1
|
Rubin JB. Gender and sex interactions are intrinsic components of cancer phenotypes. Nat Rev Cancer 2025:10.1038/s41568-025-00829-4. [PMID: 40389544 DOI: 10.1038/s41568-025-00829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2025] [Indexed: 05/21/2025]
Abstract
Sex is a significant determinant of cancer incidence and outcome. The effects of sexual differentiation on normal and cancer biology underly this epidemiology. The resultant sex differences in therapeutic target pathways and processes provide a foundation for developing more personalized cancer treatments. However, our efforts at personalization cannot stop there. Humans also have gender, and sex and gender are highly interactive in individuation. Thus, we will also need to consider how gender-sex interactions (GSI) affect cancer biology and clinical parameters such as the timing of diagnoses, clinical trial enrolment, and the completeness of efficacy and toxicity data. Ignoring the effects of GSI can compromise the quality of basic biological and clinical data and the conclusions drawn from them. This is not to say that GSI will always have a significant effect or any effect at all in every cancer study. Rather, it is to say that we know enough about GSI and human cancer to anticipate measurable differences when GSI are considered in research, enabling us to experimentally determine whether their effects are significant. Here, I delve deeply into GSI and cancer, as this approach to treatment personalization holds great promise to benefit all patients with cancer.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Paediatrics, Washington University School of Medicine, St Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Georgiou EX, Mizrachi Y, Kelley R, Stock-Myer S, Stevens J, Gardner DK, Polyakov A. The Effect of Assisted Reproductive Technologies on Human Sex Ratios. Aust N Z J Obstet Gynaecol 2025. [PMID: 39865443 DOI: 10.1111/ajo.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Modern assisted reproductive technology (ART), including pre-implantation genetic testing for aneuploidy (PGT-A), has opened new avenues in understanding early embryonic events and has simultaneously raised questions about the impact of ART itself on sex ratios. AIMS The primary aim was to investigate whether patient demographic characteristics, ovarian stimulation protocols or laboratory characteristics in ART influence sex ratios. The secondary aim was to relate the blastocyst sex ratio (BSR) to the corresponding secondary sex ratio (SSR) in our patient cohort. MATERIALS AND METHODS We conducted a retrospective single-centre cohort study on consecutive PGT-A cycles from January 2019 to February 2022. We analysed demographic data, stimulation protocols, laboratory characteristics and pregnancy outcomes. RESULTS The euploidy rate was 45.1% (2608/5777), BSR 1.07 and euploid BSR 1.03. There was no statistical difference in the ploidy status of XX and XY blastocysts and on multivariate logistic regression analysis, there was no association between euploidy and BSR or any other variables examined, including female age and stimulation protocol. The SSR was 1.02 (1294 embryo transfers) with no statistical difference in biochemical pregnancy (p = 0.41), clinical pregnancy (p = 0.56), miscarriage (p = 0.65) or live birth rates (p = 0.40) based on embryo sex. CONCLUSIONS Our study indicates that the euploid BSR is not skewed by sex, and there is no relationship between BSR and euploidy, patient characteristics or stimulation protocols. Pregnancy outcomes did not vary by sex, and the SSR was consistent with the SSR of the general Australian population at birth.
Collapse
Affiliation(s)
- Ektoras X Georgiou
- Reproductive Services Unit, The Royal Women's Hospital, Parkville, Australia
- Melbourne IVF, East Melbourne, Victoria, Australia
- Department of Obstetrics, Gynaecology, and Newborn Health, University of Melbourne, Parkville, Australia
| | - Yossi Mizrachi
- Reproductive Services Unit, The Royal Women's Hospital, Parkville, Australia
| | | | | | - John Stevens
- Melbourne IVF, East Melbourne, Victoria, Australia
| | | | - Alex Polyakov
- Reproductive Services Unit, The Royal Women's Hospital, Parkville, Australia
- Melbourne IVF, East Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Gurner KH, Gardner DK. Blastocyst-Derived Lactate as a Key Facilitator of Implantation. Biomolecules 2025; 15:100. [PMID: 39858494 PMCID: PMC11764449 DOI: 10.3390/biom15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The blastocyst develops a unique metabolism that facilitates the creation of a specialized microenvironment at the site of implantation characterized by high levels of lactate and reduced pH. While historically perceived as a metabolic waste product, lactate serves as a signaling molecule which facilitates the invasion of surrounding tissues by cancers and promotes blood vessel formation during wound healing. However, the role of lactate in reproduction, particularly at the implantation site, is still being considered. Here, we detail the biological significance of the microenvironment created by the blastocyst at implantation, exploring the origin and significance of blastocyst-derived lactate, its functional role at the implantation site and how understanding this mediator of the maternal-fetal dialogue may help to improve implantation in assisted reproduction.
Collapse
Affiliation(s)
| | - David K. Gardner
- Melbourne IVF, East Melbourne, VIC 3002, Australia;
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Sakkas D. The 'golden fleece of embryology' eludes us once again: a recent RCT using artificial intelligence reveals again that blastocyst morphology remains the standard to beat. Hum Reprod 2025; 40:4-8. [PMID: 39602554 DOI: 10.1093/humrep/deae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
Grading of blastocyst morphology is used routinely for embryo selection with good outcomes. A lot of effort has been placed in IVF to search for the prize of selecting the most viable embryo to transfer ('the golden fleece of embryology'). To improve on morphology alone, artificial intelligence (AI) has also become a tool of interest, with many retrospective studies being published with impressive prediction capabilities. Subsequently, AI has again raised expectations that this 'golden fleece of embryology' was once again within reach. A recent RCT however was not able to demonstrate non-inferiority using a deep learning algorithm 'iDAScore version 1' for clinical pregnancy rate when compared to standard morphology. Good blastocyst morphology has again proven itself as a high bar in predicting live birth. We should however not give up on the development of further approaches which may allow us to identify extra features of viable embryos that are not captured by morphology.
Collapse
Affiliation(s)
- Denny Sakkas
- Boston IVF-IVIRMA Global Research Alliance, Waltham, MA, USA
| |
Collapse
|
5
|
Parra A, Denkova D, Burgos-Artizzu XP, Aroca E, Casals M, Godeau A, Ares M, Ferrer-Vaquer A, Massafret O, Oliver-Vila I, Mestres E, Acacio M, Costa-Borges N, Rebollo E, Chiang HJ, Fraser SE, Cutrale F, Seriola A, Ojosnegros S. METAPHOR: Metabolic evaluation through phasor-based hyperspectral imaging and organelle recognition for mouse blastocysts and oocytes. Proc Natl Acad Sci U S A 2024; 121:e2315043121. [PMID: 38968128 PMCID: PMC11252780 DOI: 10.1073/pnas.2315043121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/25/2024] [Indexed: 07/07/2024] Open
Abstract
Only 30% of embryos from in vitro fertilized oocytes successfully implant and develop to term, leading to repeated transfer cycles. To reduce time-to-pregnancy and stress for patients, there is a need for a diagnostic tool to better select embryos and oocytes based on their physiology. The current standard employs brightfield imaging, which provides limited physiological information. Here, we introduce METAPHOR: Metabolic Evaluation through Phasor-based Hyperspectral Imaging and Organelle Recognition. This non-invasive, label-free imaging method combines two-photon illumination and AI to deliver the metabolic profile of embryos and oocytes based on intrinsic autofluorescence signals. We used it to classify i) mouse blastocysts cultured under standard conditions or with depletion of selected metabolites (glucose, pyruvate, lactate); and ii) oocytes from young and old mouse females, or in vitro-aged oocytes. The imaging process was safe for blastocysts and oocytes. The METAPHOR classification of control vs. metabolites-depleted embryos reached an area under the ROC curve (AUC) of 93.7%, compared to 51% achieved for human grading using brightfield imaging. The binary classification of young vs. old/in vitro-aged oocytes and their blastulation prediction using METAPHOR reached an AUC of 96.2% and 82.2%, respectively. Finally, organelle recognition and segmentation based on the flavin adenine dinucleotide signal revealed that quantification of mitochondria size and distribution can be used as a biomarker to classify oocytes and embryos. The performance and safety of the method highlight the accuracy of noninvasive metabolic imaging as a complementary approach to evaluate oocytes and embryos based on their physiology.
Collapse
Affiliation(s)
- Albert Parra
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona08028, Spain
| | - Denitza Denkova
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona08028, Spain
| | - Xavier P. Burgos-Artizzu
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona08028, Spain
- Movumtech SL, Madrid28003, Spain
| | - Ester Aroca
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona08028, Spain
| | - Marc Casals
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona08028, Spain
| | - Amélie Godeau
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona08028, Spain
| | - Miguel Ares
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona08028, Spain
| | - Anna Ferrer-Vaquer
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona08028, Spain
| | - Ot Massafret
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona08028, Spain
| | | | - Enric Mestres
- Embryotools SL, R&D department, Barcelona08028, Spain
| | - Mònica Acacio
- Embryotools SL, R&D department, Barcelona08028, Spain
| | | | - Elena Rebollo
- Advanced Fluorescence Microscopy Unit, Molecular Biology Institute of Barcelona (IBMB - CSIC), Barcelona08028, Spain
| | - Hsiao Ju Chiang
- Translational Imaging Center, University of Southern California, Los Angeles, CA90089
- Alfred Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA90089
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, CA90089
- Alfred Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA90089
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA90089
| | - Francesco Cutrale
- Translational Imaging Center, University of Southern California, Los Angeles, CA90089
- Alfred Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA90089
| | - Anna Seriola
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona08028, Spain
| | - Samuel Ojosnegros
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona08028, Spain
| |
Collapse
|
6
|
Rubin JB, Abou-Antoun T, Ippolito JE, Llaci L, Marquez CT, Wong JP, Yang L. Epigenetic developmental mechanisms underlying sex differences in cancer. J Clin Invest 2024; 134:e180071. [PMID: 38949020 PMCID: PMC11213507 DOI: 10.1172/jci180071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.
Collapse
Affiliation(s)
| | | | - Joseph E. Ippolito
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics
| | - Lorida Llaci
- Deartment of Genetics Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
7
|
Traut M, Kowalczyk-Zieba I, Boruszewska D, Jaworska J, Gąsiorowska S, Lukaszuk K, Ropka-Molik K, Piórkowska K, Szmatoła T, Woclawek-Potocka I. Deregulation of oxidative phosphorylation pathways in embryos derived in vitro from prepubertal and pubertal heifers based on whole-transcriptome sequencing. BMC Genomics 2024; 25:632. [PMID: 38914933 PMCID: PMC11197288 DOI: 10.1186/s12864-024-10532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Although, oocytes from prepubertal donors are known to be less developmentally competent than those from adult donors it does not restrain their ability to produce full-term pregnancies. The transcriptomic profile of embryos could be used as a predictor for embryo's individual developmental competence. The aim of the study was to compare transcriptomic profile of blastocysts derived from prepubertal and pubertal heifers oocytes. Bovine cumulus-oocyte complexes (COCs) were obtained by ovum pick- up method from prepubertal and pubertal heifers. After in vitro maturation COCs were fertilized and cultured to the blastocyst stage. Total RNA was isolated from both groups of blastocysts and RNA-seq was performed. Gene ontology analysis was performed by DAVID (Database for Annotation, Visualization and Integrated Discovery). RESULTS A higher average blastocyst rate was obtained in the pubertal than in the pre-pubertal group. There were no differences in the quality of blastocysts between the examined groups. We identified 436 differentially expressed genes (DEGs) between blastocysts derived from researched groups, of which 247 DEGs were downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes, and 189 DEGs were upregulated. The genes involved in mitochondrial function, including oxidative phosphorylation (OXPHOS) were found to be different in studied groups using Kyoto Encyclopedia of Genes (KEGG) pathway analysis and 8 of those DEGs were upregulated and 1 was downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes. DEGs associated with mitochondrial function were found: ATP synthases (ATP5MF-ATP synthase membrane subunit f, ATP5PD- ATP synthase peripheral stalk subunit d, ATP12A- ATPase H+/K + transporting non-gastric alpha2 subunit), NADH dehydrogenases (NDUFS3- NADH: ubiquinone oxidoreductase subunit core subunit S3, NDUFA13- NADH: ubiquinone oxidoreductase subunit A13, NDUFA3- NADH: ubiquinone oxidoreductase subunit A3), cytochrome c oxidase (COX17), cytochrome c somatic (CYCS) and ubiquinol cytochrome c reductase core protein 1 (UQCRC1). We found lower number of apoptotic cells in blastocysts derived from oocytes collected from prepubertal than those obtained from pubertal donors. CONCLUSIONS Despite decreased expression of genes associated with OXPHOS pathway in blastocysts from prepubertal heifers oocytes, the increased level of ATP12A together with the lower number of apoptotic cells in these blastocysts might support their survival after transfer.
Collapse
Affiliation(s)
- Milena Traut
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Joanna Jaworska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Sandra Gąsiorowska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Krzysztof Lukaszuk
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, Gdansk, 80-210, Poland
- Invicta Research and Development Center, Sopot, 81-740, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, Krakow, 30-248, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland.
| |
Collapse
|
8
|
Ardestani G, Martins M, Ocali O, Sanchez TH, Gulliford C, Barrett CB, Sakkas D. Effect of time post warming to embryo transfer on human blastocyst metabolism and pregnancy outcome. J Assist Reprod Genet 2024; 41:1539-1547. [PMID: 38642271 PMCID: PMC11224190 DOI: 10.1007/s10815-024-03115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/22/2024] Open
Abstract
PURPOSE This study is aiming to test whether variation in post warming culture time impacts blastocyst metabolism or pregnancy outcome. METHODS In this single center retrospective cohort study, outcomes of 11,520 single frozen embryo transfer (FET) cycles were analyzed from January 2015 to December 2020. Patient treatments included both natural and programmed cycles. Time categories were determined using the time between blastocyst warming and embryo transfer: 0 (0- <1h), 1 (1-<2h), 2 (2-<3h), 3(3-<4h), 4 (4-<5), 5 (5-<6), 6 (6-<7) and 7 (7-8h). Non-invasive metabolic imaging of discarded human blastocysts for up to 10h was also performed using Fluorescence lifetime imaging microscopy (FLIM) to examine for metabolic perturbations during culture. RESULTS The mean age of patients across all time categories were comparable (35.6 ± 3.9). Live birth rates (38-52%) and miscarriage rate (5-11%) were not statistically different across post-warming culture time. When assessing pregnancy outcomes based on the use of PGT-A, miscarriage and live birth rates were not statistically different across culture hours in both PGT-A and non-PGT cycles. Further metabolic analysis of blastocysts for the duration of 10h of culture post warming, revealed minimal metabolic changes of embryos in culture. CONCLUSION Overall, our results show that differences in the time of post warming culture have no significant impact on miscarriage or live birth rate for frozen embryo transfers. This information can be beneficial for clinical practices with either minimal staffing or a high number of patient cases.
Collapse
Affiliation(s)
- Goli Ardestani
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA.
| | - Marion Martins
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA
- Kinderwunsch im Zentrum, Tulln, Austria
| | - Olcay Ocali
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA
| | | | | | - C Brent Barrett
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA
| | - Denny Sakkas
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA
| |
Collapse
|
9
|
Guldager T, Gabrielsen A, Iversen LH, Kirkegaard K. Culture media affect sex after IVF treatment-a detailed analysis of explanatory variables. J Assist Reprod Genet 2024; 41:1181-1191. [PMID: 38472564 PMCID: PMC11143141 DOI: 10.1007/s10815-024-03081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
PURPOSE The purpose of this study was to provide a detailed analysis of clinical and laboratory factors associated with skewed secondary sex ratio (SSR) after ART. METHOD Retrospective cohort study of embryos resulting in live births, from frozen and fresh single blastocyst transfers. Embryos were cultured in either G-TL (n = 686) or Sage media (n = 685). Data was analyzed using a multivariate logistic regression model and a mixed model analysis. RESULTS Significantly more male singletons were born after culture in Sage media compared to G-TL media (odds ratio (OR) 1.34, 95% CI (1.05, 1.70), P = 0.02). Inner cell mass grade B vs A (OR 1.36 95% CI (1.05, 1.76), P = 0.02) and one previous embryo transfer (OR 1.49, 95% CI (1.03, 2.16), P = 0.03) were associated with a significantly higher probability of male child at birth. Factors associated with a reduced probability of male child were expansion grade 3 vs 5 (OR 0.66, 95% CI (10.45, 0.96), P = 0.03) and trophectoderm grade B vs A (OR 0.57, 95% CI (0.44, 0.74), P = 0.00). Male embryos developed significantly faster in Sage media compared to G-TL media for the stages of blastocyst (- 1.12 h, 95% CI (- 2.12, - 0.12)), expanded blastocyst (- 1.35 h, 95% CI (- 2.34, - 0.35)), and hatched blastocyst (- 1.75 h, 95% CI (- 2.99, - 0.52)). CONCLUSION More male children were born after culture in Sage media compared to G-TL media. Male embryo development was affected by culture media. Our observations suggest that culture media impact male embryo quality selectively, thus potentially favoring the selection of male embryos.
Collapse
Affiliation(s)
- T Guldager
- Fertility Clinic, Horsens Regional Hospital, Sundvej 30, 8700, Horsens, Denmark.
| | - A Gabrielsen
- Fertility Clinic, Horsens Regional Hospital, Sundvej 30, 8700, Horsens, Denmark
| | - L H Iversen
- Fertility Clinic, Horsens Regional Hospital, Sundvej 30, 8700, Horsens, Denmark
| | - K Kirkegaard
- Fertility Clinic, Horsens Regional Hospital, Sundvej 30, 8700, Horsens, Denmark
| |
Collapse
|
10
|
Moustakli E, Zikopoulos A, Skentou C, Bouba I, Dafopoulos K, Georgiou I. Evolution of Minimally Invasive and Non-Invasive Preimplantation Genetic Testing: An Overview. J Clin Med 2024; 13:2160. [PMID: 38673433 PMCID: PMC11050362 DOI: 10.3390/jcm13082160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Preimplantation genetic testing (PGT) has become a common supplementary diagnοstic/testing tοol for in vitro fertilization (ΙVF) cycles due to a significant increase in cases of PGT fοr mοnogenic cοnditions (ΡGT-M) and de novο aneuplοidies (ΡGT-A) over the last ten years. This tendency is mostly attributable to the advancement and application of novel cytogenetic and molecular techniques in clinical practice that are capable of providing an efficient evaluation of the embryonic chromosomal complement and leading to better IVF/ICSI results. Although PGT is widely used, it requires invasive biopsy of the blastocyst, which may harm the embryo. Non-invasive approaches, like cell-free DNA (cfDNA) testing, have lower risks but have drawbacks in consistency and sensitivity. This review discusses new developments and opportunities in the field of preimplantation genetic testing, enhancing the overall effectiveness and accessibility of preimplantation testing in the framework of developments in genomic sequencing, bioinformatics, and the integration of artificial intelligence in the interpretation of genetic data.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.); (I.B.)
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital Barrack Rd, Exeter EX2 5DW, UK;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Ioanna Bouba
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.); (I.B.)
| | - Konstantinos Dafopoulos
- IVF Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences University of Thessaly, 41500 Larissa, Greece;
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.); (I.B.)
| |
Collapse
|
11
|
Winstanley YE, Liu J, Adhikari D, Gonzalez MB, Russell DL, Carroll J, Robker RL. Dynamics of Mitochondrial DNA Copy Number and Membrane Potential in Mouse Pre-Implantation Embryos: Responses to Diverse Types of Oxidative Stress. Genes (Basel) 2024; 15:367. [PMID: 38540426 PMCID: PMC10970549 DOI: 10.3390/genes15030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
Mitochondria undergo a myriad of changes during pre-implantation embryo development, including shifts in activity levels and mitochondrial DNA (mtDNA) replication. However, how these distinct aspects of mitochondrial function are linked and their responsiveness to diverse stressors is not well understood. Here, we show that mtDNA content increased between 8-cell embryos and the blastocyst stage, with similar copy numbers per cell in the inner cell mass (ICM) and trophectoderm (TE). In contrast, mitochondrial membrane potential (MMP) was higher in TE than ICM. Culture in ambient oxygen (20% O2) altered both aspects of mitochondrial function: the mtDNA copy number was upregulated in ICM, while MMP was diminished in TE. Embryos cultured in 20% O2 also exhibited delayed development kinetics, impaired implantation, and reduced mtDNA levels in E18 fetal liver. A model of oocyte mitochondrial stress using rotenone showed only a modest effect on on-time development and did not alter the mtDNA copy number in ICM; however, following embryo transfer, mtDNA was higher in the fetal heart. Lastly, endogenous mitochondrial dysfunction, induced by maternal age and obesity, altered the blastocyst mtDNA copy number, but not within the ICM. These results demonstrate that mitochondrial activity and mtDNA content exhibit cell-specific changes and are differentially responsive to diverse types of oxidative stress during pre-implantation embryogenesis.
Collapse
Affiliation(s)
- Yasmyn E. Winstanley
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - Jun Liu
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Deepak Adhikari
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Macarena B. Gonzalez
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - Darryl L. Russell
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - John Carroll
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rebecca L. Robker
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
12
|
Sakkas D, Gulliford C, Ardestani G, Ocali O, Martins M, Talasila N, Shah JS, Penzias AS, Seidler EA, Sanchez T. Metabolic imaging of human embryos is predictive of ploidy status but is not associated with clinical pregnancy outcomes: a pilot trial. Hum Reprod 2024; 39:516-525. [PMID: 38195766 DOI: 10.1093/humrep/dead268] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/28/2023] [Indexed: 01/11/2024] Open
Abstract
STUDY QUESTION Does fluorescence lifetime imaging microscopy (FLIM)-based metabolic imaging assessment of human blastocysts prior to frozen transfer correlate with pregnancy outcomes? SUMMARY ANSWER FLIM failed to distinguish consistent patterns in mitochondrial metabolism between blastocysts leading to pregnancy compared to those that did not. WHAT IS KNOWN ALREADY FLIM measurements provide quantitative information on NAD(P)H and flavin adenine dinucleotide (FAD+) concentrations. The metabolism of embryos has long been linked to their viability, suggesting the potential utility of metabolic measurements to aid in selection. STUDY DESIGN, SIZE, DURATION This was a pilot trial enrolling 121 IVF couples who consented to have their frozen blastocyst measured using non-invasive metabolic imaging. After being warmed, 105 couples' good-quality blastocysts underwent a 6-min scan in a controlled temperature and gas environment. FLIM-assessed blastocysts were then transferred without any intervention in management. PARTICIPANTS/MATERIALS, SETTING, METHODS Eight metabolic parameters were obtained from each blastocyst (4 for NAD(P)H and 4 for FAD): short and long fluorescence lifetime, fluorescence intensity, and fraction of the molecule engaged with enzyme. The redox ratio (intensity of NAD(P)H)/(intensity of FAD) was also calculated. FLIM data were combined with known metadata and analyzed to quantify the ability of metabolic imaging to differentiate embryos that resulted in pregnancy from embryos that did not. De-identified discarded aneuploid human embryos (n = 158) were also measured to quantify correlations with ploidy status and other factors. Statistical comparisons were performed using logistic regression and receiver operating characteristic (ROC) curves with 5-fold cross-validation averaged over 100 repeats with random sampling. AUC values were used to quantify the ability to distinguish between classes. MAIN RESULTS AND THE ROLE OF CHANCE No metabolic imaging parameters showed significant differences between good-quality blastocysts resulting in pregnancy versus those that did not. A logistic regression using metabolic data and metadata produced an ROC AUC of 0.58. In contrast, robust AUCs were obtained when classifying other factors such as comparison of Day 5 (n = 64) versus Day 6 (n = 41) blastocysts (AUC = 0.78), inner cell mass versus trophectoderm (n = 105: AUC = 0.88) and aneuploid (n = 158) versus euploid and positive pregnancy embryos (n = 108) (AUC = 0.82). LIMITATIONS, REASONS FOR CAUTION The study protocol did not select which embryo to transfer and the cohort of 105 included blastocysts were all high quality. The study was also limited in number of participants and study sites. Increased power and performing the trial in more sites may have provided a stronger conclusion regarding the merits of the use of FLIM clinically. WIDER IMPLICATIONS OF THE FINDINGS FLIM failed to distinguish consistent patterns in mitochondrial metabolism between good-quality blastocysts leading to pregnancy compared to those that did not. Blastocyst ploidy status was, however, highly distinguishable. In addition, embryo regions and embryo day were consistently revealed by FLIM. While metabolic imaging detects mitochondrial metabolic features in human blastocysts, this pilot trial indicates it does not have the potential to serve as an effective embryo viability detection tool. This may be because mitochondrial metabolism plays an alternative role post-implantation. STUDY FUNDING/COMPETING INTEREST(S) This study was sponsored by Optiva Fertility, Inc. Boston IVF contributed to the clinical site and services. Becker Hickl, GmbH, provided the FLIM system on loan. T.S. was the founder and held stock in Optiva Fertility, Inc., and D.S. and E.S. had options with Optiva Fertility, Inc., during this study. TRIAL REGISTRATION NUMBER The study was approved by WCG Connexus IRB (Study Number 1298156).
Collapse
Affiliation(s)
- Denny Sakkas
- Boston IVF, Research Department, Waltham, MA, USA
| | | | | | - Olcay Ocali
- Boston IVF, Research Department, Waltham, MA, USA
| | | | | | - Jaimin S Shah
- Boston IVF, Research Department, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Alan S Penzias
- Boston IVF, Research Department, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Emily A Seidler
- Boston IVF, Research Department, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
13
|
Chousal JN, Morey R, Srinivasan S, Lee K, Zhang W, Yeo AL, To C, Cho K, Garzo VG, Parast MM, Laurent LC, Cook-Andersen H. Molecular profiling of human blastocysts reveals primitive endoderm defects among embryos of decreased implantation potential. Cell Rep 2024; 43:113701. [PMID: 38277271 DOI: 10.1016/j.celrep.2024.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024] Open
Abstract
Human embryo implantation is remarkably inefficient, and implantation failure remains among the greatest obstacles in treating infertility. Gene expression data from human embryos have accumulated rapidly in recent years; however, identification of the subset of genes that determine successful implantation remains a challenge. We leverage clinical morphologic grading-known for decades to correlate with implantation potential-and transcriptome analyses of matched embryonic and abembryonic samples to identify factors and pathways enriched and depleted in human blastocysts of good and poor morphology. Unexpectedly, we discovered that the greatest difference was in the state of extraembryonic primitive endoderm (PrE) development, with relative deficiencies in poor morphology blastocysts. Our results suggest that implantation success is most strongly influenced by the embryonic compartment and that deficient PrE development is common among embryos with decreased implantation potential. Our study provides a valuable resource for those investigating the markers and mechanisms of human embryo implantation.
Collapse
Affiliation(s)
- Jennifer N Chousal
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Morey
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Srimeenakshi Srinivasan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine Lee
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Zhang
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Ana Lisa Yeo
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Cuong To
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - V Gabriel Garzo
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Mana M Parast
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Du T, Xie Q, Ye J, Wang X, Qiu J, Yan Z, Zhang S, Zhao D, Lin J, Li B. Factors affecting male-to-female ratio at birth in frozen-thawed embryo transfer cycles: a large retrospective cohort study. Front Endocrinol (Lausanne) 2023; 14:1188433. [PMID: 37800141 PMCID: PMC10548202 DOI: 10.3389/fendo.2023.1188433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/31/2023] [Indexed: 10/07/2023] Open
Abstract
Background ICSI (intracytoplasmic sperm injection) leads to a reduced male-to-female ratio at birth, whereas blastocyst transfer results in an increased male-to-female ratio. However, limited knowledge exists regarding the impact of these factors on the live birth rate for each gender. This study aimed to investigate the influence of patient characteristics and treatment parameters on the live birth rate for each gender, as well as the ultimate male-to-female ratio at birth in frozen-thawed embryo transfer (FET) cycles. Method This retrospective cohort study involved a total of 28,376 FET cycles and 9,217 subsequent deliveries, spanning from January 2003 to December 2015. The study consisted of two parts. First, logistic regression models were constructed to determine the factors influencing the male-to-female ratio among babies born after FET. Second, we aimed to investigate the mechanisms underlying this sex ratio imbalance by analyzing data from all transfer cycles. Generalized estimated equations were employed to assess the impact of risk factors on rates of male and female live births separately. Results ICSI resulted in a lower proportion of male offspring compared to in vitro fertilization (IVF) (50.1% vs. 53.7%, aOR: 0.87, 95% CI: 0.80-0.96). Conversely, blastocyst transfer yielded a higher proportion of male offspring than cleavage-stage embryo transfer (58.7% vs. 51.6%, aOR: 1.32, 95% CI: 1.17-1.48). Analysis of all cycles indicated that ICSI resulted in a reduced likelihood of male live birth in comparison to IVF (19.8% vs. 21.6%, aOR: 0.90, 95% CI: 0.83-0.97). However, the transfer of blastocysts rather than cleavage-stage embryos not only increased the chance of male live birth (26.9% vs. 20.2%, aOR: 1.70, 95% CI:1.56-1.85) but also facilitated female live birth (20.3% vs. 19.3%, aOR: 1.26, 95% CI: 1.15-1.39). Conclusion ICSI was associated with a reduction in the male-to-female sex ratio and a lower rate of male live births, while blastocyst transfer was associated with an increased male-to-female sex ratio at birth and a higher rate of male live births.
Collapse
Affiliation(s)
- Tong Du
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Xie
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Ye
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xindi Wang
- Department of Integrative Physiology and Biochemistry, University of Colorado at Boulder, Boulder, NV, United States
| | - Jiaxin Qiu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suqun Zhang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Zhao
- Department of Obstetrics and Gynaecology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaying Lin
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Cimadomo D, Rienzi L, Conforti A, Forman E, Canosa S, Innocenti F, Poli M, Hynes J, Gemmell L, Vaiarelli A, Alviggi C, Ubaldi FM, Capalbo A. Opening the black box: why do euploid blastocysts fail to implant? A systematic review and meta-analysis. Hum Reprod Update 2023; 29:570-633. [PMID: 37192834 DOI: 10.1093/humupd/dmad010] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/22/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND A normal chromosomal constitution defined through PGT-A assessing all chromosomes on trophectoderm (TE) biopsies represents the strongest predictor of embryo implantation. Yet, its positive predictive value is not higher than 50-60%. This gap of knowledge on the causes of euploid blastocysts' reproductive failure is known as 'the black box of implantation'. OBJECTIVE AND RATIONALE Several embryonic, maternal, paternal, clinical, and IVF laboratory features were scrutinized for their putative association with reproductive success or implantation failure of euploid blastocysts. SEARCH METHODS A systematic bibliographical search was conducted without temporal limits up to August 2021. The keywords were '(blastocyst OR day5 embryo OR day6 embryo OR day7 embryo) AND (euploid OR chromosomally normal OR preimplantation genetic testing) AND (implantation OR implantation failure OR miscarriage OR abortion OR live birth OR biochemical pregnancy OR recurrent implantation failure)'. Overall, 1608 items were identified and screened. We included all prospective or retrospective clinical studies and randomized-controlled-trials (RCTs) that assessed any feature associated with live-birth rates (LBR) and/or miscarriage rates (MR) among non-mosaic euploid blastocyst transfer after TE biopsy and PGT-A. In total, 41 reviews and 372 papers were selected, clustered according to a common focus, and thoroughly reviewed. The PRISMA guideline was followed, the PICO model was adopted, and ROBINS-I and ROB 2.0 scoring were used to assess putative bias. Bias across studies regarding the LBR was also assessed using visual inspection of funnel plots and the trim and fill method. Categorical data were combined with a pooled-OR. The random-effect model was used to conduct the meta-analysis. Between-study heterogeneity was addressed using I2. Whenever not suitable for the meta-analysis, the included studies were simply described for their results. The study protocol was registered at http://www.crd.york.ac.uk/PROSPERO/ (registration number CRD42021275329). OUTCOMES We included 372 original papers (335 retrospective studies, 30 prospective studies and 7 RCTs) and 41 reviews. However, most of the studies were retrospective, or characterized by small sample sizes, thus prone to bias, which reduces the quality of the evidence to low or very low. Reduced inner cell mass (7 studies, OR: 0.37, 95% CI: 0.27-0.52, I2 = 53%), or TE quality (9 studies, OR: 0.53, 95% CI: 0.43-0.67, I2 = 70%), overall blastocyst quality worse than Gardner's BB-grade (8 studies, OR: 0.40, 95% CI: 0.24-0.67, I2 = 83%), developmental delay (18 studies, OR: 0.56, 95% CI: 0.49-0.63, I2 = 47%), and (by qualitative analysis) some morphodynamic abnormalities pinpointed through time-lapse microscopy (abnormal cleavage patterns, spontaneous blastocyst collapse, longer time of morula formation I, time of blastulation (tB), and duration of blastulation) were all associated with poorer reproductive outcomes. Slightly lower LBR, even in the context of PGT-A, was reported among women ≥38 years (7 studies, OR: 0.87, 95% CI: 0.75-1.00, I2 = 31%), while obesity was associated with both lower LBR (2 studies, OR: 0.66, 95% CI: 0.55-0.79, I2 = 0%) and higher MR (2 studies, OR: 1.8, 95% CI: 1.08-2.99, I2 = 52%). The experience of previous repeated implantation failures (RIF) was also associated with lower LBR (3 studies, OR: 0.72, 95% CI: 0.55-0.93, I2 = 0%). By qualitative analysis, among hormonal assessments, only abnormal progesterone levels prior to transfer were associated with LBR and MR after PGT-A. Among the clinical protocols used, vitrified-warmed embryo transfer was more effective than fresh transfer (2 studies, OR: 1.56, 95% CI: 1.05-2.33, I2 = 23%) after PGT-A. Lastly, multiple vitrification-warming cycles (2 studies, OR: 0.41, 95% CI: 0.22-0.77, I2 = 50%) or (by qualitative analysis) a high number of cells biopsied may slightly reduce the LBR, while simultaneous zona-pellucida opening and TE biopsy allowed better results than the Day 3 hatching-based protocol (3 studies, OR: 1.41, 95% CI: 1.18-1.69, I2 = 0%). WIDER IMPLICATIONS Embryo selection aims at shortening the time-to-pregnancy, while minimizing the reproductive risks. Knowing which features are associated with the reproductive competence of euploid blastocysts is therefore critical to define, implement, and validate safer and more efficient clinical workflows. Future research should be directed towards: (i) systematic investigations of the mechanisms involved in reproductive aging beyond de novo chromosomal abnormalities, and how lifestyle and nutrition may accelerate or exacerbate their consequences; (ii) improved evaluation of the uterine and blastocyst-endometrial dialogue, both of which represent black boxes themselves; (iii) standardization/automation of embryo assessment and IVF protocols; (iv) additional invasive or preferably non-invasive tools for embryo selection. Only by filling these gaps we may finally crack the riddle behind 'the black box of implantation'.
Collapse
Affiliation(s)
- Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Eric Forman
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | | | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Maurizio Poli
- Centrum voor Kinderwens, Dijklander Hospital, Purmerend, The Netherlands
- Juno Genetics, Rome, Italy
| | - Jenna Hynes
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | - Laura Gemmell
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Carlo Alviggi
- Department of Public Health, Federico II University, Naples, Italy
| | | | | |
Collapse
|
16
|
Gardner DK, Sakkas D. Making and selecting the best embryo in the laboratory. Fertil Steril 2023; 120:457-466. [PMID: 36521518 DOI: 10.1016/j.fertnstert.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022]
Abstract
Over the past 4 decades our ability to maintain a viable human embryo in vitro has improved dramatically, leading to higher implantation rates. This has led to a notable shift to single blastocyst transfer and the ensuing elimination of high order multiple gestations. Future improvements to embryo culture systems will not only come from new improved innovative media formulations (such as the inclusion of antioxidants), but plausibly by moving away from static culture to more dynamic perfusion-based systems now made a reality owing to the breakthroughs in three-dimensional printing technology and micro fabrication. Such an approach has already made it feasible to create high resolution devices for intracytoplasmic sperm injection, culture, and cryopreservation, paving the way not only for improvements in outcomes but also automation of assisted reproductive technology. Although improvements in culture systems can lead to further increases in pregnancy outcomes, the ability to quantitate biomarkers of embryo health and viability will reduce time to pregnancy and decrease pregnancy loss. Currently artificial intelligence is being used to assess embryo development through image analysis, but we predict its power will be realized through the creation of selection algorithms based on the integration of information related to metabolic functions, cell-free DNA, and morphokinetics, thereby using vast amounts of different data types obtained for each embryo to predict outcomes. All of this will not only make assisted reproductive technology more effective, but it will also make it more cost effective, thereby increasing patient access to infertility treatment worldwide.
Collapse
Affiliation(s)
- David K Gardner
- Melbourne IVF, East Melbourne, Victoria, Australia; School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia.
| | | |
Collapse
|
17
|
Meng H, Huang S, Diao F, Gao C, Zhang J, Kong L, Gao Y, Jiang C, Qin L, Chen Y, Xu M, Gao L, Liang B, Hu Y. Rapid and non-invasive diagnostic techniques for embryonic developmental potential: a metabolomic analysis based on Raman spectroscopy to identify the pregnancy outcomes of IVF-ET. Front Cell Dev Biol 2023; 11:1164757. [PMID: 37427383 PMCID: PMC10326628 DOI: 10.3389/fcell.2023.1164757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The non-invasive and rapid assessment of the developmental potential of embryos is of great clinical importance in assisted reproductive technology (ART). In this retrospective study, we analyzed the metabolomics of 107 samples provided by volunteers and utilized Raman spectroscopy to detect the substance composition in the discarded culture medium of 53 embryos resulting in successful pregnancies and 54 embryos that did not result in pregnancy after implantation. The culture medium from D3 cleavage-stage embryos was collected after transplantation and a total of 535 (107 × 5) original Raman spectra were obtained. By combining several machine learning methods, we predicted the developmental potential of embryos, and the principal component analysis-convolutional neural network (PCA-CNN) model achieved an accuracy rate of 71.5%. Furthermore, the chemometric algorithm was used to analyze seven amino acid metabolites in the culture medium, and the data showed significant differences in tyrosine, tryptophan, and serine between the pregnancy and non-pregnancy groups. The results suggest that Raman spectroscopy, as a non-invasive and rapid molecular fingerprint detection technology, shows potential for clinical application in assisted reproduction.
Collapse
Affiliation(s)
- Hui Meng
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Shan Huang
- Basecare Medical Device Co., Ltd., Suzhou, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Zhang
- Basecare Medical Device Co., Ltd., Suzhou, China
| | - Lingyin Kong
- Basecare Medical Device Co., Ltd., Suzhou, China
| | - Yan Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Chen
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mengna Xu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqiu Hu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Combining Machine Learning with Metabolomic and Embryologic Data Improves Embryo Implantation Prediction. Reprod Sci 2023; 30:984-994. [PMID: 36097248 PMCID: PMC10014658 DOI: 10.1007/s43032-022-01071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
This study investigated whether combining metabolomic and embryologic data with machine learning (ML) models improve the prediction of embryo implantation potential. In this prospective cohort study, infertile couples (n=56) undergoing day-5 single blastocyst transfer between February 2019 and August 2021 were included. After day-5 single blastocyst transfer, spent culture medium (SCM) was subjected to metabolite analysis using nuclear magnetic resonance (NMR) spectroscopy. Derived metabolite levels and embryologic parameters between successfully implanted and failed groups were incorporated into ML models to explore their predictive potential regarding embryo implantation. The SCM of blastocysts that resulted in successful embryo implantation had significantly lower pyruvate (p<0.05) and threonine (p<0.05) levels compared to medium control but not compared to SCM related to embryos that failed to implant. Notably, the prediction accuracy increased when classical ML algorithms were combined with metabolomic and embryologic data. Specifically, the custom artificial neural network (ANN) model with regularized parameters for metabolomic data provided 100% accuracy, indicating the efficiency in predicting implantation potential. Hence, combining ML models (specifically, custom ANN) with metabolomic and embryologic data improves the prediction of embryo implantation potential. The approach could potentially be used to derive clinical benefits for patients in real-time.
Collapse
|
19
|
Shi H, Pan M, Jia E, Lu W, Zhou Y, Sheng Y, Zhao X, Cai L, Ge Q. A comprehensive characterization of cell-free RNA in spent blastocyst medium and quality prediction for blastocyst. Clin Sci (Lond) 2023; 137:129-0. [PMID: 36597876 DOI: 10.1042/cs20220495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
The rate of pregnancy can be affected by many factors in assisted reproductive technology (ART), and one of which is the quality of embryos. Therefore, selecting the embryos with high potential is crucial for the outcome. Fifteen spent blastocyst medium (SBM) samples were collected from 14 patients who received in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI), seven from high-grade embryos and eight from low-grade embryos. Cell-free RNA (cf-RNA) profile of SBM samples were analyzed by RNA sequencing in the present study. It was found that a large amount of cf-RNA were released into SBM, including protein-coding genes (68.9%) and long noncoding RNAs (lncRNAs) (17.26%). Furthermore, a high correlation was observed between blastocyst genes and SBM genes. And the cf-mRNAs of SBM were highly fragmented, and coding sequence (CDS) and untranslated (UTR) regions were released equally. Two hundred and thirty-two differentially expressed genes were identified in high-grade SBM (hSBM) and low-grade SBM (lSBM), which could be potential biomarker in distinguishing the embryos with different quality as an alternative or supplementary approach for subjective morphology criteria. Hence, cf-RNAs sequencing revealed the characterization of circulating transcriptomes of embryos with different quality. Based on the results, the genes related to blastocyst quality were screened, including the genes closely related to translation, immune-signaling pathway, and amino acid metabolism. Overall, the present study showed the types of SBM cf-RNAs, and the integrated analysis of cf-RNAs profiling with morphology grading displayed its potential in predicting blastocyst quality. The present study provided valuable scientific basis for noninvasive embryo selection in ART by RNA-profiling analysis.
Collapse
Affiliation(s)
- Huajuan Shi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Min Pan
- School of Medicine, Southeast University, Nanjing 210097, China
| | - Erteng Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Wenxiang Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Yuqi Sheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Lingbo Cai
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
20
|
Pallisco R, Lazzarino G, Bilotta G, Marroni F, Mangione R, Saab MW, Brundo MV, Pittalà A, Caruso G, Capoccia E, Lazzarino G, Tavazzi B, Bilotta P, Amorini AM. Metabolic Signature of Energy Metabolism Alterations and Excess Nitric Oxide Production in Culture Media Correlate with Low Human Embryo Quality and Unsuccessful Pregnancy. Int J Mol Sci 2023; 24:ijms24010890. [PMID: 36614333 PMCID: PMC9821643 DOI: 10.3390/ijms24010890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Notwithstanding the great improvement of ART, the overall rate of successful pregnancies from implanted human embryos is definitely low. The current routine embryo quality assessment is performed only through morphological criteria, which has poor predictive capacity since only a minor percentage of those in the highest class give rise to successful pregnancy. Previous studies highlighted the potentiality of the analysis of metabolites in human embryo culture media, useful for the selection of embryos for implantation. In the present study, we analyzed in blind 66 human embryo culture media at 5 days after in vitro fertilization with the aim of quantifying compounds released by cell metabolism that were not present as normal constituents of the human embryo growth media, including purines, pyrimidines, nitrite, and nitrate. Only some purines were detectable (hypoxanthine and uric acid) in the majority of samples, while nitrite and nitrate were always detectable. When matching biochemical results with morphological evaluation, it was found that low grade embryos (n = 12) had significantly higher levels of all the compounds of interest. Moreover, when matching biochemical results according to successful (n = 17) or unsuccessful (n = 25) pregnancy, it was found that human embryos from the latter group released higher concentrations of hypoxanthine, uric acid, nitrite, and nitrate in the culture media. Additionally, those embryos that developed into successful pregnancies were all associated with the birth of healthy newborns. These results, although carried out on a relatively low number of samples, indicate that the analysis of the aforementioned compounds in the culture media of human embryos is a potentially useful tool for the selection of embryos for implantation, possibly leading to an increase in the overall rate of ART.
Collapse
Affiliation(s)
- Romina Pallisco
- Alma Res Fertility Center, Laboratory of Andrology and Embriology, Via Parenzo 12, 00198 Rome, Italy
| | - Giacomo Lazzarino
- Departmental Faculty of Medicine and Surgery, UniCamillus—Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Gabriele Bilotta
- Departmental Faculty of Medicine and Surgery, UniCamillus—Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Francesca Marroni
- Departmental Faculty of Medicine and Surgery, UniCamillus—Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Renata Mangione
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Maria Violetta Brundo
- Department of Biology, Geology and Environmental Sciences, Section of Animal Biology, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Alessandra Pittalà
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Elena Capoccia
- Departmental Faculty of Medicine and Surgery, UniCamillus—Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
- LTA-Biotech srl, Viale Don Orione 3D, 95047 Paternò, Italy
- Correspondence:
| | - Barbara Tavazzi
- Alma Res Fertility Center, Laboratory of Andrology and Embriology, Via Parenzo 12, 00198 Rome, Italy
| | - Pasquale Bilotta
- Alma Res Fertility Center, Obstetrics and Gynecology, Via Parenzo 12, 00198 Rome, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|
21
|
Whatley EG, Truong TT, Harvey AJ, Gardner DK. Acetoacetate and β-hydroxybutyrate reduce mouse embryo viability via differential metabolic and epigenetic mechanisms. Reprod Biomed Online 2023; 46:20-33. [PMID: 36283935 DOI: 10.1016/j.rbmo.2022.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
RESEARCH QUESTION Does the ketone acetoacetate (AcAc) alone, or combined with β-hydroxybutyrate (βOHB), impact mouse embryo development, metabolism, histone acetylation and viability? DESIGN Pronucleate mouse oocytes were cultured in vitro in G1/G2 media supplemented with ketones (AcAc or AcAc + βOHB) at concentrations representing those in maternal serum during pregnancy (0.04 mmol/l AcAc, 0.1 mmol/l βOHB), standard diet consumption (0.1 mmol/l AcAc, 0.25 mmol/l βOHB), ketogenic diet consumption (0.8 mmol/l AcAc, 2 mmol/l βOHB) and diabetic ketoacidosis (2 mmol/l AcAc, 4 mmol/l βOHB). Day 5 blastocysts were assessed for cell allocation, glucose metabolism and histone acetylation. Day 4 blastocysts exposed to 0.8 mmol/l AcAc + 2 mmol/l βOHB were transferred to standard-fed recipient females, and E14.5 fetal and placental development assessed. RESULTS Exposure to 2 mmol/l AcAc or 0.8 mmol/l AcAc + 2 mmol/l βOHB did not impair blastocyst development, but significantly increased glucose consumption (P = 0.001 each), lowered glycolytic flux (P = 0.01, P < 0.001) and elevated trophectoderm (TE) histone 3 lysine 27 acetylation (H3K27ac; P < 0.001 each) compared with unexposed controls. Preimplantation AcAc + βOHB exposure reduced post-implantation fetal development by 25% (P = 0.037), and delayed female-specific fetal limb development (P = 0.019) and estimated fetal age (P = 0.019) compared with controls. CONCLUSION Preimplantation exposure to ketones affects underlying metabolism and histone acetylation in blastocysts that are associated with persistent, female-specific perturbations in fetal development. A periconceptional diet that elevates ketone concentrations may impair human embryonic viability.
Collapse
Affiliation(s)
- Emma G Whatley
- School of BioSciences, University of Melbourne, Parkville Victoria, Australia
| | - Thi T Truong
- School of BioSciences, University of Melbourne, Parkville Victoria, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville Victoria, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville Victoria, Australia.
| |
Collapse
|
22
|
Milazzotto MP, Ispada J, de Lima CB. Metabolism-epigenetic interactions on in vitro produced embryos. Reprod Fertil Dev 2022; 35:84-97. [PMID: 36592974 DOI: 10.1071/rd22203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metabolism and epigenetics, which reciprocally regulate each other in different cell types, are fundamental aspects of cellular adaptation to the environment. Evidence in cancer and stem cells has shown that the metabolic status modifies the epigenome while epigenetic mechanisms regulate the expression of genes involved in metabolic processes, thereby altering the metabolome. This crosstalk occurs as many metabolites serve as substrates or cofactors of chromatin-modifying enzymes. If we consider the intense metabolic dynamic and the epigenetic remodelling of the embryo, the comprehension of these regulatory networks will be important not only for understanding early embryonic development, but also to determine in vitro culture conditions that support embryo development and may insert positive regulatory marks that may persist until adult life. In this review, we focus on how metabolism may affect epigenetic reprogramming of the early stages of development, in particular acetylation and methylation of histone and DNA. We also present other metabolic modifications in bovine embryos, such as lactylation, highlighting the promising epigenetic and metabolic targets to improve conditions for in vitro embryo development.
Collapse
Affiliation(s)
- Marcella Pecora Milazzotto
- Laboratory of Embryo Metabolism and Epigenomic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil
| | - Jessica Ispada
- Laboratory of Embryo Metabolism and Epigenomic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil
| | - Camila Bruna de Lima
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
23
|
García-Sancha N, Corchado-Cobos R, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Blanco-Gómez A, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Mendiburu-Eliçabe M, Pérez-Losada J. Evolutionary Origins of Metabolic Reprogramming in Cancer. Int J Mol Sci 2022; 23:12063. [PMID: 36292921 PMCID: PMC9603151 DOI: 10.3390/ijms232012063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. These changes are not specific to tumors but also take place during the physiological growth of tissues. Indeed, the cellular and tissue mechanisms present in the tumor have their physiological counterpart in the repair of tissue lesions and wound healing. These molecular mechanisms have been acquired during metazoan evolution, first to eliminate the infection of the tissue injury, then to enter an effective regenerative phase. Cancer itself could be considered a phenomenon of antagonistic pleiotropy of the genes involved in effective tissue repair. Cancer and tissue repair are complex traits that share many intermediate phenotypes at the molecular, cellular, and tissue levels, and all of these are integrated within a Systems Biology structure. Complex traits are influenced by a multitude of common genes, each with a weak effect. This polygenic component of complex traits is mainly unknown and so makes up part of the missing heritability. Here, we try to integrate these different perspectives from the point of view of the metabolic changes observed in cancer.
Collapse
Affiliation(s)
- Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Adrián Blanco-Gómez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
24
|
Jijo A, Cheredath A, Uppangala S, Lakshmi R. V, Joseph D, Meitei HY, Asampille G, Kumar P, Gowda G. A. N, Kalthur G, Kovacic B, Adiga SK. ICSI in non-male factor infertility patients does not alter metabolomic signature in sibling embryos as evidenced by sensitivity enhanced nuclear magnetic resonance (NMR) spectroscopy. PLoS One 2022; 17:e0273321. [PMID: 36149910 PMCID: PMC9506644 DOI: 10.1371/journal.pone.0273321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 08/06/2022] [Indexed: 11/19/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) was developed to overcome male factor infertility, however, there recently has been an increasing trend in ICSI usage irrespective of the etiology, demonstrating an overuse of this insemination technique. There is a limited knowledge on the behaviour of ICSI derived embryos in non-male factor infertility patients. Metabolomic assessment of preimplantation embryos in conjunction with morphological evaluation can provide better understanding of embryonic behaviour. Hence, this study was undertaken to explore if there are any metabolomic differences between IVF and ICSI derived sibling day-5 blastocysts from non-male factor infertility patients. This prospective study included nineteen couples with non-male factor infertility undergoing Assisted Reproductive Technology. The sibling oocytes retrieved from each patient were randomly assigned to two groups and inseminated either by IVF or ICSI. Spent culture media (SCM) in which embryos were cultured up to day 5 were collected and investigated using sensitivity enhanced NMR based metabolite profiling utilizing high resolution (800 MHz) NMR equipped with cryogenically cooled micro-coil (1.7 mm) probe. The metabolomic signature between IVF and ICSI derived sibling blastocysts was assessed. A significant reduction in the concentrations of pyruvate, citrate, glucose and lysine were observed in both IVF and ICSI sibling embryos compared to medium control (P< 0.05-0.001). Further, histidine and valine level was found lower in ICSI embryos compared to medium control (P<0.05) during 96 hours of in vitro culture. Notably, between IVF and ICSI SCM, no significant difference in the concentration of the metabolites was found. Our results suggest that ICSI in non-male factor does not alter the SCM metabolomic signature during 96 hours of embryonic development.
Collapse
Affiliation(s)
- Ameya Jijo
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Aswathi Cheredath
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Shubhashree Uppangala
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Vani Lakshmi R.
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - David Joseph
- NMR Research Centre, Indian Institute of Science, Bangalore, India
| | - Huidrom Yaiphaba Meitei
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Gitanjali Asampille
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Pratap Kumar
- Department of Reproductive Medicine and Surgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Nagana Gowda G. A.
- Northwest Metabolomics Research Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States of America
| | - Guruprasad Kalthur
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Borut Kovacic
- Department of Reproductive Medicine, University Medical Centre Maribor, Maribor, Slovenia
| | - Satish Kumar Adiga
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
25
|
Taha MM, Rizk MS, Zayed MA, Abdel-Haleem FM, Barhoum A. Non-Enzymatic Phenylboronic Acid-Based Optode Membrane for Glucose Monitoring in Serums of Diabetic Patients and in the Culture Medium of Human Embryos. SENSORS (BASEL, SWITZERLAND) 2022; 22:7135. [PMID: 36236234 PMCID: PMC9571803 DOI: 10.3390/s22197135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Monitoring glucose levels is important not only for diabetics, but also for tracking embryonic development in human embryo culture media. In this study, an optochemical sensor (glucose-selective polymer membrane) was fabricated for the determination of glucose in serum from diabetic patients and the culture media of human embryos. The optode membranes were formulated using polyvinyl chloride (PVC) as the polymer matrix and 4',5'-dibromofluorescein octadecyl ester (ETH 7075) as the chromoionophore. The sensitivity of the optode membranes was optimized using two different plasticizers (tricresyl phosphate-TCP and nitrophenyloctyl ether-NOPE) and three ionophores (nitrophenylboronic acid-NPBA, trifluorophenyboronic acid-TFPBA, 4'-nitrobenzo-15-crown-5) and tested for glucose detection. The best optode membrane was formulated from 49.5% PVC, 49.5% TCP, 1% NPBA, and 1% ETH 7075. It showed a linear dynamic range of 10-3 M to 10-1 M, with a detection limit of 9 × 10-4 M and a response time of 2 min. The detection mechanism involves H-bonding between NPBA and glucose, which was confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR). The reaction also involves the formation of boronate esters in basic media with deprotonation of the chromoionophore (ETH 7075), leading to a decrease in UV-Vis absorbance at λmax = 530 nm. The membrane optode was used for glucose determination in synthetic culture medium, commercial embryo culture medium (GLOBAL® TOTAL® W/HEPES), and serum from normal and diabetic patients, showing good accuracy and precision of the optode.
Collapse
Affiliation(s)
- Mohamed M. Taha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Adam International Hospital, Aden Street Mohandesein Anas Ibn Malek, Giza 12411, Egypt
| | - Mahmoud S. Rizk
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed A. Zayed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatehy M. Abdel-Haleem
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Center for Hazards Mitigation, Environmental Studies and Research (CHMESR), Cairo University, Giza 11795, Egypt
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland
| |
Collapse
|
26
|
Chen Z, Sandoval K, Dean M. Endometrial glycogen metabolism during early pregnancy in mice. Mol Reprod Dev 2022; 89:431-440. [PMID: 35842832 PMCID: PMC9796177 DOI: 10.1002/mrd.23634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023]
Abstract
Glucose is critical during early pregnancy. The uterus can store glucose as glycogen but uterine glycogen metabolism is poorly understood. This study analyzed glycogen storage and localization of glycogen metabolizing enzymes from proestrus until implantation in the murine uterus. Quantification of diastase-labile periodic acid-Schiff (PAS) staining showed glycogen in the glandular epithelium decreased 71.4% at 1.5 days postcoitum (DPC) and 62.13% at DPC 3.5 compared to proestrus. In the luminal epithelium, glycogen was the highest at proestrus, decreased 46.2% at DPC 1.5 and 63.2% at DPC 3.5. Immunostaining showed that before implantation, glycogen metabolizing enzymes were primarily localized to the glandular and luminal epithelium. Stromal glycogen was low from proestrus to DPC 3.5. However, at the DPC 5.5 implantation sites, stromal glycogen levels increased sevenfold. Similarly, artificial decidualization resulted in a fivefold increase in glycogen levels. In both models, decidualization increased expression of glycogen synthase as determine by immunohistochemistry and western blot. In conclusion, glycogen levels decreased in the uterine epithelium before implantation, indicating that it could be used to support preimplantation embryos. Decidualization resulted in a dramatic increase in stromal glycogen levels, suggesting it may have an important, but yet undefined, role in pregnancy.
Collapse
Affiliation(s)
- Ziting Chen
- Department of Animal ScienceUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Kassandra Sandoval
- Department of Animal ScienceUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Matthew Dean
- Department of Animal ScienceUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
27
|
van Duijn L, Rousian M, Kramer CS, van Marion ES, Willemsen SP, Speksnijder JP, Laven JSE, Steegers-Theunissen RPM, Baart EB. The Impact of Culture Medium on Morphokinetics of Cleavage Stage Embryos: An Observational Study. Reprod Sci 2022; 29:2179-2189. [PMID: 35534767 PMCID: PMC9352745 DOI: 10.1007/s43032-022-00962-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
Abstract
To study the impact of culture media on preimplantation morphokinetics used for predicting clinical outcomes. All IVF and ICSI cycles performed between 2012 and 2017 with time-lapse information available were included. In November 2014, culture medium was changed from Vitrolife G-1 PLUS to SAGE 1-Step. Each embryo was retrospectively assigned a morphokinetic-based KIDScore for prediction of implantation. Clinical outcomes were retrieved from medical records. Linear mixed models were used to study differences in morphokinetic parameters, a proportional odds model for KIDScore ranking and logistic regression for differences in clinical outcomes. All analyses were adjusted for patient and treatment characteristics. In 253 (63.1%) cycles, embryos (n = 671) were cultured in Vitrolife, and in 148 (36.9%) cycles, embryos (n = 517) were cultured in SAGE. All cleavage divisions occurred earlier for SAGE embryos than for Vitrolife embryos (2-cell: -2.28 (95%CI: -3.66, -0.89), 3-cell: -2.34 (95%CI: -4.00, -0.64), 4-cell: -2.41 (95%CI: -4.11, -0.71), 5-cell: -2.54 (95%CI: -4.90, -0.18), 6-cell: -3.58 (95%CI: -6.08, -1.08), 7-cell: -5.62 (95%CI: -8.80, -2.45) and 8-cell: -5.32 (95%CI: -9.21, -1.42) hours, respectively). Significantly more embryos cultured in SAGE classified for the highest KIDScore compared to embryos cultured in Vitrolife (p < 0.001). No differences were observed in clinical outcomes. Our results demonstrate an impact of culture medium on preimplantation embryo developmental kinetics, which affects classification within the KIDScore algorithm, while pregnancy outcomes were comparable between the groups. This study underscores the need to include the type of culture medium in the development of morphokinetic-based embryo selection tools.
Collapse
Affiliation(s)
- Linette van Duijn
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Melek Rousian
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Charlotte S Kramer
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Eva S van Marion
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeroen P Speksnijder
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | | | - Esther B Baart
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands. .,Department of Developmental Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Carrasco B, Pons MC, Parriego M, Boada M, García S, Polyzos NP, Veiga A. Male and female blastocyst: any difference other than the sex? Reprod Biomed Online 2022; 45:851-857. [DOI: 10.1016/j.rbmo.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
|
29
|
Venturas M, Shah JS, Yang X, Sanchez TH, Conway W, Sakkas D, Needleman DJ. Metabolic state of human blastocysts measured by fluorescence lifetime imaging microscopy. Hum Reprod 2022; 37:411-427. [PMID: 34999823 DOI: 10.1093/humrep/deab283] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/27/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Can non-invasive metabolic imaging via fluorescence lifetime imaging microscopy (FLIM) detect variations in metabolic profiles between discarded human blastocysts? SUMMARY ANSWER FLIM revealed extensive variations in the metabolic state of discarded human blastocysts associated with blastocyst development over 36 h, the day after fertilization and blastocyst developmental stage, as well as metabolic heterogeneity within individual blastocysts. WHAT IS KNOWN ALREADY Mammalian embryos undergo large changes in metabolism over the course of preimplantation development. Embryo metabolism has long been linked to embryo viability, suggesting its potential utility in ART to aid in selecting high quality embryos. However, the metabolism of human embryos remains poorly characterized due to a lack of non-invasive methods to measure their metabolic state. STUDY DESIGN, SIZE, DURATION We conducted a prospective observational study. We used 215 morphologically normal human embryos from 137 patients that were discarded and donated for research under an approved institutional review board protocol. These embryos were imaged using metabolic imaging via FLIM to measure the autofluorescence of two central coenzymes, nicotinamide adenine (phosphate) dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD+), which are essential for cellular respiration and glycolysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Here, we used non-invasive FLIM to measure the metabolic state of human blastocysts. We first studied spatial patterns in the metabolic state within human blastocysts and the association of the metabolic state of the whole blastocysts with stage of expansion, day of development since fertilization and morphology. We explored the sensitivity of this technique in detecting metabolic variations between blastocysts from the same patient and between patients. Next, we explored whether FLIM can quantitatively measure metabolic changes through human blastocyst expansion and hatching via time-lapse imaging. For all test conditions, the level of significance was set at P < 0.05 after correction for multiple comparisons using Benjamini-Hochberg's false discovery rate. MAIN RESULTS AND THE ROLE OF CHANCE We found that FLIM is sensitive enough to detect significant metabolic differences between blastocysts. We found that metabolic variations between blastocyst are partially explained by both the time since fertilization and their developmental expansion stage (P < 0.05), but not their morphological grade. Substantial metabolic variations between blastocysts from the same patients remain, even after controlling for these factors. We also observe significant metabolic heterogeneity within individual blastocysts, including between the inner cell mass and the trophectoderm, and between the portions of hatching blastocysts within and without the zona pellucida (P < 0.05). And finally, we observed that the metabolic state of human blastocysts continuously varies over time. LIMITATIONS, REASONS FOR CAUTION Although we observed significant variations in metabolic parameters, our data are taken from human blastocysts that were discarded and donated for research and we do not know their clinical outcome. Moreover, the embryos used in this study are a mixture of aneuploid, euploid and embryos of unknown ploidy. WIDER IMPLICATIONS OF THE FINDINGS This work reveals novel aspects of the metabolism of human blastocysts and suggests that FLIM is a promising approach to assess embryo viability through non-invasive, quantitative measurements of their metabolism. These results further demonstrate that FLIM can provide biologically relevant information that may be valuable for the assessment of embryo quality. STUDY FUNDING/COMPETING INTEREST(S) Supported by the Blavatnik Biomedical Accelerator Grant at Harvard University. Becker and Hickl GmbH and Boston Electronics sponsored research with the loaning of equipment for FLIM. D.J.N. is an inventor on patent US20170039415A1. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Marta Venturas
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Jaimin S Shah
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Boston IVF, Waltham, MA, USA
| | - Xingbo Yang
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - William Conway
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Physics Department, Harvard University, Cambridge, MA, USA
| | | | - Dan J Needleman
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Physics Department, Harvard University, Cambridge, MA, USA.,Center for Computational Biology, Flatiron Institute, New York, NY, USA
| |
Collapse
|
30
|
Pandit S, Sharma R. Non invasive assessment of human oocytes and embryos in assisted reproduction: Review on present practices and future trends. Med J Armed Forces India 2022; 78:7-16. [PMID: 35035038 PMCID: PMC8737104 DOI: 10.1016/j.mjafi.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 01/03/2023] Open
Abstract
Oocyte and embryo grading is one of the most important steps in assisted reproductive technology to identify the best among cultured embryos for transfer or vitrification. The most commonly used non-invasive method is morphological assessment of gametes and embryos using a microscope. This method despite being simple and cost-effective has interobserver and intraobserver variability and subjectivity and has little to offer about the physiological state of embryos. This review sourced research articles and reviews pertaining to other non-invasive assessment methodologies from Medline and PubMed to collate latest technologies in vogue and identify novel methodologies of the future. The review assesses the current understanding in oocyte and embryo grading and touches upon novel non-invasive techniques and potential biomarkers to identify the best embryo. The latest available literature on time-lapse imaging, hierarchical algorithms, omics (consisting of proteomics and secretomes), miRNAs, mitochondrial RNAs and artificial intelligence has been accessed to summarize the enormous information available, to identify gaps in current interpretations, to identify emerging technologies and to provide direction for future research. This review will greatly benefit anyone practicing assisted reproduction and clinical embryology.
Collapse
Affiliation(s)
- Subhendu Pandit
- Professor (Anatomy) & Clinical Embryologist, Army Hospital (R&R), Delhi Cantt, India,Corresponding author.
| | - Rajesh Sharma
- Classified Specialist (Obst & Gynae) & ART Specialist, ART Centre, Army Hospital (R&R), Delhi Cantt, India
| |
Collapse
|
31
|
|
32
|
Skrutková Langmajerová M, Pelcová M, Vedrová P, Celá A, Glatz Z. Capillary electrophoresis-mass spectrometry as a tool for the noninvasive target metabolomic analysis of underivatized amino acids for evaluating embryo viability in assisted reproduction. Electrophoresis 2021; 43:679-687. [PMID: 34897743 DOI: 10.1002/elps.202100328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022]
Abstract
Monitoring metabolite uptake and excretion in the culture medium is a noninvasive technique that is used for the metabolic study of cleaving embryos after in vitro fertilization. Low sample consumption, the versatility of the detection, and optimal sensitivity and selectivity are essential elements for extracellular metabolome analyses, and can be conveniently achieved by combining CE with mass spectrometric detection. This paper reports a method for amino acid determination in a limited volume sample (8 μL) of spent culture media collected after the cultivation of in vitro fertilized embryos. Special attention was focused on the sample preparation procedure. The sample was processed with acetonitrile, which facilitates online sample preconcentration via field-amplified sample stacking, and undesired sample evaporation was significantly reduced by the simultaneous addition of dimethyl sulfoxide. Key parameters that affected electrophoretic separation and mass spectrometric detection were investigated, including the type of buffers and organic solvent, optimization of their concentrations, and finally the settings for their ionization. The separation and quantification of 19 amino acids were achieved using 15% acetic acid as the background electrolyte with a sheath liquid consisting of an equimolar mixture of methanol and water. The applicability of the optimized system was demonstrated by determining the amino acid profile in 40 samples of spent cultivation medium in this pilot study. This developed method also has great potential for amino acid analyses in minute sample volumes of other biological matrices.
Collapse
Affiliation(s)
| | - Marta Pelcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavla Vedrová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Andrea Celá
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
33
|
Huang X, Hong L, Wu Y, Chen M, Kong P, Ruan J, Teng X, Wei Z. Raman Spectrum of Follicular Fluid: A Potential Biomarker for Oocyte Developmental Competence in Polycystic Ovary Syndrome. Front Cell Dev Biol 2021; 9:777224. [PMID: 34858993 PMCID: PMC8632455 DOI: 10.3389/fcell.2021.777224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in reproductive women where abnormal folliculogenesis is considered as a common characteristic. Our aim is to evaluate the potential of follicular fluid (FF) Raman spectra to predict embryo development and pregnancy outcome, so as to prioritize the best promising embryo for implantation, reducing both physiological and economical burdens of PCOS patients. In addition, the altered metabolic profiles will be identified to explore the aetiology and pathobiology of PCOS. In this study, follicular fluid samples obtained from 150 PCOS and 150 non-PCOS women were measured with Raman spectroscopy. Individual Raman spectrum was analyzed to find biologic components contributing to the occurrence of PCOS. More importantly, the Raman spectra of follicular fluid from the 150 PCOS patients were analyzed via machine-learning algorithms to evaluate their predictive value for oocyte development potential and clinical pregnancy. Mean-centered Raman spectra and principal component analysis (PCA) showed global differences in the footprints of follicular fluid between PCOS and non-PCOS women. Two Raman zones (993-1,165 cm-1 and 1,439-1,678 cm-1) were identified for describing the largest variances between the two groups, with the former higher and the latter lower in PCOS FF. The tentative assignments of corresponding Raman bands included phenylalanine and β -carotene. Moreover, it was found that FF, in which oocytes would develop into high-quality blastocysts and obtain high clinical pregnancy rate, were detected with lower quantification of the integration at 993-1,165 cm-1 and higher quantification of the integration at 1,439-1,678 cm-1 in PCOS. In addition, based on Raman spectra of PCOS FF, the machine-learning algorithms via the fully connected artificial neural network (ANN) achieved the overall accuracies of 90 and 74% in correctly assigning oocyte developmental potential and clinical pregnancy, respectively. The study suggests that the PCOS displays unique metabolic profiles in follicular fluid which could be detected by Raman spectroscopy. Specific bands in Raman spectra have the biomarker potential to predict the embryo development and pregnancy outcome for PCOS patients. Importantly, these data may provide some valuable biochemical information and metabolic signatures that will help us to understand the abnormal follicular development in PCOS.
Collapse
Affiliation(s)
- Xin Huang
- Department of Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Hong
- Department of Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Wu
- Department of Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Miaoxin Chen
- Department of Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pengcheng Kong
- Department of Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingling Ruan
- Department of Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoming Teng
- Department of Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyun Wei
- Department of Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
34
|
Lee YSL, Gardner DK. Early cleaving embryos result in blastocysts with increased aspartate and glucose consumption, which exhibit different metabolic gene expression that persists in placental and fetal tissues. J Assist Reprod Genet 2021; 38:3099-3111. [PMID: 34705191 DOI: 10.1007/s10815-021-02341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/07/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Using time-lapse microscopy, previous research has shown that IVF mouse embryos that cleave earlier at the first division ('fast') develop into blastocysts with increased glucose consumption and lower likelihood of post-implantation loss as compared to slower cleaving embryos ('slow'). Further, metabolomics analysis employing LC-MS conducted on groups of 'fast' blastocysts revealed that more aspartate was consumed. With the worldwide adoption of single blastocyst transfer as the standard of care, the need for quantifiable biomarkers of viability, such as metabolism of specific nutrients, would greatly assist in embryo selection for transfer. METHODS Here we describe the development of a targeted enzymatic assay to quantitate aspartate uptake of single blastocysts. RESULTS Results demonstrate that the rates of aspartate and glucose consumption were significantly higher in individual 'fast' blastocysts. Blastocysts, together with placental and fetal liver tissue collected following transfer, were analysed for the expression of genes involved in aspartate and carbohydrate metabolism. In 'fast' blastocysts, expressions of B3gnt5, Slc2a1, Slc2a3, Got1 and Pkm2 were found to be significantly higher. In placental tissue derived from 'fast' blastocysts, expression of Slc2a1, Got1 and Pkm2 were significantly higher, while levels of Got1 and Pkm2 were lower in fetal liver tissue compared to tissue from 'slow' blastocysts. CONCLUSIONS Importantly, this study shows that genes regulating aspartate and glucose metabolism were increased in blastocysts that have higher viability, with differences maintained in resultant placentae and fetuses. Consequently, the analysis of aspartate uptake in combination with glucose represents biomarkers of development and may improve embryo selection efficacy and pregnancy rates.
Collapse
Affiliation(s)
- Y S L Lee
- Melbourne IVF, East Melbourne, Victoria, Australia
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - D K Gardner
- Melbourne IVF, East Melbourne, Victoria, Australia.
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
35
|
Molecular Drivers of Developmental Arrest in the Human Preimplantation Embryo: A Systematic Review and Critical Analysis Leading to Mapping Future Research. Int J Mol Sci 2021; 22:ijms22158353. [PMID: 34361119 PMCID: PMC8347543 DOI: 10.3390/ijms22158353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Developmental arrest of the preimplantation embryo is a multifactorial condition, characterized by lack of cellular division for at least 24 hours, hindering the in vitro fertilization cycle outcome. This systematic review aims to present the molecular drivers of developmental arrest, focusing on embryonic and parental factors. A systematic search in PubMed/Medline, Embase and Cochrane-Central-Database was performed in January 2021. A total of 76 studies were included. The identified embryonic factors associated with arrest included gene variations, mitochondrial DNA copy number, methylation patterns, chromosomal abnormalities, metabolic profile and morphological features. Parental factors included, gene variation, protein expression levels and infertility etiology. A valuable conclusion emerging through critical analysis indicated that genetic origins of developmental arrest analyzed from the perspective of parental infertility etiology and the embryo itself, share common ground. This is a unique and long-overdue contribution to literature that for the first time presents an all-inclusive methodological report on the molecular drivers leading to preimplantation embryos’ arrested development. The variety and heterogeneity of developmental arrest drivers, along with their inevitable intertwining relationships does not allow for prioritization on the factors playing a more definitive role in arrested development. This systematic review provides the basis for further research in the field.
Collapse
|
36
|
Moutos CP, Kearns WG, Farmer SE, Richards JP, Saad AF, Crochet JR. Embryo quality, ploidy, and transfer outcomes in male versus female blastocysts. J Assist Reprod Genet 2021; 38:2363-2370. [PMID: 34086149 DOI: 10.1007/s10815-021-02250-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The goal is to determine if variations exist between male and female blastocysts in preimplantation measurements of quality and ploidy and in vitro fertilization elective single-embryo transfer (eSET) outcomes. METHODS A retrospective chart review was conducted from a private fertility center's database of blastocysts undergoing preimplantation genetic testing for aneuploidy, along with details of eSET from this screened cohort. Main outcomes included preimplantation embryo quality and sex-specific eSET outcomes. RESULTS A total of 3708 embryos from 578 women were evaluated, with 45.9% male and 54.1% female. The majority were High grade. No difference existed between embryo sex and overall morphological grade, inner cell mass or trophectoderm grade, or blastocyst transformation day. Female blastocysts had a higher aneuploidy rate than male blastocysts (P < 0.001). Five hundred thirty-nine eSETs from 392 women were evaluated, with High grade embryos more likely to have implantation (P < 0.001), clinical pregnancy (P < 0.001), and ongoing pregnancy (P = 0.018) than Mid or Low grade embryos. Day 5 blastocysts were more likely to have implantation (P = 0.018), clinical pregnancy (P = 0.005), and ongoing pregnancy (P = 0.018) than day 6 blastocysts. Male and female embryos had similar transfer outcomes, although female day 5 blastocysts were more likely to result in clinical pregnancy (P = 0.012), but not ongoing pregnancy, than female day 6 blastocysts. Male eSET outcomes did not differ by blastocyst transformation day. CONCLUSION Male and female embryos have comparable grade and quality; however, female embryos were more likely to be aneuploid. Ongoing pregnancy rates did not differ by embryo sex. Day 5 embryos had more favorable transfer outcomes than day 6 embryos.
Collapse
Affiliation(s)
- Christopher P Moutos
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA.
| | - William G Kearns
- AdvaGenix, 9430 Key West Ave. Suite 130, Rockville, MD, 20850, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Sarah E Farmer
- Center of Reproductive Medicine, 7400 Fannin St. #1180, Houston, TX, 77054, USA
| | - Jon P Richards
- Center of Reproductive Medicine, 7400 Fannin St. #1180, Houston, TX, 77054, USA
| | - Antonio F Saad
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA
| | - John R Crochet
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA
- Center of Reproductive Medicine, 7400 Fannin St. #1180, Houston, TX, 77054, USA
| |
Collapse
|
37
|
Morphology-based selection from available euploid blastocysts induces male-skewed sex proportion in the offspring. J Assist Reprod Genet 2021; 38:2165-2172. [PMID: 34009630 DOI: 10.1007/s10815-021-02235-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE To determine whether blastocyst morphology has an impact on sex proportion at pre-implantation and birth in PGT-A and non-PGT-A cycles. METHODS A total of 1254 biopsied blastocysts from 466 PGT-A cycles were analyzed for sex proportion, day of biopsy, degree of expansion, inner cell mass (ICM), and trophectoderm (TE) morphology. From these, 197 frozen single embryo transfers (SET) were assessed for clinical outcomes and sex proportion of ongoing pregnancies and deliveries. In addition, we evaluated the day of vitrification/embryo transfer, degree of expansion, and TE morphology in a group of 229 births (217 cycles) from frozen or fresh transfers of non-biopsied blastocysts. RESULTS Sex proportion was impacted by day of biopsy and TE morphology, but not by ICM morphology, in PGT-A cycles. Therefore, biopsy on day 5 and TE "A" shifted the sex proportion towards males. Interestingly, we noted that our morphology-based embryo selection for SET of euploid blastocysts has favored the choice for XY embryos, generating a 54.3% XY proportion at transfer and 56.1% XY proportion at ongoing pregnancy/delivery. Our models indicate a weaker association between blastocyst morphology parameters and sex proportion of babies in non-PGT-A cycles. CONCLUSION Blastocyst features associated with a skewed sex proportion towards XY embryos, such as biopsy on day 5 and top quality TE, are also parameters used for selecting euploid embryos for SET. Therefore, our data suggest that morphology-based embryo selection represents a strong factor responsible for a skewed male sex proportion at birth in PGT-A cycles.
Collapse
|
38
|
de Oliveira Fernandes G, Milazzotto MP, Fidelis AAG, Kawamoto TS, de Oliveira Leme L, de Lima CB, Franco MM, Dode MAN. Biochemical markers for pregnancy in the spent culture medium of in vitro produced bovine embryos†. Biol Reprod 2021; 105:481-490. [PMID: 33982057 DOI: 10.1093/biolre/ioab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to identify biomarkers to assess the quality of in vitro produced (IVP) bovine embryos in the culture media. IVP embryos on Day (D) 5 of development were transferred to individual drops, where they were maintained for the last 48 h of culture. Thereafter, the medium was collected and the embryos were transferred to the recipients. After pregnancy diagnosis, the media were grouped into the pregnant and nonpregnant groups. The metabolic profiles of the media were analyzed via electrospray ionization mass spectrometry, and the concentrations of pyruvate, lactate, and glutamate were assessed using fluorimetry. The spectrometric profile revealed that the media from embryos from the pregnant group presented a higher signal intensity compared to that of the nonpregnant group; the ions 156.13 Da [M + H]+, 444.33 Da [M + H]+, and 305.97 Da [M + H]+ were identified as biomarkers. Spent culture medium from expanded blastocysts (Bx) that established pregnancy had a greater concentration of pyruvate (p = 0.0174) and lesser concentration of lactate (p = 0.042) than spent culture medium from Bx that did not establish pregnancy. Moreover, pyruvate in the culture media of Bx can predict pregnancy with 90.9% sensitivity and 75% specificity. In conclusion, we identified markers in the culture media that helped in assessing the most viable IVP embryos with a greater potential to establish pregnancy.
Collapse
Affiliation(s)
- Gabriela de Oliveira Fernandes
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, DF, Brazil.,Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | | | | | - Taynan Stonoga Kawamoto
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Ligiane de Oliveira Leme
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,UFES, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Camila Bruna de Lima
- Center of Natural and Human Sciences, Universidade Federal do ABC, Santo André, São Paulo, Brazil.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle. Département des Sciences Animales, Université Laval, Québec, Canada
| | - Maurício Machaim Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Margot Alves Nunes Dode
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, DF, Brazil.,Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| |
Collapse
|
39
|
Ferrick L, Lee YSL, Gardner DK. Metabolic activity of human blastocysts correlates with their morphokinetics, morphological grade, KIDScore and artificial intelligence ranking. Hum Reprod 2021; 35:2004-2016. [PMID: 32829415 DOI: 10.1093/humrep/deaa181] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/18/2020] [Indexed: 01/15/2023] Open
Abstract
STUDY QUESTION Is there a relationship between blastocyst metabolism and biomarkers of embryo viability? SUMMARY ANSWER Blastocysts with higher developmental potential and a higher probability of resulting in a viable pregnancy consume higher levels of glucose and exhibit distinct amino acid profiles. WHAT IS KNOWN ALREADY Morphological and morphokinetic analyses utilized in embryo selection provide insight into developmental potential, but alone are unable to provide a direct measure of embryo physiology and inherent health. Glucose uptake is a physiological biomarker of viability and amino acid utilization is different between embryos of varying qualities. STUDY DESIGN, SIZE, DURATION Two hundred and nine human preimplantation embryos from 50 patients were cultured in a time-lapse incubator system in both freeze all and fresh transfer cycles. A retrospective analysis of morphokinetics, morphology (Gardner grade), KIDScore, artificial intelligence grade (EmbryoScore), glucose and amino acid metabolism, and clinical pregnancies was conducted. PARTICIPANTS/MATERIALS, SETTING, METHODS ICSI was conducted in all patients, who were aged ≤37 years and previously had no more than two IVF cycles. Embryos were individually cultured in a time-lapse incubator system, and those reaching the blastocyst stage had their morphokinetics annotated and were each assigned a Gardner grade, KIDScore and EmbryoScore. Glucose and amino acid metabolism were measured. Clinical pregnancies were confirmed by the presence of a fetal heartbeat at 6 weeks of gestation. MAIN RESULTS AND THE ROLE OF CHANCE Glucose consumption was at least 40% higher in blastocysts deemed of high developmental potential using either the Gardner grade (P < 0.01, n = 209), KIDScore (P < 0.05, n = 207) or EmbryoScore (P < 0.05, n = 184), compared to less viable blastocysts and in blastocysts that resulted in a clinical pregnancy compared to those that failed to implant (P < 0.05, n = 37). Additionally, duration of cavitation was inversely related to glucose consumption (P < 0.05, n = 200). Total amino acid consumption was significantly higher in blastocysts with an EmbryoScore higher than the cohort median score (P < 0.01, n = 185). Furthermore, the production of amino acids was significantly lower in blastocysts with a high Gardner grade (P < 0.05, n = 209), KIDScore (P < 0.05, n = 207) and EmbryoScore (P < 0.01, n = 184). LIMITATIONS, REASONS FOR CAUTION Samples were collected from patients who had ICSI treatment and from only one clinic. WIDER IMPLICATIONS OF THE FINDINGS These results confirm that metabolites, such as glucose and amino acids, are valid biomarkers of embryo viability and could therefore be used in conjunction with other systems to aid in the selection of a healthy embryo. STUDY FUNDING/COMPETING INTEREST(S) Work was supported by Virtus Health. D.K.G is contracted with Virtus Health. The other authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Laura Ferrick
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - David K Gardner
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia.,Melbourne IVF, East Melbourne, Melbourne, VIC 3002, Australia
| |
Collapse
|
40
|
Desmet KLJ, Marei WFA, Richard C, Sprangers K, Beemster GTS, Meysman P, Laukens K, Declerck K, Vanden Berghe W, Bols PEJ, Hue I, Leroy JLMR. Oocyte maturation under lipotoxic conditions induces carryover transcriptomic and functional alterations during post-hatching development of good-quality blastocysts: novel insights from a bovine embryo-transfer model. Hum Reprod 2021; 35:293-307. [PMID: 32112081 DOI: 10.1093/humrep/dez248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
STUDY QUESTION Does oocyte maturation under lipolytic conditions have detrimental carry-over effects on post-hatching embryo development of good-quality blastocysts after transfer? SUMMARY ANSWER Surviving, morphologically normal blastocysts derived from bovine oocytes that matured under lipotoxic conditions exhibit long-lasting cellular dysfunction at the transcriptomic and metabolic levels, which coincides with retarded post-hatching embryo development. WHAT IS KNOWN ALREADY There is increasing evidence showing that following maturation in pathophysiologically relevant lipotoxic conditions (as in obesity or metabolic syndrome), surviving blastocysts of good (transferable) morphological quality have persistent transcriptomic and epigenetic alteration even when in vitro embryo culture takes place under standard conditions. However, very little is known about subsequent development in the uterus after transfer. STUDY DESIGN, SIZE, DURATION Bovine oocytes were matured in vitro in the presence of pathophysiologically relevant, high non-esterified fatty acid (NEFA) concentrations (HIGH PA), or in basal NEFA concentrations (BASAL) as a physiological control. Eight healthy multiparous non-lactating Holstein cows were used for embryo transfers. Good-quality blastocysts (pools of eight) were transferred per cow, and cows were crossed over for treatments in the next replicate. Embryos were recovered 7 days later and assessed for post-hatching development, phenotypic features and gene expression profile. Blastocysts from solvent-free and NEFA-free maturation (CONTROL) were also tested for comparison. PARTICIPANTS/MATERIALS, SETTING, METHODS Recovered Day 14 embryos were morphologically assessed and dissected into embryonic disk (ED) and extraembryonic tissue (EXT). Samples of EXT were cultured for 24 h to assess cellular metabolic activity (glucose and pyruvate consumption and lactate production) and embryos' ability to signal for maternal recognition of pregnancy (interferon-τ secretion; IFN-τ). ED and EXT samples were subjected to RNA sequencing to evaluate the genome-wide transcriptome patterns. MAIN RESULTS AND THE ROLE OF CHANCE The embryo recovery rate at Day 14 p.i. was not significantly different among treatment groups (P > 0.1). However, higher proportions of HIGH PA embryos were retarded in growth (in spherical stage) compared to the more elongated tubular stage embryos in the BASAL group (P < 0.05). Focusing on the normally developed tubular embryos in both groups, HIGH PA exposure resulted in altered cellular metabolism and altered transcriptome profile particularly in pathways related to redox-regulating mechanisms, apoptosis, cellular growth, interaction and differentiation, energy metabolism and epigenetic mechanisms, compared to BASAL embryos. Maturation under BASAL conditions did not have any significant effects on post-hatching development and cellular functions compared to CONTROL. LARGE-SCALE DATA The datasets of RNA sequencing analysis are available in the NCBI's Gene Expression Omnibus (GEO) repository, series accession number GSE127889 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127889). Datasets of differentially expressed genes and their gene ontology functions are available in the Mendeley datasets at http://dx.doi.org/10.17632/my2z7dvk9j.2. LIMITATIONS, REASONS FOR CAUTION The bovine model was used here to allow non-invasive embryo transfer and post-hatching recovery on Day 14. There are physiological differences in some characteristics of post-hatching embryo development between human and cows, such as embryo elongation and trophoblastic invasion. However, the main carry-over effects of oocyte maturation under lipolytic conditions described here are evident at the cellular level and therefore may also occur during post-hatching development in other species including humans. In addition, post-hatching development was studied here under a healthy uterine environment to focus on carry-over effects originating from the oocyte, whereas additional detrimental effects may be induced by maternal metabolic disorders due to adverse changes in the uterine microenvironment. RNA sequencing results were not verified by qPCR, and no solvent control was included. WIDER IMPLICATIONS OF THE FINDINGS Our observations may increase the awareness of the importance of maternal metabolic stress at the level of the preovulatory oocyte in relation to carry-over effects that may persist in the transferrable embryos. It should further stimulate new research about preventive and protective strategies to optimize maternal metabolic health around conception to maximize embryo viability and thus fertility outcome. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Flemish Research Fund (FWO grant 11L8716N and FWO project 42/FAO10300/6541). The authors declare there are no conflicts of interest.
Collapse
Affiliation(s)
- Karolien L J Desmet
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Waleed F A Marei
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Christophe Richard
- UMR Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Katrien Sprangers
- Integrated Molecular Plant Physiology Research Group (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research Group (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Pieter Meysman
- Biomedical Informatics Research Center Antwerp, Department of Mathematics and Computer Science, University of Antwerp, 2610 Wilrijk, Belgium
| | - Kris Laukens
- Biomedical Informatics Research Center Antwerp, Department of Mathematics and Computer Science, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ken Declerck
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Peter E J Bols
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Isabelle Hue
- UMR Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Jo L M R Leroy
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
41
|
Zmuidinaite R, Sharara FI, Iles RK. Current Advancements in Noninvasive Profiling of the Embryo Culture Media Secretome. Int J Mol Sci 2021; 22:ijms22052513. [PMID: 33802374 PMCID: PMC7959312 DOI: 10.3390/ijms22052513] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
There have been over 8 million babies born through in vitro fertilization (IVF) and this number continues to grow. There is a global trend to perform elective single embryo transfers, avoiding risks associated with multiple pregnancies. It is therefore important to understand where current research of noninvasive testing for embryos stands, and what are the most promising techniques currently used. Furthermore, it is important to identify the potential to translate research and development into clinically applicable methods that ultimately improve live birth and reduce time to pregnancy. The current focus in the field of human reproductive medicine is to develop a more rapid, quantitative, and noninvasive test. Some of the most promising fields of research for noninvasive assays comprise cell-free DNA analysis, microscopy techniques coupled with artificial intelligence (AI) and omics analysis of the spent blastocyst media. High-throughput proteomics and metabolomics technologies are valuable tools for noninvasive embryo analysis. The biggest advantages of such technology are that it can differentiate between the embryos that appear morphologically identical and has the potential to identify the ploidy status noninvasively prior to transfer in a fresh cycle or before vitrification for a later frozen embryo transfer.
Collapse
Affiliation(s)
- Raminta Zmuidinaite
- MAP Sciences Ltd., The iLab, Stannard Way, Priory Business Park, Bedford MK44 3RZ, UK;
| | - Fady I. Sharara
- Virginia Center for Reproductive Medicine, Reston, VA 20190, USA;
| | - Ray K. Iles
- MAP Sciences Ltd., The iLab, Stannard Way, Priory Business Park, Bedford MK44 3RZ, UK;
- NISAD (Lund), Medicon Village, SE-223 81 Lund, Sweden
- Correspondence:
| |
Collapse
|
42
|
Perlman BE, Minis E, Greenberg P, Krishnamoorthy K, Morelli SS, Jindal SK, McGovern PG. Increased male live-birth rates after blastocyst-stage frozen-thawed embryo transfers compared with cleavage-stage frozen-thawed embryo transfers: a SART registry study. F S Rep 2021; 2:161-165. [PMID: 34278348 PMCID: PMC8267381 DOI: 10.1016/j.xfre.2021.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022] Open
Abstract
Objective To investigate whether there is a difference in live-birth gender rates in blastocyst-stage frozen-thawed embryo transfers (FETs) compared with those in cleavage-stage FETs. Design Retrospective cohort study. Setting Academic medical center. Patient(s) All women with recorded live births who underwent FET at either the blastocyst or cleavage stage, reported to the Society for Assisted Reproductive Technology during 2004–2013. Intervention(s) None. Main Outcome Measure(s) The primary outcome was live-birth gender rates. Demographic criteria were also collected. The chi-square analyses were used for bivariate associations, and multiple logistic regression models were used for adjusted associations, with all two-sided P<.05 considered statistically significant. Result(s) A statistically significant increase was noted in the number of live male births after blastocyst-stage FET compared with that after cleavage-stage FET (51.9% vs. 50.5%). After controlling for potential confounders including age (odds ratio [OR], 1.06; 95% confidence interval [CI], 1.03, 1.08), body mass index (OR, 1.08; 95% CI, 1.04, 1.12), and male factor infertility (OR, 1.06; 95% CI, 1.03, 1.08), the increase in male live births after blastocyst-stage FET remained statistically significant. Conclusion(s) In patients undergoing FETs, blastocyst-stage transfers are associated with higher male gender live-birth rates compared with cleavage-stage transfers.
Collapse
Affiliation(s)
- Barry E Perlman
- Obstetrics, Gynecology and Reproductive Health, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Evelyn Minis
- Obstetrics, Gynecology and Reproductive Health, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Patricia Greenberg
- Department of Biostatistics & Epidemiology, Rutgers School of Public Health, New Brunswick School of Public Health, Piscataway, New Jersey
| | - Kavitha Krishnamoorthy
- Obstetrics, Gynecology and Reproductive Health, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Sara S Morelli
- Obstetrics, Gynecology and Reproductive Health, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Sangita K Jindal
- Montefiore's Institute for Reproductive Medicine and Health, Hartsdale, New York
| | - Peter G McGovern
- University Reproductive Associates, Hasbrouck Heights, New Jersey
| |
Collapse
|
43
|
Winship A, Donoghue J, Houston BJ, Martin JH, Lord T, Adwal A, Gonzalez M, Desroziers E, Ahmad G, Richani D, Bromfield EG. Reproductive health research in Australia and New Zealand: highlights from the Annual Meeting of the Society for Reproductive Biology, 2019. Reprod Fertil Dev 2021; 32:637-647. [PMID: 32234188 DOI: 10.1071/rd19449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022] Open
Abstract
The 2019 meeting of the Society for Reproductive Biology (SRB) provided a platform for the dissemination of new knowledge and innovations to improve reproductive health in humans, enhance animal breeding efficiency and understand the effect of the environment on reproductive processes. The effects of environment and lifestyle on fertility and animal behaviour are emerging as the most important modern issues facing reproductive health. Here, we summarise key highlights from recent work on endocrine-disrupting chemicals and diet- and lifestyle-induced metabolic changes and how these factors affect reproduction. This is particularly important to discuss in the context of potential effects on the reproductive potential that may be imparted to future generations of humans and animals. In addition to key summaries of new work in the male and female reproductive tract and on the health of the placenta, for the first time the SRB meeting included a workshop on endometriosis. This was an important opportunity for researchers, healthcare professionals and patient advocates to unite and provide critical updates on efforts to reduce the effect of this chronic disease and to improve the welfare of the women it affects. These new findings and directions are captured in this review.
Collapse
Affiliation(s)
- Amy Winship
- Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Stem Cells and Development Program, Monash University, Vic. 3800, Australia
| | - Jacqueline Donoghue
- The University of Melbourne, Department of Obstetrics and Gynaecology, Gynaecology Research Centre, Royal Women's Hospital, Parkville, Vic. 3052, Australia
| | - Brendan J Houston
- School of Biological Sciences, Monash University, Vic. 3800, Australia
| | - Jacinta H Martin
- Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW 2305, Australia
| | - Tessa Lord
- Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW 2305, Australia; and Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2300, Australia
| | - Alaknanda Adwal
- The University of Adelaide Robinson Research Institute, Adelaide Medical School, North Adelaide, SA 5005, Australia
| | - Macarena Gonzalez
- The University of Adelaide Robinson Research Institute, School of Medicine, Faculty of Health and Medical Sciences, Adelaide, SA 5005, Australia
| | - Elodie Desroziers
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Gulfam Ahmad
- The University of Sydney Medical School, Discipline of Pathology, School of Medical Sciences, Sydney, NSW 2006, Australia
| | - Dulama Richani
- School of Women's and Children's Health, Fertility and Research Centre, University of New South Wales, Sydney, NSW 2052 Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2300, Australia; and Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Netherlands; and Corresponding author:
| |
Collapse
|
44
|
Male Factors: the Role of Sperm in Preimplantation Embryo Quality. Reprod Sci 2020; 28:1788-1811. [DOI: 10.1007/s43032-020-00334-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
|
45
|
The dynamics between in vitro culture and metabolism: embryonic adaptation to environmental changes. Sci Rep 2020; 10:15672. [PMID: 32973241 PMCID: PMC7518437 DOI: 10.1038/s41598-020-72221-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/17/2020] [Indexed: 01/03/2023] Open
Abstract
Previous studies have discussed the importance of an optimal range of metabolic activity during preimplantation development. To avoid factors than can trigger an undesirable trajectory, it is important to learn how nutrients and metabolites interact to help launching the correct developmental program of the embryo, and how much the in vitro culture system can impair this process. Here, using the bovine model, we describe a factorial experimental design used to investigate the biochemical and molecular signature of embryos in response to different combinations of morphological features—i.e. speed of development—and external stimuli during in vitro culture—i.e. different oxygen tensions and glucose supplementation. Our analyses demonstrate that the embryos present heterogeneous metabolic responses depending on early morphological phenotypes and the composition of their surroundings. However, despite the contribution of each single stimulus for the embryo phenotype, oxygen tension is determinant for such differences. The lower oxygen environment boosts the metabolism of embryos with faster kinetics, in particular those cultured in lower glucose concentrations.
Collapse
|
46
|
Elimination of stress factors by continuous embryo culture and its influence on in vitro fertilization outcomes. Reprod Biol 2020; 20:512-519. [PMID: 32912714 DOI: 10.1016/j.repbio.2020.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/25/2020] [Accepted: 08/15/2020] [Indexed: 11/20/2022]
Abstract
Recently, infertility has become one of the most important endemic conditions, affecting approximately 15-20 % of couples worldwide. Among others, the careerist lifestyle, the increasing maternal age and the parallel increment in the aneuploidy rate of embryos play a crucial role in this phenomenon. In this study, embryological parameters and pregnancy outcomes were investigated in IVF cycles using either sequential embryo culture or a single step culture system. By sequential media, oocytes/embryos are needlessly exposed to the potentially negative effects of light exposure, temperature decrement and altered oxygen tension. In comparison with sequential media, single step media induced 1.28, 1.21 and 1.21-fold increments in implantation, biochemical pregnancy and clinical pregnancy rates, respectively. Pregnancy outcomes showed strong maternal age-dependency, so the difference between the two investigated culture systems was equalized by the increasing maternal ages (35-44 years) and the supposed incidence of embryo aneuploidy. Nevertheless, the significant enlargements in the outcomes of the younger ages (25-34) induced by the single step cultures suggest that, beside the resultant maternal aneuploidy, aneuploidy (reduced pregnancy rates) may evolve from exposure to the mentioned environmental stress factors.
Collapse
|
47
|
Embryos from polycystic ovary syndrome patients with hyperandrogenemia reach morula stage faster than controls. F S Rep 2020; 1:125-132. [PMID: 34223228 PMCID: PMC8244380 DOI: 10.1016/j.xfre.2020.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Objective To investigate if patients with polycystic ovary syndrome (PCOS) have altered embryo morphokinetics when compared with controls. Design Retrospective cohort analysis. Setting Single academic fertility clinic in a tertiary hospital setting. Patients Age- and body mass index-matched patients who underwent in vitro fertilization diagnosed with PCOS using the Rotterdam criteria. A subanalysis was performed on patients with PCOS with hyperandrogenemia. Sixty-four patients with PCOS were identified with 990 embryos that were matched with 64 control patients with 628 embryos. Interventions None. Main Outcome Measures Time to blastulation. Results Embryos from women with PCOS displayed faster growth rate at t7, t8, and t9; all other morphokinetic points were similar. Patients with PCOS also had a higher number of oocytes retrieved. No differences were seen in the fertilization rate or blastulation rate. Patients with PCOS had a higher miscarriage rate (38.1% in PCOS vs. 18.8% in controls). Patients with hyperandrogenic PCOS showed a faster growth rate at t5, t6, t7, t8, t9, and morula. Conclusions Embryos from women with PCOS grew faster until 9-cell stage and women with hyperandrogenic PCOS until morula. Patients with PCOS also showed a higher miscarriage rate. The alterations in early embryo development are consistent with altered fertility and obstetric outcomes in the population with PCOS and may be due to the hyperandrogenic microenvironment in the ovarian follicle.
Collapse
|
48
|
Ferrick L, Lee YSL, Gardner DK. Reducing time to pregnancy and facilitating the birth of healthy children through functional analysis of embryo physiology†. Biol Reprod 2020; 101:1124-1139. [PMID: 30649216 DOI: 10.1093/biolre/ioz005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Abstract
An ever-increasing number of couples rely on assisted reproductive technologies (ART) in order to conceive a child. Although advances in embryo culture have led to increases in the success rates of clinical ART, it often takes more than one treatment cycle to conceive a child. Ensuring patients conceive as soon as possible with a healthy embryo is a priority for reproductive medicine. Currently, selection of embryos for transfer relies predominantly on the morphological assessment of the preimplantation embryo; however, morphology is not an absolute link to embryo physiology, nor the health of the resulting child. Non-invasive quantitation of individual embryo physiology, a key regulator of both embryo viability and health, could provide valuable information to assist in the selection of the most viable embryo for transfer, hence reducing the time to pregnancy. Further, according to the Barker Hypothesis, the environment to which a fetus is exposed to during gestation affects subsequent offspring health. If the environment of the preimplantation period is capable of affecting metabolism, which in turn will affect gene expression through the metaboloepigenetic link, then assessment of embryo metabolism should represent an indirect measure of future offspring health. Previously, the term viable embryo has been used in association with the potential of an embryo to establish a pregnancy. Here, we propose the term healthy embryo to reflect the capacity of that embryo to lead to a healthy child and adult.
Collapse
Affiliation(s)
- Laura Ferrick
- School of BioSciences, University of Melbourne, VIC, Australia
| | | | - David K Gardner
- School of BioSciences, University of Melbourne, VIC, Australia.,Melbourne IVF, East Melbourne, VIC, Australia
| |
Collapse
|
49
|
Non-invasive imaging of mouse embryo metabolism in response to induced hypoxia. J Assist Reprod Genet 2020; 37:1797-1805. [PMID: 32852649 DOI: 10.1007/s10815-020-01872-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE This study used noninvasive, fluorescence lifetime imaging microscopy (FLIM)-based imaging of NADH and FAD to characterize the metabolic response of mouse embryos to short-term oxygen deprivation. We investigated the response to hypoxia at various preimplantation stages. METHODS Mouse oocytes and embryos were exposed to transient hypoxia by dropping the oxygen concentration in media from 5-0% over the course of ~1.5 h, then 5% O2 was restored. During this time, FLIM-based metabolic imaging measurements of oocyte/embryo cohorts were taken every 3 minutes. Experiments were performed in triplicate for oocytes and embryos at the 1- to 8-cell, morula, and blastocyst stages. Maximum hypoxia response for each of eight measured quantitative FLIM parameters was taken from the time points immediately before oxygen restoration. RESULTS Metabolic profiles showed significant changes in response to hypoxia for all stages of embryo development. The response of the eight measured FLIM parameters to hypoxia was highly stage-dependent. Of the eight FLIM parameters measured, NADH and FAD intensity showed the most dramatic metabolic responses in early developmental stages. At later stages, however, other parameters, such as NADH fraction engaged and FAD lifetimes, showed greater changes. Metabolic parameter values generally returned to baseline with the restoration of 5% oxygen. CONCLUSIONS Quantitative FLIM-based metabolic imaging was highly sensitive to metabolic changes induced by hypoxia. Metabolic response profiles to oxygen deprivation were distinct at different stages, reflecting differences in metabolic plasticity as preimplantation embryos develop.
Collapse
|
50
|
Zolini AM, Block J, Rabaglino MB, Rincon G, Hoelker M, Bromfield JJ, Salilew-Wondim D, Hansen PJ. Genes associated with survival of female bovine blastocysts produced in vivo. Cell Tissue Res 2020; 382:665-678. [PMID: 32710275 DOI: 10.1007/s00441-020-03257-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
The objective was to characterize the transcriptome profile of in vivo-derived female embryos competent to establish and maintain gestation. Blastocysts from superovulated heifers were bisected to generate two demi-embryos. One demi-embryo was transferred into a synchronized recipient and the other part was used for RNA-seq analysis. Data on transcript abundance was analyzed for 4 demi-embryos that established and maintained pregnancy to day 60 (designated as PP) and 3 that did not result in a pregnancy at day 30 (designated as NP). Using a false discovery rate of P < 0.10 as cutoff, a total of 155 genes were differentially expressed between PP and NP embryos, of which 73 genes were upregulated and 82 genes were downregulated in the PP group. The functional cluster with the greatest enrichment score for embryos that survived, representing 28 genes (48% of the annotated genes), was related to membrane proteins, particularly those related to olfaction and neural development and function. The functional cluster with the greatest enrichment score for downregulated genes in embryos that survived included terms related to oxidative phosphorylation, mitochondrial function, and transmembrane proteins. In conclusion, competence of in vivo-derived female bovine embryos to survive after transfer is associated with increased expression of genes encoding transmembrane proteins, perhaps indicative of differentiation of the inner cell mass to epiblast, and decreased expression of genes involved in oxidative phosphorylation, perhaps indicative of reduced metabolic activity.
Collapse
Affiliation(s)
- A M Zolini
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA
| | - J Block
- Zoetis Inc., Kalamazoo, MI, 49007, USA
| | - M B Rabaglino
- Instituto de Investigación en Ciencias de la Salud, CONICET, Córdoba, Argentina
- Quantitative Genetics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - G Rincon
- Zoetis Inc., Kalamazoo, MI, 49007, USA
| | - M Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - J J Bromfield
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA
| | - D Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - P J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|