1
|
Bassalo D, Matthews SG, Bloise E. The canine blood-brain barrier in health and disease: focus on brain protection. Vet Q 2025; 45:12-32. [PMID: 39791202 PMCID: PMC11727060 DOI: 10.1080/01652176.2025.2450041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/18/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025] Open
Abstract
This review examines the role of the canine blood-brain barrier (BBB) in health and disease, focusing on the impact of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) encoded by the ABCB1/MDR1 gene. The BBB is critical in maintaining central nervous system homeostasis and brain protection against xenobiotics and environmental drugs that may be circulating in the blood stream. We revise key anatomical, histological and functional aspects of the canine BBB and examine the role of the ABCB1/MDR1 gene mutation in specific dog breeds that exhibit reduced P-gp activity and disrupted drug brain pharmacokinetics. The review also covers factors that may disrupt the canine BBB, including the actions of aging, canine cognitive dysfunction, epilepsy, inflammation, infection, traumatic brain injury, among others. We highlight the critical importance of this barrier in maintaining central nervous system homeostasis and protecting against xenobiotics and conclude that a number of neurological-related diseases may increase vulnerability of the BBB in the canine species and discuss its profound impacts on canine health.
Collapse
Affiliation(s)
- Dimitri Bassalo
- Especialização em Farmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G. Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Department of Obstetrics & Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Wang W, Shu M, Li J, Wang Q, Zhang W, Wang Y, Guo Y, Cheng Y, Jiang H, Song C, Liu Y, Shang W. The microbial communities and metabolic profiles of follicular fluid in patients with premature ovarian insufficiency. Front Endocrinol (Lausanne) 2025; 15:1447397. [PMID: 39839476 PMCID: PMC11746125 DOI: 10.3389/fendo.2024.1447397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Premature ovarian insufficiency (POI) is a condition characterized by ovarian dysfunction occurring before the age of 40, and its etiology is multifactorial, including genetic, immunological, infectious, environmental, and iatrogenic factors, with over half of the cases remaining unexplained. Whether the microbial communities and metabolites in follicular fluid, which is the direct microenvironment for oocyte survival, are related to POI has not been reported. Methods In this study, Follicular fluid samples of 26 patients with POI and 27 controls with a normal ovarian reserve were collected and analyzed using 16S rDNA sequencing and untargeted metabolomics. Conjoint analysis was performed to identify key microbial communities and metabolites that might be involved in POI. Results Patients with POI exhibited significant alterations in microbial richness and diversity and metabolic profile in their follicular fluid. The downregulation of ABC transporters and upregulation of the citrate cycle (TCA cycle) might be critical for the development and progression of POI. G-Rhodopseudomonas and g-Caulobacter were identified as key microbial genera, while L-aspartic acid, citrate, isoleucine, and cytidine were identified as key metabolites. Discussion These findings offer novel insights into the pathogenesis of POI and might pave the way for improved clinical outcomes for individuals with POI.
Collapse
Affiliation(s)
- Wei Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Mingming Shu
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianhua Li
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qihang Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Wendan Zhang
- Faculty of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ye Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yiming Guo
- Department of Biology, Kenneth P. Dietrich School of Art and Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yanbin Cheng
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Honghong Jiang
- Faculty of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunlan Song
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuan Liu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Wei Shang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Mughis H, Lye P, Imperio GE, Bloise E, Matthews SG. Hypoxia modulates P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) drug transporters in brain endothelial cells of the developing human blood-brain barrier. Heliyon 2024; 10:e30207. [PMID: 38737275 PMCID: PMC11088273 DOI: 10.1016/j.heliyon.2024.e30207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) multidrug resistance (MDR) transporters are localized at the luminal surface of the blood-brain barrier (BBB). They confer fetal brain protection against harmful compounds that may be circulating in the peripheral blood. The fetus develops in low oxygen levels; however, some obstetric pathologies such as pre-eclampsia, placenta accreta/previa may result in even greater fetal hypoxic states. We investigated how hypoxia impacts MDR transporters in human fetal brain endothelial cells (hfBECs) derived from early and mid-stages of pregnancy. Hypoxia decreased BCRP protein and activity in hfBECs derived in early pregnancy. In contrast, in hfBECs derived in mid-pregnancy there was an increase in P-gp and BCRP activity following hypoxia. Results suggest a hypoxia-induced reduction in fetal brain protection in early pregnancy, but a potential increase in transporter-mediated protection at the BBB during mid-gestation. This would modify accumulation of various key physiological and pharmacological substrates of P-gp and BCRP in the developing fetal brain and potentially contribute to the pathogenesis of neurodevelopmental disorders commonly associated with in utero hypoxia.
Collapse
Affiliation(s)
- Hafsah Mughis
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Phetcharawan Lye
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Guinever E. Imperio
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Departmento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Stephen G. Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Obstetrics & Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Gupta A, Singh MS, Singh B. Deciphering the functional role of clinical mutations in ABCB1, ABCC1, and ABCG2 ABC transporters in endometrial cancer. Front Pharmacol 2024; 15:1380371. [PMID: 38766631 PMCID: PMC11100334 DOI: 10.3389/fphar.2024.1380371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
ATP-binding cassette transporters represent a superfamily of dynamic membrane-based proteins with diverse yet common functions such as use of ATP hydrolysis to efflux substrates across cellular membranes. Three major transporters-P-glycoprotein (P-gp or ABCB1), multidrug resistance protein 1 (MRP1 or ABCC1), and breast cancer resistance protein (BCRP or ABCG2) are notoriously involved in therapy resistance in cancer patients. Despite exhaustive individual characterizations of each of these transporters, there is a lack of understanding in terms of the functional role of mutations in substrate binding and efflux, leading to drug resistance. We analyzed clinical variations reported in endometrial cancers for these transporters. For ABCB1, the majority of key mutations were present in the membrane-facing region, followed by the drug transport channel and ATP-binding regions. Similarly, for ABCG2, the majority of key mutations were located in the membrane-facing region, followed by the ATP-binding region and drug transport channel, thus highlighting the importance of membrane-mediated drug recruitment and efflux in ABCB1 and ABCG2. On the other hand, for ABCC1, the majority of key mutations were present in the inactive nucleotide-binding domain, followed by the drug transport channel and membrane-facing regions, highlighting the importance of the inactive nucleotide-binding domain in facilitating indirect drug efflux in ABCC1. The identified key mutations in endometrial cancer and mapped common mutations present across different types of cancers in ABCB1, ABCC1, and ABCG2 will facilitate the design and discovery of inhibitors targeting unexplored structural regions of these transporters and re-engineering of these transporters to tackle chemoresistance.
Collapse
Affiliation(s)
- Aayushi Gupta
- Centre for Life Sciences, Mahindra University, Hyderabad, India
| | - Manu Smriti Singh
- Centre for Life Sciences, Mahindra University, Hyderabad, India
- Interdisciplinary Centre for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, India
| | - Bipin Singh
- Centre for Life Sciences, Mahindra University, Hyderabad, India
| |
Collapse
|
5
|
Yin Z, Yan Y, Khan S, Cai R, Li H, Guo J. Differential expression of microRNAs in diapause and non-diapause gonads of Aspongopus chinensis Dallas (Hemiptera: Dinidoridae): implications for reproductive control. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:22. [PMID: 38809688 PMCID: PMC11135359 DOI: 10.1093/jisesa/ieae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/02/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Aspongopus chinensis Dallas, 1851 (Hemiptera: Dinidoridae), an edible and medicinal insect, usually found in China and Southeast Asia, offers substantial potential for various applications. The reproductive cycle of this particular insect occurs annually because of reproductive diapause, leading to inadequate utilization of available natural resources. Despite its considerable ecological importance, the precise mechanisms underlying diapause in A. chinensis are not yet well understood. In this study, we conducted an analysis of comparing the microRNA (miRNA) regulation in the diapause and non-diapause gonads of A. chinensis and identified 303 differentially expressed miRNAs, among which, compared with the diapause group, 76 miRNAs were upregulated and 227 miRNAs downregulated. The results, regarding the Enrichment analysis of miRNA-targeted genes, showed their involvement in several essential biological processes, such as lipid anabolism, energy metabolism, and gonadal growth. Interestingly, we observed that the ATP-binding cassette pathway is the only enriched pathway, demonstrating the capability of these targeted miRNAs to regulate the reproductive diapause of A. chinensis through the above essential pathway. The current study provided the role of gonadal miRNA expression in the control of reproductive diapause in A. chinensis, the specific regulatory mechanism behind this event remained unknown and needed more investigation.
Collapse
Affiliation(s)
- Zhiyong Yin
- Institute of Entomology, Guizhou University, Guiyang 550025, P. R. China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang 550025, P. R. China
| | - Yufang Yan
- Institute of Entomology, Guizhou University, Guiyang 550025, P. R. China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang 550025, P. R. China
| | - Samiullah Khan
- Institute of Entomology, Guizhou University, Guiyang 550025, P. R. China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang 550025, P. R. China
| | - Renlian Cai
- Institute of Entomology, Guizhou University, Guiyang 550025, P. R. China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang 550025, P. R. China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang 550025, P. R. China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang 550025, P. R. China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang 550025, P. R. China
| |
Collapse
|
6
|
Yang FF, Xu XL, Hu T, Liu JQ, Zhou JZ, Ma LY, Liu HM. Lysine-Specific Demethylase 1 Promises to Be a Novel Target in Cancer Drug Resistance: Therapeutic Implications. J Med Chem 2023; 66:4275-4293. [PMID: 37014989 DOI: 10.1021/acs.jmedchem.2c01527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Chemotherapy, targeted therapy, and immunotherapy are effective against most tumors, but drug resistance remains a barrier to successful treatment. Lysine-specific demethylase 1 (LSD1), a member of histone demethylation modifications, can regulate invasion, metastasis, apoptosis, and immune escape of tumor cells, which are associated with tumorigenesis and tumor progression. Recent studies suggest that LSD1 ablation regulates resensitivity of tumor cells to anticarcinogens containing immune checkpoint inhibitors (ICIs) via multiple upstream and downstream pathways. In this review, we describe the recent findings about LSD1 biology and its role in the development and progression of cancer drug resistance. Further, we summarize LSD1 inhibitors that have a reversal or resensitive effect on drug resistance and discuss the possibility of targeting LSD1 in combination with other agents to surmount resistance.
Collapse
Affiliation(s)
- Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xue-Li Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ting Hu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jian-Quan Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin-Zhu Zhou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian 463000, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
7
|
Lye P, Bloise E, Matthews SG. Effects of bacterial and viral pathogen-associated molecular patterns (PAMPs) on multidrug resistance (MDR) transporters in brain endothelial cells of the developing human blood-brain barrier. Fluids Barriers CNS 2023; 20:8. [PMID: 36721242 PMCID: PMC9887585 DOI: 10.1186/s12987-023-00409-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The multidrug resistance (MDR) transporters, P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) contribute to the blood-brain barrier (BBB), protecting the brain from drug exposure. The impact of infection on MDR in the developing human BBB remains to be determined. We hypothesized that exposure to bacterial and viral pathogen-associated molecular patterns (PAMPs) modify MDR expression and activity in human fetal brain endothelial cells (hfBECs) isolated from early and mid-gestation brain microvessels. METHODS We modelled infection (4 h and 24 h) using the bacterial PAMP, lipopolysaccharide (LPS; a toll-like receptor [TLR]-4 ligand) or the viral PAMPs, polyinosinic polycytidylic acid (Poly I:C; TLR-3 ligand) and single-stranded RNA (ssRNA; TLR-7/8 ligand). mRNA expression was assessed by qPCR, whereas protein expression was assessed by Western blot or immunofluorescence. P-gp and BCRP activity was evaluated by Calcein-AM and Chlorin-6 assays. RESULTS TLRs-3,4 and 8 were expressed by the isolated hfBECs. Infection mimics induced specific pro-inflammatory responses as well as changes in P-gp/ABCB1 or BCRP/ABCG2 expression (P < 0.05). LPS and ssRNA significantly decreased P-gp activity at 4 and 24 h in early and mid-gestation (P < 0.03-P < 0.001), but significantly increased BCRP activity in hfBECs in a dose-dependent pattern (P < 0.05-P < 0.002). In contrast, Poly-IC significantly decreased P-gp activity after 4 h in early (P < 0.01) and mid gestation (P < 0.04), but not 24 h, and had no overall effect on BCRP activity, though BCRP activity was increased with the highest dose at 24 h in mid-gestation (P < 0.05). CONCLUSIONS Infectious PAMPs significantly modify the expression and function of MDR transporters in hfBECs, though effects are PAMP-, time- and dose-specific. In conclusion, bacterial and viral infections during pregnancy likely have profound effects on exposure of the fetal brain to physiological and pharmacological substrates of P-gp and BCRP, potentially leading to altered trajectories of fetal brain development.
Collapse
Affiliation(s)
- Phetcharawan Lye
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Building Room 3207, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Enrrico Bloise
- Departamento de Morfologia, Instituto de Ciências Biológicas, N3-292, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Building Room 3207, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, Canada.
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Torres-Vergara P, Rivera R, Escudero C, Penny J. Maternal and Fetal Expression of ATP-Binding Cassette and Solute Carrier Transporters Involved in the Brain Disposition of Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:149-177. [PMID: 37466773 DOI: 10.1007/978-3-031-32554-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Evidence from preclinical and clinical studies demonstrate that pregnancy is a physiological state capable of modifying drug disposition. Factors including increased hepatic metabolism and renal excretion are responsible for impacting disposition, and the role of membrane transporters expressed in biological barriers, including the placental- and blood-brain barriers, has received considerable attention. In this regard, the brain disposition of drugs in the mother and fetus has been the subject of studies attempting to characterize the mechanisms by which pregnancy could alter the expression of ATP-binding cassette (ABC) and solute carrier (SLC) transporters. This chapter will summarize findings of the influence of pregnancy on the maternal and fetal expression of ABC and SLC transporters in the brain and the consequences of such changes on the disposition of therapeutic drugs.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.
- Grupo de Investigación Vascular (GRIVAS), Universidad del Bio-Bio, Chillán, Chile.
| | - Robin Rivera
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Grupo de Investigación Vascular (GRIVAS), Universidad del Bio-Bio, Chillán, Chile
- Laboratorio de Fisiología Vascular, Facultad de Ciencias Básicas, Universidad del Bio Bio, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Translational Comparison of the Human and Mouse Yolk Sac Development and Function. Reprod Sci 2023; 30:41-53. [PMID: 35137348 DOI: 10.1007/s43032-022-00872-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/29/2022] [Indexed: 01/06/2023]
Abstract
The yolk sac (YS) is the oldest of the extraembryonic membranes in vertebrates. Considered a transitory structure in the human species, the importance of the YS for a successful pregnancy is often overlooked. Due to the general inaccessibility of healthy human YS tissue for research, the use of experimental animal models is of great value. In order to better understand whether the mouse could be used as a translational model for the study of the human YS under normal and pathological conditions, this review comprehensively describes key developmental aspects of the human and mouse YS, detailing their development and function. YS major similarities in both species comprise the following: (1) histological composition (both being composed of endoderm, mesoderm, and mesothelium layers); (2) endoderm endocytosis, synthesis, secretion, and transport capabilities; and (3) mesoderm onset of haematopoiesis and angiogenesis. Examples of main dissimilarities include (1) persistence across pregnancy (i.e. early pregnancy in humans vs term pregnancy in mice); (2) the existence of a secondary YS in humans; (3) the presence of proliferative primordial germ cells (PGCs) in the human versus their absence in mice; and (4) eversion of histological layers in the mouse. Although these differences should be considered when interpreting data from mouse-based studies, the overall morphofunctional similarities in the YS between these species indicate that the mouse can be potentially used as a translational model for the study of the human YS.
Collapse
|
10
|
Tang C, Deng Y, Shao S, Guo Y, Yang L, Yan Y, Zhang Y, Qiu D, Zhou K, Hua Y, Wang C. Long noncoding RNA UCA1 promotes the expression and function of P-glycoprotein by sponging miR-16-5p in human placental BeWo cells. FASEB J 2023; 37:e22657. [PMID: 36459147 DOI: 10.1096/fj.202201051r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
Investigations on placental P-glycoprotein (P-gp) regulation could provide more therapeutic targets for individualized and safe pharmacotherapy during pregnancy. The role of long noncoding RNA (lncRNA) on placental P-gp regulation is lacking. The present study was carried out to investigate the regulation and underlying mechanisms of lncRNA urothelial carcinoma associated 1 (UCA1) on P-gp in Bewo cells. lncRNA UCA1 inhibition or overexpression could decrease or increase ABCB1 mRNA expression, P-gp expression and its cellular efflux function, respectively. RNA-FISH revealed that lncRNA UCA1 was mainly located in the cytoplasm of Bewo cells. MicroRNA array was applied and 10 significant miRNAs was identified after lncRNA UCA1 inhibition. Databases of LncTarD, LncRNA2Target, and miRcode were further used to search potential target miRNAs of lncRNA UCA1 and miR-16-5p was screened out. Thereafter, we confirmed that miR-16-5p expression was significantly upregulated or reduced after lncRNA UCA1 knockdown or overexpression, respectively. Furthermore, we also proved that ABCB1 mRNA expression, P-gp expression and its cellular efflux function was enhanced or reduced after miR-16-5p inhibition or overexpression, respectively. The rescue experiment further indicated that miR-16-5p was involved in the positive regulation of lncRNA UCA1 on the expression and function of P-gp. Lastly, dual-luciferase reporter system, RNA-binding protein immunoprecipitation and RNA pull-down assays were performed to explore the relationships among lncRNA UCA1, miR-16-5p, and ABCB1. It was found that lncRNA UCA1(1103-1125) could directly interact with miR-16-5p and miR-16-5p could directly target ABCB1 coding DNA sequence region (882-907). In conclusion, LncRNA UCA1 could promote the expression and function of P-gp by sponging miR-16-5p in BeWo cells.
Collapse
Affiliation(s)
- Changqing Tang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatric Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Yuxin Deng
- The major of MSc Cancer, Cancer Institute of University College London, London, UK
| | - Shuran Shao
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,West China Medical School of Sichuan University, Chengdu, China
| | - Yafei Guo
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lixia Yang
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yu Yan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,West China Medical School of Sichuan University, Chengdu, China
| | - Yi Zhang
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dajian Qiu
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Shestakova MA, Vishnyakova PA, Fatkhudinov TK. Placenta: an organ with high energy requirements. RUDN JOURNAL OF MEDICINE 2022; 26:353-363. [DOI: 10.22363/2313-0245-2022-26-4-353-363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Placenta is a unique organ, without which the very phenomenon of human pregnancy is impossible. Semiallogeneous nature, localization of the placenta, complex and heterogeneous cellular composition determines its complex and multifaceted role in the course of physiological pregnancy, indicates the importance of studying this organ in a number of reproductive pathologies. The purpose of this review was to analyze the literature sources illustrating the importance of energydependent processes in placental metabolism and to determine the molecular basis of placental energy conversion. Publications of foreign and Russian authors from PubMed database and scientific electronic library eLIBRARY.ru were used when writing the review. The review highlights the main functions of the placenta: transport and synthetic functions in terms of their place in the structure of energy expenditure of the organ. The systems by which the transport of ions and gases from maternal blood through the placental barrier is performed, are considered. The role of the placenta in the synthesis of steroid hormones and glucocorticoids is detailed. The main bioenergetic systems are also considered: placental glucose metabolism, the functional activity of mitochondria and the creatine kinase system of the placenta. These data allow us to put the placenta on a par with other organs with high energy requirements (brain, transverse striated skeletal muscles, heart, kidneys, liver), which are most susceptible to metabolic disorders. Maintaining a balance between expenditure and synthesis of macroergic compounds in the placenta is critical for an adequate course of physiological pregnancy, and imbalances can lead to such pathologies as fetal retardation syndrome or preeclampsia. Further study of placental energy supply systems seems important for understanding the mechanisms of intrauterine development disorders and developing their pathogenetic treatment.
Collapse
|
12
|
Sze Y, Fernandes J, Kołodziejczyk ZM, Brunton PJ. Maternal glucocorticoids do not directly mediate the effects of maternal social stress on the fetus. J Endocrinol 2022; 255:143-158. [PMID: 36256689 PMCID: PMC9716396 DOI: 10.1530/joe-22-0226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Stress during pregnancy negatively affects the fetus and increases the risk for affective disorders in adulthood. Excess maternal glucocorticoids are thought to mediate fetal programming; however, whether they exert their effects directly or indirectly remains unclear. During pregnancy, protective mechanisms including maternal hypothalamic-pituitary-adrenal (HPA) axis hyporesponsiveness and placental 11β-hydroxysteroid dehydrogenase (11βHSD) type 2, which inactivates glucocorticoids, limit mother-to-fetus glucocorticoid transfer. However, whether repeated stress negatively impacts these mechanisms is not known. Pregnant rats were exposed to repeated social stress on gestational days (GD) 16-20 and several aspects of HPA axis and glucocorticoid regulation, including concentrations of glucocorticoids, gene expression for their receptors (Nr3c1, Nr3c2), receptor chaperones (Fkbp51, Fkbp52) and enzymes that control local glucocorticoid availability (Hsd11b1, Hsd11b2), were investigated in the maternal, placental and fetal compartments on GD20. The maternal HPA axis was activated following stress, though the primary driver was vasopressin, rather than corticotropin-releasing hormone. Despite the stress-induced increase in circulating corticosterone in the dams, only a modest increase was detected in the circulation of female fetuses, with no change in the fetal brain of either sex. Moreover, there was no change in the expression of genes that mediate glucocorticoid actions or modulate local concentrations in the fetal brain. In the placenta labyrinth zone, stress increased Hsd11b2 expression only in males and Fkbp51 expression only in females. Our results indicate that any role glucocorticoids play in fetal programming is likely indirect, perhaps through sex-dependent alterations in placental gene expression, rather than exerting effects via direct crossover into the fetal brain.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Joana Fernandes
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | | | - Paula J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
- Zhejiang University-University of Edinburgh Institute, International Campus, Haining, Zhejiang, P.R. China
- Correspondence should be addressed to P J Brunton:
| |
Collapse
|
13
|
Feng T, Xiao L, Bai J, Ding H, Pang L, Song Y, Qin Y, Xu X, Wang J, Liu Y. N-Carbamylglutamate Improves Reproductive Performance and Alters Fecal Microbiota and Serum Metabolites of Primiparous Sows during Gestation after Fixed-Time Artificial Insemination. BIOLOGY 2022; 11:biology11101432. [PMID: 36290336 PMCID: PMC9598523 DOI: 10.3390/biology11101432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
Abstract
N-carbamylglutamate (NCG) supplementation during gestation improves reproductive performance in sows after conventional artificial insemination. However, whether NCG can improve reproductive performance and change fecal microbiota and serum metabolite levels during pregnancy in sows after fixed-time artificial insemination (FTAI) remains unclear. Two hundred multiparous sows were assigned a diet from mating until farrowing: control (corn−soybean meal) or NCG supplementation (0.05% NCG). At days 30, 70, and 110 of gestation and after farrowing, maternal microbial diversity and serum metabolites were studied. Supplementation of NCG increased the number of piglets born alive and the litter weight (all p < 0.05) and altered the fetal microbial community during gestation. Some genera were particularly abundant at different time points during gestation and after farrowing, but none were commonly abundant across all four time points. Metabolic analysis revealed that NCG supplementation significantly increased the serum concentrations of NCG, ferulic acid, cinnamoylglycine, 3-phenyllactic acid, and gamma-glutamylglutamic acid in the NCG group compared with levels in the control group. Our results reveal that NCG supplementation during gestation improves reproductive performance in sows after FTAI, exerting both direct (increased serum NCG levels) and indirect effects (altered intestinal microbiome and serum metabolites) on sow reproduction and, ultimately, improving placental and fetal development.
Collapse
Affiliation(s)
- Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
- Correspondence: (T.F.); (Y.L.)
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Hongxiang Ding
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Liyan Pang
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Yuqing Song
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
- Correspondence: (T.F.); (Y.L.)
| |
Collapse
|
14
|
Aria H, Rezaei M, Nazem S, Daraei A, Nikfar G, Mansoori B, Bahmanyar M, Tavassoli A, Vakil MK, Mansoori Y. Purinergic receptors are a key bottleneck in tumor metabolic reprogramming: The prime suspect in cancer therapeutic resistance. Front Immunol 2022; 13:947885. [PMID: 36072596 PMCID: PMC9444135 DOI: 10.3389/fimmu.2022.947885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
ATP and other nucleoside phosphates have specific receptors named purinergic receptors. Purinergic receptors and ectonucleotidases regulate various signaling pathways that play a role in physiological and pathological processes. Extracellular ATP in the tumor microenvironment (TME) has a higher level than in normal tissues and plays a role in cancer cell growth, survival, angiogenesis, metastasis, and drug resistance. In this review, we investigated the role of purinergic receptors in the development of resistance to therapy through changes in tumor cell metabolism. When a cell transforms to neoplasia, its metabolic processes change. The metabolic reprogramming modified metabolic feature of the TME, that can cause impeding immune surveillance and promote cancer growth. The purinergic receptors contribute to therapy resistance by modifying cancer cells' glucose, lipid, and amino acid metabolism. Limiting the energy supply of cancer cells is one approach to overcoming resistance. Glycolysis inhibitors which reduce intracellular ATP levels may make cancer cells more susceptible to anti-cancer therapies. The loss of the P2X7R through glucose intolerance and decreased fatty acid metabolism reduces therapeutic resistance. Potential metabolic blockers that can be employed in combination with other therapies will aid in the discovery of new anti-cancer immunotherapy to overcome therapy resistance. Therefore, therapeutic interventions that are considered to inhibit cancer cell metabolism and purinergic receptors simultaneously can potentially reduce resistance to treatment.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ghasem Nikfar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnam Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Bahmanyar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Tavassoli
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Kazem Vakil
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
15
|
MESCİ S, YAZGAN B, GÜL M, YILDIRIM T. Effects of Sulfur Containing Glycine Imine Derivatives Compounds on Multidrug Resistance Proteins (MRPs) and Apoptosis Mechanism in MCF-7 and DLD-1 Cell Lines. BEZMIALEM SCIENCE 2022. [DOI: 10.14235/bas.galenos.2021.6306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
16
|
Lye P, Bloise E, Imperio GE, Chitayat D, Matthews SG. Functional Expression of Multidrug-Resistance (MDR) Transporters in Developing Human Fetal Brain Endothelial Cells. Cells 2022; 11:2259. [PMID: 35883702 PMCID: PMC9323234 DOI: 10.3390/cells11142259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/20/2022] Open
Abstract
There is little information about the functional expression of the multidrug resistance (MDR) transporters P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) in the developing blood−brain barrier (BBB). We isolated and cultured primary human fetal brain endothelial cells (hfBECs) from early and mid-gestation brains and assessed P-gp/ABCB1 and BCRP/ABCG2 expression and function, as well as tube formation capability. Immunolocalization of the von Willebrand factor (marker of endothelial cells), zonula occludens-1 and claudin-5 (tight junctions) was detected in early and mid-gestation-derived hfBECs, which also formed capillary-like tube structures, confirming their BEC phenotype. P-gp and BCRP immunostaining was detected in capillary-like tubes and in the cytoplasm and nucleus of hfBECs. P-gp protein levels in the plasma membrane and nuclear protein fractions, as well as P-gp protein/ABCB1 mRNA and BCRP protein levels decreased (p < 0.05) in hfBECs, from early to mid-gestation. No differences in P-gp or BCRP activity in hfBECs were observed between the two age groups. The hfBECs from early and mid-gestation express functionally competent P-gp and BCRP drug transporters and may thus contribute to the BBB protective phenotype in the conceptus from early stages of pregnancy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP-Binding Cassette Transporters/metabolism
- Brain/metabolism
- Drug Resistance, Multiple
- Endothelial Cells/metabolism
- Female
- Humans
- Neoplasm Proteins/metabolism
- Pregnancy
Collapse
Affiliation(s)
- Phetcharawan Lye
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Guinever E. Imperio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for SickKids, University Toronto, Toronto, ON M5G 1X8, Canada
| | - Stephen G. Matthews
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
17
|
Eng ME, Imperio GE, Bloise E, Matthews SG. ATP-binding cassette (ABC) drug transporters in the developing blood-brain barrier: role in fetal brain protection. Cell Mol Life Sci 2022; 79:415. [PMID: 35821142 PMCID: PMC11071850 DOI: 10.1007/s00018-022-04432-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/19/2022]
Abstract
The blood-brain barrier (BBB) provides essential neuroprotection from environmental toxins and xenobiotics, through high expression of drug efflux transporters in endothelial cells of the cerebral capillaries. However, xenobiotic exposure, stress, and inflammatory stimuli have the potential to disrupt BBB permeability in fetal and post-natal life. Understanding the role and ability of the BBB in protecting the developing brain, particularly with respect to drug/toxin transport, is key to promoting long-term brain health. Drug transporters, particularly P-gp and BCRP are expressed in early gestation at the developing BBB and have a crucial role in developmental homeostasis and fetal brain protection. We have highlighted several factors that modulate drug transporters at the developing BBB, including synthetic glucocorticoid (sGC), cytokines, maternal infection, and growth factors. Some factors have the potential to increase expression and function of drug transporters and increase brain protection (e.g., sGC, transforming growth factor [TGF]-β). However, others inhibit drug transporters expression and function at the BBB, increasing brain exposure to xenobiotics (e.g., tumor necrosis factor [TNF], interleukin [IL]-6), negatively impacting brain development. This has implications for pregnant women and neonates, who represent a vulnerable population and may be exposed to drugs and environmental toxins, many of which are P-gp and BCRP substrates. Thus, alterations in regulated transport across the developing BBB may induce long-term changes in brain health and compromise pregnancy outcome. Furthermore, a large portion of neonatal adverse drug reactions are attributed to agents that target or access the nervous system, such as stimulants (e.g., caffeine), anesthetics (e.g., midazolam), analgesics (e.g., morphine) and antiretrovirals (e.g., Zidovudine); thus, understanding brain protection is key for the development of strategies to protect the fetal and neonatal brain.
Collapse
Affiliation(s)
- Margaret E Eng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada.
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
18
|
Monteiro VRS, Andrade CBV, Gomes HR, Reginatto MW, Império GE, Fontes KN, Spiess DA, Rangel-Junior WS, Nascimento VMO, Lima COS, Sousa RPC, Bloise FF, Matthews SG, Bloise E, Pimentel-Coelho PM, Ortiga-Carvalho TM. Mid-pregnancy poly(I:C) viral mimic disrupts placental ABC transporter expression and leads to long-term offspring motor and cognitive dysfunction. Sci Rep 2022; 12:10262. [PMID: 35715474 PMCID: PMC9205917 DOI: 10.1038/s41598-022-14248-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/03/2022] [Indexed: 11/09/2022] Open
Abstract
Limited information is available about the effect of mid-pregnancy viral infections on the placental expression of efflux transporters and offspring behavior. We hypothesized that maternal exposure to polyinosinic-polycytidylic acid [poly(I:C)], a synthetic double-stranded RNA viral mimic, would impair placental cell turnover, the expression of selected ABC transporters and adult offspring behavior. C57BL/6 mice were administered poly(I:C) (10 mg/Kg;ip) or vehicle at gestational day (GD) 13.5 (mid-pregnancy). Dams were euthanized for blood collection 4 h after injection, fetal and placental collection at GD18.5 or allowed to deliver spontaneously at term. At GD 13.5, poly(I:C) induced an acute pro-inflammatory response characterized by an increase in maternal plasma levels of IL-6, CXCL-1 and CCL-2/MCP-1. At GD 18.5, poly(I:C) decreased cell proliferation/death in the labyrinthine and increased cell death in the junctional zones, characterizing a disruption of placental cell turnover. Abca1 and Abcg1 immunolabelling was decreased in the labyrinthine zone, whereas Abca1, Abcg1 and breast cancer resistance transporter (Bcrp) expression increased in the junctional zone. Moreover, adult offspring showed motor and cognitive impairments in the Rotarod and T-water maze tests. These results indicate that viral infection during mid-pregnancy may disrupt relevant placental efflux transporters, as well as placental cell turnover and offspring behavior in adult life.
Collapse
Affiliation(s)
- V R S Monteiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - C B V Andrade
- Departamento de Histologia e Embriologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade Estadual Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - H R Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - M W Reginatto
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - G E Império
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - K N Fontes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - D A Spiess
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - W S Rangel-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - V M O Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - C O S Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - R P C Sousa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - F F Bloise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - S G Matthews
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - E Bloise
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - P M Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - T M Ortiga-Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
| |
Collapse
|
19
|
Gui Y, Zheng H, Cao RY. Foam Cells in Atherosclerosis: Novel Insights Into Its Origins, Consequences, and Molecular Mechanisms. Front Cardiovasc Med 2022; 9:845942. [PMID: 35498045 PMCID: PMC9043520 DOI: 10.3389/fcvm.2022.845942] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Foam cells play a vital role in the initiation and development of atherosclerosis. This review aims to summarize the novel insights into the origins, consequences, and molecular mechanisms of foam cells in atherosclerotic plaques. Foam cells are originated from monocytes as well as from vascular smooth muscle cells (VSMC), stem/progenitor cells, and endothelium cells. Novel technologies including lineage tracing and single-cell RNA sequencing (scRNA-seq) have revolutionized our understanding of subtypes of monocyte- and VSMC-derived foam cells. By using scRNA-seq, three main clusters including resident-like, inflammatory, and triggering receptor expressed on myeloid cells-2 (Trem2 hi ) are identified as the major subtypes of monocyte-derived foam cells in atherosclerotic plaques. Foam cells undergo diverse pathways of programmed cell death including apoptosis, autophagy, necroptosis, and pyroptosis, contributing to the necrotic cores of atherosclerotic plaques. The formation of foam cells is affected by cholesterol uptake, efflux, and esterification. Novel mechanisms including nuclear receptors, non-coding RNAs, and gut microbiota have been discovered and investigated. Although the heterogeneity of monocytes and the complexity of non-coding RNAs make obstacles for targeting foam cells, further in-depth research and therapeutic exploration are needed for the better management of atherosclerosis.
Collapse
Affiliation(s)
- Yuzhou Gui
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Hongchao Zheng
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Richard Y. Cao
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Dong XD, Zhang M, Cai CY, Teng QX, Wang JQ, Fu YG, Cui Q, Patel K, Wang DT, Chen ZS. Overexpression of ABCB1 Associated With the Resistance to the KRAS-G12C Specific Inhibitor ARS-1620 in Cancer Cells. Front Pharmacol 2022; 13:843829. [PMID: 35281897 PMCID: PMC8905313 DOI: 10.3389/fphar.2022.843829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The KRAS-G12C inhibitor ARS-1620, is a novel specific covalent inhibitor of KRAS-G12C, possessing a strong targeting inhibitory effect on KRAS-G12C mutant tumors. Overexpression of ATP-binding cassette super-family B member 1 (ABCB1/P-gp) is one of the pivotal factors contributing to multidrug resistance (MDR), and its association with KRAS mutations has been extensively studied. However, the investigations about the connection between the inhibitors of mutant KRAS and the level of ABC transporters are still missing. In this study, we investigated the potential drug resistance mechanism of ARS-1620 associated with ABCB1. The desensitization effect of ARS-1620 was remarkably intensified in both drug-induced ABCB1-overexpressing cancer cells and ABCB1-transfected cells as confirmed by cell viability assay results. This desensitization of ARS-1620 could be completely reversed when co-treated with an ABCB1 reversal agent. In mechanism-based studies, [3H] -paclitaxel accumulation assay revealed that ARS-1620 could be competitively pumped out by ABCB1. Additionally, it was found that ARS-1620 remarkably stimulated ATPase activity of ABCB1, and the HPLC drug accumulation assay displayed that ARS-1620 was actively transported out of ABCB1-overexpressing cancer cells. ARS-1620 acquired a high docking score in computer molecular docking analysis, implying ARS-1620 could intensely interact with ABCB1 transporters. Taken all together, these data indicated that ARS-1620 is a substrate for ABCB1, and the potential influence of ARS-1620-related cancer therapy on ABCB1-overexpressing cancer cells should be considered in future clinical applications.
Collapse
Affiliation(s)
- Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Meng Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yi-Ge Fu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ketankumar Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dong-Tao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
21
|
Karahoda R, Zaugg J, Fuenzalida B, Kallol S, Moser-Haessig R, Staud F, Albrecht C. Trophoblast Differentiation Affects Crucial Nutritive Functions of Placental Membrane Transporters. Front Cell Dev Biol 2022; 10:820286. [PMID: 35273963 PMCID: PMC8901483 DOI: 10.3389/fcell.2022.820286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Cytotrophoblasts are progenitor cells that proliferate and fuse to form the multinucleated syncytiotrophoblast layer, implicated in placental endocrine and transport functions. While membrane transporters play a critical role in the distribution of nutrients, hormones, and xenobiotics at the maternal-fetal interface, their selectivity to the syncytiotrophoblast layer is poorly characterized. We aimed to evaluate the regulation of placental transporters in response to trophoblast differentiation in vitro. Experiments were carried out in isolated primary human trophoblast cells before and after syncytialization. Gene expression of six molecular markers and thirty membrane transporters was investigated by qPCR analysis. Subsequently, functional expression was evaluated for proteins involved in the transplacental transfer of essential nutrients i.e., cholesterol (ABCA1, ABCG1), glucose (SLC2A1), leucine (SLC3A2, SLC7A5), and iron (transferrin receptor, TfR1). We identified that human chorionic gonadotropin, placental lactogen, endoglin, and cadherin-11 serve as optimal gene markers for the syncytialization process. We showed that trophoblast differentiation was associated with differential gene expression (mostly up-regulation) of several nutrient and drug transporters. Further, we revealed enhanced protein expression and activity of ABCG1, SLC3A2, SLC7A5, and TfR1 in syncytialized cells, with ABCA1 and GLUT1 displaying no change. Taken together, these results indicate that the syncytiotrophoblast has a dominant role in transporting essential nutrients cholesterol, leucine, and iron. Nonetheless, we present evidence that the cytotrophoblast cells may also be linked to transport functions that could be critical for the cell fusion processes. Our findings collectively yield new insights into the cellular functions associated with or altered by the trophoblast fusion. Importantly, defective syncytialization could lead to nutrient transfer imbalance, ultimately compromising fetal development and programming.
Collapse
Affiliation(s)
- Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jonas Zaugg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Sampada Kallol
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | | | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Eng ME, Bloise E, Matthews SG. Fetal glucocorticoid exposure leads to sex-specific changes in drug-transporter function at the blood-brain barrier in juvenile guinea pigs. FASEB J 2022; 36:e22245. [PMID: 35262963 PMCID: PMC9311705 DOI: 10.1096/fj.202101552rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
Antenatal synthetic glucocorticoids (sGCs) are a life‐saving treatment in managing pre‐term birth. However, off‐target effects of sGCs can impact blood‐brain barrier (BBB) drug transporters essential for fetal brain protection, including P‐glycoprotein (P‐gp/Abcb1) and breast cancer resistance protein (BCRP/Abcg2). We hypothesized that maternal antenatal sGC treatment modifies BBB function in juvenile offspring in a sex‐dependent manner. Thus, the objective of this study was to determine the long‐term impact of a single or multiple courses of betamethasone on P‐gp/Abcb1 and BCRP/Abcg2 expression and function at the BBB. Pregnant guinea pigs (N = 42) received 3 courses (gestation days (GDs) 40, 50, and 60) or a single course (GD50) of betamethasone (1 mg/kg) or vehicle (saline). Cerebral microvessels and brain endothelial cells (BEC) were collected from the post‐natal day (PND) 14 offspring to measure protein, gene expression, and function of the drug transporters P‐gp/Abcb1 and BCRP/Abcg2. P‐gp protein expression was decreased (p < .05) in microvessels from male offspring that had been exposed to multiple courses and a single course of sGC, in utero. Multiple courses of sGC resulted in a significant decrease in P‐gp function in BECs from males (p < .05), but not females. There was a very strong trend for increased P‐gp function in males compared to females (p = .055). Reduced P‐gp expression and function at the BBB of young male offspring following multiple prenatal sGC exposures, is clinically relevant as many drugs administered postnatally are P‐gp substrates. These novel sex differences in drug transporter function may underlie potential sexual dimorphism in drug sensitivity and toxicity in the newborn and juvenile brain.
Collapse
Affiliation(s)
- Margaret Elizabeth Eng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Human Placental Intracellular Cholesterol Transport: A Focus on Lysosomal and Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11030500. [PMID: 35326150 PMCID: PMC8944475 DOI: 10.3390/antiox11030500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
The placenta participates in cholesterol biosynthesis and metabolism and regulates exchange between the maternal and fetal compartments. The fetus has high cholesterol requirements, and it is taken up and synthesized at elevated rates during pregnancy. In placental cells, the major source of cholesterol is the internalization of lipoprotein particles from maternal circulation by mechanisms that are not fully understood. As in hepatocytes, syncytiotrophoblast uptake of lipoprotein cholesterol involves lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI). Efflux outside the cells requires proteins such as the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. However, mechanisms associated with intracellular traffic of cholesterol in syncytiotrophoblasts are mostly unknown. In hepatocytes, uptaken cholesterol is transported to acidic late endosomes (LE) and lysosomes (LY). Proteins such as Niemann–Pick type C 1 (NPC1), NPC2, and StAR related lipid transfer domain containing 3 (STARD3) are required for cholesterol exit from the LE/LY. These proteins transfer cholesterol from the lumen of the LE/LY into the LE/LY-limiting membrane and then export it to the endoplasmic reticulum, mitochondria, or plasma membrane. Although the production, metabolism, and transport of cholesterol in placental cells are well explored, there is little information on the role of proteins related to intracellular cholesterol traffic in placental cells during physiological or pathological pregnancies. Such studies would be relevant for understanding fetal and placental cholesterol management. Oxidative stress, induced by generating excess reactive oxygen species (ROS), plays a critical role in regulating various cellular and biological functions and has emerged as a critical common mechanism after lysosomal and mitochondrial dysfunction. This review discusses the role of cholesterol, lysosomal and mitochondrial dysfunction, and ROS in the development and progression of hypercholesterolemic pregnancies.
Collapse
|
24
|
Janowska-Sejda EI, Adeleye Y, Currie RA. Exploration of the DARTable Genome- a Resource Enabling Data-Driven NAMs for Developmental and Reproductive Toxicity Prediction. FRONTIERS IN TOXICOLOGY 2022; 3:806311. [PMID: 35295108 PMCID: PMC8915813 DOI: 10.3389/ftox.2021.806311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
The identification of developmental and reproductive toxicity (DART) is a critical component of toxicological evaluations of chemical safety. Adverse Outcome Pathways (AOPs) provide a framework to describe biological processes leading to a toxic effect and can provide insights in understanding the mechanisms underlying toxicological endpoints and aid the development of new approach methods (NAMs). Integrated approaches to testing and assessment (IATA) can be developed based on AOP knowledge and can serve as pragmatic approaches to chemical hazard characterization using NAMs. However, DART effects remain difficult to predict given the diversity of biological mechanisms operating during ontogenesis and consequently, the considerable number of potential molecular initiating events (MIEs) that might trigger a DART Adverse Outcome (DART AO). Consequently, two challenges that need to be overcome to create an AOP-based DART IATA are having sufficient knowledge of relevant biology and using this knowledge to determine the appropriate selection of cell systems that provide sufficient coverage of that biology. The wealth of modern biological and bioinformatics data can be used to provide this knowledge. Here we demonstrate the utility of bioinformatics analyses to address these questions. We integrated known DART MIEs with gene-developmental phenotype information to curate the hypothetical human DARTable genome (HDG, ∼5 k genes) which represents the comprehensive set of biomarkers for DART. Using network analysis of the human interactome, we show that HDG genes have distinct connectivity compared to other genes. HDG genes have higher node degree with lower neighborhood connectivity, betweenness centralities and average shortest path length. Therefore, HDG is highly connected to itself and to the wider network and not only to their local community. Also, by comparison with the Druggable Genome we show how the HDG can be prioritized to identify potential MIEs based on potential to interact with small molecules. We demonstrate how the HDG in combination with gene expression data can be used to select a panel of relevant cell lines (RD-1, OVCAR-3) for inclusion in an IATA and conclude that bioinformatic analyses can provide the necessary insights and serve as a resource for the development of a screening panel for a DART IATA.
Collapse
|
25
|
Wang C, Ma D, Hua Y, Duan H. Modulation of Placental Breast Cancer Resistance Protein by HDAC1 in Mice: Implications for Optimization of Pharmacotherapy During Pregnancy. Reprod Sci 2021; 28:3540-3546. [PMID: 34668144 PMCID: PMC8580892 DOI: 10.1007/s43032-021-00773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/09/2021] [Indexed: 11/28/2022]
Abstract
Breast cancer resistance protein (BCRP/ABCG2) is a critical drug efflux transporters by limiting drugs’ transplacental transfer rates. More investigations on the regulation of placental BCRP offer great promise for enabling pronounced progress in individualized and safe pharmacotherapy during pregnancy. Histone deacetylases (HDACs) play an important role in epigenetic regulation of placental genes. It was reported recently by us that HDAC1 was involved in placental BCRP regulation in vitro. The aim of this study was to further explore the effect of HDAC1 on placental BCRP expression and functionality in animals. Randomly assigned C57BL pregnant dams received intraperitoneal injections of a negative control siRNA or Hdac1 siRNA from embryonic day 7.5 (E7.5) to E15.5, respectively. At E16.5, glyburide (GLB), a probe for evaluating placental BCRP efflux functionality, was injected via the tail vein. Animals were sacrificed through cervical dislocation at various times (5–180 min) after drug administration. The maternal blood, placentas, and fetal-units were collected. GLB concentrations were determined by a validated high-performance liquid chromatography/mass spectrometry (HPLC-MS) assay. Real-time quantitative PCR (qRT-PCR), Western blot, and immunohistochemical (IHC) analysis were employed to identify mRNA/protein levels and localization of gene expressions, respectively. It was noted that Hdac1 inhibition significantly decreased placental Bcrp expression, with markedly increases of GLB concentrations and area under the concentration-time curve (AUC) in fetal-units. Particularly, the ratios of fetal-unit/maternal plasma GLB concentrations were also significantly elevated following Hdac1 repression. Taken together, these findings suggested that HDAC1 was involved in positive regulation of placental BCRP expression and functionality in vivo.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, RenminNanLu Road, Chengdu, 610041, Sichuan, China
- Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Ma
- Department of Pediatric Rehabilitation, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yimin Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, RenminNanLu Road, Chengdu, 610041, Sichuan, China
- Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, RenminNanLu Road, Chengdu, 610041, Sichuan, China.
- Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
26
|
Strachowska M, Gronkowska K, Michlewska S, Robaszkiewicz A. CBP/p300 Bromodomain Inhibitor-I-CBP112 Declines Transcription of the Key ABC Transporters and Sensitizes Cancer Cells to Chemotherapy Drugs. Cancers (Basel) 2021; 13:cancers13184614. [PMID: 34572840 PMCID: PMC8467251 DOI: 10.3390/cancers13184614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Despite tremendous advances in cancer treatment, chemotherapy remains the first-line choice in many tumor types. The action of numerous chemotherapy drugs is limited by the occurrence of ABC proteins in cancer cell membranes, which remove medicines from cell compartments. In this paper, we show that one of bromodomain inhibitors, namely I-CBP112, was capable of repressing genes that are responsible for multidrug resistance in all three studied cancer cell lines. CBP/p300 bromodomain inhibitor allows for the higher drug accumulation inside cells and considerably potentiated drug effects. At the molecular level, I-CBP112 caused rearrangement of chromatin at the ABC gene promoters by inducing recruitment of LSD1, which removes transcription-promoting histone marks. I-CBP112 emerges as a promising compound to overcome ABC-dependent cancer drug resistance. Abstract The high expression of some ATP-binding cassette (ABC) transporters is linked to multidrug resistance in cancer cells. We aimed to determine if I-CBP112, which is a CBP/p300 bromodomain inhibitor, altered the vulnerability of the MDA-MB-231 cell line to chemotherapy drugs, which are used in neoadjuvant therapy in patients with triple negative breast cancer (TNBC). MDA-MB-231 cells represent TNBC, which is negative for the expression of estrogen and progesterone receptors and HER2 protein. An I-CBP112-induced decrease in the expression of all the studied ABCs in the breast, but also in the lung (A549), and hepatic (HepG2) cancer cell lines was associated with increased accumulation of doxorubicin, daunorubicin, and methotrexate inside the cells as well as with considerable cell sensitization to a wide range of chemotherapeutics. Gene promoters repressed by I-CBP112 in MDA-MB-231 cells, such as ABCC1 and ABCC10, were characterized by enhanced nucleosome acetylation and, simultaneously, by considerably lower trimethylation in the transcription-promoting form of H3K4me3. The CBP/p300 bromodomain inhibitor induced the recruitment of LSD1 to the gene promoters. The inhibition of this demethylase in the presence of I-CBP112 prevented the repression of ABCC1 and ABCC10 and, to a considerable extent, cancer cells’ sensitization to drugs. In conclusion, the CBP/p300 bromodomain inhibitor I-CBP112 can be considered as a potent anti-multidrug-resistance agent, capable of repressing key ABC transporters responsible for drug efflux in various cancer types.
Collapse
Affiliation(s)
- Magdalena Strachowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.S.); (K.G.)
| | - Karolina Gronkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.S.); (K.G.)
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.S.); (K.G.)
- Correspondence: ; Tel.: +4-84-2635-4144
| |
Collapse
|
27
|
Elcombe CS, Monteiro A, Ghasemzadeh-Hasankolaei M, Evans NP, Bellingham M. Morphological and transcriptomic alterations in neonatal lamb testes following developmental exposure to low-level environmental chemical mixture. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103670. [PMID: 33964400 PMCID: PMC8316325 DOI: 10.1016/j.etap.2021.103670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 05/29/2023]
Abstract
Exposure to anthropogenic environmental chemical mixtures could be contributing to the decline in male reproductive health. This study used the biosolid treated pasture (BTP) sheep model to assess the effects of exposure to low-dose chemical mixtures. Maternal BTP exposure was associated with lower plasma testosterone concentrations, a greater proportion of Sertoli cell-only seminiferous tubules, and fewer gonocytes in the testes of neonatal offspring. Transcriptome analysis highlighted changes in testicular mTOR signalling, including lower expression of two mTOR complex components. Transcriptomic hierarchical analysis relative to the phenotypic severity demonstrated distinct differential responses to maternal BTP exposure during pregnancy. Transcriptome analysis between phenotypically normal and abnormal BTP lambs demonstrated separate responses within the cAMP and PI3K signalling pathways towards CREB. Together, the results provide a potential mechanistic explanation for adverse effects. Exposure could lower gonocyte numbers through mTOR mediated autophagy, but CREB mediated survival factors may act to increase germ cell survival.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
28
|
Reginatto MW, Fontes KN, Monteiro VRS, Silva NL, Andrade CBV, Gomes HR, Imperio GE, Bloise FF, Kluck GEG, Atella GC, Matthews SG, Bloise E, Ortiga-Carvalho TM. Effect of Sublethal Prenatal Endotoxaemia on Murine Placental Transport Systems and Lipid Homeostasis. Front Microbiol 2021; 12:706499. [PMID: 34394055 PMCID: PMC8363225 DOI: 10.3389/fmicb.2021.706499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Infection alters the expression of transporters that mediate the placental exchange of xenobiotics, lipids and cytokines. We hypothesized that lipopolysaccharide (LPS) modifies the expression of placental transport systems and lipid homeostasis. LPS (150 μg/kg; i.p.) treatments were administered for 4 h or 24 h, animals were euthanized at gestational days (GD) 15.5 or 18.5, and maternal blood, fetuses and placentae were collected. Increased rates of fetal demise were observed at GD15.5 following LPS treatment, whereas at GD18.5, high rates of early labour occurred and were associated with distinct proinflammatory responses. Lipopolysaccharide did not alter ATP-binding cassette (ABC) transporter mRNA expression but decreased fatty acid binding protein associated with plasma membrane (Fabppm) at GD15.5 (LPS-4 h) and increased fatty acid translocase (Fat/Cd36) mRNA at GD18.5 (LPS-4 h). At the protein level, breast cancer-related protein (Bcrp) and ABC sub-family G member 1 (Abcg1) levels were decreased in the placental labyrinth zone (Lz) at GD15.5, whereas P-glycoprotein (P-gp) and Bcrp Lz-immunostaining was decreased at GD18.5. In the placental junctional zone (Jz), P-gp, Bcrp and Abcg1 levels were higher at GD18.5. Specific maternal plasma and placental changes in triacylglycerol, free fatty acid, cholesterol, cholesterol ester and monoacylglycerol levels were detected in a gestational age-dependent manner. In conclusion, LPS-increased risk of fetal death and early labour were associated with altered placental ABC and lipid transporter expression and deranged maternal plasma and placental lipid homeostasis. These changes may potentially modify fetal xenobiotic exposure and placental lipid exchange in cases of bacterial infection.
Collapse
Affiliation(s)
- Mila W Reginatto
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Klaus Novaes Fontes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victoria R S Monteiro
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia L Silva
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cherley Borba Vieira Andrade
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hanailly Ribeiro Gomes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guinever E Imperio
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute of Medical, Sinai Health System, Toronto, ON, Canada
| | - Flavia Fonseca Bloise
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George Eduardo Gabriel Kluck
- Laboratory of Lipids and Lipoproteins Biochemistry, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipids and Lipoproteins Biochemistry, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephen G Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute of Medical, Sinai Health System, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tania M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Bloise E, Braga JRS, Andrade CBV, Imperio GE, Martinelli LM, Antunes RA, Silva KR, Nunes CB, Cobellis L, Bloise FF, Matthews SG, Connor KL, Ortiga-Carvalho TM. Altered Umbilical Cord Blood Nutrient Levels, Placental Cell Turnover and Transporter Expression in Human Term Pregnancies Conceived by Intracytoplasmic Sperm Injection (ICSI). Nutrients 2021; 13:nu13082587. [PMID: 34444747 PMCID: PMC8399441 DOI: 10.3390/nu13082587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Assisted reproductive technologies (ART) may increase risk for abnormal placental development, preterm delivery and low birthweight. We investigated placental morphology, transporter expression and paired maternal/umbilical fasting blood nutrient levels in human term pregnancies conceived naturally (n = 10) or by intracytoplasmic sperm injection (ICSI; n = 11). Maternal and umbilical vein blood from singleton term (>37 weeks) C-section pregnancies were assessed for levels of free amino acids, glucose, free fatty acids (FFA), cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), very low-density lipoprotein (VLDL) and triglycerides. We quantified placental expression of GLUT1 (glucose), SNAT2 (amino acids), P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) (drug) transporters, and placental morphology and pathology. Following ICSI, placental SNAT2 protein expression was downregulated and umbilical cord blood levels of citrulline were increased, while FFA levels were decreased at term (p < 0.05). Placental proliferation and apoptotic rates were increased in ICSI placentae (p < 0.05). No changes in maternal blood nutrient levels, placental GLUT1, P-gp and BCRP expression, or placental histopathology were observed. In term pregnancies, ICSI impairs placental SNAT2 transporter expression and cell turnover, and alters umbilical vein levels of specific nutrients without changing placental morphology. These may represent mechanisms through which ICSI impacts pregnancy outcomes and programs disease risk trajectories in offspring across the life course.
Collapse
Affiliation(s)
- Enrrico Bloise
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-910, Brazil
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Jair R S Braga
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Maternidade Escola, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 22240-000, Brazil
| | - Cherley B V Andrade
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Guinever E Imperio
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Lilian M Martinelli
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-910, Brazil
| | - Roberto A Antunes
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Maternidade Escola, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 22240-000, Brazil
- Fertipraxis-Centro de Reprodução Humana, Rio de Janeiro, RJ 22640-902, Brazil
| | - Karina R Silva
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Cristiana B Nunes
- Departamento de Anatomia Patológica e Medicina Legal, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30130-100, Brazil
| | - Luigi Cobellis
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Napoli, Italy
| | - Flavia F Bloise
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Kristin L Connor
- Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Tania M Ortiga-Carvalho
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
30
|
The P2X7 Receptor in the Maintenance of Cancer Stem Cells, Chemoresistance and Metastasis. Stem Cell Rev Rep 2021; 16:288-300. [PMID: 31813120 DOI: 10.1007/s12015-019-09936-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis is the worst prognosis predictor in the clinical course of cancer development. Features of metastatic cancer cells include migratory ability, low degree of differentiation, self-renewal and proliferation potentials, as well as resistance to therapies. Metastatic cells do not present all of the necessary characteristics at once. Indeed, they have a unique phenotypic plasticity, allowing the acquisition of features that make them successful in all steps of metastasis. Cancer stem cells (CSC), the most undifferentiated cells in the tumor mass, display highest metastatic potential and resistance to radio- and chemotherapy. Growing tumors exhibit marked upregulation of P2X7 receptor expression and secrete ATP. Since the P2X7 receptor plays an important role in the maintenance of undifferentiated state of pluripotent cells, its importance on cell fate regulation in the tumor mass is suggested. Considering the extensive crosstalk between CSCs, epithelial-mesenchymal transition, drug resistance and metastasis, current knowledge implicating P2X7 receptor function in these phenomena and new avenues for therapeutic strategies to control metastasis are reviewed.
Collapse
|
31
|
Andrade CBV, Monteiro VRDS, Coelho SVA, Gomes HR, Sousa RPC, Nascimento VMDO, Bloise FF, Matthews SG, Bloise E, Arruda LB, Ortiga-Carvalho TM. ZIKV Disrupts Placental Ultrastructure and Drug Transporter Expression in Mice. Front Immunol 2021; 12:680246. [PMID: 34093581 PMCID: PMC8176859 DOI: 10.3389/fimmu.2021.680246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Congenital Zika virus (ZIKV) infection can induce fetal brain abnormalities. Here, we investigated whether maternal ZIKV infection affects placental physiology and metabolic transport potential and impacts the fetal outcome, regardless of viral presence in the fetus at term. Low (103 PFU-ZIKVPE243; low ZIKV) and high (5x107 PFU-ZIKVPE243; high ZIKV) virus titers were injected into immunocompetent (ICompetent C57BL/6) and immunocompromised (ICompromised A129) mice at gestational day (GD) 12.5 for tissue collection at GD18.5 (term). High ZIKV elicited fetal death rates of 66% and 100%, whereas low ZIKV induced fetal death rates of 0% and 60% in C57BL/6 and A129 dams, respectively. All surviving fetuses exhibited intrauterine growth restriction (IUGR) and decreased placental efficiency. High-ZIKV infection in C57BL/6 and A129 mice resulted in virus detection in maternal spleens and placenta, but only A129 fetuses presented virus RNA in the brain. Nevertheless, pregnancies in both strains produced fetuses with decreased head sizes (p<0.05). Low-ZIKV-A129 dams had higher IL-6 and CXCL1 levels (p<0.05), and their placentas showed increased CCL-2 and CXCL-1 contents (p<0.05). In contrast, low-ZIKV-C57BL/6 dams had an elevated CCL2 serum level and increased type I and II IFN expression in the placenta. Notably, less abundant microvilli and mitochondrial degeneration were evidenced in the placental labyrinth zone (Lz) of ICompromised and high-ZIKV-ICompetent mice but not in low-ZIKV-C57BL/6 mice. In addition, decreased placental expression of the drug transporters P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) and the lipid transporter Abca1 was detected in all ZIKV-infected groups, but Bcrp and Abca1 were only reduced in ICompromised and high-ZIKV ICompetent mice. Our data indicate that gestational ZIKV infection triggers specific proinflammatory responses and affects placental turnover and transporter expression in a manner dependent on virus concentration and maternal immune status. Placental damage may impair proper fetal-maternal exchange function and fetal growth/survival, likely contributing to congenital Zika syndrome.
Collapse
Affiliation(s)
| | | | | | - Hanailly Ribeiro Gomes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronny Paiva Campos Sousa
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Flavia Fonseca Bloise
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephen Giles Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Enrrico Bloise
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Barros Arruda
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
32
|
Jee B, Dhar R, Singh S, Karmakar S. Heat Shock Proteins and Their Role in Pregnancy: Redefining the Function of "Old Rum in a New Bottle". Front Cell Dev Biol 2021; 9:648463. [PMID: 33996811 PMCID: PMC8116900 DOI: 10.3389/fcell.2021.648463] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Pregnancy in humans is a multi-step complex physiological process comprising three discrete events, decidualization, implantation and placentation. Its overall success depends on the incremental advantage that each of the preceding stages passes on to the next. The success of these synchronized sequels of events is an outcome of timely coordination between them. The pregnancy events are coordinated and governed primarily by the ovarian steroid hormones, estrogen and progesterone, which are essentially ligand-activated transcription factors. It's well known that intercellular signaling of steroid hormones engages a plethora of adapter proteins that participate in executing the biological functions. This involves binding of the hormone receptor complex to the DNA response elements in a sequence specific manner. Working with Drosophila melanogaster, the heat shock proteins (HSPs) were originally described by Ferruccio Ritossa back in the early 1960s. Over the years, there has been considerable advancement of our understanding of these conserved families of proteins, particularly in pregnancy. Accumulating evidence suggests that endometrial and uterine cells have an abundance of HSP27, HSP60, HSP70 and HSP90, implying their possible involvement during the pregnancy process. HSPs have been found to be associated with decidualization, implantation and placentation, with their dysregulation associated with implantation failure, pregnancy loss and other feto-maternal complications. Furthermore, HSP is also associated with stress response, specifically in modulating the ER stress, a critical determinant for reproductive success. Recent advances suggest a therapeutic role of HSPs proteins in improving the pregnancy outcome. In this review, we summarized our latest understanding of the role of different members of the HSP families during pregnancy and associated complications based on experimental and clinical evidences, thereby redefining and exploring their novel function with new perspective, beyond their prototype role as molecular chaperones.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
33
|
Wang X, Chen P, Zhao L, Zhu L, Wu F. Transplacental Behaviors of Organophosphate Tri- and Diesters Based on Paired Human Maternal and Cord Whole Blood: Efficiencies and Impact Factors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3091-3100. [PMID: 33397100 DOI: 10.1021/acs.est.0c06095] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organophosphate tri- and diesters (tri-OPEs and di-OPEs) were quantified in 63 paired maternal and cord whole blood samples collected in Hubei, China, in which tri-o-cresyl phosphate (ToCP) was predominant. The transplacental transfer efficiencies (expressed as cord blood to maternal blood (C:M) concentration ratios) of aryl-tri-OPEs, such as ToCP (1.61) and triphenyl phosphate (TPHP) (1.06), were higher than those of alkyl-tri-OPEs (0.66-0.76). For the target tri-OPEs and some traditional organic compounds, the C:M ratios first increased with log Kow in the range of 1.63-5.23 and then decreased, showing a parabolic relationship. However, ToCP, with a log Kow of 6.34, deviated from this relationship and displayed the highest C:M ratio (1.61). Molecular docking indicated a very strong binding affinity between ToCP and transthyretin, suggesting that ToCP might be actively transported by transthyretin in the placenta. The di-OPE levels in the blood samples were significantly lower than the corresponding tri-OPE levels, and those in the cord blood were influenced not only by their transplacental behaviors but also by their low excretion rates and the metabolic characteristics of their parent compounds in the fetus. This study provides useful information for accurately assessing the health risks posed by tri-OPEs to pregnant women and fetuses.
Collapse
Affiliation(s)
- Xiaolei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Pengyu Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| |
Collapse
|
34
|
Walker MT, Ferrie RP, Hoji A, Schroeder-Carter LM, Cohen JD, Schnaar RL, Cook-Mills JM. β-Glucosylceramide From Allergic Mothers Enhances Offspring Responsiveness to Allergen. FRONTIERS IN ALLERGY 2021; 2. [PMID: 34368802 PMCID: PMC8345025 DOI: 10.3389/falgy.2021.647134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In animals and humans, offspring of allergic mothers have increased responsiveness to allergen and the allergen-specificity of the offspring can be different than that of the mother. In our preclinical models, the mother's allergic responses influence development of the fetus and offspring by elevating numbers of cells in dendritic cell subsets. A major question is the identity of maternal factors of allergic mothers that alter offspring development of responsiveness to allergen. Lipids are altered during allergic responses and lipids are transported to the fetus for growth and formation of fetal membranes. We hypothesized that pro-inflammatory lipids, that are elevated in allergic mothers, are transported to the fetus and regulate fetal immune development. We demonstrate in this report that there was a significant 2-fold increase in β-glucosylceramides (βGlcCer) in allergic mothers, the fetal liver and her offspring. The βGlcCer were transported from mother's plasma, across the placenta, to the fetus and in breastmilk to the offspring. Administration of βGlcCer to non-allergic mothers was sufficient for offspring responses to allergen. Importantly, maternal administration of a clinically relevant pharmacological inhibitor of βGlcCer synthase returned βGlcCer to normal levels in the allergic mothers and her offspring and blocked the offspring increase in dendritic cell subsets and offspring allergen responsiveness. In summary, allergic mothers had increased βGlcCer that was transported to offspring and mediated increases in offspring DCs and responsiveness to allergen. These data have a significant impact on our understanding of mechanisms for development of allergies in offspring of allergic mothers and have the potential to lead to novel interventions that significantly impact risk for allergic disease early in life.
Collapse
Affiliation(s)
- Matthew T Walker
- Allergy/Immunology Division, Northwestern University School of Medicine, Chicago, IL, United States
| | - Ryan P Ferrie
- Allergy/Immunology Division, Northwestern University School of Medicine, Chicago, IL, United States
| | - Aki Hoji
- Departments of Pediatrics and Microbiology and Immunology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lindsay M Schroeder-Carter
- Departments of Pediatrics and Microbiology and Immunology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jacob D Cohen
- Departments of Pediatrics and Microbiology and Immunology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ronald L Schnaar
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joan M Cook-Mills
- Departments of Pediatrics and Microbiology and Immunology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
35
|
Eustaquio Do Imperio G, Lye P, Bloise E, Matthews SG. Function of Multidrug Resistance Transporters is Disrupted by Infection Mimics in Human Brain Endothelial Cells. Tissue Barriers 2021; 9:1860616. [PMID: 33427563 PMCID: PMC8078541 DOI: 10.1080/21688370.2020.1860616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) modulate the distribution of drugs and toxins across the blood-brain barrier (BBB). Animal studies reported that infection-induced disruption of these transporters in the developing BBB impairs fetal brain protection. However, the impact of infection mimics on P-gp/BCRP function in human brain endothelium is less well understood. We hypothesized that Toll-like receptor ligands mimicking bacterial and viral infection would modify the expression and function of P-gp and BCRP in human brain endothelial cells (BECs). Human cerebral microvascular endothelial cells (hCMEC/D3) were challenged with bacterial [Lipopolysaccharide (LPS)] and viral-mimics [polyinosinic:polycytidylic acid (PolyI:C) or single-stranded RNA (ssRNA)], or pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α and interferon gamma (IFN)-ɣ. P-gp and BCRP function was assessed after 4 or 24 h, using Calcein-AM and Chlorin-6 assays, respectively. Western blot and qPCR quantified P-gp/ABCB1 and BCRP/ABCG2 expression following treatments. Infection mimics are potent modulators of drug transporters in human BECs in vitro. LPS and PolyI:C increased, while ssRNA exposure reduced P-gp activity. In contrast, LPS and PolyI:C decreased, while ssRNA increased BCRP activity (P < .05). There was little correlation between drug transporter function, gene expression and total protein level. Altered plasma membrane BCRP may suggest modified intracellular trafficking induced by infection in human BECs. Bacterial and viral infection mimics modify P-gp and BCRP transport function in human BECs, in vitro. This knowledge may contribute and have important implications for human brain protection and possible altered biodistribution of drugs and xenobiotics in the brain following exposure to TLR agonists.
Collapse
Affiliation(s)
| | - Phetcharawan Lye
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G Matthews
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Elucidation of underlying molecular mechanism of 5-Fluorouracil chemoresistance and its restoration using fish oil in experimental colon carcinoma. Mol Cell Biochem 2021; 476:1517-1527. [PMID: 33392922 DOI: 10.1007/s11010-020-03999-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Latest strategies for cancer treatment primarily focus on the use of chemosensitizers to enhance therapeutic outcome. N-3 PUFAs have emerged as the strongest candidate for the prevention of colorectal cancer (CRC). Our previous studies have demonstrated that fish oil (FO) rich in n-3 PUFAs not only increased therapeutic potential of 5-Fluorouracil(5-FU) in colon cancer but also ameliorated its toxicity. Henceforth, the present study is designed to elucidate mechanistic insights of FO as a chemosensitizer to circumvent drug resistance in experimental colon carcinoma. The colon cancer was induced by 1,2-dimethylhydrazine(DMH)/dextran sulfate sodium(DSS) in male Balb/c mice and these animals were treated with 5-FU(12.5 mg/kg b.w.), FO(0.2 ml), or 5-FU + FO(12.5 mg/kg b.w + 0.2 ml) orally for 14 days. The molecular mechanism of overcoming 5-FU resistance using FO in colon cancer was delineated by estimating expression of cancer stem cell markers using flowcytometric method and drug transporters by immunohistochemistry and immunoblotting. Additionally, distribution profile of 5-FU and its cytotoxic metabolite, 5-FdUMP at target(colon), and non-target sites (serum, kidney, liver, spleen) was assessed using high-performance liquid chromatography(HPLC) method. The observations revealed that expression of CSCs markers was remarkably reduced after using fish oil along with 5-FU in carcinogen-treated animals. Interestingly, the use of FO alongwith 5-FU also significantly declined the expression of drug transporters (ABCB1,ABCC5) and consequently resulted in an increased cellular uptake of 5-FU and its metabolite, 5-FdUMP at target site (colon). It could be possibly associated with change in permeability of cell membrane owing to the alteration in membrane fluidity. The present study revealed the mechanistic insights of FO as a MDR revertant which successfully restored 5-FU-mediated chemoresistance in experimental colon carcinoma.
Collapse
|
37
|
Tsushima H, Yamada K, Miyazawa D, Ohkubo T, Michikawa M, Abe-Dohmae S. Comparison of the Physical Characteristics and Behavior in ABC Transporter A1, A7 or Apolipoprotein E Knockout Mice with Lipid Transport Dysfunction. Biol Pharm Bull 2021; 44:1851-1859. [PMID: 34853267 DOI: 10.1248/bpb.b21-00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physical characteristics and behavior of the ATP-binding cassette (ABC) A1, A7, and apolipoprotein (apo) E knockout (KO) mice with lipid transport dysfunction were investigated. These KO mice exhibited adequate growth, and their body masses increased steadily. No remarkable changes were observed in their blood pressure and heart rate. However, there was a slight increase in the heart rate of the ABCA7 KO mice compared with that of the wild-type (WT) mice. ABCA1 and apoE KO mice showed hypo- and hyper-cholesterol concentrations in the plasma, respectively. With regard to the cerebrum, however, the weight of the ABCA1 KO mice was lighter than those of the other genotypes. Furthermore, the cholesterol, triglyceride and phospholipid concentrations, and fatty acid composition were generally similar. Compared with the WT mice, ABCA1 KO mice stayed for a shorter time in the closed arm of the elevated plus maze, and performed worse in the initial stage of the Morris water maze. To thermal stimuli, the ABCA1 and apoE KO mice showed hyper- and hypo-sensitivities, respectively. Only the response of the ABCA1 KO mice was significantly inhibited by pretreatment with indomethacin. A low concentration of the prostaglandin E metabolites was detected in the plasma of the ABCA1 KO mice. Thus, ABCA1 is thought to play a specific role in the neural function.
Collapse
Affiliation(s)
- Hiromi Tsushima
- Laboratory of Pharmacology, College of Pharmacy, Kinjo Gakuin University
| | - Kazuyo Yamada
- Laboratory of Biochemistry, College of Pharmacy, Kinjo Gakuin University
| | - Daisuke Miyazawa
- Laboratory of Biochemistry, College of Pharmacy, Kinjo Gakuin University
| | - Takeshi Ohkubo
- Department of Health and Nutrition, Sendai Shirayuri Women's College
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences
| | - Sumiko Abe-Dohmae
- Department of Food and Nutritional Sciences, Bioscience and Biotechnology, Chubu University
| |
Collapse
|
38
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
39
|
Kumar R, Ferrie RP, Balmert LC, Kienzl M, Rifas-Shiman SL, Gold DR, Sordillo JE, Kleinman K, Camargo CA, Litonjua AA, Oken E, Cook-Mills JM. Associations of α- and γ-tocopherol during early life with lung function in childhood. J Allergy Clin Immunol 2020; 146:1349-1357.e3. [PMID: 32344059 PMCID: PMC7606217 DOI: 10.1016/j.jaci.2020.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/02/2020] [Accepted: 04/15/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Tocopherol isoforms may regulate child lung growth and spirometric measures. OBJECTIVE Our aim was to determine the extent to which plasma α-tocopherol (α-T) or γ-tocopherol (γ-T) isoform levels in early childhood or in utero are associated with childhood lung function. METHODS We included 622 participants in the Project Viva cohort who had lung function at a mid-childhood visit (age 6-10 years). Maternal and child tocopherol isoform levels were measured by HPLC at the second trimester and 3 years of age, respectively. Multivariable linear regression models (adjusted for mid-childhood body mass index z scores, maternal education, smoking in pregnancy, and prenatal particulate matter with diameter of <2.5 micrometers (PM2.5) particulate exposure) stratified by tertiles of child γ-T level were used to assess the association of α-T levels with FEV1 and forced vital capacity (FVC) percent predicted. Similarly, models stratified by child α-T tertile evaluated associations of γ-T levels with lung function. We performed similar analyses with maternal second trimester tocopherol isoform levels. RESULTS The median maternal second trimester α-T level was 63 μM (interquartile range = 47-82). The median early-childhood level was 25 μM (interquartile range = 20-33 μM). In the lowest tertile of early-childhood γ-T, children with a higher α-T level (per 10 μM) had a higher mid-childhood FEV1 percent predicted (β = 3.09; 95% CI = 0.58-5.59 and a higher FVC percent predicted (β = 2.77; 95% CI = 0.47-5.06). This protective association of α-T was lost at higher γ-T levels. We did not see any consistent associations of second trimester levels of either α-T or γ-T with mid-childhood FEV1 or FVC. CONCLUSION When γ-T levels were in the lowest tertile, a higher early-childhood α-T level was associated with better lung function at mid-childhood. Second trimester maternal plasma α-T concentration was 3-fold higher than in the adult nonpregnant female population.
Collapse
Affiliation(s)
- Rajesh Kumar
- Lurie Children's Hospital, Chicago, Ill; Northwestern University, Chicago, Ill
| | | | | | | | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Mass
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass; Channing Division of Network Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Mass
| | - Joanne E Sordillo
- Division of Chronic Disease Research across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Mass
| | - Ken Kleinman
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Mass
| | - Carlos A Camargo
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Mass; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, University of Rochester Medical Center, Rochester, NY
| | - Emily Oken
- Division of Chronic Disease Research across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Mass
| | - Joan M Cook-Mills
- Herman B. Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Ind.
| |
Collapse
|
40
|
Martinelli LM, Reginatto MW, Fontes KN, Andrade CBV, Monteiro VRS, Gomes HR, Almeida FRCL, Bloise FF, Matthews SG, Ortiga-Carvalho TM, Bloise E. Breast cancer resistance protein (Bcrp/Abcg2) is selectively modulated by lipopolysaccharide (LPS) in the mouse yolk sac. Reprod Toxicol 2020; 98:82-91. [PMID: 32916274 PMCID: PMC7772890 DOI: 10.1016/j.reprotox.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/06/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Bacterial infection alters placental ABC transporters expression. These transporters provide fetal protection against circulating xenobiotics and environmental toxins present in maternal blood. We hypothesized that lipopolysaccharide (LPS-bacterial mimic) alters the yolk sac morphology and expression of key ABC transporters in a gestational-age dependent manner. Yolk sac samples from C57BL/6 mice were obtained at gestational ages (GD) 15.5 and GD18.5, 4 or 24 h after LPS exposure (150ug/kg; n = 8/group). Samples underwent morphometrical, qPCR and immunohistochemistry analysis. The volumetric proportions of the histological components of the yolk sac did not change in response to LPS. LPS increased Abcg2 expression at GD15.5, after 4 h of treatment (p < 0.05). No changes in Abca1, Abcb1a/b, Abcg1, Glut1, Snat1, Il-1β, Ccl2 and Mif were observed. Il-6 and Cxcl1 were undetectable in the yolk sac throughout pregnancy. Abca1, breast cancer resistance protein (Bcrp, encoded by Abcg2) and P-glycoprotein (P-gp/ Abcb1a/b) were localized in the endodermal (uterine-facing) epithelium and to a lesser extent in the mesothelium (amnion-facing), whereas Abca1 was also localized to the endothelium of the yolk sac blood vessels. LPS increased the labeling area and intensity of Bcrp in the yolk sac's mesothelial cells at GD15.5 (4 h), whereas at GD18.5, the area of Bcrp labeling in the mesothelium (4 and 24 h) was decreased (p < 0.05). Bacterial infection has the potential to change yolk sac barrier function by affecting Bcrp and Abcg2 expression in a gestational-age dependent-manner. These changes may alter fetal exposure to xenobiotics and toxic substances present in the maternal circulation and in the uterine cavity.
Collapse
Affiliation(s)
- L M Martinelli
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - M W Reginatto
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - K N Fontes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - C B V Andrade
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - V R S Monteiro
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - H R Gomes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - F R C L Almeida
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - F F Bloise
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - S G Matthews
- Departments of Physiology,Obstetrics and Gynecology and Medicine, University of Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Ontario, Canada
| | - T M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - E Bloise
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| |
Collapse
|
41
|
Xu J, Lv G, Xu B, Jiang B. Overexpression of UBE2M through Wnt/β-Catenin signaling is associated with poor prognosis and chemotherapy resistance in colorectal cancer. Transl Cancer Res 2020; 9:5614-5625. [PMID: 35117925 PMCID: PMC8797438 DOI: 10.21037/tcr-20-2641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Background The expression of ubiquitin-conjugating enzyme E2 M (UBE2M) is elevated in colorectal carcinoma (CRC). However, the underlying mechanisms and effects of UBE2M on the prognosis and drug resistance in CRC have not been investigated. Methods CRC specimens and adjacent normal tissues were collected from 74 patients. The expression of UBE2M was measured by quantitative real-time polymerase chain reaction (PCR) and immunohistochemistry. Multivariable cox regression analysis was used to analyze the risk factors for overall survival in clinical CRC patients. Human colorectal cancer cell lines HCT116 and SW480 were transfected with specific UBE2M small interfering ribonucleic acid (siRNA) or plasmid to either suppress or increase the expression of UBE2M for in vitro experiments. Also, chemotherapy-resistant HCT116 and SW480 cells were established by being treated with increasingly higher concentrations of fluorouracil (5-FU) or oxaliplatin. XAV-939 was used as a wingless/integrated-beta-catenin (Wnt/β-catenin) signaling inhibitor. Results According to quantitative real-time PCR and immunohistochemistry, the expression of UBE2M was elevated in CRC tissues compared to normal tissues. Based on cox regression analysis, the overexpression of UBE2M was a risk factor for overall survival of CRC patients. The expression of UBE2M was notably high in 5-FU- and oxaliplatin-resistant cells in in vitro experiments. Also, cells transfected with specific UBE2M siRNA or plasmid induced lower resistance to 5-FU and higher resistance to oxaliplatin. Finally, the expression of β-catenin was correlated with the expression of UBE2M in transfected cells and treatment with XAV939 decreased the degree of drug resistance in chemotherapy-resistant HCT116 cells. Conclusions Overexpression of UBE2M in CRC specimens contributes to a decreased overall survival of patients and mediates 5-FU and oxaliplatin resistance in CRC cells via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jianmin Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Guoqiang Lv
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Binghua Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bin Jiang
- Department of Gastrointestinal Surgery, Xinghua People's Hospital, Xinghua, China
| |
Collapse
|
42
|
Martinelli LM, Fontes KN, Reginatto MW, Andrade CBV, Monteiro VRS, Gomes HR, Silva-Filho JL, Pinheiro AAS, Vago AR, Almeida FRCL, Bloise FF, Matthews SG, Ortiga-Carvalho TM, Bloise E. Malaria in pregnancy regulates P-glycoprotein (P-gp/Abcb1a) and ABCA1 efflux transporters in the Mouse Visceral Yolk Sac. J Cell Mol Med 2020; 24:10636-10647. [PMID: 32779889 PMCID: PMC7521277 DOI: 10.1111/jcmm.15682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Malaria in pregnancy (MiP) induces intrauterine growth restriction (IUGR) and preterm labour (PTL). However, its effects on yolk sac morphology and function are largely unexplored. We hypothesized that MiP modifies yolk sac morphology and efflux transport potential by modulating ABC efflux transporters. C57BL/6 mice injected with Plasmodium berghei ANKA (5 × 105 infected erythrocytes) at gestational day (GD) 13.5 were subjected to yolk sac membrane harvesting at GD 18.5 for histology, qPCR and immunohistochemistry. MiP did not alter the volumetric proportion of the yolk sac's histological components. However, it increased levels of Abcb1a mRNA (encoding P‐glycoprotein) and macrophage migration inhibitory factor (Mif chemokine), while decreasing Abcg1 (P < 0.05); without altering Abca1, Abcb1b, Abcg2, Snat1, Snat2, interleukin (Il)‐1β and C‐C Motif chemokine ligand 2 (Ccl2). Transcripts of Il‐6, chemokine (C‐X‐C motif) ligand 1 (Cxcl1), Glut1 and Snat4 were not detectible. ABCA1, ABCG1, breast cancer resistance protein (BCRP) and P‐gp were primarily immunolocalized to the cell membranes and cytoplasm of endodermic epithelium but also in the mesothelium and in the endothelium of mesodermic blood vessels. Intensity of P‐gp labelling was stronger in both endodermic epithelium and mesothelium, whereas ABCA1 labelling increased in the endothelium of the mesodermic blood vessels. The presence of ABC transporters in the yolk sac wall suggests that this fetal membrane acts as an important protective gestational barrier. Changes in ABCA1 and P‐gp in MiP may alter the biodistribution of toxic substances, xenobiotics, nutrients and immunological factors within the fetal compartment and participate in the pathogenesis of malaria‐induced IUGR and PTL.
Collapse
Affiliation(s)
- Lilian M Martinelli
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Klaus N Fontes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mila W Reginatto
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cherley B V Andrade
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victoria R S Monteiro
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hanailly R Gomes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joao L Silva-Filho
- Laboratory of Immunology and Biochemistry of Parasitic Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana A S Pinheiro
- Laboratory of Immunology and Biochemistry of Parasitic Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Annamaria R Vago
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda R C L Almeida
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flavia F Bloise
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Tania M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Enrrico Bloise
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
43
|
Björvang RD, Gennings C, Lin PI, Hussein G, Kiviranta H, Rantakokko P, Ruokojärvi P, Lindh CH, Damdimopoulou P, Bornehag CG. Persistent organic pollutants, pre-pregnancy use of combined oral contraceptives, age, and time-to-pregnancy in the SELMA cohort. Environ Health 2020; 19:67. [PMID: 32539770 PMCID: PMC7294652 DOI: 10.1186/s12940-020-00608-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND We are exposed to several chemicals such as persistent organic pollutants (POPs) in our everyday lives. Prior evidence has suggested that POPs may have adverse effects on reproductive function by disrupting hormone synthesis and metabolism. While there is age-related decline of fertility, the use of hormonal combined oral contraceptives (COCs) and its association to return of fertility remains controversial. The goal of this study is to investigate the association between exposure to POPs, both individually and as a mixture, and fecundability measured as time-to-pregnancy (TTP) according to pre-pregnancy use of COCs and age. METHODS Using the SELMA (Swedish Environmental Longitudinal Mother and Child, Allergy and Asthma) study, we have identified 818 pregnant women aged 18-43 years (mean 29 years) with data on how long they tried to get pregnant and what was their most recently used contraceptive method. These data were collected at enrollment to the study (median week 10 of pregnancy). Concentrations of 22 POPs and cotinine were analyzed in the blood samples collected at the same time as the questions on TTP and pre-pregnancy use of contraceptive. Analyses were done on the association between POPs exposure and TTP measured as continuous (months) and binary (infertile for those with TTP > 12 months). To study the chemicals individually, Cox regression and logistic regression were used to estimate fecundability ratios (FRs) and odds ratios (ORs), respectively. Weighted quantile sum (WQS) regression was used to investigate the chemicals as a mixture where chemicals of concern were identified above the 7.6% threshold of equal weights. To perform the subgroup analysis, we stratified the sample according to use of COCs as the most recent pre-pregnancy contraception method and age (< 29 years, and ≥ 29 years). The models were adjusted for parity, regularity of menses, maternal body mass index (BMI) and smoking status, and stratified as described above. RESULTS Prior to stratification, none of the POPs were associated with fecundability while increased exposure to HCB, PCB 74 and 118 had higher odds of infertility. Upon stratification, POP exposure was significantly associated with longer TTP in women aged ≥29 years who did not use COC. Specifically, PCBs 156, 180, 183, and 187 were associated with reduced fecundability while PCBs 99, 153, 156, 180, 183, and 187 had higher odds of infertility. As a mixture, we identified the chemicals of concern for a longer TTP include PCBs 118, 156, 183, and 187. Moreover, chemicals of concern identified with increased odds of infertility were PCB 74, 156, 183, 187, and transnonachlor. CONCLUSION Serum concentrations of selected POPs, both as individual chemicals and as a mixture, were significantly associated with lower fecundability and increased odds of infertility in women aged 29 years and above not using COC as their most recent pre-pregnancy contraceptive. Our findings suggest that pre-pregnancy use of oral contraceptive and age may modify the link between POPs and fecundability. The differences of specific chemicals in the individual analysis and as a mixture support the need to study combination effects of chemicals when evaluating reproductive outcomes.
Collapse
Affiliation(s)
- Richelle D. Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Unit of Toxicology Sciences, Swetox, Karolinska Institute, Södertälje, Sweden
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ping-I Lin
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Ghada Hussein
- Department of Obstetrics and Gynecology, Karlstad Central Hospital, Karlstad, Sweden
| | - Hannu Kiviranta
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Päivi Ruokojärvi
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Christian H. Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Unit of Toxicology Sciences, Swetox, Karolinska Institute, Södertälje, Sweden
| | - Carl-Gustaf Bornehag
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
44
|
Role of Wnt/ β-Catenin Signaling in the Chemoresistance Modulation of Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9390878. [PMID: 32258160 PMCID: PMC7109575 DOI: 10.1155/2020/9390878] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is a common malignancy with high morbidity and mortality worldwide. To date, chemotherapy plays an important role in the treatment of CRC patients. Multidrug resistance (MDR) is one of the major hurdles in chemotherapy for CRC, and the underlying mechanisms need to be explored. Studies have demonstrated that Wnt/β-catenin signaling plays a critical role in oncogenesis and tumor development, and its function in inhibiting apoptosis could facilitate tumor chemoresistance. Recent investigations have also suggested the regulatory effects of the Wnt/β-catenin signaling pathway in response to chemotherapeutic agents in CRC. Here, we particularly focus on reviewing the evidences suggesting the mechanisms of Wnt/β-catenin signaling in the chemoresistance modulation of colorectal cancer.
Collapse
|
45
|
Breast Cancer Resistance Protein (BCRP/ ABCG2) Inhibits Extra Villous Trophoblast Migration: The Impact of Bacterial and Viral Infection. Cells 2019; 8:cells8101150. [PMID: 31561453 PMCID: PMC6829363 DOI: 10.3390/cells8101150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
Extravillous trophoblasts (EVT) migration into the decidua is critical for establishing placental perfusion and when dysregulated, may lead to pre-eclampsia (PE) and intrauterine growth restriction (IUGR). The breast cancer resistance protein (BCRP; encoded by ABCG2) regulates the fusion of cytotrophoblasts into syncytiotrophoblasts and protects the fetus from maternally derived xenobiotics. Information about BCRP function in EVTs is limited, however placental exposure to bacterial/viral infection leads to BCRP downregulation in syncitiotrophoblasts. We hypothesized that BCRP is involved in the regulation of EVT function and is modulated by infection/inflammation. We report that besides syncitiotrophoblasts and cytotrophoblasts, BCRP is also expressed in EVTs. BCRP inhibits EVT cell migration in HTR8/SVneo (human EVT-like) cells and in human EVT explant cultures, while not affecting cell proliferation. We have also shown that bacterial-lipopolysaccharide (LPS)-and viral antigens-single stranded RNA (ssRNA)-have a profound effect in downregulating ABCG2 and BCRP levels, whilst simultaneously increasing the migration potential of EVT-like cells. Our study reports a novel function of BCRP in early placentation and suggests that exposure of EVTs to maternal infection/inflammation could disrupt their migration potential via the downregulation of BCRP. This could negatively influence placental development/function, contribute to existing obstetric pathologies, and negatively impact pregnancy outcomes and maternal/neonatal health.
Collapse
|
46
|
Fontes KN, Reginatto MW, Silva NL, Andrade CBV, Bloise FF, Monteiro VRS, Silva-Filho JL, Imperio GE, Pimentel-Coelho PM, Pinheiro AAS, Matthews SG, Bloise E, Ortiga-Carvalho TM. Dysregulation of placental ABC transporters in a murine model of malaria-induced preterm labor. Sci Rep 2019; 9:11488. [PMID: 31391498 PMCID: PMC6685947 DOI: 10.1038/s41598-019-47865-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/25/2019] [Indexed: 01/13/2023] Open
Abstract
Malaria in Pregnancy (MiP) is characterized by placental accumulation of Plasmodium-infected erythrocytes, intrauterine growth restriction (IUGR) and preterm delivery (PTD). Placental ATP-binding cassette (ABC) transporters mediate the efflux of nutrients, cytokines and xenobiotics. The expression and activity of these transporters are highly responsive to infection. We hypothesized that MiP would perturb the expression of placental ABC transporters, promoting PTD. Peripheral blood, spleens, livers and placentas of pregnant mice, infected with Plasmodium berghei ANKA on gestational day (GD) 13.5, were collected and analyzed on GD18.5. The primary consequences of human MiP, including IUGR, PTD (20%) and placental inflammation, were recapitulated in our mouse model. Electron microscopy revealed attenuated presence of labyrinthine microvilli and dilated spongiotrophoblasts -granular endoplasmic reticulum cisternae. Additionally, a decrease in placental Abca1 (ABCA1), Abcb1b (P-glycoprotein), Abcb9 and Abcg2 (BCRP) expression was observed in MiP mice. In conclusion, MiP associated with PTD impairs placental ABC transporters' expression, potentially modulating placental nutrient, environmental toxin and xenobiotic biodistribution within the fetal compartment, and may, at some degree, be involved with pregnancy outcome in MiP.
Collapse
Affiliation(s)
- K N Fontes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M W Reginatto
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - N L Silva
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - C B V Andrade
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F F Bloise
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - V R S Monteiro
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J L Silva-Filho
- Laboratory of Immunology and Biochemistry of Parasitic Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - G E Imperio
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - P M Pimentel-Coelho
- Laboratory of Cellular and Molecular Neurobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A A S Pinheiro
- Laboratory of Immunology and Biochemistry of Parasitic Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - S G Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - E Bloise
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
47
|
Clark H, Knapik LO, Zhang Z, Wu X, Naik MT, Oulhen N, Wessel GM, Brayboy LM. Dysfunctional MDR-1 disrupts mitochondrial homeostasis in the oocyte and ovary. Sci Rep 2019; 9:9616. [PMID: 31270386 PMCID: PMC6610133 DOI: 10.1038/s41598-019-46025-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
Multidrug resistance transporters (MDRs) are best known for their pathological role in neoplastic evasion of chemotherapeutics and antibiotics. Here we show that MDR-1 is present in the oocyte mitochondrial membrane, and it protects the female gamete from oxidative stress. Female mdr1a mutant mice have no significant difference in ovarian follicular counts and stages, nor in reproductively functioning hormone levels, yet these mice are significantly more vulnerable to gonadotoxic chemotherapy, have chronically elevated reactive oxygen species in immature germinal vesicle oocytes, exhibit a significant over-accumulation of metabolites involved in the tricarboxylic acid cycle (TCA), and have abnormal mitochondrial membrane potential. The mdr1a mutant ovaries have a dramatically different transcriptomic profile with upregulation of genes involved in metabolism. Our findings indicate that functionality of MDR-1 reveals a critical intersection of metabolite regulation, oxidative stress, and mitochondrial dysfunction that has direct implications for human infertility, premature reproductive aging due to oxidative stress, and gonadoprotection.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Citric Acid Cycle
- Cyclophosphamide/pharmacology
- Drug Resistance, Neoplasm/genetics
- Exons
- Female
- Gene Expression
- Gene Expression Profiling
- Homeostasis/genetics
- Membrane Potential, Mitochondrial
- Mice
- Mice, Knockout
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- Models, Molecular
- Mutation
- Oocytes/metabolism
- Ovary/metabolism
- Oxidative Stress
- Protein Conformation
- Reactive Oxygen Species/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Haley Clark
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA
| | - Laura O Knapik
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA
| | - Zijing Zhang
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA
| | - Xiaotian Wu
- School of Public Health Brown University, 121 South Main Street, Providence, RI 02903, USA
| | - Mandar T Naik
- Brown University Structural Biology Core, 70 Ship Street, Providence, RI 02903, USA
| | - Nathalie Oulhen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Lynae M Brayboy
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA.
- Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI 02903, USA.
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA.
| |
Collapse
|
48
|
Morrison JL, Botting KJ, Darby JRT, David AL, Dyson RM, Gatford KL, Gray C, Herrera EA, Hirst JJ, Kim B, Kind KL, Krause BJ, Matthews SG, Palliser HK, Regnault TRH, Richardson BS, Sasaki A, Thompson LP, Berry MJ. Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic. J Physiol 2018; 596:5535-5569. [PMID: 29633280 PMCID: PMC6265540 DOI: 10.1113/jp274948] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Over 30 years ago Professor David Barker first proposed the theory that events in early life could explain an individual's risk of non-communicable disease in later life: the developmental origins of health and disease (DOHaD) hypothesis. During the 1990s the validity of the DOHaD hypothesis was extensively tested in a number of human populations and the mechanisms underpinning it characterised in a range of experimental animal models. Over the past decade, researchers have sought to use this mechanistic understanding of DOHaD to develop therapeutic interventions during pregnancy and early life to improve adult health. A variety of animal models have been used to develop and evaluate interventions, each with strengths and limitations. It is becoming apparent that effective translational research requires that the animal paradigm selected mirrors the tempo of human fetal growth and development as closely as possible so that the effect of a perinatal insult and/or therapeutic intervention can be fully assessed. The guinea pig is one such animal model that over the past two decades has demonstrated itself to be a very useful platform for these important reproductive studies. This review highlights similarities in the in utero development between humans and guinea pigs, the strengths and limitations of the guinea pig as an experimental model of DOHaD and the guinea pig's potential to enhance clinical therapeutic innovation to improve human health.
Collapse
Affiliation(s)
- Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kimberley J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anna L. David
- Research Department of Maternal Fetal Medicine, Institute for Women's HealthUniversity College LondonLondonUK
| | - Rebecca M. Dyson
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Kathryn L. Gatford
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Clint Gray
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Emilio A. Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jonathan J. Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Bona Kim
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Karen L. Kind
- School of Animal and Veterinary SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Bernardo J. Krause
- Division of Paediatrics, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile
| | | | - Hannah K. Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Timothy R. H. Regnault
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Bryan S. Richardson
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Aya Sasaki
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Loren P. Thompson
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Mary J. Berry
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
49
|
Brayboy LM, Knapik LO, Long S, Westrick M, Wessel GM. Ovarian hormones modulate multidrug resistance transporters in the ovary. Contracept Reprod Med 2018; 3:26. [PMID: 30460040 PMCID: PMC6236903 DOI: 10.1186/s40834-018-0076-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/28/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Multidrug resistance transporters (MDRs) are transmembrane proteins that efflux metabolites and xenobiotics. They are highly conserved in sequence and function in bacteria and eukaryotes and play important roles in cellular homeostasis, as well as in avoidance of antibiotics and cancer therapies. Recent evidence also documents a critical role in reproductive health and in protecting the ovary from environmental toxicant effects. The most well understood MDRs are MDR-1 (P-glycoprotein (P-gp) also known as ABCB1) and BCRP (breast cancer resistance protein) and are both expressed in the ovary. We have previously shown that MDR-1 mRNA steady state expression changes throughout the murine estrous cycle, but expression appears to increase in association with the surge in estradiol during proestrus. METHODS Here we test the model that MDR-1 and BCRP are regulated by estrogen, the major hormonal product of the ovary. This was performed by administering 6-week-old female mice either sesame oil (vehicle control) or oral ethinyl estradiol at 1 μg, 10 μg, and 100 μg or PROGESTERONE at 0.25mg, 0.5 mg or 1 mg or a combination of both for 5 days. The mice were then sacrificed, and the ovaries were removed and cleaned. Ovaries were used for qPCR, immunoblotting, and immnunolabeling. RESULTS We found that oral ethinyl estradiol did not influence the steady state mRNA of MDR-1 or BCRP. Remarkably, the effect on mRNA levels neither increased or decreased in abundance upon estrogen exposures. Conversely, we observed less MDR-1 protein expression in the groups treated with 1 μg and 10 μg, but not 100 μg of ethinyl estradiol compared to controls. MDR-1 and BCRP are both expressed in pre-ovulatory follicles. When we tested progesterone, we found that MDR-1 mRNA increased at the dosages of 0.25 mg and 0.5 mg, but protein expression levels were not statistically significant. Combined oral ethinyl estradiol and progesterone significantly lowered both MDR-1 mRNA and protein. CONCLUSIONS Progesterone appears to influence MDR-1 transcript levels, or steady state levels. This could have implications for better understanding how MDR-1 can be modulated during times of toxic exposure. Understanding the normal physiology of MDR-1 in the ovary will expand the current knowledge in cancer biology and reproduction.
Collapse
Affiliation(s)
- Lynae M Brayboy
- Department of Obstetrics and Gynecology then Division of Reproductive Endocrinology and Infertility, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905 USA
- Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI 02903 USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912 USA
- Biological Basis of Behavior Department, University of Pennsylvania, Room 122 425 South University Avenue, Philadelphia, PA 19104 USA
| | - Laura O Knapik
- Department of Obstetrics and Gynecology then Division of Reproductive Endocrinology and Infertility, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905 USA
| | | | - Mollie Westrick
- Biological Basis of Behavior Department, University of Pennsylvania, Room 122 425 South University Avenue, Philadelphia, PA 19104 USA
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912 USA
| |
Collapse
|
50
|
Imperio GE, Javam M, Lye P, Constantinof A, Dunk CE, Reis FM, Lye SJ, Gibb W, Matthews SG, Ortiga-Carvalho TM, Bloise E. Gestational age-dependent gene expression profiling of ATP-binding cassette transporters in the healthy human placenta. J Cell Mol Med 2018; 23:610-618. [PMID: 30407748 PMCID: PMC6307765 DOI: 10.1111/jcmm.13966] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/05/2018] [Accepted: 09/23/2018] [Indexed: 12/18/2022] Open
Abstract
The ATP‐binding cassette (ABC) transporters control placental transfer of several nutrients, steroids, immunological factors, chemicals, and drugs at the maternal‐fetal interface. We and others have demonstrated a gestational age‐dependent expression pattern of two ABC transporters, P‐glycoprotein and breast cancer resistance protein throughout pregnancy. However, no reports have comprehensively elucidated the expression pattern of all 50 ABC proteins, comparing first trimester and term human placentae. We hypothesized that placental ABC transporters are expressed in a gestational‐age dependent manner in normal human pregnancy. Using the TaqMan® Human ABC Transporter Array, we assessed the mRNA expression of all 50 ABC transporters in first (first trimester, n = 8) and third trimester (term, n = 12) human placentae and validated the resulting expression of selected ABC transporters using qPCR, Western blot and immunohistochemistry. A distinct gene expression profile of 30 ABC transporters was observed comparing first trimester vs. term placentae. Using individual qPCR in selected genes, we validated the increased expression of ABCA1 (P < 0.01), ABCA6 (P < 0.001), ABCA9 (P < 0.001) and ABCC3 (P < 0.001), as well as the decreased expression of ABCB11 (P < 0.001) and ABCG4 (P < 0.01) with advancing gestation. One important lipid transporter, ABCA6, was selected to correlate protein abundance and characterize tissue localization. ABCA6 exhibited increased protein expression towards term and was predominantly localized to syncytiotrophoblast cells. In conclusion, expression patterns of placental ABC transporters change as a function of gestational age. These changes are likely fundamental to a healthy pregnancy given the critical role that these transporters play in the regulation of steroidogenesis, immunological responses, and placental barrier function and integrity.
Collapse
Affiliation(s)
- Guinever E Imperio
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mohsen Javam
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Phetcharawan Lye
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Caroline E Dunk
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Fernando M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen J Lye
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - William Gibb
- Department of Obstetrics & Gynecology and Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tania Maria Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|