1
|
Zeinali Nia E, Najjar Sadeghi R, Ebadi M, Faghihi M. ERK1/2 gene expression and hypomethylation of Alu and LINE1 elements in patients with type 2 diabetes with and without cataract: Impact of hyperglycemia-induced oxidative stress. J Diabetes Investig 2025; 16:689-706. [PMID: 39804191 PMCID: PMC11970314 DOI: 10.1111/jdi.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 04/05/2025] Open
Abstract
AIMS This study aimed to delineate the effect of hyperglycemia on the Alu/LINE-1 hypomethylation and in ERK1/2 genes expression in type 2 diabetes with and without cataract. METHODS This study included 58 diabetic patients without cataracts, 50 diabetic patients with cataracts, and 36 healthy controls. After DNA extraction and bisulfite treatment, LINE-1 and Alu methylation levels were assessed using Real-time MSP. ERK1/2 gene expression was analyzed through real-time PCR. Total antioxidant capacity (TAC), and fasting plasma glucose (FPG) were measured using colorimetric methods. Statistical analysis was performed with SPSS23, setting the significance level at P < 0.05. RESULTS The TAC levels were significantly lower for cataract and diabetic groups than controls (259.31 ± 122.99, 312.43 ± 145.46, 372.58 ± 132.95 nanomole of Trolox equivalent) with a significant correlation between FPG and TAC levels in both the cataract and diabetic groups (P < 0.05). Alu and LINE-1 sequences were found to be statistically hypomethylated in diabetic and cataract patients compared to controls. In these groups, TAC levels were directly correlated with Alu methylation (P < 0.05) but not LINE-1. ERK1/2 gene expression was significantly higher in diabetic and cataract patients, showing increases of 2.41-fold and 1.43-fold for ERK1, and 1.27-fold and 1.5 for ERK2, respectively. ERK1 expression correlated significantly with FPG levels. A reverse correlation was observed between TAC levels and ERK1/2 expression. CONCLUSIONS Our findings indicate that hyperglycemia-induced oxidative stress may alter ERK1/2 gene expression patterns and induce aberrant hypomethylation in Alu and LINE-1 sequences. These aberrant changes may play a contributing role in diabetic complications such as cataracts.
Collapse
Affiliation(s)
- Elham Zeinali Nia
- Department of Biochemistry, Faculty of Basic SciencesIslamic Azad University Damghan BranchDamghanIran
| | - Ruhollah Najjar Sadeghi
- Department of Clinical Biochemistry, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Mostafa Ebadi
- Department of Biochemistry, Faculty of Basic SciencesIslamic Azad University Damghan BranchDamghanIran
| | - Mohammad Faghihi
- Department of Medical SciencesShahid Beheshti UniversityTehranIran
| |
Collapse
|
2
|
Moghadasi M, Taherimoghaddam M, Babaeenezhad E, Birjandi M, Kaviani M, Moradi Sarabi M. MicroRNA-34a and promoter methylation contribute to peroxisome proliferator-activated receptor gamma gene expression in patients with type 2 diabetes. Diabetes Metab Syndr 2024; 18:103156. [PMID: 39522431 DOI: 10.1016/j.dsx.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
AIMS This study aimed to investigate the roles of DNA methylation and miR-34a in the regulation of peroxisome proliferator-activated receptor gamma (PPARγ) in patients with type 2 diabetes (T2D). METHODS We investigated the methylation status of four regions of the PPARγ promoter and PPARγ expression in a panel of 84 T2D patients using methylation-specific PCR (MSP) and RT-qPCR, respectively. Moreover, we quantified DNA methyltransferases (DNMTs) expression and global DNA methylation levels by RT-qPCR and ELISA, respectively. We measured the expression levels of miR-34a and protein expression of PPARγ by stem-loop RT-qPCR and ELISA, respectively. RESULTS We found significant DNA hypermethylation in the R2 and R3 regions of the PPARγ promoter in people with diabetes. Functionally, this was associated with a significant reduction in PPARγ expression. In addition, we observed a significant increase in 5-methylcytosine levels in people with diabetes. A marked increase in circulating miR-34a in the early stages of T2D (up to 10 years) and a significant decrease in circulating miR-34a with increasing diabetes duration from 10 years after the onset of diabetes. Interestingly, upregulation of DNA methyltransferases 1 (DNMT1), DNMT3A, and DNMT3B was observed in people with diabetes, and the average expression of DNMTs was negatively correlated with circulating miR-34a levels. In contrast, the serum protein level of PPARγ, a direct target of miR-34a, increased considerably with diabetes duration and showed a negative correlation with circulating miR-34a, cholesterol, triglyceride, and low-density lipoprotein. CONCLUSION PPARγ promoter hypermethylation and miR-34a upregulation are associated with T2D pathogenesis through PPARγ dysregulation.
Collapse
Affiliation(s)
- Mona Moghadasi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Taherimoghaddam
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Birjandi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biostatistics and Epidemiology, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Kaviani
- Department of Internal Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
3
|
Katsanou A, Kostoulas C, Liberopoulos E, Tsatsoulis A, Georgiou I, Tigas S. Retrotransposons and Diabetes Mellitus. EPIGENOMES 2024; 8:35. [PMID: 39311137 PMCID: PMC11417941 DOI: 10.3390/epigenomes8030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Retrotransposons are invasive genetic elements, which replicate by copying and pasting themselves throughout the genome in a process called retrotransposition. The most abundant retrotransposons by number in the human genome are Alu and LINE-1 elements, which comprise approximately 40% of the human genome. The ability of retrotransposons to expand and colonize eukaryotic genomes has rendered them evolutionarily successful and is responsible for creating genetic alterations leading to significant impacts on their hosts. Previous research suggested that hypomethylation of Alu and LINE-1 elements is associated with global hypomethylation and genomic instability in several types of cancer and diseases, such as neurodegenerative diseases, obesity, osteoporosis, and diabetes mellitus (DM). With the advancement of sequencing technologies and computational tools, the study of the retrotransposon's association with physiology and diseases is becoming a hot topic among researchers. Quantifying Alu and LINE-1 methylation is thought to serve as a surrogate measurement of global DNA methylation level. Although Alu and LINE-1 hypomethylation appears to serve as a cellular senescence biomarker promoting genomic instability, there is sparse information available regarding their potential functional and biological significance in DM. This review article summarizes the current knowledge on the involvement of the main epigenetic alterations in the methylation status of Alu and LINE-1 retrotransposons and their potential role as epigenetic markers of global DNA methylation in the pathogenesis of DM.
Collapse
Affiliation(s)
- Andromachi Katsanou
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
- Department of Internal Medicine, Hatzikosta General Hospital, 45445 Ioannina, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| |
Collapse
|
4
|
Lin L, Kiryakos J, Ammous F, Ratliff SM, Ware EB, Faul JD, Kardia SLR, Zhao W, Birditt KS, Smith JA. Epigenetic age acceleration is associated with blood lipid levels in a multi-ancestry sample of older U.S. adults. BMC Med Genomics 2024; 17:146. [PMID: 38802805 PMCID: PMC11129464 DOI: 10.1186/s12920-024-01914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Dyslipidemia, which is characterized by an unfavorable lipid profile, is a key risk factor for cardiovascular disease (CVD). Understanding the relationships between epigenetic aging and lipid levels may help guide early prevention and treatment efforts for dyslipidemia. METHODS We used weighted linear regression to cross-sectionally investigate the associations between five measures of epigenetic age acceleration estimated from whole blood DNA methylation (HorvathAge Acceleration, HannumAge Acceleration, PhenoAge Acceleration, GrimAge Acceleration, and DunedinPACE) and four blood lipid measures (total cholesterol (TC), LDL-C, HDL-C, and triglycerides (TG)) in 3,813 participants (mean age = 70 years) from the Health and Retirement Study (HRS). As a sensitivity analysis, we examined the same associations in participants who fasted prior to the blood draw (n = 2,531) and in participants who did not take lipid-lowering medication (n = 1,869). Using interaction models, we also examined whether demographic factors including age, sex, and educational attainment modified the relationships between epigenetic age acceleration and blood lipids. RESULTS After adjusting for age, race/ethnicity, sex, fasting status, and lipid-lowering medication use, greater epigenetic age acceleration was associated with lower TC, HDL-C, and LDL-C, and higher TG (p < 0.05), although the effect sizes were relatively small (e.g., < 7 mg/dL of TC per standard deviation in epigenetic age acceleration). GrimAge acceleration and DunedinPACE associations with all lipids remained significant after further adjustment for body mass index, smoking status, and educational attainment. These associations were stronger in participants who fasted and who did not use lipid-lowering medication, particularly for LDL-C. We observed the largest number of interactions between DunedinPACE and demographic factors, where the associations with lipids were stronger in younger participants, females, and those with higher educational attainment. CONCLUSION Multiple measures of epigenetic age acceleration are associated with blood lipid levels in older adults. A greater understanding of how these associations differ across demographic groups can help shed light on the relationships between aging and downstream cardiovascular diseases. The inverse associations between epigenetic age and TC and LDL-C could be due to sample limitations or non-linear relationships between age and these lipids, as both TC and LDL-C decrease faster at older ages.
Collapse
Affiliation(s)
- Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jenna Kiryakos
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Farah Ammous
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Kira S Birditt
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA.
| |
Collapse
|
5
|
Lin L, Kiryakos J, Ammous F, Ratliff SM, Ware EB, Faul JD, Kardia SLR, Zhao W, Birditt KS, Smith JA. Epigenetic age acceleration is associated with blood lipid levels in a multi-ancestry sample of older U.S. adults. RESEARCH SQUARE 2024:rs.3.rs-3934965. [PMID: 38464171 PMCID: PMC10925395 DOI: 10.21203/rs.3.rs-3934965/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Dyslipidemia, which is characterized by an unfavorable lipid profile, is a key risk factor for cardiovascular disease (CVD). Understanding the relationships between epigenetic aging and lipid levels may help guide early prevention and treatment efforts for dyslipidemia. Methods We used weighted linear regression to cross-sectionally investigate the associations between five measures of epigenetic age acceleration estimated from whole blood DNA methylation (HorvathAge Acceleration, HannumAge Acceleration, PhenoAge Acceleration, GrimAge Acceleration, and DunedinPACE) and four blood lipid measures (total cholesterol (TC), LDL-C, HDL-C, and triglycerides (TG)) in 3,813 participants (mean age = 70 years) from the Health and Retirement Study (HRS). As a sensitivity analysis, we examined the same associations in participants who fasted prior to the blood draw (n = and f) and in participants who did not take lipid-lowering medication (n = 1,869). Using interaction models, we also examined whether the relationships between epigenetic age acceleration and blood lipids differ by demographic factors including age, sex, and educational attainment. Results After adjusting for age, race/ethnicity, sex, fasting status, and lipid-lowering medication use, greater epigenetic age acceleration was associated with lower TC, HDL-C, and LDL-C, and higher TG (p < 0.05). GrimAge acceleration and DunedinPACE associations with all lipids remained significant after further adjusting for body mass index, smoking status, and educational attainment. These associations were stronger in participants who fasted and who did not use lipid-lowering medication, particularly for LDL-C. We observed the largest number of interactions between DunedinPACE and demographic factors, where the associations with lipids were stronger in younger participants, females, and those with higher educational attainment. Conclusion Epigenetic age acceleration, a powerful biomarker of cellular aging, is highly associated with blood lipid levels in older adults. A greater understanding of how these associations differ across demographic groups can help shed light on the relationships between aging and downstream cardiovascular diseases. The inverse associations between epigenetic age and TC and LDL-C could be due to sample limitations or the non-linear relationship between age and these lipids, as both TC and LDL-C decrease faster at older ages. More studies are needed to further understand the temporal relationships between epigenetic age acceleration on blood lipids and other health outcomes.
Collapse
Affiliation(s)
- Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Jenna Kiryakos
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Kira S Birditt
- Survey Research Center, Institute for Social Research, University of Michigan
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan
| |
Collapse
|
6
|
Deng X, Zhou S, Hu Z, Gong F, Zhang J, Zhou C, Lan W, Gao X, Huang Y. Nicotinic Acid-Mediated Modulation of Metastasis-Associated Protein 1 Methylation and Inflammation in Brain Arteriovenous Malformation. Biomolecules 2023; 13:1495. [PMID: 37892177 PMCID: PMC10605296 DOI: 10.3390/biom13101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
We explored metastasis-associated protein 1 (MTA1) promoter methylation in the development of brain arteriovenous malformation (BAVM). The clinical data of 148 sex- and age-matched BAVMs and controls were collected, and the MTA1 DNA methylation in peripheral white blood cells (WBC) was assessed by bisulfite pyrosequencing. Among them, 18 pairs of case-control samples were used for WBC mRNA detection, 32 pairs were used for WBC MTA1 protein measurement, and 50 pairs were used for plasma inflammatory factor analysis. Lipopolysaccharide (LPS) treatment was used to induce an inflammatory injury cell model of human brain microvascular endothelial cells (BMECS). 5-Aza-2'-deoxycytidine (5-AZA), nicotinic acid (NA), and MTA1 siRNAs were used in functional experiments to examine BMECS behaviors. RT-qPCR, Western blot, and ELISA or cytometric bead arrays were used to measure the expression levels of MTA1, cytokines, and signaling pathway proteins in human blood or BMECS. The degree of MTA1 promoter methylation was reduced in BAVM compared with the control group and was inversely proportional to MTA1 expression. Plasma ApoA concentrations in BAVM patients were significantly lower than those in controls and correlated positively with MTA1 promoter methylation and negatively with MTA1 expression. The expression of cytokine was markedly higher in BAVM than in controls. Cell experiments showed that 5-AZA decreased the methylation level of MTA1 and increased the expression of MTA1 protein. LPS treatment significantly increased cytokine concentrations (p < 0.05). NA and MTA1 silencing could effectively reverse the LPS-mediated increase in IL-6 and TNF-α expression through the NF-κB pathway. Our study indicated that NA may regulate MTA1 expression by affecting promoter DNA methylation, improve vascular inflammation through the NF-κB pathway, and alleviate the pathological development of BAVM.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Shengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315302, China
| | - Fanyong Gong
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Junjun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Chenhui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Wenting Lan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China;
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| |
Collapse
|
7
|
Uchehara B, Kwee LC, Regan J, Chatterjee R, Eckstrand J, Swope S, Gold G, Schaack T, Douglas P, Mettu P, Haddad F, Shore S, Hernandez A, Mahaffey KW, Pagidipati N, Shah SH. Accelerated Epigenetic Aging Is Associated With Multiple Cardiometabolic, Hematologic, and Renal Abnormalities: A Project Baseline Health Substudy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:216-223. [PMID: 37039013 PMCID: PMC10330131 DOI: 10.1161/circgen.122.003772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 01/30/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Epigenetic clocks estimate chronologic age using methylation levels at specific loci. We tested the hypothesis that accelerated epigenetic aging is associated with abnormal values in a range of clinical, imaging, and laboratory characteristics. METHODS The Project Baseline Health Study recruited 2502 participants, including 1661 with epigenetic age estimates from the Horvath pan-tissue clock. We classified individuals with extreme values as having epigenetic age acceleration (EAA) or epigenetic age deceleration. A subset of participants with longitudinal methylation profiling was categorized as accelerated versus nonaccelerated. Using principal components analysis, we created phenoclusters using 122 phenotypic variables and compared individuals with EAA versus epigenetic age deceleration, and at one year of follow-up, using logistic regression models adjusted for sex (false discovery rate [Q] <0.10); in secondary exploratory analyses, we tested individual clinical variables. RESULTS The EAA (n=188) and epigenetic age deceleration (n=195) groups were identified as having EAA estimates ≥5 years or ≤-5 years, respectively. In primary analyses, individuals with EAA had higher values for phenoclusters summarizing lung function and lipids, and lower values for a phenocluster representing physical function. In secondary analyses of individual variables, neutrophils, body mass index, and waist circumference were significantly higher in individuals with EAA (Q<0.10). No phenoclusters were significantly different between participants with accelerated (n=148) versus nonaccelerated (n=112) longitudinal aging. CONCLUSIONS We report multiple cardiometabolic, hematologic, and physical function features characterizing individuals with EAA. These highlight factors that may mediate the adverse effects of aging and identify potential targets for study of mitigation of these effects. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03154346.
Collapse
Affiliation(s)
| | | | - Jessica Regan
- Division of General Internal Medicine, Dept of Medicine
| | | | | | - Sue Swope
- Stanford Center for Clinical Research, Dept of Medicine, Stanford University School of Medicine, Stanford
| | - Gary Gold
- Stanford Center for Clinical Research, Dept of Medicine, Stanford University School of Medicine, Stanford
| | - Terry Schaack
- California Health & Longevity Institute, Westlake Village
| | | | - Prithu Mettu
- Division of Retinal Ophthalmology, Dept of Ophthalmology
| | - Francois Haddad
- Stanford Center for Clinical Research, Dept of Medicine, Stanford University School of Medicine, Stanford
| | | | - Adrian Hernandez
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
| | - Kenneth W. Mahaffey
- Stanford Center for Clinical Research, Dept of Medicine, Stanford University School of Medicine, Stanford
| | | | - Svati H. Shah
- Duke Molecular Physiology Institute, Duke University
| |
Collapse
|
8
|
Rerkasem A, Nantakool S, Wilson BC, Mangklabruks A, Boonyapranai K, Mutirangura A, Derraik JGB, Rerkasem K. Associations between maternal plasma zinc concentrations in late pregnancy and LINE-1 and Alu methylation loci in the young adult offspring. PLoS One 2022; 17:e0279630. [PMID: 36584155 PMCID: PMC9803117 DOI: 10.1371/journal.pone.0279630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In animal models, prenatal zinc deficiency induced epigenetic changes in the fetus, but data in humans are lacking. We aimed to examine associations between maternal zinc levels during pregnancy and DNA methylation in LINE-1 and Alu repetitive sequences in young adult offspring, as well as anthropometry and cardiometabolic parameters. METHODS Participants were 74 pregnant women from the Chiang Mai Low Birth Weight cohort, and their offspring followed up at 20 years of age. Maternal plasma zinc concentrations were measured at approximately 36 weeks of gestation. DNA methylation levels in LINE-1 and Alu repetitive sequences were measured in the offspring, as well as anthropometry and cardiometabolic parameters (lipid profile, blood pressure, and glucose metabolism). RESULTS Over half of mothers (39/74; 53%) were zinc deficient (<50 μg/dL) during their third trimester of pregnancy. Maternal zinc concentrations during pregnancy were associated with LINE-1 DNA methylation levels in adult offspring. Specifically, lower prenatal zinc concentrations were associated with: 1) lower levels of total LINE-1 methylation; 2) lower levels of LINE-1 hypermethylation loci; and 3) higher levels of LINE-1 partial methylation loci. Prenatal zinc concentrations were not associated with Alu methylation levels, nor with any anthropometric or cardiometabolic parameters in adult offspring. However, we observed associations between Alu and LINE-1 methylation patterns and cardiometabolic outcomes in offspring, namely total cholesterol levels and diastolic blood pressure, respectively. CONCLUSIONS Lower maternal zinc concentrations late in gestation were associated with changes in DNA methylation in later life. Thus, zinc deficiency during pregnancy may induce alterations in total LINE-1 methylation and LINE-1 hypermethylation loci. These results suggest a possible epigenetic link between zinc deficiency during pregnancy and long-term outcomes in the offspring.
Collapse
Affiliation(s)
- Amaraporn Rerkasem
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sothida Nantakool
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Brooke C. Wilson
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Ampica Mangklabruks
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kongsak Boonyapranai
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Apiwat Mutirangura
- Center of Excellence of Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - José G. B. Derraik
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- * E-mail: (KR); (JGBD)
| | - Kittipan Rerkasem
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
- Clinical Surgical Research Centre, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail: (KR); (JGBD)
| |
Collapse
|
9
|
Ramini D, Latini S, Giuliani A, Matacchione G, Sabbatinelli J, Mensà E, Bacalini MG, Garagnani P, Rippo MR, Bronte G, Bonafè M, Cardelli M, Olivieri F. Replicative Senescence-Associated LINE1 Methylation and LINE1-Alu Expression Levels in Human Endothelial Cells. Cells 2022; 11:cells11233799. [PMID: 36497059 PMCID: PMC9739197 DOI: 10.3390/cells11233799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
One of the main challenges of current research on aging is to identify the complex epigenetic mechanisms involved in the acquisition of the cellular senescent phenotype. Despite some evidence suggested that epigenetic changes of DNA repetitive elements, including transposable elements (TE) sequences, are associated with replicative senescence of fibroblasts, data on different types of cells are scarce. We previously analysed genome-wide DNA methylation of young and replicative senescent human endothelial cells (HUVECs), highlighting increased levels of demethylated sequences in senescent cells. Here, we aligned the most significantly demethylated single CpG sites to the reference genome and annotated their localization inside TE sequences and found a significant hypomethylation of sequences belonging to the Long-Interspersed Element-1 (LINE-1 or L1) subfamilies L1M, L1P, and L1HS. To verify the hypothesis that L1 demethylation could be associated with increased transcription/activation of L1s and/or Alu elements (non-autonomous retroelements that usually depend on L1 sequences for reverse transcription and retrotransposition), we quantified the RNA expression levels of both L1 (generic L1 elements or site-specific L1PA2 on chromosome 14) and Alu elements in young and senescent HUVECs and human dermal fibroblasts (NHDFs). The RNA expression of Alu and L1 sequences was significantly increased in both senescent HUVECs and NHDFs, whereas the RNA transcript of L1PA2 on chromosome 14 was not significantly modulated in senescent cells. Moreover, we found an increased amount of TE DNA copies in the cytoplasm of senescent HUVECs and NHDFs. Our results support the hypothesis that TE, which are significantly increased in senescent cells, could be retrotranscribed to DNA sequences.
Collapse
Affiliation(s)
- Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy
| | - Silvia Latini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Correspondence: ; Tel.: +39-071-220-6243
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
- Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, 40126 Bologna, Italy
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”-Unit of Bologna, 40126 Bologna, Italy
- Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Giuseppe Bronte
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
10
|
Olechno E, Puścion-Jakubik A, Zujko ME. Chokeberry (A. melanocarpa (Michx.) Elliott)—A Natural Product for Metabolic Disorders? Nutrients 2022; 14:nu14132688. [PMID: 35807867 PMCID: PMC9268775 DOI: 10.3390/nu14132688] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Abnormal metabolism of substances in the body can result in metabolic disorders which include obesity, cardiovascular diseases, diabetes, hypertension, chronic kidney disease, liver disease, or cancer. Foods rich in antioxidants can help to prevent and treat various types of disorders. Chokeberry fruits are rich in polyphenols, especially cyanidins, and therefore, can show a beneficial health effect. The aim of this study was to summarize and systematize reports about the effects of chokeberry on various metabolic parameters. Studies from 2000 to 2021, published in the PubMed and Google Scholar databases, were reviewed. The review of studies shows that chokeberry may have a positive effect in dyslipidemia and hypertension and may increase the body’s antioxidant defense mechanisms. The anti-inflammatory effect, in turn, may translate into a reduction in the risk of metabolic disorders over a longer period of use. Changes in glucose levels were reported by studies in which the intervention lasted more than 10 weeks in patients with carbohydrate metabolism disorders. The effects of protecting the liver, inhibiting platelet aggregation, lowering uric acid levels, and having a protective effect on the kidneys require additional confirmation in human clinical trials. Consumption of chokeberry fruit did not impact on anthropometric measurements; however, it seems that chokeberry fruit can be recommended in many metabolic disorders due to the richness of bioactive ingredients.
Collapse
Affiliation(s)
- Ewa Olechno
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-85-748-54-69
| | - Małgorzata Elżbieta Zujko
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| |
Collapse
|
11
|
Barouti Z, Heidari-Beni M, Shabanian-Boroujeni A, Mohammadzadeh M, Pahlevani V, Poursafa P, Mohebpour F, Kelishadi R. Effects of DNA methylation on cardiometabolic risk factors: a systematic review and meta-analysis. Arch Public Health 2022; 80:150. [PMID: 35655232 PMCID: PMC9161587 DOI: 10.1186/s13690-022-00907-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Epigenetic changes, especially DNA methylation have a main role in regulating cardiometabolic disorders and their risk factors. This study provides a review of the current evidence on the association between methylation of some genes (LINE1, ABCG1, SREBF1, PHOSPHO1, ADRB3, and LEP) and cardiometabolic risk factors. Methods A systematic literature search was conducted in electronic databases including Web of Science, PubMed, EMBASE, Google Scholar and Scopus up to end of 2020. All observational human studies (cross-sectional, case–control, and cohort) were included. Studies that assessed the effect of DNA methylation on cardiometabolic risk factors were selected. Results Among 1398 articles, eight studies and twenty-one studies were included in the meta-analysis and the systematic review, respectively. Our study showed ABCG1 and LINE1 methylation were positively associated with blood pressure (Fisher’s zr = 0.07 (0.06, 0.09), 95% CI: 0.05 to 0.08). Methylation in LINE1, ABCG1, SREBF1, PHOSPHO1 and ADRB3 had no significant association with HDL levels (Fisher’s zr = − 0.05 (− 0.13, 0.03), 95% CI:-0.12 to 0.02). Positive association was existed between LINE1, ABCG1 and LEP methylation and LDL levels (Fisher’s zr = 0.13 (0.04, 0.23), 95% CI: 0.03 to 0.23). Moreover, positive association was found between HbA1C and ABCG1 methylation (Fisher’s zr = 0.11 (0.09, 0.13), 95% CI: 0.09 to 0.12). DNA methylation of LINE1, ABCG1 and SREBF1 genes had no significant association with glucose levels (Fisher’s zr = 0.01 (− 0.12, 0.14), 95% CI:-0.12 to 0.14). Conclusion This meta-analysis showed that DNA methylation was associated with some cardiometabolic risk factors including LDL-C, HbA1C, and blood pressure. Registration Registration ID of the protocol on PROSPERO is CRD42020207677.
Collapse
|
12
|
Epigenetic Modifications Associated with Maternal Anxiety during Pregnancy and Children's Behavioral Measures. Cells 2021; 10:cells10092421. [PMID: 34572069 PMCID: PMC8469633 DOI: 10.3390/cells10092421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetic changes are associated with altered behavior and neuropsychiatric disorders and they modify the trajectory of aging. Maternal anxiety during pregnancy is a common environmental challenge for the fetus, causing changes in DNA methylation. Here, we determined the mediating role of DNA methylation and the moderating role of offspring sex on the association between maternal anxiety and children's behavioral measures. In 83 mother-child dyads, maternal anxiety was assessed in each trimester of pregnancy when the child was four years of age. Children's behavioral measures and children's buccal DNA methylation levels (NR3C1, IGF2/H19 ICR, and LINE1) were examined. Higher maternal anxiety during the third trimester was associated with more methylation levels of the NR3C1. Moderating effects of sex on the association between maternal anxiety and methylation were found for IGF2/H19 and LINE1 CpGs. Mediation analysis showed that methylation of NR3C1 could buffer the effects of maternal anxiety on children's behavioral measures, but this effect did not remain significant after controlling for covariates. In conclusion, our data support an association between maternal anxiety during pregnancy and DNA methylation. The results also underscore the importance of sex differences and timing effects. However, DNA methylation as underlying mechanism of the effect of maternal anxiety during pregnancy on offspring's behavioral measures was not supported.
Collapse
|
13
|
Yaskolka Meir A, Keller M, Müller L, Bernhart SH, Tsaban G, Zelicha H, Rinott E, Kaplan A, Gepner Y, Shelef I, Schwarzfuchs D, Ceglarek U, Stadler P, Blüher M, Stumvoll M, Kovacs P, Shai I. Effects of lifestyle interventions on epigenetic signatures of liver fat: Central randomized controlled trial. Liver Int 2021; 41:2101-2111. [PMID: 33938135 DOI: 10.1111/liv.14916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/13/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS In the CENTRAL trial context, we found diverse liver fat dynamics in response to different dietary interventions. Epigenetic mechanisms may contribute to the intraindividual variation. Moreover, genetic factors are involved in developing nonalcoholic fatty-liver disease (NAFLD), a disease reflected by an increase in intrahepatic fat (IHF). In this exploratory analysis, we primarily aimed to examine the effect of lifestyle interventions on DNA-methylation of NAFLD related genes associated with IHF. METHODS For 120 participants from the CENTRAL trial, an 18-month regimen of either low-fat (LF) or Mediterranean-low carbohydrate (MED/LC) diets, with or without physical activity (PA+/PA-), was instructed. Magnetic resonance imaging was used to measure IHF%, which was analysed for association with CpG specific DNA-methylation levels of 41 selected candidate genes. Single-nucleotide polymorphisms known to be associated with NAFLD within the studied genes were genotyped by TaqMan assays. RESULTS At baseline, participants (92% men; body mass index = 30.2 kg/m2 ) had mean IHF of 10.7% (59% NAFLD). Baseline-IHF% was inversely correlated with DNA-methylation at individual CpGs within AC074286.1, CRACR2A, A2MP1, FARP1 (P < .05 for all multivariate models). FARP1 rs9584805 showed association with IHF, with the prevalence of NAFLD and baseline methylation level of the CpG site (cg00071727) associated with IHF%. Following 18-month lifestyle intervention, differential DNA-methylation patterns were observed between diets at cg14335324 annotated to A2MP1 (P = .04, LF vs. MED/LC), and differential DNA-methylation between PA groups within AC074286.1, CRACR2A, and FARP1 CpGs (P < .05 for all, PA-vs. PA+). CONCLUSIONS This study suggests epigenetic markers for IHF and potential epigenetic remodeling after long-term lifestyle interventions.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maria Keller
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.,Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Luise Müller
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Stephan H Bernhart
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.,Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany.,Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Gal Tsaban
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Zelicha
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ehud Rinott
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Kaplan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Shelef
- Soroka University Medical Center, Beer-Sheva, Israel
| | | | - Uta Ceglarek
- Institute for Laboratory Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Stadler
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany.,Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Center for RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.,Santa Fe Institute, Santa Fe, NM, USA
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.,Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.,Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
14
|
Mendes CC, Zampieri BL, Arantes LMRB, Melendez ME, Biselli JM, Carvalho AL, Eberlin MN, Riccio MF, Vannucchi H, Carvalho VM, Goloni-Bertollo EM, Pavarino ÉC. One-carbon metabolism and global DNA methylation in mothers of individuals with Down syndrome. Hum Cell 2021; 34:1671-1681. [PMID: 34410622 DOI: 10.1007/s13577-021-00586-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Down syndrome (DS) is the most common chromosomal disorder, resulting from the failure of normal chromosome 21 segregation. Studies have suggested that impairments within the one-carbon metabolic pathway can be of relevance for the global genome instability observed in mothers of individuals with DS. Based on the association between global DNA hypomethylation, genome instability, and impairments within the one-carbon metabolic pathway, the present study aimed to identify possible predictors, within the one-carbon metabolism, of global DNA methylation, measured by methylation patterns of LINE-1 and Alu repetitive sequences, in mothers of individuals with DS and mothers of individuals without the syndrome. In addition, we investigated one-carbon genetic polymorphisms and metabolites as maternal predisposing factors for the occurrence of trisomy 21 in children. Eighty-three samples of mothers of children with DS with karyotypically confirmed free trisomy 21 (case group) and 84 of mothers who had at least one child without DS or any other aneuploidy were included in the study. Pyrosequencing assays were performed to access global methylation. The results showed that group affiliation (case or control), betaine-homocysteine methyltransferase (BHMT) G742A and transcobalamin 2 (TCN2) C776G polymorphisms, and folate concentration were identified as predictors of global Alu DNA methylation values. In addition, thymidylate synthase (TYMS) 28-bp repeats 2R/3R or 3R/3R genotypes are independent maternal predisposing factors for having a child with DS. This study adds evidence that supports the association of impairments in the one-carbon metabolism, global DNA methylation, and the possibility of having a child with DS.
Collapse
Affiliation(s)
- Cristiani Cortez Mendes
- Unidade de Pesquisa em Genética e Biologia Molecular-UPGEM, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, Brazil
| | | | | | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Joice Matos Biselli
- Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto, Departamento de Ciências Biológicas, São José do Rio Preto, São Paulo, Brazil
| | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Marcos Nogueira Eberlin
- Universidade Presbiteriana Mackenzie, Discovery-Mackenzie-Núcleo Mackenzie de Pesquisa, Núcleo Mackenzie de Pesquisas em Ciência, Fé e Sociedade, São Paulo, São Paulo, Brazil
| | | | - Hélio Vannucchi
- Laboratório de Nutrição, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto-USP, Ribeirão Preto, São Paulo, Brazil
| | | | - Eny Maria Goloni-Bertollo
- Unidade de Pesquisa em Genética e Biologia Molecular-UPGEM, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, Brazil
| | - Érika Cristina Pavarino
- Unidade de Pesquisa em Genética e Biologia Molecular-UPGEM, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, Brazil.
- , Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, São Paulo, 15090-000, Brazil.
| |
Collapse
|
15
|
Stojković L, Zec M, Zivkovic M, Bundalo M, Bošković M, Glibetić M, Stankovic A. Polyphenol-Rich Aronia melanocarpa Juice Consumption Affects LINE-1 DNA Methylation in Peripheral Blood Leukocytes in Dyslipidemic Women. Front Nutr 2021; 8:689055. [PMID: 34222308 PMCID: PMC8247759 DOI: 10.3389/fnut.2021.689055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular disease (CVD) is associated with alterations in DNA methylation and polyunsaturated fatty acid (PUFA) profile, both modulated by dietary polyphenols. The present parallel, placebo-controlled study (part of the original clinical study registered as NCT02800967 at www.clinicaltrials.gov) aimed to determine the impact of 4-week daily consumption of polyphenol-rich Aronia melanocarpa juice (AMJ) treatment on Long Interspersed Nucleotide Element-1 (LINE-1) methylation in peripheral blood leukocytes and on plasma PUFAs, in subjects (n = 54, age range of 40.2 ± 6.7 years) at moderate CVD risk, including an increased body mass index, central obesity, high normal blood pressure, and/or dyslipidemia. The goal was also to examine whether factors known to affect DNA methylation (folate intake levels, MTHFR C677T gene variant, anthropometric and metabolic parameters) modulated the LINE-1 methylation levels upon the consumption of polyphenol-rich aronia juice. Experimental analysis of LINE-1 methylation was done by MethyLight method. MTHFR C677T genotypes were determined by the polymerase chain reaction–restriction fragment length polymorphism method, and folate intake was assessed by processing the data from the food frequency questionnaire. PUFAs were measured by gas–liquid chromatography, and serum lipid profile was determined by using Roche Diagnostics kits. The statistical analyses were performed using Statistica software package. In the comparison after vs. before the treatment period, in dyslipidemic women (n = 22), we observed significant decreases in LINE-1 methylation levels (97.54 ± 1.50 vs. 98.39 ± 0.86%, respectively; P = 0.01) and arachidonic acid/eicosapentaenoic acid ratio [29.17 ± 15.21 vs. 38.42 (25.96–89.58), respectively; P = 0.02]. The change (after vs. before treatment) in LINE-1 methylation directly correlated with the presence of MTHFR 677T allele, average daily folate intake, and the change in serum low-density lipoprotein cholesterol but inversely correlated with the change in serum triacylglycerols (R = 0.72, R2 = 0.52, adjusted R2 = 0.36, P = 0.03). The current results imply potential cardioprotective effects of habitual polyphenol-rich aronia juice consumption achieved through the modifications of DNA methylation pattern and PUFAs in subjects at CVD risk, which should be further confirmed. Hence, the precision nutrition-driven modulations of both DNA methylation and PUFA profile may become targets for new approaches in the prevention of CVD.
Collapse
Affiliation(s)
- Ljiljana Stojković
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Manja Zec
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Bundalo
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.,Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Maja Bošković
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Glibetić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Jiang AC, Buckingham L, Bishehsari F, Sutherland S, Ma K, Melson JE. Correlation of LINE-1 Hypomethylation With Size and Pathologic Extent of Dysplasia in Colorectal Tubular Adenomas. Clin Transl Gastroenterol 2021; 12:e00369. [PMID: 34060495 PMCID: PMC8162511 DOI: 10.14309/ctg.0000000000000369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Conventional adenomas (tubular adenoma [TA] or tubulovillous adenoma) and sessile serrated lesions (SSLs) are neoplastic precancerous lesions frequently detected in patients undergoing average risk screening colonoscopy and polyp surveillance. Metachronous risk stratification of adenomas is currently limited to histologic features and size of polyps. We report long interspersed nucleotide element-1 (LINE-1) methylation levels in SSL in comparison to TA and the impact of TA size and presence of high-grade dysplasia (HGD) on LINE-1 methylation. METHODS LINE-1 methylation was assessed by pyrosequencing of bisulfite-converted DNA. We compared LINE-1 methylation between TA and SSL, among varying sizes of TA, and between TA with HGD and low-grade dysplasia (LGD). RESULTS LINE-1 methylation declined with increasing polyp size in TA when comparing those <5 mm (72.31 ± 6.11), 5 to <10 mm (67.50 ± 7.00), and ≥10 mm (66.75 ± 11.89). There were lower LINE-1 methylation levels in TA with LGD (n = 119) compared with SSLs (n = 29) (69.11 ± 8.62 vs 81.41 ± 2.43, P < 0.001). TA containing HGD (n = 26) had lower LINE-1 methylation levels than those with LGD (n = 119) (59.86 ± 7.93 vs 69.11 ± 8.62, P < 0.001). DISCUSSION HGD and increasing size of TA/tubulovillous adenoma were associated with lower LINE-1 methylation. This supports a hypothesis that LINE-1 hypomethylation in TAs indicates advancement along the CRC tumorigenesis pathway. Lower LINE-1 methylation and greater variance of global DNA methylation was seen in TA compared with SSL. LINE-1 methylation in adenomas correlates with polyp size and degree of dysplasia and deserves further study as a predictor of metachronous colorectal cancer risk.
Collapse
Affiliation(s)
- Alice C. Jiang
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Lela Buckingham
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Faraz Bishehsari
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Karen Ma
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Joshua E. Melson
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
17
|
Obesity and Metabolic Care of Children of South Asian Ethnicity in Western Society. CHILDREN-BASEL 2021; 8:children8060447. [PMID: 34070381 PMCID: PMC8228459 DOI: 10.3390/children8060447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/13/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022]
Abstract
South Asians constitute one-fourth of the world’s population and are distributed significantly in western countries. With exponentially growing numbers, childhood obesity is of global concern. Children of South Asian ancestry have a higher likelihood of developing obesity and associated metabolic risks. The validity of commonly used measures for quantifying adiposity and its impact on metabolic outcomes differ by race and ethnicity. In this review we aim to discuss the validity of body mass index (BMI) and other tools in screening for adiposity in South Asian children. We also discuss the prevalence of overweight and obesity amongst South Asian children in western countries and the differences in body fat percentage, adiposity distribution, and metabolic risks specific to these children compared to Caucasian children. South Asian children have a characteristic phenotype: lower lean mass and higher body fat percentage favoring central fat accumulation. Hence, BMI is a less reliable predictor of metabolic status in these children than it is for Caucasian children. Furthermore, the relatively lower birth weight and rapid growth acceleration in early childhood of South Asian children increase the risk of their developing cardiometabolic disorders at a younger age than that of Caucasians. We emphasize the need to use modified tools for assessment of adiposity, which take into consideration the ethnic differences and provide early and appropriate intervention to prevent obesity and its complications.
Collapse
|
18
|
Soundararajan S, Agrawal A, Purushottam M, Anand SD, Shankarappa B, Sharma P, Jain S, Murthy P. Changes in DNA methylation persist over time in males with severe alcohol use disorder-A longitudinal follow-up study. Am J Med Genet B Neuropsychiatr Genet 2021; 186:183-192. [PMID: 33491855 DOI: 10.1002/ajmg.b.32833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/25/2022]
Abstract
Treatment strategies for alcohol use disorder (AUD) aim for abstinence or harm reduction. While deranged biochemical parameters reverse with alcohol abstinence, whether molecular changes at the epigenetic level reverse is not clearly understood. We investigated whether the reduction from high alcohol use reflects DNA methylation at the gene-specific and global level. In subjects seeking treatment for severe AUD, we assessed gene-specific (aldehyde dehydrogenase [ALDH2]/methylene tetrahydrofolate reductase [MTHFR]) and global (long interspersed elements [LINE-1]) methylation across three-time points (baseline, after detoxification and at an early remission period of 3 months), in peripheral blood leukocytes. We observed that both gene-specific and global DNA methylation did not change over time, irrespective of the drinking status at 3 months (52% abstained from alcohol). Further, we also compared DNA methylation in AUD subjects with healthy controls. At baseline, there was a significantly higher gene-specific DNA methylation (ALDH2: p < .001 and MTHFR: p = .001) and a significant lower global methylation (LINE-1: p = .014) in AUD as compared to controls. Our results suggest that epigenetic changes at the DNA methylation level associated with severe AUD persist for at least 3 months of treatment.
Collapse
Affiliation(s)
- Soundarya Soundararajan
- Department of Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.,Centre for Addiction Medicine, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.,Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meera Purushottam
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Shravanthi Daphne Anand
- Centre for Addiction Medicine, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Bhagyalakshmi Shankarappa
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Priyamvada Sharma
- Centre for Addiction Medicine, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.,Department of Clinical Pharmacology and Neurotoxicology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Pratima Murthy
- Centre for Addiction Medicine, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| |
Collapse
|
19
|
Tsuboi Y, Yamada H, Munetsuna E, Fujii R, Yamazaki M, Ando Y, Mizuno G, Ishikawa H, Ohashi K, Hashimoto S, Hamajima N, Suzuki K. Global DNA hypermethylation in peripheral blood mononuclear cells and cardiovascular disease risk: a population-based propensity score-matched cohort study. J Epidemiol Community Health 2021; 75:890-895. [PMID: 33766847 DOI: 10.1136/jech-2020-215382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/12/2021] [Accepted: 03/11/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND DNA methylation plays an important role in the pathogenesis and progression of cardiovascular disease (CVD) but the prospective association of DNA methylation with CVD has not been evaluated. Here, we conducted a prospective study to examine whether long interspersed nuclear element-1 (LINE-1) DNA methylation is associated with CVD mortality in a Japanese population. METHODS We targeted 822 Japanese who participated in a health check-up in 1990 and had no clinical history of cancer, stroke or ischaemic heart disease. DNA was extracted from peripheral blood mononuclear cells and LINE-1 DNA methylation at three CpG sites was measured using a pyrosequencing method. We used propensity score (PS) matching to reduce the effect of potential confounding. RESULTS During 18 118.7 persons-years of follow-up, there were 329 deaths from all-causes and 85 deaths from CVD. In PS-matched analysis, a significantly higher HR for CVD mortality was observed in the hypermethylation group than in the hypomethylation group for elderly participants (HR 2.77; 95% CI 1.55 to 4.93). No significant association between LINE-1 DNA methylation and CVD was observed for middle-aged participants. CONCLUSIONS Based on this prospective study, we suggest that LINE-1 DNA hypermethylation is associated with increased CVD mortality risk in an elderly population.
Collapse
Affiliation(s)
- Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Kagawa, Japan
| | - Yoshitaka Ando
- Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Genki Mizuno
- Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Hiroaki Ishikawa
- Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Koji Ohashi
- Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| |
Collapse
|
20
|
Maugeri A. The Effects of Dietary Interventions on DNA Methylation: Implications for Obesity Management. Int J Mol Sci 2020; 21:ijms21228670. [PMID: 33212948 PMCID: PMC7698434 DOI: 10.3390/ijms21228670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Previous evidence from in vivo and observational research suggested how dietary factors might affect DNA methylation signatures involved in obesity risk. However, findings from experimental studies are still scarce and, if present, not so clear. The current review summarizes studies investigating the effect of dietary interventions on DNA methylation in the general population and especially in people at risk for or with obesity. Overall, these studies suggest how dietary interventions may induce DNA methylation changes, which in turn are likely related to the risk of obesity and to different response to weight loss programs. These findings might explain the high interindividual variation in weight loss after a dietary intervention, with some people losing a lot of weight while others much less so. However, the interactions between genetic, epigenetic, environmental and lifestyle factors make the whole framework even more complex and further studies are needed to support the hypothesis of personalized interventions against obesity.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
21
|
Zhang X, Zhang R, Yu J. New Understanding of the Relevant Role of LINE-1 Retrotransposition in Human Disease and Immune Modulation. Front Cell Dev Biol 2020; 8:657. [PMID: 32850797 PMCID: PMC7426637 DOI: 10.3389/fcell.2020.00657] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022] Open
Abstract
Long interspersed nuclear element-1 (LINE-1) retrotransposition is a major hallmark of cancer accompanied by global chromosomal instability, genomic instability, and genetic heterogeneity and has become one indicator for the occurrence, development, and poor prognosis of many diseases. LINE-1 also modulates the immune system and affects the immune microenvironment in a variety of ways. Aberrant expression of LINE-1 retrotransposon can provide strong stimuli for an innate immune response, activate the immune system, and induce autoimmunity and inflammation. Therefore, inhibition the activity of LINE-1 has become a potential treatment strategy for various diseases. In this review, we discussed the components and regulatory mechanisms involved with LINE-1, its correlations with disease and immunity, and multiple inhibitors of LINE-1, providing a new understanding of LINE-1.
Collapse
Affiliation(s)
- Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
22
|
Jurcikova-Novotna L, Mrazova L, Mičová K, Friedecký D, Hubacek JA, Poledne R. Global DNA methylation in rats´ liver is not affected by hypercholesterolemic diet. Physiol Res 2020; 69:347-252. [PMID: 32199015 DOI: 10.33549/physiolres.934313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased plasma cholesterol levels are listed between the major atherosclerosis risk factors. The final plasma cholesterol levels result from the interplay between the genetic and environmental (diet, physical activity) factors. Little is known, how dietary factor influence epigenetics. We have analyzed, if an over-generation feeding of rat with cholesterol influences total liver-DNA methylation, and if total liver-DNA methylation differ between the different rat strains (Prague hereditary hypercholesterolemic rats, Prague hereditary hypertriglyceridemic rats and Wistar Kyoto rats). The animals were feed with high fat (additional 5 % over normal capacity) high cholesterol (2 %) diet for 14 days. DNA methylation in the liver tissue in different generations was analyzed using the liquid chromatography coupled with tandem mass spectrometry. We have not observed any significant changes in total liver-DNA methylation over the 9 generations of animals feed by fat/cholesterol enriched diet. Additionally, there were no differences in DNA methylation between different rat strains. In animal model, the dietary changes (hypercholesterolemic diet) not significantly influence the total DNA methylation status within the liver.
Collapse
Affiliation(s)
- L Jurcikova-Novotna
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
23
|
Zeng M, Zhen J, Zheng X, Qiu H, Xu X, Wu J, Lin Z, Hu J. The Role of DNA Methylation in Ischemic Stroke: A Systematic Review. Front Neurol 2020; 11:566124. [PMID: 33193003 PMCID: PMC7652818 DOI: 10.3389/fneur.2020.566124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Knowledge about the classic risk and protective factors of ischemic stroke is accumulating, but the underlying pathogenesis has not yet been fully understood. As emerging evidence indicates that DNA methylation plays a role in the pathological process of cerebral ischemia, this study aims to summarize the evidence of the association between DNA methylation and ischemic stroke. Methods: MEDLINE, EMBASE, PubMed, and Cochrane Central Register of Controlled Trials were searched for eligible studies. The results reported by each study were summarized narratively. Results: A total of 20 studies with 7,014 individuals finally met the inclusion criteria. Three studies focused on global methylation, 11 studies on candidate-gene methylation, and six on epigenome-wide methylation analysis. Long-interspersed nuclear element 1 was found to be hypomethylated in stroke cases in two studies. Another 16 studies reported 37 genes that were differentially methylated between stroke cases and controls. Individuals with ischemic stroke were also reported to have higher acceleration in Hanuum 's epigenetic age compared to controls. Conclusion: DNA methylation might be associated with ischemic stroke and play a role in several pathological pathways. It is potentially a promising biomarker for stroke prevention, diagnosis and treatment, but the current evidence is limited by sample size and cross-sectional or retrospective design. Therefore, studies on large asymptomatic populations with the prospective design are needed to validate the current evidence, explore new pathways and identify novel risk/protective loci.
Collapse
Affiliation(s)
- Minyan Zeng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Juanying Zhen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Xiaodan Zheng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Hongyan Qiu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaonan Xu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Zhijian Lin
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
- Jun Hu
| |
Collapse
|
24
|
Dummer TJB, Awadalla P, Boileau C, Craig C, Fortier I, Goel V, Hicks JMT, Jacquemont S, Knoppers BM, Le N, McDonald T, McLaughlin J, Mes-Masson AM, Nuyt AM, Palmer LJ, Parker L, Purdue M, Robson PJ, Spinelli JJ, Thompson D, Vena J, Zawati M. The Canadian Partnership for Tomorrow Project: a pan-Canadian platform for research on chronic disease prevention. CMAJ 2019; 190:E710-E717. [PMID: 29891475 DOI: 10.1503/cmaj.170292] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Understanding the complex interaction of risk factors that increase the likelihood of developing common diseases is challenging. The Canadian Partnership for Tomorrow Project (CPTP) is a prospective cohort study created as a population-health research platform for assessing the effect of genetics, behaviour, family health history and environment (among other factors) on chronic diseases. METHODS Volunteer participants were recruited from the general Canadian population for a confederation of 5 regional cohorts. Participants were enrolled in the study and core information obtained using 2 approaches: attendance at a study assessment centre for all study measures (questionnaire, venous blood sample and physical measurements) or completion of the core questionnaire (online or paper), with later collection of other study measures where possible. Physical measurements included height, weight, percentage body fat and blood pressure. Participants consented to passive follow-up through linkage with administrative health databases and active follow-up through recontact. All participant data across the 5 regional cohorts were harmonized. RESULTS A total of 307 017 participants aged 30-74 from 8 provinces were recruited. More than half provided a venous blood sample and/or other biological sample, and 33% completed physical measurements. A total of 709 harmonized variables were created; almost 25% are available for all participants and 60% for at least 220 000 participants. INTERPRETATION Primary recruitment for the CPTP is complete, and data and biosamples are available to Canadian and international researchers through a data-access process. The CPTP will support research into how modifiable risk factors, genetics and the environment interact to affect the development of cancer and other chronic diseases, ultimately contributing evidence to reduce the global burden of chronic disease.
Collapse
Affiliation(s)
- Trevor J B Dummer
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Philip Awadalla
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Catherine Boileau
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Camille Craig
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Isabel Fortier
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Vivek Goel
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Jason M T Hicks
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Sébastien Jacquemont
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Bartha Maria Knoppers
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Nhu Le
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Treena McDonald
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - John McLaughlin
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Anne-Marie Mes-Masson
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Anne-Monique Nuyt
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Lyle J Palmer
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Louise Parker
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Mark Purdue
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Paula J Robson
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - John J Spinelli
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - David Thompson
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Jennifer Vena
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | - Ma'n Zawati
- School of Population and Public Health (Dummer), University of British Columbia, Vancouver, BC; Ontario Institute for Cancer Research (Awadalla); CARTaGENE (Boileau), Montréal, Que.; Research Institute of the McGill University Health Centre (Craig, Fortier); Research and Innovation, University of Toronto (Goel); Ontario Agency for Health Protection and Promotion (Goel); Atlantic PATH, Dalhousie University (Hicks), Halifax, NS; Centre hospitalier universitaire Sainte-Justine (Jacquemont); Centre of Genomics and Policy, McGill University (Knoppers, Zawati), Montréal, Que.; BC Cancer Research Centre (Le, McDonald), Vancouver, BC; Public Health Ontario (McLaughlin), Toronto, Ont.; Institut du cancer de Montréal, Université de Montréal (Mes-Masson); Pediatrics, CHU Sainte-Justine Research Center (Nuyt), Montréal, Que.; School of Public Health, University of Adelaide (Palmer), Adelaide, Australia; Department of Medicine, Dalhousie University (Parker); Division of Cancer Epidemiology and Genetics, National Cancer Institute (Purdue), Bethesda, Md.; CancerControl Alberta, Alberta Health Services (Robson, Vena), Edmonton, Alta.; Population Oncology, BC Cancer (Spinelli), Vancouver, BC; Atlantic PATH, Dalhousie University (Thompson), Halifax, NS
| | | |
Collapse
|
25
|
Liang F, Lv K, Wang Y, Yuan Y, Lu L, Feng Q, Jing X, Wang H, Liu C, Rayner S, Ling S, Chen H, Wan Y, Zhou W, He L, Wu B, Qu L, Chen S, Xiong J, Li Y. Personalized Epigenome Remodeling Under Biochemical and Psychological Changes During Long-Term Isolation Environment. Front Physiol 2019; 10:932. [PMID: 31417412 PMCID: PMC6684777 DOI: 10.3389/fphys.2019.00932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
It has been reported that several aspects of human health could be disturbed during a long-term isolated environment (for instance, the Mars-500 mission), including psychiatric disorders, circadian disruption, temporal dynamics of gut microbiota, immune responses, and physical-activity-related neuromuscular performance. Nevertheless, the mechanisms underlying these disturbances and the interactions among different aspects of human adaptation to extreme environments remain to be elucidated. Epigenetic features, like DNA methylation, might be a linking mechanism that explains the involvement of environmental factors between the human genome and the outcome of health. We conducted an exploration of personalized longitudinal DNA methylation patterns of the peripheral whole blood cells, profiling six subjects across six sampling points in the Mars-500 mission. Specifically, we developed a Personalized Epigenetic-Phenotype Synchronization Analysis (PeSa) algorithm to explore glucose- and mood-state-synchronized DNA methylation sites, focusing on finding the dynamic associations between epigenetic patterns and phenotypes in each individual, and exploring the underling epigenetic connections between glucose and mood-state disturbance. Results showed that DMPs (differentially methylated-probes) were significantly enriched in pathways related to glucose metabolism (Type II diabetes mellitus pathway), mood state (Long-term depression) and circadian rhythm (Circadian entrainment pathway) during the mission. Furthermore, our data revealed individualized glucose-synchronized and mood-state-synchronized DNA methylation sites, and PTPRN2 was found to be associated with both glucose and mood state disturbances across all six subjects. Our findings suggest that personalized phenotype-synchronized epigenetic features could reflect the effects on the human body, including the disturbances of glucose and mood-states. The association analysis of DNA methylation and phenotypes, like the PeSa analysis, could provide new possibilities in understanding the intrinsic relationship between phenotypic changes of the human body adapting to long-term isolation environmental factors.
Collapse
Affiliation(s)
- Fengji Liang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Ke Lv
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Yue Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yanhong Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Liang Lu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qiang Feng
- Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Xiaolu Jing
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Honghui Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Changning Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yumin Wan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wanlong Zhou
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Li He
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Bin Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shanguang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianghui Xiong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| |
Collapse
|
26
|
Coco C, Sgarra L, Potenza MA, Nacci C, Pasculli B, Barbano R, Parrella P, Montagnani M. Can Epigenetics of Endothelial Dysfunction Represent the Key to Precision Medicine in Type 2 Diabetes Mellitus? Int J Mol Sci 2019; 20:ijms20122949. [PMID: 31212911 PMCID: PMC6628049 DOI: 10.3390/ijms20122949] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
In both developing and industrialized Countries, the growing prevalence of Type 2 Diabetes Mellitus (T2DM) and the severity of its related complications make T2DM one of the most challenging metabolic diseases worldwide. The close relationship between genetic and environmental factors suggests that eating habits and unhealthy lifestyles may significantly affect metabolic pathways, resulting in dynamic modifications of chromatin-associated proteins and homeostatic transcriptional responses involved in the progression of T2DM. Epigenetic mechanisms may be implicated in the complex processes linking environmental factors to genetic predisposition to metabolic disturbances, leading to obesity and type 2 diabetes mellitus (T2DM). Endothelial dysfunction represents an earlier marker and an important player in the development of this disease. Dysregulation of the endothelial ability to produce and release vasoactive mediators is recognized as the initial feature of impaired vascular activity under obesity and other insulin resistance conditions and undoubtedly concurs to the accelerated progression of atherosclerotic lesions and overall cardiovascular risk in T2DM patients. This review aims to summarize the most current knowledge regarding the involvement of epigenetic changes associated with endothelial dysfunction in T2DM, in order to identify potential targets that might contribute to pursuing “precision medicine” in the context of diabetic illness.
Collapse
Affiliation(s)
- Celeste Coco
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Luca Sgarra
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Assunta Potenza
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Carmela Nacci
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Barbara Pasculli
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Raffaela Barbano
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Paola Parrella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Monica Montagnani
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| |
Collapse
|
27
|
Malipatil N, Lunt M, Narayanan RP, Siddals K, Cortés Moreno GY, Gibson MJ, Gu HF, Heald AH, Donn RP. Assessment of global long interspersed nucleotide element-1 (LINE-1) DNA methylation in a longitudinal cohort of type 2 diabetes mellitus (T2DM) individuals. Int J Clin Pract 2018; 73:e13270. [PMID: 30345607 DOI: 10.1111/ijcp.13270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/06/2018] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Recent studies have indicated that methylation of the LINE-1 elements is associated with an increased risk of worsening carbohydrate metabolism. It has been shown that overall DNA methylation of LINE-1 elements could be considered as a risk factor for T2DM and its complications, independent of other established risk factors. METHODS A total of 794 T2DM individuals from Salford, UK were included in this study (60% men n = 470). All patients had clinical and metabolic variables measured in 2002 (baseline outcomes) and annually through to 2016. Global LINE-1 DNA methylation was measured at four CpG sites. The QIAGEN PyroMark Q96 MD pyrosequencer was used to quantify methylation. RESULTS The overall mean ± SD global LINE-1 methylation was 75.81 ± 3.25%. Cross-sectional linear regression analysis at baseline year 2002 showed that LINE-1 methylation was a significant predictor of diastolic BP (adjusted beta coefficient β = -0.25), estimated glomerular filtration rate (eGFR) (β = -0.48) and cholesterol HDL ratio (β = -0.04). A 10% increase in LINE-1 methylation was associated with a lower diastolic BP by 2.5 mm Hg, a lower eGFR by 4.8 ml/min/1.73 m2 and decreased cholesterol/HDL ratio by 0.4 mmol/L. Longitudinal analysis over the 14-year-follow-up periods showed that global LINE-1 methylation at baseline was associated with lower BMI in women [β = -0.25] and lower cholesterol: HDL ratio [β = -0.07]. A 10% increase in LINE-1 methylation was associated with reduction in BMI by 2.5 kg/m2 in women and reduction in cholesterol:HDL ratio by 0.7 mmol/L. CONCLUSION In a 14-year longitudinal cohort of T2DM individuals, relations between global LINE-1 DNA methylation status and specific metabolic markers were seen. Also, a higher degree of DNA methylation was predictive of less weight gain over time in women.
Collapse
Affiliation(s)
- Nagaraj Malipatil
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Mark Lunt
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | | | - Kirk Siddals
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | | | - Martin J Gibson
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
- NorthWest EHealth Ltd, Manchester, UK
| | - Harvest F Gu
- Center for Molecular Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Adrian H Heald
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Rachelle P Donn
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Tsuboi Y, Yamada H, Munetsuna E, Yamazaki M, Mizuno G, Murase Y, Ohashi K, Ishikawa H, Kondo M, Inoue T, Hashimoto S, Hamajima N, Suzuki K. Relationship between Long Interspersed Nuclear Element-1 DNA Methylation in Leukocytes and Dyslipidemia in the Japanese General Population. J Atheroscler Thromb 2018; 25:1231-1239. [PMID: 29628482 PMCID: PMC6249363 DOI: 10.5551/jat.43570] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM Aberrant global DNA methylation is involved in the development of several diseases, including cardiovascular disease (CVD). We investigated whether the methylation of long interspersed nuclear element-1 (LINE-1) in leukocytes is associated with dyslipidemia, a major risk factor for CVD, in the Japanese general population. METHODS We conducted a cross-sectional study consisting of 420 Japanese subjects (187 men and 233 women) without a clinical history of cancer, stroke, or ischemic heart disease. LINE-1 DNA methylation levels in leukocytes were measured using a pyrosequencing method. RESULTS Significantly higher odds ratios (ORs) for hypermethylation were observed in the high LDL cholesterol and high LDL/HDL ratio groups than the corresponding normal group (high LDLC group: OR, 1.88; 95% confidence interval [CI], 1.20-2.96, high LDL/HDL ratio group: OR, 1.90; 95% CI, 1.20-3.01). Subjects with 2 or more lipid abnormalities had significantly higher ORs for hypermethylation than those with no lipid abnormality (OR, 2.31; 95% CI, 1.11-4.82). CONCLUSION LINE-1 DNA hypermethylation in leukocytes was associated with CVD risk profiles: high LDLC, high LDL/HDL ratio, and the degree of abnormal lipid metabolism.
Collapse
Affiliation(s)
- Yoshiki Tsuboi
- Clinical Laboratory Medicine, Fujita Health University Graduate School of Health Sciences
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine
| | - Mirai Yamazaki
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences
| | - Genki Mizuno
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences
| | - Yuri Murase
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences
| | - Koji Ohashi
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences
| | - Hiroaki Ishikawa
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences
| | - Mari Kondo
- Clinical Laboratory Medicine, Fujita Health University Graduate School of Health Sciences
| | - Takashi Inoue
- Clinical Laboratory Medicine, Fujita Health University Graduate School of Health Sciences.,Department of Preventive Medical Sciences, Fujita Health University School of Health Sciences
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine
| | - Koji Suzuki
- Clinical Laboratory Medicine, Fujita Health University Graduate School of Health Sciences.,Department of Preventive Medical Sciences, Fujita Health University School of Health Sciences
| |
Collapse
|
29
|
Relationship between LINE-1 methylation pattern and pesticide exposure in urban sprayers. Food Chem Toxicol 2018; 113:125-133. [DOI: 10.1016/j.fct.2018.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
30
|
Willmer T, Johnson R, Louw J, Pheiffer C. Blood-Based DNA Methylation Biomarkers for Type 2 Diabetes: Potential for Clinical Applications. Front Endocrinol (Lausanne) 2018; 9:744. [PMID: 30564199 PMCID: PMC6288427 DOI: 10.3389/fendo.2018.00744] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes (T2D) is a leading cause of death and disability worldwide. It is a chronic metabolic disorder that develops due to an interplay of genetic, lifestyle, and environmental factors. The biological onset of the disease occurs long before clinical symptoms develop, thus the search for early diagnostic and prognostic biomarkers, which could facilitate intervention strategies to prevent or delay disease progression, has increased considerably in recent years. Epigenetic modifications represent important links between genetic, environmental and lifestyle cues and increasing evidence implicate altered epigenetic marks such as DNA methylation, the most characterized and widely studied epigenetic mechanism, in the pathogenesis of T2D. This review provides an update of the current status of DNA methylation as a biomarker for T2D. Four databases, Scopus, Pubmed, Cochrane Central, and Google Scholar were searched for studies investigating DNA methylation in blood. Thirty-seven studies were identified, and are summarized with respect to population characteristics, biological source, and method of DNA methylation quantification (global, candidate gene or genome-wide). We highlight that differential methylation of the TCF7L2, KCNQ1, ABCG1, TXNIP, PHOSPHO1, SREBF1, SLC30A8, and FTO genes in blood are reproducibly associated with T2D in different population groups. These genes should be prioritized and replicated in longitudinal studies across more populations in future studies. Finally, we discuss the limitations faced by DNA methylation studies, which include including interpatient variability, cellular heterogeneity, and lack of accounting for study confounders. These limitations and challenges must be overcome before the implementation of blood-based DNA methylation biomarkers into a clinical setting. We emphasize the need for longitudinal prospective studies to support the robustness of the current findings of this review.
Collapse
Affiliation(s)
- Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- *Correspondence: Tarryn Willmer
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
31
|
O'Regan CJ, Kearney H, Beausang A, Farrell MA, Brett FM, Cryan JB, Loftus TE, Buckley PG. Temporal stability of MGMT promoter methylation in glioblastoma patients undergoing STUPP protocol. J Neurooncol 2017; 137:233-240. [PMID: 29264834 DOI: 10.1007/s11060-017-2722-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Epigenetic silencing of O-6-methylguanine-DNA methyltransferase (MGMT) promoter via methylation in a glioblastoma (GBM), has been correlated with a more favourable response to alkylating chemotherapeutic agents such as temozolomide. The use of global methylation surrogates such as Long Interspersed Nucleotide Element 1 (LINE1) may also be valuable in order to fully understand these highly heterogeneous tumours. In this study, we analysed both original and recurrent GBMs in 22 patients (i.e. 44 tumours), for both MGMT and LINE1 methylation status. In the 22 patients: 14 (63.6%) displayed MGMT methylation stability in the recurrent GBM versus 8 (36.4%), with instability of methylation status. No significant differences in overall and progression free survival was evident between these two groups. LINE1 methylation status remained stable for 12 (54.5%) of recurrent GBM patients versus 9 (41%) of the patients with instability in LINE1 methylation status (p = 0.02), resulting in an increase in overall survival of the stable LINE1 group (p = 0.04). The results obtained demonstrated major epigenetic instability of GBMs treated with temozolomide as part of the STUPP protocol. GBMs appear to undergo selective evolution post-treatment, and have the ability to recur with a newly reprogrammed epigenetic status. Selective targeting of the altered epigenomes in recurrent GBMs may facilitate the future development of both prognostic biomarkers and enhanced therapeutic strategies.
Collapse
Affiliation(s)
- C J O'Regan
- Department of Molecular Pathology, Beaumont Hospital, Dublin, Ireland.
| | - H Kearney
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - A Beausang
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - M A Farrell
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - F M Brett
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - J B Cryan
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - T E Loftus
- Department of Molecular Pathology, Beaumont Hospital, Dublin, Ireland
| | | |
Collapse
|
32
|
Pirini F, Rodriguez-Torres S, Ayandibu BG, Orera-Clemente M, Gonzalez-de la Vega A, Lawson F, Thorpe RJ, Sidransky D, Guerrero-Preston R. INSIG2 rs7566605 single nucleotide variant and global DNA methylation index levels are associated with weight loss in a personalized weight reduction program. Mol Med Rep 2017; 17:1699-1709. [PMID: 29138870 PMCID: PMC5780113 DOI: 10.3892/mmr.2017.8039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 12/27/2022] Open
Abstract
Single nucleotide polymorphisms associated with lipid metabolism and energy balance are implicated in the weight loss response caused by nutritional interventions. Diet-induced weight loss is also associated with differential global DNA methylation. DNA methylation has been proposed as a predictive biomarker for weight loss response. Personalized biomarkers for successful weight loss may inform clinical decisions when deciding between behavioral and surgical weight loss interventions. The aim of the present study was to investigate the association between global DNA methylation, genetic variants associated with energy balance and lipid metabolism, and weight loss following a non-surgical weight loss regimen. The present study included 105 obese participants that were enrolled in a personalized weight loss program based on their allelic composition of the following five energy balance and lipid metabolism-associated loci: Near insulin-induced gene 2 (INSIG2); melanocortin 4 receptor; adrenoceptor β2; apolipoprotein A5; and G-protein subunit β3. The present study investigated the association between a global DNA methylation index (GDMI), the allelic composition of the five energy balance and lipid metabolism-associated loci, and weight loss during a 12 month program, after controlling for age, sex and body mass index (BMI). The results demonstrated a significant association between the GDMI and near INSIG2 locus, after adjusting for BMI and weight loss, and significant trends were observed when stratifying by gender. In conclusion, a combination of genetic and epigenetic biomarkers may be used to design personalized weight loss interventions, enabling adherence and ensuring improved outcomes for obesity treatment programs. Precision weight loss programs designed based on molecular information may enable the creation of personalized interventions for patients, that use genomic biomarkers for treatment design and for treatment adherence monitoring, thus improving response to treatment.
Collapse
Affiliation(s)
- Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | | | - Bola Grace Ayandibu
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - María Orera-Clemente
- Genetic Laboratory, University General Hospital Gregorio Marañón, 28007 Madrid, Spain
| | | | - Fahcina Lawson
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Roland J Thorpe
- Johns Hopkins University Centre for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - David Sidransky
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW In this paper, we review the progress made thus far in research related to the genetics of peripheral arterial disease (PAD) by detailing efforts to date in heritability, linkage analyses, and candidate gene studies. We further summarize more contemporary genome-wide association studies (GWAS) and epigenetic studies of PAD. Finally, we review current challenges and future avenues of advanced research in PAD genetics including whole genome sequencing studies. RECENT FINDINGS Studies have estimated the heritability of PAD to be moderate, though the contribution to this heritability that is independent of traditional cardiovascular risk factors remains unclear. Recent efforts have identified SNPs associated with PAD in GWAS analyses, but these have yet to be replicated in independent studies. Much remains to be discovered in the field of PAD genetics. An improved understanding of the genetic foundation for PAD will allow for earlier diagnosis of disease and a more complete pathophysiological understanding of the mechanisms of the disease leading to novel therapeutic interventions. Future avenues for success will likely arise from very large-scale GWAS, whole genome sequencing, and epigenetic studies involving very well-characterized cohorts.
Collapse
Affiliation(s)
- Nathan Belkin
- Division of Vascular and Endovascular Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, 4 Maloney, Philadelphia, PA, 19104, USA
| | - Scott M Damrauer
- Division of Vascular and Endovascular Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, 4 Maloney, Philadelphia, PA, 19104, USA. .,Department of Surgery, Corporal Michael Crescenz VA Medical Center, 3900 Woodland Ave., Philadelphia, PA, 19104, USA.
| |
Collapse
|
34
|
Wu Y, Cui W, Zhang D, Wu W, Yang Z. The shortening of leukocyte telomere length relates to DNA hypermethylation of LINE-1 in type 2 diabetes mellitus. Oncotarget 2017; 8:73964-73973. [PMID: 29088760 PMCID: PMC5650315 DOI: 10.18632/oncotarget.18167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/11/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND We aim to investigate the cross-talking of leukocyte telomere length (LTL) and DNA methylation of LINE-1 in type 2 diabetes mellitus (T2DM). RESULTS LTL (ratio of the copy number of telomere [T] repeats to that of a single [S] gene) was significantly shortened in T2DM compared with controls (0.94 ± 0.41 vs. 1.14 ± 0.48, P < 0.001), and decreased steadily with age in both controls and T2DM. Conversely, significant increase of LINE-1 DNA methylation was found in T2DM compared with controls (49.60 ± 14.55 vs. 37.81 ± 9.07, P < 0.001). Moreover, age, HbA1c, and LINE-1 methylation ratio were stably negatively related with LTL after multi-adjustment. Shorter LTL was associated with an increased risk of T2DM [adjusted OR (95% CI) = 2.458 (1.192, 5.070), P = 0.015], while lower LINE-1 DNA methylation levels could reduce the risk of T2DM [adjusted OR (95% CI) = 0.189 (0.089, 0.400), P < 0.001]. MATERIALS AND METHODS We performed a hospital-based case-control study of 205 T2DM patients and 213 subjects of healthy control with sex and age matched. LTL and DNA methylation of LINE-1 was measured by quantitative PCR and quantitative methylation-specific PCR (qMSP), respectively. CONCLUSIONS Our research demonstrates the association between shorter LTL and LINE-1 hyper-methylation in Chinese T2DM patients. These findings suggest that shorter LTL might be associated with T2DM in a manner dependent of epigenetic level.
Collapse
Affiliation(s)
- Yue Wu
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Donghong Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhuo Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
35
|
Sundheimer LW, Pisarska MD. Abnormal Placentation Associated with Infertility as a Marker of Overall Health. Semin Reprod Med 2017; 35:205-216. [PMID: 28658703 DOI: 10.1055/s-0037-1603570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractInfertility and fertility treatments utilized are associated with abnormal placentation leading to adverse pregnancy outcomes related to placentation, including preterm birth, low birth weight, placenta accrete, and placenta previa. This may be due to the underlying genetics predisposing to infertility or the epigenetic changes associated with the fertility treatments utilized, as specific disease states leading to infertility are at increased risk of adverse outcomes, including placental abruption, fetal loss, gestational diabetes mellitus, and outcomes related to placentation, as well as the treatments utilized including in vitro fertilization (IVF) and non-IVF fertility treatment. Placentation defects, leading to adverse maternal and fetal outcomes, which are more pronounced in the infertile population, occur due to changes in trophoblast invasion, vascular defects, changes in the environmental milieu, chronic inflammation, and oxidative stress. These similar processes are recognized as major contributors to lifelong risk of cardiovascular and metabolic disease for both the mother and her offspring. Thus, abnormal placentation, found to be more prevalent in the infertile population, may be the key to better understand how infertility affects overall and long-term health.
Collapse
Affiliation(s)
- Lauren W Sundheimer
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California.,Division of Reproductive Endocrinology and Infertility, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California.,Division of Reproductive Endocrinology and Infertility, UCLA David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
36
|
Relationships between Global DNA Methylation in Circulating White Blood Cells and Breast Cancer Risk Factors. J Cancer Epidemiol 2017; 2017:2705860. [PMID: 28484492 PMCID: PMC5397634 DOI: 10.1155/2017/2705860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
It is not yet clear whether white blood cell DNA global methylation is associated with breast cancer risk. In this review we examine the relationships between multiple breast cancer risk factors and three markers of global DNA methylation: LINE-1, 5-mdC, and Alu. A literature search was conducted using Pubmed up to April 1, 2016, using combinations of relevant outcomes such as “WBC methylation,” “blood methylation,” “blood LINE-1 methylation,” and a comprehensive list of known and suspected breast cancer risk factors. Overall, the vast majority of reports in the literature have focused on LINE-1. There was reasonably consistent evidence across the studies examined that males have higher levels of LINE-1 methylation in WBC DNA than females. None of the other demographic, lifestyle, dietary, or health condition risk factors were consistently associated with LINE-1 DNA methylation across studies. With the possible exception of sex, there was also little evidence that the wide range of breast cancer risk factors we examined were associated with either of the other two global DNA methylation markers: 5-mdC and Alu. One possible implication of the observed lack of association between global WBC DNA methylation and known breast cancer risk factors is that the association between global WBC DNA methylation and breast cancer, if it exists, is due to a disease effect.
Collapse
|
37
|
Jiang AC, Buckingham L, Barbanera W, Korang AY, Bishesari F, Melson J. LINE-1 is preferentially hypomethylated within adenomatous polyps in the presence of synchronous colorectal cancer. Clin Epigenetics 2017; 9:25. [PMID: 28293326 PMCID: PMC5345219 DOI: 10.1186/s13148-017-0325-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/02/2017] [Indexed: 12/31/2022] Open
Abstract
Background Conventional tubular adenomas are frequently detected in patients undergoing average risk screening colonoscopy and are over-represented in patients who will develop colorectal cancer (CRC). Whether features of adenomas could serve as predictors of synchronous CRC is not known. Here, we investigate whether global methylation markers, including LINE-1, differ within adenomas in patients with and without synchronous CRC. Methods Colorectal tubular/tubulovillous adenomatous polyps in the absence (P group, n = 45) and in the presence of synchronous CRC (PC group, n = 32) were identified. Global methylation and demethylation by ELISA for 5-methylcytosine (5-mC) and 5-hydroxymethyl cytosine (5-hmC), respectively, were assessed in polyps and adjacent normal non-neoplastic tissue. LINE-1 hypomethylation was assessed by pyrosequencing of bisulfite-converted DNA as well. Results Global methylation (5-mC) showed no differences in overall methylation status in the adenomatous polyps in the two groups (5-mC relative to control %, PC group 0.117; P group 0.161, p = 0.148). Global hydroxymethylation 5-hmC was also not significantly different in adenomatous polyps of the PC group than in those of the P group (0.0059 vs 0.0097, p = 0.681). Similarly, global 5-hmC was not different between normal tissues from patients without neoplasia in comparison to those from CRC patients (0.0461 ± 0.080 vs 0.039 ± 0.159, p = 0.215). In contrast, adenomatous polyps of the PC group had lower levels of LINE-1 methylation compared to the adenomas in the P group (53.07 ± 4.5 vs 59.95 ± 5.4, p < 0.001). LINE-1 methylation was also significantly lower in the normal tissue from cancer patients compared to that from patients without any neoplasia (58.07 ± 3.78 vs 71.50 ± 6.47, p < 0.001). Conclusions LINE-1 hypomethylation of precancerous adenomas correlates with the presence of synchronous CRC. Measurement of DNA hypomethylation levels of colorectal adenomas by LINE-1 could have future implications in approaches to defining CRC risk in screening programs.
Collapse
Affiliation(s)
- Alice Chu Jiang
- Department of Internal Medicine, Rush University Medical Center, 1717 W Congress Parkway, 10 Kellogg, Chicago, IL 60612 USA
| | - Lela Buckingham
- Department of Pathology, Rush University Medical Center, 600 S. Paulina Street, 1014 AAC, Chicago, IL 60612 USA
| | - William Barbanera
- Department of Pathology, Rush University Medical Center, 600 S. Paulina Street, 1014 AAC, Chicago, IL 60612 USA
| | - Amoah Yeboah Korang
- Department of Internal Medicine, Rush University Medical Center, 1717 W Congress Parkway, 10 Kellogg, Chicago, IL 60612 USA
| | - Faraz Bishesari
- Department of Internal Medicine, Rush University Medical Center, 1717 W Congress Parkway, 10 Kellogg, Chicago, IL 60612 USA.,Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, 1725 West Harrison, Suite 206, Chicago, IL 60612 USA
| | - Joshua Melson
- Department of Internal Medicine, Rush University Medical Center, 1717 W Congress Parkway, 10 Kellogg, Chicago, IL 60612 USA.,Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, 1725 West Harrison, Suite 206, Chicago, IL 60612 USA
| |
Collapse
|
38
|
Martín-Núñez GM, Cabrera-Mulero A, Alcaide-Torres J, García-Fuentes E, Tinahones FJ, Morcillo S. No effect of different bariatric surgery procedures on LINE-1 DNA methylation in diabetic and nondiabetic morbidly obese patients. Surg Obes Relat Dis 2016; 13:442-450. [PMID: 27986580 DOI: 10.1016/j.soard.2016.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bariatric surgery (BS) is proposed as a highly effective therapy for reducing weight and improving obesity-related co-morbidities. The molecular mechanisms involved in the metabolic improvement after BS are not completely resolved. Epigenetic modifications could have an important role. OBJECTIVE The aim of this study was to evaluate the effect of different BS procedures (Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy) on global DNA methylation (long interspersed nucleotide element 1 [LINE-1]) in a group of nondiabetic and diabetic severely obese patients. SETTING University hospital, Spain. METHODS This study included 60 patients (30 nondiabetic and 30 diabetic severely obese patients) undergoing BS: 31 patients underwent Roux-en-Y gastric bypass and 29 underwent laparoscopic sleeve gastrectomy. Before and 6 months post-BS, anthropometric data, blood pressure, and metabolic parameters were determined. LINE-1 DNA methylation was quantified by pyrosequencing. We used the methylation levels of tumor necrosis factor-α as a control gene promoter. RESULTS There were no differences between LINE-1 methylation levels at baseline and at 6 months after surgery (66.3±1.6 versus 66.2±2.06). Likewise, there was no statistically significant difference on LINE-1 methylation levels when we stratified according to metabolic status (diabetic versus nondiabetic), nor was there regarding the BS procedure. A strong correlation was shown between LINE-1 methylation levels and weight at baseline both in diabetic and nondiabetic obese patients (r = .486; P<.001). Tumor necrosis factor-α methylation levels increased significantly after BS in the group of diabetic obese patients. CONCLUSION After BS, global LINE-1 methylation is not modified in the short term. More studies are required to determine if LINE-1 is a stable epigenetic marker, or, on the contrary, if it is susceptible to modification by external factors such as changes in lifestyle or a surgical intervention.
Collapse
Affiliation(s)
- G M Martín-Núñez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - A Cabrera-Mulero
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - J Alcaide-Torres
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - E García-Fuentes
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, Málaga, Spain; CIBER Pathophysiology of Obesity and Nutrition, Málaga, Spain
| | - F J Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain; CIBER Pathophysiology of Obesity and Nutrition, Málaga, Spain.
| | - S Morcillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain; CIBER Pathophysiology of Obesity and Nutrition, Málaga, Spain.
| |
Collapse
|
39
|
Braun KV, Voortman T, Dhana K, Troup J, Bramer WM, Troup J, Chowdhury R, Dehghan A, Muka T, Franco OH. The role of DNA methylation in dyslipidaemia: A systematic review. Prog Lipid Res 2016; 64:178-191. [DOI: 10.1016/j.plipres.2016.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
|
40
|
Sayols-Baixeras S, Irvin MR, Arnett DK, Elosua R, Aslibekyan SW. Epigenetics of Lipid Phenotypes. CURRENT CARDIOVASCULAR RISK REPORTS 2016; 10:31. [PMID: 28496562 PMCID: PMC5421987 DOI: 10.1007/s12170-016-0513-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dyslipidemia is a well-established risk factor for cardiovascular disease, the main cause of death worldwide. Blood lipid profiles are patterned by both genetic and environmental factors. In recent years, epigenetics has emerged as a paradigm that unifies these influences. In this review, we have summarized the latest evidence implicating epigenetic mechanisms-DNA methylation, histone modification, and regulation by RNAs-in lipid homeostasis. Key findings have emerged in a number of novel epigenetic loci located in biologically plausible genes (e.g. CPT1A, ABCG1, SREBF1, and others), as well as microRNA-33a/b. Evidence from animal and cell culture models suggests a complex interplay between different classes of epigenetic processes in the lipid-related genomic regions. While epigenetic findings hold the potential to explain the interindividual variability in lipid profiles as well as the underlying mechanisms, they have yet to be translated into effective therapies for dyslipidemia.
Collapse
Affiliation(s)
- Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Group, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader, 88, Barcelona 08003, Spain, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain, (tel) 34-93-316-07-27, (fax) 34-93-316-04-10
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 220F, Birmingham, AL 35205, USA, (tel) 1-205-975-7672, (fax)1-205-975-3329
| | - Donna K Arnett
- College of Public Health, University of Kentucky, 111 Washington Avenue, Lexington, KY 40536, USA, (tel) 1-859-257-5678, (fax) 1-859-257-8811
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Group, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader, 88, Barcelona 08003, Spain, (tel) 34-93-316-08-00, (fax) 34-93-316-04-10
| | - Stella W Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 230J, Birmingham, AL 35205, USA, (tel) 1-205-975-7675, (fax) 1-205-975-3329
| |
Collapse
|
41
|
Casanello P, Krause BJ, Castro-Rodríguez JA, Uauy R. [Epigenetics and obesity]. ACTA ACUST UNITED AC 2016; 87:335-342. [PMID: 27692574 DOI: 10.1016/j.rchipe.2016.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 12/29/2022]
Abstract
Current evidence supports the notion that exposure to various environmental conditions in early life may induce permanent changes in the epigenome that persist throughout the life-course. This article focuses on early changes associated with obesity in adult life. A review is presented on the factors that induce changes in whole genome (DNA) methylation in early life that are associated with adult onset obesity and related disorders. In contrast, reversal of epigenetic changes associated with weight loss in obese subjects has not been demonstrated. This contrasts with well-established associations found between obesity related DNA methylation patterns at birth and adult onset obesity and diabetes. Epigenetic markers may serve to screen indivuals at risk for obesity and assess the effects of interventions in early life that may delay or prevent obesity in early life. This might contribute to lower the obesity-related burden of death and disability at the population level. The available evidence indicates that epigenetic marks are in fact modifiable, based on modifications in the intrauterine environment and changes in food intake, physical activity and dietary patterns patterns during pregnancy and early years of adult life. This offers the opportunity to intervene before conception, during pregnancy, infancy, childhood, and also in later life. There must be documentation on the best preventive actions in terms of diet and physical activity that will modify or revert the adverse epigenetic markers, thus preventing obesity and diabetes in suceptible individuals and populations.
Collapse
Affiliation(s)
- Paola Casanello
- División de Obstetricia y Ginecología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernardo J Krause
- División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José A Castro-Rodríguez
- División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Uauy
- División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
42
|
Reichetzeder C, Dwi Putra SE, Pfab T, Slowinski T, Neuber C, Kleuser B, Hocher B. Increased global placental DNA methylation levels are associated with gestational diabetes. Clin Epigenetics 2016; 8:82. [PMID: 27462376 PMCID: PMC4960714 DOI: 10.1186/s13148-016-0247-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/11/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is associated with adverse pregnancy outcomes. It is known that GDM is associated with an altered placental function and changes in placental gene regulation. More recent studies demonstrated an involvement of epigenetic mechanisms. So far, the focus regarding placental epigenetic changes in GDM was set on gene-specific DNA methylation analyses. Studies that robustly investigated placental global DNA methylation are lacking. However, several studies showed that tissue-specific alterations in global DNA methylation are independently associated with type 2 diabetes. Thus, the aim of this study was to characterize global placental DNA methylation by robustly measuring placental DNA 5-methylcytosine (5mC) content and to examine whether differences in placental global DNA methylation are associated with GDM. METHODS Global DNA methylation was quantified by the current gold standard method, LC-MS/MS. In total, 1030 placental samples were analyzed in this single-center birth cohort study. RESULTS Mothers with GDM displayed a significantly increased global placental DNA methylation (3.22 ± 0.63 vs. 3.00 ± 0.46 %; p = 0.013; ±SD). Bivariate logistic regression showed a highly significant positive correlation between global placental DNA methylation and the presence of GDM (p = 0.0009). Quintile stratification according to placental DNA 5mC levels revealed that the frequency of GDM was evenly distributed in quintiles 1-4 (2.9-5.3 %), whereas the frequency in the fifth quintile was significantly higher (10.7 %; p = 0.003). Bivariate logistic models adjusted for maternal age, BMI, ethnicity, recurrent miscarriages, and familiar diabetes predisposition clearly demonstrated an independent association between global placental DNA hypermethylation and GDM. Furthermore, an ANCOVA model considering known predictors of DNA methylation substantiated an independent association between GDM and placental DNA methylation. CONCLUSIONS This is the first study that employed a robust quantitative assessment of placental global DNA methylation in over a thousand placental samples. The study provides large scale evidence that placental global DNA hypermethylation is associated with GDM, independent of established risk factors.
Collapse
Affiliation(s)
- C. Reichetzeder
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Center for Cardiovascular Research (CCR), Campus Charité Mitte, University Hospital Charité, Berlin, Germany
| | - S. E. Dwi Putra
- Department of Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, Potsdam 14558 Germany
- Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | - T. Pfab
- Center for Cardiovascular Research (CCR), Campus Charité Mitte, University Hospital Charité, Berlin, Germany
- Diaverum Deutschland, Potsdam, Germany
| | - T. Slowinski
- Department of Nephrology, Campus Charité Mitte, University Hospital Charité, Berlin, Germany
| | - C. Neuber
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - B. Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - B. Hocher
- Department of Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, Potsdam 14558 Germany
- Institut für Laboratoriumsmedizin, Berlin, Germany
- Department of Basic Medicine, Medical College of Hunan Normal University, Changsha, China
| |
Collapse
|
43
|
Muka T, Nano J, Voortman T, Braun KVE, Ligthart S, Stranges S, Bramer WM, Troup J, Chowdhury R, Dehghan A, Franco OH. The role of global and regional DNA methylation and histone modifications in glycemic traits and type 2 diabetes: A systematic review. Nutr Metab Cardiovasc Dis 2016; 26:553-566. [PMID: 27146363 DOI: 10.1016/j.numecd.2016.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND New evidence suggests the potential involvement of epigenetic mechanisms in type 2 diabetes (T2D) as a crucial interface between the effects of genetic predisposition and environmental influences. AIM To systematically review studies investigating the association between epigenetic marks (DNA methylation and histone modifications) with T2D and glycemic traits (glucose and insulin levels, insulin resistance measured by HOMA-IR). METHOD AND RESULTS Six bibliographic databases (Embase.com, Medline (Ovid), Web-of-Science, PubMed, Cochrane Central and Google Scholar) were screened until 28th August 2015. We included randomized controlled trials, cohort, case-control and cross-sectional studies in humans that examined the association between epigenetic marks (global, candidate or genome-wide methylation of DNA and histone modifications) with T2D, glucose and insulin levels and insulin metabolism. Of the initially identified 3879 references, 53 articles, based on 47 unique studies met our inclusion criteria. Overall, data were available on 10,823 participants, with a total of 3358 T2D cases. There was no consistent evidence for an association between global DNA-methylation with T2D, glucose, insulin and insulin resistance. The studies reported epigenetic regulation of several candidate genes for diabetes susceptibility in blood cells, muscle, adipose tissue and placenta to be related with T2D without any general overlap between them. Histone modifications in relation to T2D were reported only in 3 observational studies. CONCLUSIONS AND RELEVANCE Current evidence supports an association between epigenetic marks and T2D. However, overall evidence is limited, highlighting the need for further larger-scale and prospective investigations to establish whether epigenetic marks may influence the risk of developing T2D.
Collapse
Affiliation(s)
- T Muka
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - J Nano
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - T Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - K V E Braun
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - S Ligthart
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - S Stranges
- Department of Population Health, Luxembourg Institute of Health, Luxembourg
| | - W M Bramer
- Medical Library, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - J Troup
- Research and Development, Metagenics, Inc, USA
| | - R Chowdhury
- Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
| | - A Dehghan
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - O H Franco
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Skarpengland T, Holm S, Scheffler K, Gregersen I, Dahl TB, Suganthan R, Segers FM, Østlie I, Otten JJT, Luna L, Ketelhuth DFJ, Lundberg AM, Neurauter CG, Hildrestrand G, Skjelland M, Bjørndal B, Svardal AM, Iversen PO, Hedin U, Nygård S, Olstad OK, Krohg-Sørensen K, Slupphaug G, Eide L, Kuśnierczyk A, Folkersen L, Ueland T, Berge RK, Hansson GK, Biessen EAL, Halvorsen B, Bjørås M, Aukrust P. Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice. Sci Rep 2016; 6:28337. [PMID: 27328939 PMCID: PMC4916448 DOI: 10.1038/srep28337] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/01/2016] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests that oxidative DNA damage accumulates in atherosclerosis. Recently, we showed that a genetic variant in the human DNA repair enzyme NEIL3 was associated with increased risk of myocardial infarction. Here, we explored the role of Neil3/NEIL3 in atherogenesis by both clinical and experimental approaches. Human carotid plaques revealed increased NEIL3 mRNA expression which significantly correlated with mRNA levels of the macrophage marker CD68. Apoe−/−Neil3−/− mice on high-fat diet showed accelerated plaque formation as compared to Apoe−/− mice, reflecting an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe−/−Neil3−/− mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage.
Collapse
Affiliation(s)
- Tonje Skarpengland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Katja Scheffler
- Department of Medical Biochemistry, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Basic Medical Research, University of Oslo, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Rajikala Suganthan
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Filip M Segers
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ingunn Østlie
- Department of Pathology,Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Jeroen J T Otten
- Department of Experimental Vascular Pathology, University of Maastricht, Maastricht, The Netherlands
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Daniel F J Ketelhuth
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Anna M Lundberg
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Gunn Hildrestrand
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Asbjørn M Svardal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Per O Iversen
- Institute of Basic Medical Research, University of Oslo, Oslo, Norway.,Department of Hematology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Nutrition, University of Oslo, Oslo, Norway
| | - Ulf Hedin
- Department of Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ståle Nygård
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ole K Olstad
- Department of Medical Biochemistry, Oslo University Hospital Ullevål, Oslo, Norway
| | - Kirsten Krohg-Sørensen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Eide
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Anna Kuśnierczyk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lasse Folkersen
- Center for Biological Sequence Analysis, Technical University of Denmark, Copenhagen, Denmark
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Göran K Hansson
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Erik A L Biessen
- Department of Experimental Vascular Pathology, University of Maastricht, Maastricht, The Netherlands
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Magnar Bjørås
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
45
|
Mitochondrial Epigenetic Changes Link to Increased Diabetes Risk and Early-Stage Prediabetes Indicator. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5290638. [PMID: 27298712 PMCID: PMC4889851 DOI: 10.1155/2016/5290638] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/26/2016] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes (T2D) is characterized by mitochondrial derangement and oxidative stress. With no known cure for T2D, it is critical to identify mitochondrial biomarkers for early diagnosis of prediabetes and disease prevention. Here we examined 87 participants on the diagnosis power of fasting glucose (FG) and hemoglobin A1c levels and investigated their interactions with mitochondrial DNA methylation. FG and A1c led to discordant diagnostic results irrespective of increased body mass index (BMI), underscoring the need of new biomarkers for prediabetes diagnosis. Mitochondrial DNA methylation levels were not correlated with late-stage (impaired FG or A1c) but significantly with early-stage (impaired insulin sensitivity) events. Quartiles of BMI suggested that mitochondrial DNA methylation increased drastically from Q1 (20 < BMI < 24.9, lean) to Q2 (30 < BMI < 34.9, obese), but marginally from Q2 to Q3 (35 < BMI < 39.9, severely obese) and from Q3 to Q4 (BMI > 40, morbidly obese). A significant change was also observed from Q1 to Q2 in HOMA insulin sensitivity but not in A1c or FG. Thus, mitochondrial epigenetic changes link to increased diabetes risk and the indicator of early-stage prediabetes. Further larger-scale studies to examine the potential of mitochondrial epigenetic marker in prediabetes diagnosis will be of critical importance for T2D prevention.
Collapse
|
46
|
Association of in vitro fertilization with global and IGF2/H19 methylation variation in newborn twins. J Dev Orig Health Dis 2016; 6:115-24. [PMID: 25857739 DOI: 10.1017/s2040174415000161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vitro fertilization (IVF) and its subset intracytoplasmic sperm injection (ICSI), are widely used medical treatments for conception. There has been controversy over whether IVF is associated with adverse short- and long-term health outcomes of offspring. As with other prenatal factors, epigenetic change is thought to be a molecular mediator of any in utero programming effects. Most studies focused on DNA methylation at gene-specific and genomic level, with only a few on associations between DNA methylation and IVF. Using buccal epithelium from 208 twin pairs from the Peri/Postnatal Epigenetic Twin Study (PETS), we investigated associations between IVF and DNA methylation on a global level, using the proxies of Alu and LINE-1 interspersed repeats in addition to two locus-specific regulatory regions within IGF2/H19, controlling for 13 potentially confounding factors. Using multiple correction testing, we found strong evidence that IVF-conceived twins have lower DNA methylation in Alu, and weak evidence of lower methylation in one of the two IGF2/H19 regulatory regions and LINE-1, compared with naturally conceived twins. Weak evidence of a relationship between ICSI and DNA methylation within IGF2/H19 regulatory region was found, suggesting that one or more of the processes associated with IVF/ICSI may contribute to these methylation differences. Lower within- and between-pair DNA methylation variation was also found in IVF-conceived twins for LINE-1, Alu and one IGF2/H19 regulatory region. Although larger sample sizes are needed, our results provide additional insight to the possible influence of IVF and ICSI on DNA methylation. To our knowledge, this is the largest study to date investigating the association of IVF and DNA methylation.
Collapse
|
47
|
Garcia-Lacarte M, Milagro FI, Zulet MA, Martinez JA, Mansego ML. LINE-1 methylation levels, a biomarker of weight loss in obese subjects, are influenced by dietary antioxidant capacity. Redox Rep 2016; 21:67-74. [PMID: 26197243 PMCID: PMC6837392 DOI: 10.1179/1351000215y.0000000029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES Epigenetic markers, and in particular DNA methylation, have come to the fore as new tools in the personalization of the treatment of obesity and its comorbidities. The objectives of the current investigation were to identify epigenetic biomarkers that might be predictive of response to a weight-loss intervention, and to better understand the influence of certain nutrients (particularly antioxidants) on the epigenome. METHODS Global DNA (LINE-1) methylation levels were assessed in peripheral blood mononuclear cells (PBMCs) from 96 obese volunteers of the Metabolic Syndrome Reduction in Navarra study, using a methylation-sensitive high resolution melting approach after bisulfite modification. RESULTS Baseline LINE-1 DNA methylation levels were significantly higher (5.41%) in high responders (>8% of weight loss) as compared to low responders (<8%) to the energy-restricted treatment. Indeed, a LINE-1 methylation higher than 84.15% may be predictive of a high response to the hypocaloric diet. Statistically significant correlations were found between LINE-1 baseline DNA methylation levels and the response to the treatment involving total fat mass and body weight. Furthermore, LINE-1 baseline methylation levels positively correlated with baseline dietary total antioxidant capacity (TAC). DISCUSSION LINE-1 methylation levels in PBMCs might be used to predict response to a dietary weight-loss intervention, and seem to be related to the dietary TAC. TRIAL REGISTRATION www.clinicaltrials.gov : NCT01087086.
Collapse
Affiliation(s)
- Marcos Garcia-Lacarte
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Fermin I. Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Carlos II Health Insitute, Madrid, Spain
| | - Maria A. Zulet
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Carlos II Health Insitute, Madrid, Spain
| | - J. Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Carlos II Health Insitute, Madrid, Spain
| | - Maria L. Mansego
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Carlos II Health Insitute, Madrid, Spain
| |
Collapse
|
48
|
Carbonari D, Chiarella P, Mansi A, Pigini D, Iavicoli S, Tranfo G. Biomarkers of susceptibility following benzene exposure: influence of genetic polymorphisms on benzene metabolism and health effects. Biomark Med 2016; 10:145-63. [PMID: 26764284 DOI: 10.2217/bmm.15.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Benzene is a ubiquitous occupational and environmental pollutant. Improved industrial hygiene allowed airborne concentrations close to the environmental context (1-1000 µg/m(3)). Conversely, new limits for benzene levels in urban air were set (5 µg/m(3)). The biomonitoring of exposure to such low benzene concentrations are performed measuring specific and sensitive biomarkers such as S-phenylmercapturic acid, trans, trans-muconic acid and urinary benzene: many studies referred high variability in the levels of these biomarkers, suggesting the involvement of polymorphic metabolic genes in the individual susceptibility to benzene toxicity. We reviewed the influence of metabolic polymorphisms on the biomarkers levels of benzene exposure and effect, in order to understand the real impact of benzene exposure on subjects with increased susceptibility.
Collapse
Affiliation(s)
- Damiano Carbonari
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Pieranna Chiarella
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Antonella Mansi
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Daniela Pigini
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Sergio Iavicoli
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Giovanna Tranfo
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| |
Collapse
|
49
|
Burghardt KJ, Goodrich JM, Dolinoy DC, Ellingrod VL. DNA methylation, insulin resistance and second-generation antipsychotics in bipolar disorder. Epigenomics 2015; 7:343-52. [PMID: 26077424 DOI: 10.2217/epi.15.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS This study aimed to assess the effect of second-generation antipsychotic (SGA) use and insulin resistance on a global measure of DNA methylation in patients diagnosed with bipolar disorder. MATERIALS & METHODS Subjects stable on medication (either mood stabilizer monotherapy or adjuvant SGAs) were assessed for insulin resistance. Global methylation levels were assessed in leukocyte DNA from whole blood using the Luminometric Methylation Assay. Multivariable linear regression was used to investigate the effect of insulin resistance and SGA use on DNA methylation. RESULTS A total of 115 bipolar I subjects were included in this study. The average age was 43.1 ±12.2 years and 73% were on SGAs. Average% global methylation was 77.0 ± 3.26 and was significantly influenced by insulin resistance, SGA use and smoking. CONCLUSION This is the first study to show a relationship between SGA use, insulin resistance and global DNA methylation. Further work will be needed to identify tissue- and gene-specific methylation changes.
Collapse
Affiliation(s)
- Kyle J Burghardt
- Department of Pharmacy Practice, Wayne State University Eugene Applebaum College of Pharmacy & Health Sciences, 259 Mack Avenue, Suite 2190, Detroit, MI 48201, USA
| | - Jacyln M Goodrich
- Department of Environmental Sciences, University of Michigan School of Public Health, 6638 SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Department of Environmental Sciences, University of Michigan School of Public Health, 6638 SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Vicki L Ellingrod
- Department of Clinical Social & Administrative Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA.,Department of Psychiatry, School of Medicine, University of Michigan, 1301 Catherine, Ann Arbor, MI 48109, USA
| |
Collapse
|
50
|
Knothe C, Doehring A, Ultsch A, Lötsch J. Methadone induces hypermethylation of human DNA. Epigenomics 2015; 8:167-79. [PMID: 26340303 DOI: 10.2217/epi.15.78] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Increased global DNA methylation in the blood of patients chronically exposed to opioids had been interpreted as an indication of an epigenetic action of this drug class. MATERIALS & METHODS To strengthen the causality, human MCF7 cells were cultured in media with the addition of several known or potential modulators of DNA methylation including methadone. RESULTS Following 3 days of incubation with several different known or potential epigenetic modulators, global DNA methylation, quantified at LINE-1 CpG islands, showed a large variability across all treatments ranging from 27.8 to 63%. Based on distribution analysis of the global methylation of human DNA exposed to various potential modulators, present in vitro experiments showed that treatment with the opioid methadone was associated with an increased probability of hypermethylation. CONCLUSION This strengthens the evidence that opioids interfere with mechanisms of classical epigenetics.
Collapse
Affiliation(s)
- Claudia Knothe
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alexandra Doehring
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alfred Ultsch
- DataBionics Research Group, University of Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology & Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|