affect splice sites. The CDKL5 protein is widely expressed in the brain, predominantly in neurons, with roles in cell proliferation, neuronal migration, axonal outgrowth, dendritic morphogenesis, and synapse development. The molecular biology of CDD is revealing opportunities in precision therapy, with phase 2 and 3 clinical trials underway or planned to assess disease specific and disease modifying treatments.
Collapse
Affiliation(s)
- Heather E Olson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.
| | - Scott T Demarest
- Children's Hospital Colorado, University of Colorado, School of Medicine, Aurora, Colorado; Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado
| | - Elia M Pestana-Knight
- Cleveland Clinic Neurological Institute Epilepsy Center, Cleveland Clinic Neurological Institute Pediatric Neurology Department, Neurogenetics, Cleveland Clinic Children's, Cleveland, Ohio
| | - Lindsay C Swanson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Sumaiya Iqbal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Dennis Lal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Helen Leonard
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - J Helen Cross
- UCL Great Ormond Street NIHR BRC Institute of Child Health, London, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Health, New York, New York
| | - Tim A Benke
- Children's Hospital Colorado, University of Colorado, School of Medicine, Aurora, Colorado; Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado; Department of Pharmacology, University of Colorado, School of Medicine, Aurora, Colorado; Department of Neurology, University of Colorado, School of Medicine, Aurora, Colorado; Department of Otolaryngology, University of Colorado, School of Medicine, Aurora, Colorado
| |
Collapse
|
45
|
An electrochemiluminescence based assay for quantitative detection of endogenous and exogenously applied MeCP2 protein variants. Sci Rep 2019; 9:7929. [PMID: 31138832 PMCID: PMC6538716 DOI: 10.1038/s41598-019-44372-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/15/2019] [Indexed: 11/08/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is a multifunctional chromosomal protein that plays a key role in the central nervous system. Its levels need to be tightly regulated, as both deficiency and excess of the protein can lead to severe neuronal dysfunction. Loss-of-function mutations affecting MeCP2 are the primary cause of Rett syndrome (RTT), a severe neurological disorder that is thought to result from absence of functional protein in the brain. Several therapeutic strategies for the treatment of RTT are currently being developed. One of them is the use of stable and native TAT-MeCP2 fusion proteins to replenish its levels in neurons after permeation across the blood-brain barrier (BBB). Here we describe the expression and purification of various transactivator of transcription (TAT)-MeCP2 variants and the development of an electrochemiluminescence based assay (ECLIA) that is able to measure endogenous MeCP2 and recombinant TAT-MeCP2 fusion protein levels in a 96-well plate format. The MeCP2 ECLIA produces highly quantitative, accurate and reproducible measurements with low intra- and inter-assay error throughout a wide working range. To underline its broad applicability, this assay was used to analyze brain tissue and study the transport of TAT-MeCP2 variants across an in vitro model of the blood-brain barrier.
Collapse
|
46
|
Russo FB, Brito A, de Freitas AM, Castanha A, de Freitas BC, Beltrão-Braga PCB. The use of iPSC technology for modeling Autism Spectrum Disorders. Neurobiol Dis 2019; 130:104483. [PMID: 31129084 DOI: 10.1016/j.nbd.2019.104483] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/31/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) are a group of neurodevelopmental disorders that influence social skills, involving communication, interaction, and behavior, usually with repetitive and restrictive manners. Due to the variety of genes involved in ASDs and several possible environmental factors influence, there is still no answer to what really causes syndromic and non-syndromic types of ASDs, usually affecting each individual in a unique way. However, we know that the mechanism underlying ASDs involves brain functioning. The human brain is a complex structure composed of close to 100 billion cells, which is a big challenge to study counting just with post mortem tissue investigation or genetic approaches. Therefore, human induced pluripotent stem cells (iPSC) technology has been used as a tool to produce viable cells for understanding a working brain. Taking advantage of patient-derived stem cells, researchers are now able to generate neurons, glial cells and brain organoids in vitro to model ASDs. In this review we report data from different studies showing how iPSCs have been a critical tool to study the different phenotypes of ASDs.
Collapse
Affiliation(s)
- Fabiele Baldino Russo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Anita Brito
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | | | - Andrelissa Castanha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Beatriz C de Freitas
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Patricia Cristina Baleeiro Beltrão-Braga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil; Department of Obstetrics, School of Arts Sciences and Humanities, São Paulo, SP 03828-000, Brazil.
| |
Collapse
|
47
|
Ko A, Kang HC. Frequently Identified Genetic Developmental and Epileptic Encephalopathy: A Review Focusing on Precision Medicine. ANNALS OF CHILD NEUROLOGY 2019. [DOI: 10.26815/acn.2019.00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
48
|
Fraser H, Goldman A, Wright R, Banka S. A maternally inherited frameshift
CDKL5
variant in a male with global developmental delay and late‐onset generalized epilepsy. Am J Med Genet A 2019; 179:507-511. [DOI: 10.1002/ajmg.a.40661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/04/2018] [Accepted: 09/21/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Harry Fraser
- Manchester Centre for Genomic MedicineSt Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester Manchester United Kingdom
| | - Amy Goldman
- Manchester Centre for Genomic MedicineSt Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester Manchester United Kingdom
| | - Ronnie Wright
- Manchester Centre for Genomic MedicineSt Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester Manchester United Kingdom
| | - Siddharth Banka
- Manchester Centre for Genomic MedicineSt Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester Manchester United Kingdom
- Division of Evolution & Genomic SciencesSchool of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester Manchester United Kingdom
| | | |
Collapse
|
49
|
Abstract
Mutation or inactivation of CDKL5 kinase is associated with a human neurodevelopmental condition commonly referred to as CDKL5 deficiency disorder.§ Two recent phosphoproteomics studies identify the first physiological substrates of mammalian CDKL5 and evaluate functional consequences of their phosphorylation and its loss in cells lacking functional CDKL5, highlighting potential roles for this kinase in regulating neuronal microtubule dynamics.
Collapse
Affiliation(s)
- Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
50
|
Zhu YC, Xiong ZQ. Molecular and Synaptic Bases of CDKL5 Disorder. Dev Neurobiol 2018; 79:8-19. [PMID: 30246934 DOI: 10.1002/dneu.22639] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early-onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC-derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Yong-Chuan Zhu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|