1
|
Beck JA, Mazcko C, Belluco S, Bitar M, Brat D, Bush JW, Chkheidze R, Corps KN, Frank C, Giannini C, Horbinski C, Huse JT, Koehler JW, Miller AD, Miller CR, O'Sullivan MG, Phillips JJ, Rissi DR, Schott CR, Stemmer-Rachamimov A, Yip S, LeBlanc AK. Comparative pathology boards facilitate the translation of knowledge between canine and human cancer patients. Brain Pathol 2025:e70013. [PMID: 40325876 DOI: 10.1111/bpa.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
Comparative pathology boards bring together anatomic pathologists with expertise in canine and human histology to identify shared features, including immune or TME components, tumor subtypes, or prognostic tissue biomarkers. This article summarizes feedback to improve future initiatives and enhance the translational relevance of comparative oncology for human patients.
Collapse
Affiliation(s)
- Jessica A Beck
- Comparative Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina Mazcko
- Comparative Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara Belluco
- Université de Lyon, VetAgro Sup, UPSP 2021.A104 ICE 'Interactions Cellules Environnement', Axe Cancérologie, Lyon, France
| | - Mireille Bitar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jonathan W Bush
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rati Chkheidze
- Department of Pathology, UAB Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kara N Corps
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Chad Frank
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Caterina Giannini
- Laboratory Medicine and Pathology, Mayo Clinic Comprehensive Cancer Center, Rochester, New York, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jason T Huse
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer W Koehler
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, Alabama, USA
| | - Andrew D Miller
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - C Ryan Miller
- Department of Pathology, UAB Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - M Gerard O'Sullivan
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Daniel R Rissi
- Athens Veterinary Diagnostic Laboratory, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Courtney R Schott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anat Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy K LeBlanc
- Comparative Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Pedro G, Brasileiro FCDS, Ferreira RS, Bráz AMM, Laufer-Amorim R. Melittin inhibits proliferation, migration, and invasion in osteosarcoma cell lines using 2D and 3D models. J Venom Anim Toxins Incl Trop Dis 2025; 31:e20240053. [PMID: 40231306 PMCID: PMC11996085 DOI: 10.1590/1678-9199-jvatitd-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/08/2025] [Indexed: 04/16/2025] Open
Abstract
Background Osteosarcoma is the most common primary bone tumor in humans. It is a locally aggressive tumor at the primary site, with metastasis being the main cause of death in patients. Studies on dogs have gained prominence in oncology, as they are valuable spontaneous models of osteosarcoma. In the context of natural compounds, biotoxins are attracting increasing research interest as new therapeutic agents against cancer, such as melittin, that represents 40 to 50% of the dry weight of bee venom, and studies have already shown its antitumor effects. Methods We analyzed the anti-migratory and anti-invasive potential of melittin, with the wound healing and Transwell tests, apoptosis with Annexin V/IP and cell viability with the MTT test in 2D and 3D models. Results Melittin had a cytotoxic effect on osteosarcoma cell lines, with an IC50 between 1.5 and 2.5 µg/mL. In the wound healing test and Transwell test, melittin prevented cell migration and invasion, resulting in cell death due to iodide propidium marking in canine, murine and human cell lines. Melittin exhibited cytotoxicity in a 3D model of osteospheres, with a significantly higher IC50 in this type of culture, with values between 3.5 and 4.0 µg/mL. Conclusion We conclude that melittin has antitumor and antimetastatic properties in canine, murine and human osteosarcoma cell lines. Consequently, we believe that further research on this promising compound will facilitate its application in the development of therapeutic agents for osteosarcoma, ultimately contributing to improved survival outcomes for cancer patients.
Collapse
Affiliation(s)
- Giovana Pedro
- School of Veterinary Medicine and Animal Science, São Paulo State
University (UNESP), Botucatu, SP, Brazil
| | | | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Aline Márcia Marques Bráz
- Flow Cytometry Laboratory, Applied Biotechnology Laboratory,
Clinical Hospital of Botucatu Medical School, Botucatu, SP, Brazil
| | - Renée Laufer-Amorim
- School of Veterinary Medicine and Animal Science, São Paulo State
University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
3
|
Mason NJ, Selmic L, Ruple A, London CA, Barber L, Weishaar K, Perry JA, Mahoney J, Flesner B, Bryan JN, Willcox JL, Burton JH, Vail DM, Kisseberth WC, Balkman CE, McCleary-Wheeler AL, Curran KM, Leeper H, Woods JP, Mutsaers AJ, Higginbotham ML, Wouda RM, Wilson-Robles H, Dervisis N, Saba C, MacDonald-Dickinson VS, Hess PR, Cherukuri A, Rotolo A, Beck JA, Patkar S, Mazcko C, LeBlanc AK. Immunological responses and clinical outcomes in dogs with osteosarcoma receiving standard therapy and a Listeria vaccine expressing HER2. Mol Ther 2025; 33:1674-1686. [PMID: 39955616 PMCID: PMC11997493 DOI: 10.1016/j.ymthe.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
A clinical trial in dogs with spontaneous osteosarcoma was performed to assess a recombinant Listeria expressing a chimeric human HER2 (ADXS31-164c) as an adjunctive vaccine strategy to prevent metastatic disease and determine immunological correlates of clinical outcome. A total of 118 dogs with appendicular osteosarcoma were recruited into a 1-arm, multicenter, prospective trial of standard of care (SOC) therapy followed by ADXS31-164c. ADXS31-164c was well tolerated, with mostly transient, low-grade side effects. Significant differences in median disease-free interval (DFI) or median overall survival (OS) of immunized dogs compared to a historical cohort of dogs receiving SOC only were not observed. Elite survivors (DFI >490 days) showed transient increases in temperature and serum cytokines, including IL-6 and TNF-α, after the first immunization compared to short-term survivors (DFI 150-235 days). However, repeat immunizations in short-term survivors led to improved and comparable pyrexic and cytokine responses to elite survivors. PBMC transcriptomic analysis following vaccinations revealed robust cytotoxic activity in elite but not short-term survivors. Although ADXS31-164c did not significantly extend DFI or OS, immune responses to ADXS31-164c distinguished elite from short-term survivors. Improvement of immune responses over sequential ADXS31-164c administrations supports a future trial design of recurrent immunizations to improve outcomes of otherwise short-term survivors.
Collapse
Affiliation(s)
- Nicola J Mason
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, USA.
| | - Laura Selmic
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Audrey Ruple
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Cheryl A London
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Lisa Barber
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Kristen Weishaar
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80525, USA
| | - James A Perry
- CASTR Alliance, 22524 SE 64(th) Place, Suite 2258, Issaquah, WA 98027, USA
| | - Jennifer Mahoney
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Brian Flesner
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Jennifer L Willcox
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Jenna H Burton
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - David M Vail
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William C Kisseberth
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Cheryl E Balkman
- Department of Clinical Science, Cornell University College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Angela L McCleary-Wheeler
- Department of Clinical Science, Cornell University College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Katie M Curran
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 43210, USA
| | - Haley Leeper
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 43210, USA
| | - John Paul Woods
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON NWG 2W1, Canada
| | - Anthony J Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON NWG 2W1, Canada
| | - Mary Lynn Higginbotham
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Raelene M Wouda
- Oncology Service, Veterinary Specialist Services, Underwood, QLD 4119, Australia
| | | | - Nicholas Dervisis
- College of Veterinary Medicine and Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Corey Saba
- Department of Small Animal Medicine & Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | - Paul R Hess
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Aswini Cherukuri
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Antonia Rotolo
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jessica A Beck
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sushant Patkar
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Artificial Intelligence Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christina Mazcko
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Amy K LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Ammons DT, Harris RA, Chow L, Dow S. Characterization of canine tumor-infiltrating leukocyte transcriptomic signatures reveals conserved expression patterns with human osteosarcoma. Cancer Immunol Immunother 2025; 74:105. [PMID: 39932553 PMCID: PMC11813853 DOI: 10.1007/s00262-025-03950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Immune cells play key roles in host responses to malignant tumors. The selective pressure that immune cells elicit on tumors promotes immune escape, while tumor-associated modulation of immune cells creates an environment favorable to tumor growth and progression. In this study we used publicly available single-cell RNA sequencing (scRNA-seq) data from the translationally relevant canine osteosarcoma (OS) model to compare tumor-infiltrating immune cells to circulating leukocytes. Through computational analysis we investigated the differences in cell type proportions and how the OS TME impacted infiltrating immune cell transcriptomic profiles relative to circulating leukocytes. Differential abundance analysis revealed increased proportions of follicular helper T cells, regulatory T cells, and mature regulatory dendritic cells (mregDCs) in the OS TME. Differential gene expression analysis identified exhaustion markers (LAG3, HAVCR2, PDCD1) to be upregulated in CD4 and CD8 T cells within the OS TME. Comparisons of B cell gene expression profiles revealed an enrichment of protein processing and endoplasmic reticulum pathways, suggesting infiltrating B cells were activated following tumor infiltration. Gene expression changes within myeloid cells identified increased expression of immune suppressive molecules (CD274, OSM, MSR1) in the OS TME, indicating the TME skews myeloid cells toward an immunosuppressive phenotype. Comparisons to human literature and analysis of human scRNA-seq data revealed conserved transcriptomic responses to tumor infiltration, while also identifying species differences. Overall, the analysis presented here provides new insights into how the OS TME impacts the transcriptional programs of major immune cell populations in dogs and acts as a resource for comparative immuno-oncology research.
Collapse
Affiliation(s)
- Dylan T Ammons
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - R Adam Harris
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lyndah Chow
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Steven Dow
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
5
|
Alshammari AH, Oshiro T, Ungkulpasvich U, Yamaguchi J, Morishita M, Khdair SA, Hatakeyama H, Hirotsu T, di Luccio E. Advancing Veterinary Oncology: Next-Generation Diagnostics for Early Cancer Detection and Clinical Implementation. Animals (Basel) 2025; 15:389. [PMID: 39943159 PMCID: PMC11816279 DOI: 10.3390/ani15030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer is a leading cause of death among companion animals, with many cases diagnosed at advanced stages when clinical signs have appeared, and prognosis is poor. Emerging diagnostic technologies, including Artificial Intelligence (AI)-enhanced imaging, liquid biopsies, molecular diagnostics, and nematode-based screening, can improve early detection capabilities in veterinary medicine. These tools offer non-invasive or minimally invasive methods to facilitate earlier detection and treatment planning, addressing the limitations of traditional diagnostics, such as radiography and tissue biopsies. Recent advancements in comparative oncology, which leverage the biological similarities between human and companion animal cancers, underscore their translational value in improving outcomes across species. Technological advances in genomics, bioinformatics, and machine learning are driving a shift toward precision medicine, enabling earlier detection, personalized treatments, and monitoring of disease progression. Liquid biopsy testing detects circulating tumor DNA and tumor cells, providing actionable insights into tumor genetics without invasive procedures. Imaging systems enhance diagnostic precision, offering consistent and accurate tumor identification across veterinary practices, while portable innovations like Caenorhabditis elegans-based screening provide accessible options for underserved regions. As these technologies migrate from human medicine to veterinary applications, they are poised to redefine cancer care for companion animals. This review highlights key advancements in diagnostic technologies and their application in veterinary oncology, with a focus on enhancing early detection, accessibility, and precision in cancer care. By fostering the adoption of these innovations, veterinary oncology can achieve a new standard of care, improving outcomes for both animals and humans through the lens of comparative oncology.
Collapse
Affiliation(s)
- Aya Hasan Alshammari
- Hirotsu Bioscience Inc., New Otani Garden Court 22F, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (A.H.A.); (T.O.); (U.U.); (J.Y.); (M.M.); (H.H.)
| | - Takuya Oshiro
- Hirotsu Bioscience Inc., New Otani Garden Court 22F, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (A.H.A.); (T.O.); (U.U.); (J.Y.); (M.M.); (H.H.)
| | - Umbhorn Ungkulpasvich
- Hirotsu Bioscience Inc., New Otani Garden Court 22F, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (A.H.A.); (T.O.); (U.U.); (J.Y.); (M.M.); (H.H.)
| | - Junichi Yamaguchi
- Hirotsu Bioscience Inc., New Otani Garden Court 22F, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (A.H.A.); (T.O.); (U.U.); (J.Y.); (M.M.); (H.H.)
| | - Masayo Morishita
- Hirotsu Bioscience Inc., New Otani Garden Court 22F, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (A.H.A.); (T.O.); (U.U.); (J.Y.); (M.M.); (H.H.)
| | - Sura Abbas Khdair
- Clinical Pharmacy Department, College of Pharmacy, Al-Mustansiriya University, Baghdad 10052, Iraq;
| | - Hideyuki Hatakeyama
- Hirotsu Bioscience Inc., New Otani Garden Court 22F, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (A.H.A.); (T.O.); (U.U.); (J.Y.); (M.M.); (H.H.)
| | - Takaaki Hirotsu
- Hirotsu Bioscience Inc., New Otani Garden Court 22F, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (A.H.A.); (T.O.); (U.U.); (J.Y.); (M.M.); (H.H.)
| | - Eric di Luccio
- Hirotsu Bioscience Inc., New Otani Garden Court 22F, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (A.H.A.); (T.O.); (U.U.); (J.Y.); (M.M.); (H.H.)
| |
Collapse
|
6
|
Zanardi S, Sabattini S, Rossi F, Rossanese M, Buracco P, Montinaro V, Aralla M, Dentini A, Pizzi E, Volpe E, Tremolada G, Marconato L. Adjuvant Chemotherapy Is Associated With Prolonged Survival Time in Small-Breed Dogs Undergoing Amputation for Appendicular Osteosarcoma. Vet Comp Oncol 2025. [PMID: 39797571 DOI: 10.1111/vco.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/08/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Adjuvant chemotherapy is a well-established treatment for large-breed dogs with appendicular osteosarcoma; however, it is unclear if it improves outcomes in small-breed dogs due to limited focused studies. This retrospective study aimed to investigate the oncologic outcomes of dogs weighting less than 15 kg with appendicular osteosarcoma that underwent curative resection with or without postoperative adjuvant chemotherapy. Endpoints were time to distant progression (TTDP) and overall survival (OS). Medical records from multiple institutions were reviewed, and 43 dogs were included in the analysis: 17 underwent surgery alone and 26 also received adjuvant chemotherapy. The median TTDP for all dogs was 265 days, with no significant difference between treatment groups. The median OS for all dogs was 270 days, and it was significantly different between amputated dogs (150 days) and those also receiving adjuvant chemotherapy (353 days, p = 0.002). In our cohort, osteosarcoma in small breeds behaved as aggressive as in large breeds. Adjuvant chemotherapy may prolong survival. Future randomised studies are needed to provide definitive evidence on the necessity of adjuvant chemotherapy to address metastatic spread in small-breed dogs with appendicular osteosarcoma.
Collapse
Affiliation(s)
- Stefano Zanardi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Silvia Sabattini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Federica Rossi
- Anicura Clinica Veterinaria dell'Orologio, Bologna, Italy
| | - Matteo Rossanese
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield, UK
| | - Paolo Buracco
- Department of Veterinary Science, University of Turin, Turin, Italy
| | | | | | | | - Elisa Pizzi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | | | - Giovanni Tremolada
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Laura Marconato
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
7
|
Robinson CJ, Moeller CE, Quick CN, Goodermuth CE, Carossino M, Withers SS. Macrophage Colony Stimulating Factor (M-CSF) and Interleukin-34 (IL-34) Expression in Canine Osteosarcoma in the Context of the Tumour Immune Microenvironment. Vet Comp Oncol 2024; 22:480-489. [PMID: 39164469 DOI: 10.1111/vco.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 08/22/2024]
Abstract
Canine osteosarcoma (OSA) is a malignancy that has been shown to modulate the host immune system. Macrophage colony-stimulating factor (M-CSF; CSF1) and interleukin-34 (IL-34; IL34) are both ligands of colony stimulating factor 1 receptor (CSF-1R), and may play a role in the pathogenesis of a variety of human cancers, including OSA. This study aimed to, (1) assess M-CSF and IL-34 expression in canine OSA cell lines and tissue samples, and (2) determine any correlations between M-CSF and IL-34 expression and immune cell infiltrates within canine OSA tissues. Four canine OSA cell lines and canine osteoblasts were treated with control media, TNFα (10 ng/mL) or IL-1β (10 ng/mL) and analysed with RT-qPCR and ELISA. IL-34 and M-CSF mRNA and protein were detectable in all cell lines, however upregulation following TNFα or IL-1β exposure was only consistently observed for transcript expression. Baseline expression of CSF1 and IL34 mRNA in OSA cell lines was equal to or higher than that of canine osteoblasts. All 10 OSA tissue samples expressed IL34 and CSF1 transcripts to varying degrees. Furthermore, CSF1 and IL34 expression both showed a moderate to high degree of correlation with M1 macrophage lineage-associated transcripts (CD80 and IL15RA). There was a moderate degree of correlation between CSF1 and CD163, but no correlation between IL34 and either M2 macrophage-associated transcripts (CD163 and CCL24). In summary, IL-34 and M-CSF are expressed in canine OSA cell lines and tissues, and expression positively correlates with a wide range of immune-related transcripts.
Collapse
Affiliation(s)
- Christopher J Robinson
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Cambri E Moeller
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Cally N Quick
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Christine E Goodermuth
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory (LADDL), Baton Rouge, Louisiana, USA
| | - Sita S Withers
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
8
|
Ucci A, Giacchi L, Rucci N. Primary Bone Tumors and Breast Cancer-Induced Bone Metastases: In Vivo Animal Models and New Alternative Approaches. Biomedicines 2024; 12:2451. [PMID: 39595017 PMCID: PMC11591690 DOI: 10.3390/biomedicines12112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Bone is the preferential site of metastasis for the most common tumors, including breast cancer. On the other hand, osteosarcoma is the primary bone cancer that most commonly occurs and causes bone cancer-related deaths in children. Several treatment strategies have been developed so far, with little or no efficacy for patient survival and with the development of side effects. Therefore, there is an urgent need to develop more effective therapies for bone primary tumors and bone metastatic disease. This almost necessarily requires the use of in vivo animal models that better mimic human pathology and at the same time follow the ethical principles for the humane use of animal testing. In this review we aim to illustrate the main and more suitable in vivo strategies employed to model bone metastases and osteosarcoma. We will also take a look at the recent technologies implemented for a partial replacement of animal testing.
Collapse
Affiliation(s)
| | | | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.U.); (L.G.)
| |
Collapse
|
9
|
Han L, Lee Y, Lee H, Lee H, Lee JI. Overcoming Challenges in Interdisciplinary Collaboration Between Human and Veterinary Medicine. Vet Sci 2024; 11:518. [PMID: 39591292 PMCID: PMC11598837 DOI: 10.3390/vetsci11110518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Companion animals, such as dogs and cats, have gained considerable attention in translational medicine due to their potential as models for human diseases. The use of these animals in research has opened new avenues for developing treatments that can benefit both human and veterinary patients, aligning with the One Health approach. Unlike traditional laboratory models like mice, rats, and rabbits, companion animals naturally develop diseases that closely mirror those in humans, including but not limited to diabetes, aging, cancer, and neurological disorders, making them particularly valuable in translational research. Recent advances have highlighted the role of companion animals in enhancing the effectiveness of novel therapies during clinical trials, as they are exposed to diverse environmental and lifestyle factors similar to those experienced by humans. However, the integration of companion animals into translational medicine presents challenges, particularly in terms of collaboration between veterinary and human medicine, where terminology differences in anatomy, clinical terminology, and animal classification can lead to miscommunication. In conclusion, these findings underscore the need for better implementation of the One Health approach by uniting the fragmented collaboration between veterinarians and doctors through interdisciplinary training and fostering unified efforts across both fields, with experts from various disciplines contributing their specialized knowledge in clinical practice and research.
Collapse
Affiliation(s)
- Louise Han
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea; (L.H.); (Y.L.); (H.L.)
- Chadwick International School, 45 Art Center-Daero 97 Beon-Gil, Yeonsu-gu, Incheon 22002, Republic of Korea
| | - Yerhee Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea; (L.H.); (Y.L.); (H.L.)
- Animal Biology, College of Agriculture and Environmental Science, UC Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Hyunsu Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea; (L.H.); (Y.L.); (H.L.)
| | - Hyejin Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| | - Jeong-Ik Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea; (L.H.); (Y.L.); (H.L.)
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| |
Collapse
|
10
|
Robinson SI, Rochell RE, Penza V, Naik S. Translation of oncolytic viruses in sarcoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200822. [PMID: 39040851 PMCID: PMC11261849 DOI: 10.1016/j.omton.2024.200822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Sarcomas are a rare and highly diverse group of malignancies of mesenchymal origin. While sarcomas are generally considered resistant to immunotherapy, recent studies indicate subtype-specific differences in clinical response to checkpoint inhibitors (CPIs) that are associated with distinct immune phenotypes present in sarcoma subtypes. Oncolytic viruses (OVs) are designed to selectively infect and kill tumor cells and induce intratumoral immune infiltration, enhancing immunogenicity and thereby sensitizing tumors to immunotherapy. Herein we review the accumulated clinical data evaluating OVs in sarcoma. Small numbers of patients with sarcoma were enrolled in early-stage OV trials as part of larger solid tumor cohorts demonstrating safety but providing limited insight into the biological effects due to the low patient numbers and lack of histologic grouping. Several recent studies have investigated talimogene laherparepvec (T-VEC), an approved oncolytic herpes simplex virus (HSV-1), in combination therapy regimens in sarcoma patient cohorts. These studies have shown promising responses in heavily pre-treated and immunotherapy-resistant patients associated with increased intratumoral immune infiltration. As new and more potent OVs enter the clinical arena, prospective evaluation in subtype-specific cohorts with correlative studies to define biomarkers of response will be critical to advancing this promising approach for sarcoma therapy.
Collapse
Affiliation(s)
- Steven I. Robinson
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55902, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Roya E. Rochell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Velia Penza
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Shruthi Naik
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Cahill JA, Smith LA, Gottipati S, Torabi TS, Graim K. Bringing the Genomic Revolution to Comparative Oncology: Human and Dog Cancers. Annu Rev Biomed Data Sci 2024; 7:107-129. [PMID: 38648188 PMCID: PMC11343685 DOI: 10.1146/annurev-biodatasci-102423-111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Dogs are humanity's oldest friend, the first species we domesticated 20,000-40,000 years ago. In this unequaled collaboration, dogs have inadvertently but serendipitously been molded into a potent human cancer model. Unlike many common model species, dogs are raised in the same environment as humans and present with spontaneous tumors with human-like comorbidities, immunocompetency, and heterogeneity. In breast, bladder, blood, and several pediatric cancers, in-depth profiling of dog and human tumors has established the benefits of the dog model. In addition to this clinical and molecular similarity, veterinary studies indicate that domestic dogs have relatively high tumor incidence rates. As a result, there are a plethora of data for analysis, the statistical power of which is bolstered by substantial breed-specific variability. As such, dog tumors provide a unique opportunity to interrogate the molecular factors underpinning cancer and facilitate the modeling of new therapeutic targets. This review discusses the emerging field of comparative oncology, how it complements human and rodent cancer studies, and where challenges remain, given the rapid proliferation of genomic resources. Increasingly, it appears that human's best friend is becoming an irreplaceable component of oncology research.
Collapse
Affiliation(s)
- James A Cahill
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA;
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Leslie A Smith
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Soumya Gottipati
- Department of Computer Science, Princeton University, Princeton, New Jersey, USA
| | - Tina Salehi Torabi
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Kiley Graim
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
12
|
Giri S, Allen KJH, Prabaharan CB, Ramirez JB, Fiore L, Uppalapati M, Dadachova E. Initial insights into the interaction of antibodies radiolabeled with Lutetium-177 and Actinium-225 with tumor microenvironment in experimental human and canine osteosarcoma. Nucl Med Biol 2024; 134-135:108917. [PMID: 38718557 DOI: 10.1016/j.nucmedbio.2024.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Osteosarcoma (OS) is a prevalent primary bone cancer affecting both humans and canines. This study describes initial insights into the interaction of the human monoclonal antibody IF3 to an insulin-like growth factor 2 receptor (IGF2R) radiolabeled with either alpha-emitting Actinium-225 (225Ac) or beta-emitting Lutetium-177 (177Lu) radionuclides with the OS cells and tumor microenvironment (TME) in experimental human and canine OS. BASIC PROCEDURES SCID mice bearing canine Gracie or human OS-33 OS tumors were treated with 177Lu- or 225Ac-labeled IF3 antibody, sacrificed at 24, 72 or 168 h post-treatment and their tumors were analyzed by immunohistochemistry (IHC) for the presence of OS cells, various elements of TME as well as for the double DNA strand breaks with γH2AX and caspase 3 assays. MAIN FINDINGS IHC revealed a reduction in IGF2R-positive OS cells and OS stem cell populations post therapy with 225Ac- and 177Lu-labeled IF3 antibody. Notably, radiolabeled IF3 antibody effectively diminished pro-tumorigenic M2 macrophages, highlighting its therapeutic promise. The study also unveiled varied responses of natural killer (NK) cells and M1 macrophages, shedding light on the intricate TME interplay. Time-dependent increase in γ-H2AX staining in canine Gracie and human OS-33 tumors treated with [177Lu]Lu-IF3 and [225Ac]Ac-IF3 was observed at 24 and 72 h post-RIT. PRINCIPAL CONCLUSIONS These findings suggest that radiolabeled antibodies offer a hopeful avenue for personalized OS treatment, emphasizing the importance of understanding their impact on the TME and potential synergies with immunotherapy.
Collapse
Affiliation(s)
- Sabeena Giri
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Kevin J H Allen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Chandra Bose Prabaharan
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jonathan Bonet Ramirez
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Luciano Fiore
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
13
|
Huang S, Ren L, Beck JA, Patkar S, Lillo Osuna MA, Cherukuri A, Mazcko C, Krum SA, LeBlanc AK. Comparative responses to demethylating therapy in animal models of osteosarcoma. RESEARCH SQUARE 2024:rs.3.rs-4451060. [PMID: 38946977 PMCID: PMC11213205 DOI: 10.21203/rs.3.rs-4451060/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background The demethylating agent decitabine (DAC) effectively inhibits tumor growth and metastasis by targeting ESR1 methylation to restore estrogen receptor alpha (ERα) signaling and promoting cellular differentiation in models of human osteosarcoma (OSA). Whether this pathway can be targeted in canine OSA patients is unknown. Methods Canine OSA tumor samples were tested for ERα expression and ESR1 promoter methylation. Human (MG63.3) and canine (MC-KOS) OSA cell lines and murine xenografts were treated with DAC in vitro and in vivo, respectively. Samples were assessed using mRNA sequencing and tissue immunohistochemistry. Results ESR1 is methylated in a subset of canine OSA patient samples and the MC-KOS cell line. DAC treatment led to enhanced differentiation as demonstrated by increased ALPL expression, and suppressed tumor growth in vitro and in vivo. Metastatic progression was inhibited, particularly in the MG63.3 model, which expresses higher levels of DNA methyltransferases DNMT1 and 3B. DAC treatment induced significant alterations in immune response and cell cycle pathways. Conclusion DAC treatment activates ERα signaling, promotes bone differentiation, and inhibits tumor growth and metastasis in human and canine OSA. Additional DAC-altered pathways and species- or individual-specific differences in DNMT expression may also play a role in DAC treatment of OSA.
Collapse
|
14
|
de Brot S, Cobb J, Alibhai AA, Jackson-Oxley J, Haque M, Patke R, Harris AE, Woodcock CL, Lothion-Roy J, Varun D, Thompson R, Gomes C, Kubale V, Dunning MD, Jeyapalan JN, Mongan NP, Rutland CS. Immunohistochemical Investigation into Protein Expression Patterns of FOXO4, IRF8 and LEF1 in Canine Osteosarcoma. Cancers (Basel) 2024; 16:1945. [PMID: 38792023 PMCID: PMC11120020 DOI: 10.3390/cancers16101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Osteosarcoma (OSA) is the most common type of primary bone malignancy in people and dogs. Our previous molecular comparisons of canine OSA against healthy bone resulted in the identification of differentially expressed protein-expressing genes (forkhead box protein O4 (FOXO4), interferon regulatory factor 8 (IRF8), and lymphoid enhancer binding factor 1 (LEF1)). Immunohistochemistry (IHC) and H-scoring provided semi-quantitative assessment of nuclear and cytoplasmic staining alongside qualitative data to contextualise staining (n = 26 patients). FOXO4 was expressed predominantly in the cytoplasm with significantly lower nuclear H-scores. IRF8 H-scores ranged from 0 to 3 throughout the cohort in the nucleus and cytoplasm. LEF1 was expressed in all patients with significantly lower cytoplasmic staining compared to nuclear. No sex or anatomical location differences were observed. While reduced levels of FOXO4 might indicate malignancy, the weak or absent protein expression limits its primary use as diagnostic tumour marker. IRF8 and LEF1 have more potential for prognostic and diagnostic uses and facilitate further understanding of their roles within their respective molecular pathways, including Wnt/beta-catenin/LEF1 signalling and differential regulation of tumour suppressor genes. Deeper understanding of the mechanisms involved in OSA are essential contributions towards the development of novel diagnostic, prognostic, and treatment options in human and veterinary medicine contexts.
Collapse
Affiliation(s)
- Simone de Brot
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Comparative Pathology Platform of the University of Bern (COMPATH), Institute of Animal Pathology, University of Bern, 3012 Bern, Switzerland
| | - Jack Cobb
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Aziza A. Alibhai
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Jorja Jackson-Oxley
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Maria Haque
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Rodhan Patke
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Anna E. Harris
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Corinne L. Woodcock
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Jennifer Lothion-Roy
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Dhruvika Varun
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Rachel Thompson
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Claudia Gomes
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Valentina Kubale
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mark D. Dunning
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Willows Veterinary Centre and Referral Service, Solihull B90 4NH, UK
| | - Jennie N. Jeyapalan
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nigel P. Mongan
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Willows Veterinary Centre and Referral Service, Solihull B90 4NH, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10075, USA
| | - Catrin S. Rutland
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
15
|
Razmara AM, Farley LE, Harris RM, Judge SJ, Lammers M, Iranpur KR, Johnson EG, Dunai C, Murphy WJ, Brown CT, Rebhun RB, Kent MS, Canter RJ. Preclinical evaluation and first-in-dog clinical trials of PBMC-expanded natural killer cells for adoptive immunotherapy in dogs with cancer. J Immunother Cancer 2024; 12:e007963. [PMID: 38631708 PMCID: PMC11029326 DOI: 10.1136/jitc-2023-007963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells are cytotoxic cells capable of recognizing heterogeneous cancer targets without prior sensitization, making them promising prospects for use in cellular immunotherapy. Companion dogs develop spontaneous cancers in the context of an intact immune system, representing a valid cancer immunotherapy model. Previously, CD5 depletion of peripheral blood mononuclear cells (PBMCs) was used in dogs to isolate a CD5dim-expressing NK subset prior to co-culture with an irradiated feeder line, but this can limit the yield of the final NK product. This study aimed to assess NK activation, expansion, and preliminary clinical activity in first-in-dog clinical trials using a novel system with unmanipulated PBMCs to generate our NK cell product. METHODS Starting populations of CD5-depleted cells and PBMCs from healthy beagle donors were co-cultured for 14 days, phenotype, cytotoxicity, and cytokine secretion were measured, and samples were sequenced using the 3'-Tag-RNA-Seq protocol. Co-cultured human PBMCs and NK-isolated cells were also sequenced for comparative analysis. In addition, two first-in-dog clinical trials were performed in dogs with melanoma and osteosarcoma using autologous and allogeneic NK cells, respectively, to establish safety and proof-of-concept of this manufacturing approach. RESULTS Calculated cell counts, viability, killing, and cytokine secretion were equivalent or higher in expanded NK cells from canine PBMCs versus CD5-depleted cells, and immune phenotyping confirmed a CD3-NKp46+ product from PBMC-expanded cells at day 14. Transcriptomic analysis of expanded cell populations confirmed upregulation of NK activation genes and related pathways, and human NK cells using well-characterized NK markers closely mirrored canine gene expression patterns. Autologous and allogeneic PBMC-derived NK cells were successfully expanded for use in first-in-dog clinical trials, resulting in no serious adverse events and preliminary efficacy data. RNA sequencing of PBMCs from dogs receiving allogeneic NK transfer showed patient-unique gene signatures with NK gene expression trends in response to treatment. CONCLUSIONS Overall, the use of unmanipulated PBMCs appears safe and potentially effective for canine NK immunotherapy with equivalent to superior results to CD5 depletion in NK expansion, activation, and cytotoxicity. Our preclinical and clinical data support further evaluation of this technique as a novel platform for optimizing NK immunotherapy in dogs.
Collapse
Affiliation(s)
- Aryana M Razmara
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Lauren E Farley
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Rayna M Harris
- Department Population Health and Reproduction, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Sean J Judge
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Marshall Lammers
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Khurshid R Iranpur
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Eric G Johnson
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Cordelia Dunai
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - C Titus Brown
- Department Population Health and Reproduction, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Robert J Canter
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
16
|
Silver KI, Mannheimer JD, Saba C, Hendricks WPD, Wang G, Day K, Warrier M, Beck JA, Mazcko C, LeBlanc AK. Clinical, pathologic and molecular findings in 2 Rottweiler littermates with appendicular osteosarcoma. RESEARCH SQUARE 2024:rs.3.rs-4223759. [PMID: 38659878 PMCID: PMC11042397 DOI: 10.21203/rs.3.rs-4223759/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Appendicular osteosarcoma was diagnosed and treated in a pair of littermate Rottweiler dogs, resulting in distinctly different clinical outcomes despite similar therapy within the context of a prospective, randomized clinical trial (NCI-COTC021/022). Histopathology, immunohistochemistry, mRNA sequencing, and targeted DNA hotspot sequencing techniques were applied to both dogs' tumors to define factors that could underpin their differential response to treatment. We describe the comparison of their clinical, histologic and molecular features, as well as those from a companion cohort of Rottweiler dogs, providing new insight into potential prognostic biomarkers for canine osteosarcoma.
Collapse
Affiliation(s)
| | | | | | - William P D Hendricks
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Guannan Wang
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Kenneth Day
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Manisha Warrier
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | | | | | | |
Collapse
|
17
|
Iwaki Y, Lindley SES, Bergman N, Smith BF, Pondugula SR. An evaluation of the combination effect of zoledronate and chemotherapeutic agents in canine osteosarcoma cells. Front Vet Sci 2024; 11:1327377. [PMID: 38420207 PMCID: PMC10900512 DOI: 10.3389/fvets.2024.1327377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Osteosarcoma (OSA) is an aggressive form of bone cancer in both dogs and humans. The treatment options for metastatic (stage III) OSA are currently limited and the prognosis is poor. Zoledronate, a second generation amino-bisphosphonate, is commonly used for palliation of cancer induced bone pain. Zoledronate has also demonstrated anti-cancer properties and possibly enhances the cytotoxicity of doxorubicin in a canine histiocytosis cell line and human prostatic cancer cell line. The goal of this study was to evaluate the combination effect of zoledronate and various chemotherapeutic drugs in canine OSA cells. Methods Canine OSA cell line (D17), cells from two canine primary OSAs, and MDCK, a canine kidney cell line, were used to evaluate the therapeutic potential of these drugs. Carboplatin, doxorubicin, vinorelbine, toceranib, and isophosphoramide mustard (active metabolite of ifosfamide) were used as chemotherapeutic agents. First, cells were treated with either zoledronate or chemotherapy drug alone for 72 hours. Cell viability was assessed using CellTiter Glo and IC5, IC10, IC20, and IC50 were calculated. Second, cells were treated with a combination of zoledronate and each chemotherapeutic agent at their IC5, IC10, IC20, and IC50 concentrations. After 72 hours, cell viability was assessed by CellTiter Glo. Results and discussion Zoledronate, carboplatin, doxorubicin, vinorelbine, and isophosphoramide mustard showed concentration dependent decrease in cell viability. Toceranib showed decreased cell viability only at higher concentrations. When zoledronate was used in combination with chemotherapy drugs, while it showed potential synergistic effects with toceranib, potential antagonistic effects with vinorelbine and isophosphoramide mustard were observed. However, the results differed by cell line and thus, further evaluation is warranted to understand the exact mechanism of action.
Collapse
Affiliation(s)
- Yoshimi Iwaki
- Department of Clinical Science, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Stephanie E S Lindley
- Department of Clinical Science, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Noelle Bergman
- Department of Clinical Science, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Bruce F Smith
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
18
|
McAloney CA, Makkawi R, Budhathoki Y, Cannon MV, Franz EM, Gross AC, Cam M, Vetter TA, Duhen R, Davies AE, Roberts RD. Host-derived growth factors drive ERK phosphorylation and MCL1 expression to promote osteosarcoma cell survival during metastatic lung colonization. Cell Oncol (Dordr) 2024; 47:259-282. [PMID: 37676378 PMCID: PMC10899530 DOI: 10.1007/s13402-023-00867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
PURPOSE For patients with osteosarcoma, disease-related mortality most often results from lung metastasis-a phenomenon shared with many solid tumors. While established metastatic lesions behave aggressively, very few of the tumor cells that reach the lung will survive. By identifying mechanisms that facilitate survival of disseminated tumor cells, we can develop therapeutic strategies that prevent and treat metastasis. METHODS We analyzed single cell RNA-sequencing (scRNAseq) data from murine metastasis-bearing lungs to interrogate changes in both host and tumor cells during colonization. We used these data to elucidate pathways that become activated in cells that survive dissemination and identify candidate host-derived signals that drive activation. We validated these findings through live cell reporter systems, immunocytochemistry, and fluorescent immunohistochemistry. We then validated the functional relevance of key candidates using pharmacologic inhibition in models of metastatic osteosarcoma. RESULTS Expression patterns suggest that the MAPK pathway is significantly elevated in early and established metastases. MAPK activity correlates with expression of anti-apoptotic genes, especially MCL1. Niche cells produce growth factors that increase ERK phosphorylation and MCL1 expression in tumor cells. Both early and established metastases are vulnerable to MCL1 inhibition, but not MEK inhibition in vivo. Combining MCL1 inhibition with chemotherapy both prevented colonization and eliminated established metastases in murine models of osteosarcoma. CONCLUSION Niche-derived growth factors drive MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. Although later metastases produce less MCL1, they remain dependent on it. MCL1 is a promising target for clinical trials in both human and canine patients.
Collapse
Affiliation(s)
- Camille A McAloney
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Rawan Makkawi
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Yogesh Budhathoki
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Matthew V Cannon
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Emily M Franz
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Amy C Gross
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Maren Cam
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Rebekka Duhen
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Alexander E Davies
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Ryan D Roberts
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Division of Pediatric Hematology, Oncology, and BMT, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
19
|
Pereira THR, de Moura TR, Santos MRM, Zamarioli LDS, Erustes AG, Smaili SS, Pereira GJS, Godoy Netto AVD, Bincoletto C. Palladium (II) compounds containing oximes as promising antitumor agents for the treatment of osteosarcoma: An in vitro and in vivo comparative study with cisplatin. Eur J Med Chem 2024; 264:116034. [PMID: 38103541 DOI: 10.1016/j.ejmech.2023.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Drug resistance, evasion of cell death and metastasis are factors that contribute to the low cure rate and disease-free survival in osteosarcomas (OS). In this study, we demonstrated that a new class of oxime-containing organometallic complexes called Pd-BPO (O3) and Pd-BMO (O4) are more cytotoxic than cisplatin (CDDP) for SaOS-2 and U2OS cells using the MTT assay. Annexin-FITC/7-AAD staining demonstrated a greater potential for palladium-oxime complexes to induce death in SaOS-2 cells than CDDP, an event confirmed using the pan-caspase inhibitor Z-VAD-FMK. Compared to CDDP, only palladium-oxime complexes eradicated the clonogenicity of SaOS-2 cells after 7 days of treatment. The involvement of the lysosome-mitochondria axis in the cell death-inducing properties of the complexes was also evaluated. Using LysoTracker Red to label the acidic organelles of SaOS-2 cells treated with the O3 and O4 complexes, a decrease in the fluorescence intensity of this probe was observed in relation to CDDP and the control. Lysosomal membrane permeabilization (LMP) was also induced by the O3 and O4 complexes in an assay using acridine orange (A/O). The greater efficiency of the complexes in depolarizing the mitochondrial membrane compared to SaOS-2 cells treated with CDDP was also observed using TMRE (tetramethyl rhodamine, ethyl ester). For in vivo studies, C. elegans was used and demonstrated that both complexes reduce body bends and pharyngeal pumping after 24 h of treatment to the same extent as CDDP. We conclude that both palladium-oxime complexes are more effective than CDDP in inducing tumor cell death. The toxicity of these complexes to C. elegans was like that induced by CDDP. These results encourage preclinical studies aimed at developing more effective drugs for the treatment of osteosarcoma (OS). Furthermore, we propose palladium-oxime complexes as a new class of antineoplastic agents.
Collapse
Affiliation(s)
- Thales Hebert Regiani Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Michele Rosana Maia Santos
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Lucas Dos Santos Zamarioli
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Adolfo G Erustes
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Soraya S Smaili
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Gustavo J S Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Claudia Bincoletto
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Silver KI, Patkar S, Mazcko C, Berger EP, Beck JA, LeBlanc AK. Patterns of metastatic progression and association with clinical outcomes in canine osteosarcoma: A necropsy study of 83 dogs. Vet Comp Oncol 2023; 21:646-655. [PMID: 37592810 PMCID: PMC10842475 DOI: 10.1111/vco.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Osteosarcoma is a highly metastatic primary bone tumour that occurs spontaneously in both pet dogs and humans. Patterns of metastasis to organs beyond the most common site (lung) are poorly characterised and it is unknown whether specific associations between patterns of metastatic progression and patient features exist. This retrospective study characterised the necropsy findings of 83 dogs receiving standardised therapy and clinical monitoring in a prospective clinical trial setting to document patterns of metastasis and correlate outcomes with these patterns and other patient and tumour-specific factors. A total of 20 different sites of metastasis were documented, with lung as the most common site, followed by bone, kidney, liver, and heart. Two distinct clusters of dogs were identified based on patterns of metastasis. There was no significant association between site of enrollment, trial arm, sex, serum alkaline phosphatase (ALP) activity, or tumour location and clinical outcomes. A second cancer type was identified at necropsy in 10 dogs (10/83; 12%). These data showcase the extensive nature of osteosarcoma metastasis beyond the lung and provide a benchmark for clinical monitoring of the disease. Further, this study provides insight into transcriptional features of primary tumours that may relate to a propensity for osteosarcoma metastasis to specific organs and tissues.
Collapse
Affiliation(s)
- K I Silver
- Comparative Oncology Program, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - S Patkar
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - C Mazcko
- Comparative Oncology Program, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - E P Berger
- Frederick National Laboratory for Cancer Research in the Comparative Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - J A Beck
- Comparative Oncology Program, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - A K LeBlanc
- Comparative Oncology Program, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Hay AN, Ruger L, Hsueh A, Vickers E, Klahn S, Vlaisavljevich E, Tuohy J. A review of the development of histotripsy for extremity tumor ablation with a canine comparative oncology model to inform human treatments. Int J Hyperthermia 2023; 40:2274802. [PMID: 37994796 PMCID: PMC10669778 DOI: 10.1080/02656736.2023.2274802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023] Open
Abstract
Cancer is a devasting disease resulting in millions of deaths worldwide in both humans and companion animals, including dogs. Treatment of cancer is complex and challenging and therefore often multifaceted, as in the case of osteosarcoma (OS) and soft tissue sarcoma (STS). OS predominantly involves the appendicular skeleton and STS commonly develops in the extremities, resulting in treatment challenges due to the need to balance wide-margin resections to achieve local oncological control against the functional outcomes for the patient. To achieve wide tumor resection, invasive limb salvage surgery is often required, and the patient is at risk for numerous complications which can ultimately lead to impaired limb function and mobility. The advent of tumor ablation techniques offers the exciting potential of developing noninvasive or minimally invasive treatment options for extremity tumors. One promising innovative tumor ablation technique with strong potential to serve as a noninvasive limb salvage treatment for extremity tumor patients is histotripsy. Histotripsy is a novel, noninvasive, non-thermal, and non-ionizing focused ultrasound technique which uses controlled acoustic cavitation to mechanically disintegrate tissue with high precision. In this review, we present the ongoing development of histotripsy as a non-surgical alternative for extremity tumors and highlight the value of spontaneously occurring OS and STS in the pet dog as a comparative oncology research model to advance this field of histotripsy research.
Collapse
Affiliation(s)
- Alayna N. Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Lauren Ruger
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Andy Hsueh
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Elliana Vickers
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
- Graduate program in Translation Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Joanne Tuohy
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| |
Collapse
|
22
|
Nance RL, Wang X, Sandey M, Matz BM, Thomas A, Smith BF. Single-Nuclei Multiome (ATAC + Gene Expression) Sequencing of a Primary Canine Osteosarcoma Elucidates Intra-Tumoral Heterogeneity and Characterizes the Tumor Microenvironment. Int J Mol Sci 2023; 24:16365. [PMID: 38003552 PMCID: PMC10671194 DOI: 10.3390/ijms242216365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Osteosarcoma (OSA) is a highly aggressive bone tumor primarily affecting pediatric or adolescent humans and large-breed dogs. Canine OSA shares striking similarities with its human counterpart, making it an invaluable translational model for uncovering the disease's complexities and developing novel therapeutic strategies. Tumor heterogeneity, a hallmark of OSA, poses significant challenges to effective treatment due to the evolution of diverse cell populations that influence tumor growth, metastasis, and resistance to therapies. In this study, we apply single-nuclei multiome sequencing, encompassing ATAC (Assay for Transposase-Accessible Chromatin) and GEX (Gene Expression, or RNA) sequencing, to a treatment-naïve primary canine osteosarcoma. This comprehensive approach reveals the complexity of the tumor microenvironment by simultaneously capturing the transcriptomic and epigenomic profiles within the same nucleus. Furthermore, these results are analyzed in conjunction with bulk RNA sequencing and differential analysis of the same tumor and patient-matched normal bone. By delving into the intricacies of OSA at this unprecedented level of detail, we aim to unravel the underlying mechanisms driving intra-tumoral heterogeneity, opening new avenues for therapeutic interventions in both human and canine patients. This study pioneers an approach that is broadly applicable, while demonstrating significant heterogeneity in the context of a single individual's tumor.
Collapse
Affiliation(s)
- Rebecca L. Nance
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA; (R.L.N.); (X.W.)
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA;
| | - Xu Wang
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA; (R.L.N.); (X.W.)
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA;
| | - Maninder Sandey
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA;
| | - Brad M. Matz
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA;
| | - AriAnna Thomas
- Department of Nursing, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Bruce F. Smith
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA; (R.L.N.); (X.W.)
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA;
| |
Collapse
|
23
|
Liu PY, Xia D, McGonigle K, Carroll AB, Chiango J, Scavello H, Martins R, Mehta S, Krespan E, Lunde E, LeVine D, Fellman CL, Goggs R, Beiting DP, Garden OA. Immune-mediated hematological disease in dogs is associated with alterations of the fecal microbiota: a pilot study. Anim Microbiome 2023; 5:46. [PMID: 37770990 PMCID: PMC10540429 DOI: 10.1186/s42523-023-00268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The dog is the most popular companion animal and is a valuable large animal model for several human diseases. Canine immune-mediated hematological diseases, including immune-mediated hemolytic anemia (IMHA) and immune thrombocytopenia (ITP), share many features in common with autoimmune hematological diseases of humans. The gut microbiome has been linked to systemic illness, but few studies have evaluated its association with immune-mediated hematological disease. To address this knowledge gap, 16S rRNA gene sequencing was used to profile the fecal microbiota of dogs with spontaneous IMHA and ITP at presentation and following successful treatment. In total, 21 affected and 13 healthy control dogs were included in the study. RESULTS IMHA/ITP is associated with remodeling of fecal microbiota, marked by decreased relative abundance of the spirochete Treponema spp., increased relative abundance of the pathobionts Clostridium septicum and Escherichia coli, and increased overall microbial diversity. Logistic regression analysis demonstrated that Treponema spp. were associated with decreased risk of IMHA/ITP (odds ratio [OR] 0.24-0.34), while Ruminococcaceae UCG-009 and Christensenellaceae R-7 group were associated with increased risk of disease (OR = 6.84 [95% CI 2-32.74] and 8.36 [95% CI 1.85-71.88] respectively). CONCLUSIONS This study demonstrates an association of immune-mediated hematological diseases in dogs with fecal dysbiosis, and points to specific bacterial genera as biomarkers of disease. Microbes identified as positive or negative risk factors for IMHA/ITP represent an area for future research as potential targets for new diagnostic assays and/or therapeutic applications.
Collapse
Affiliation(s)
- P-Y Liu
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
| | - D Xia
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - K McGonigle
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - A B Carroll
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - J Chiango
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - H Scavello
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - R Martins
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - S Mehta
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - E Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - E Lunde
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, 1809 South Riverside Drive, Ames, IA, 50011, USA
| | - D LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, 1809 South Riverside Drive, Ames, IA, 50011, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1220 Wire Road, Auburn, AL, 36849, USA
| | - C L Fellman
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - R Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Box 31, Ithaca, NY, 14853, USA
| | - D P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - O A Garden
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA.
- Dean's Office, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
24
|
Zucko D, Boris-Lawrie K. Blocking tri-methylguanosine synthase 1 (TGS1) stops anchorage-independent growth of canine sarcomas. Cancer Gene Ther 2023; 30:1274-1284. [PMID: 37386121 PMCID: PMC10501901 DOI: 10.1038/s41417-023-00636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
Tri methylguanosine synthase 1 (TGS1) is the enzyme that hyper methylates the hallmark 7-methyl-guanosine cap (m7G-cap) appended to the transcription start site of RNAs. The m7G-cap and the eIF4E-cap binding protein guide canonical cap-dependent translation of mRNAs, whereas hyper methylated cap, m2,2,7G-cap (TMG) lacks adequate eIF4E affinity and licenses entry into a different translation initiation pathway. The potential role for TGS1 and TMG-capped mRNA in neoplastic growth is unknown. Canine sarcoma has high translational value to the human disease. Cumulative downregulation of protein synthesis in osteosarcoma OSCA-40 was achieved cooperatively by siTGS1 and Torin-1. Torin-1 inhibited the proliferation of three canine sarcoma explants in a reversible manner that was eliminated by siRNA-downregulation of TGS1. TGS1 failure prevented the anchorage-independent growth of osteo- and hemangio-sarcomas and curtailed sarcoma recovery from mTOR inhibition. RNA immunoprecipitation studies identified TMG-capped mRNAs encoding TGS1, DHX9 and JUND. TMG-tgs1 transcripts were downregulated by leptomycin B and TGS1 failure was compensated by eIF4E mRNP-dependent tgs1 mRNA translation affected by mTOR. The evidence documents TMG-capped mRNAs are hallmarks of the investigated neoplasms and synergy between TGS1 specialized translation and canonical translation is involved in sarcoma recovery from mTOR inhibition. Therapeutic targeting of TGS1 activity in cancer is ripe for future exploration.
Collapse
Affiliation(s)
- Dora Zucko
- University of Minnesota - Twin Cities, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, 55108, USA
| | - Kathleen Boris-Lawrie
- University of Minnesota - Twin Cities, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, 55108, USA.
| |
Collapse
|
25
|
Choi Y, Nam MW, Lee HK, Choi KC. Use of cutting-edge RNA-sequencing technology to identify biomarkers and potential therapeutic targets in canine and feline cancers and other diseases. J Vet Sci 2023; 24:e71. [PMID: 38031650 PMCID: PMC10556291 DOI: 10.4142/jvs.23036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 12/01/2023] Open
Abstract
With the growing interest in companion animals and the rapidly expanding animal healthcare and pharmaceuticals market worldwide. With the advancements in RNA-sequencing (RNA-seq) technology, it has become a valuable tool for understanding biological processes in companion animals and has multiple applications in animal healthcare. Historically, veterinary diagnoses and treatments relied solely on clinical symptoms and drugs used in human diseases. However, RNA-seq has emerged as an effective technology for studying companion animals, providing insights into their genetic information. The sequencing technology has revealed that not only messenger RNAs (mRNAs) but also non-coding RNAs (ncRNAs) such as long ncRNAs and microRNAs can serve as biomarkers. Based on the examination of RNA-seq applications in veterinary medicine, particularly in dogs and cats, this review concludes that RNA-seq has significant potential as a diagnostic and research tool. It has enabled the identification of potential biomarkers for cancer and other diseases in companion animals. Further research and development are required to maximize the utilization of RNA-seq for improved disease diagnosis and therapeutic targeting in companion animals.
Collapse
Affiliation(s)
- Youngdong Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Min-Woo Nam
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.
| |
Collapse
|
26
|
Mannheimer JD, Tawa G, Gerhold D, Braisted J, Sayers CM, McEachron TA, Meltzer P, Mazcko C, Beck JA, LeBlanc AK. Transcriptional profiling of canine osteosarcoma identifies prognostic gene expression signatures with translational value for humans. Commun Biol 2023; 6:856. [PMID: 37591946 PMCID: PMC10435536 DOI: 10.1038/s42003-023-05208-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Canine osteosarcoma is increasingly recognized as an informative model for human osteosarcoma. Here we show in one of the largest clinically annotated canine osteosarcoma transcriptional datasets that two previously reported, as well as de novo gene signatures devised through single sample Gene Set Enrichment Analysis (ssGSEA), have prognostic utility in both human and canine patients. Shared molecular pathway alterations are seen in immune cell signaling and activation including TH1 and TH2 signaling, interferon signaling, and inflammatory responses. Virtual cell sorting to estimate immune cell populations within canine and human tumors showed similar trends, predominantly for macrophages and CD8+ T cells. Immunohistochemical staining verified the increased presence of immune cells in tumors exhibiting immune gene enrichment. Collectively these findings further validate naturally occurring osteosarcoma of the pet dog as a translationally relevant patient model for humans and improve our understanding of the immunologic and genomic landscape of the disease in both species.
Collapse
Affiliation(s)
- Joshua D Mannheimer
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gregory Tawa
- Division of Preclinical Innovation, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - David Gerhold
- Division of Preclinical Innovation, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - John Braisted
- Division of Preclinical Innovation, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Carly M Sayers
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Troy A McEachron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christina Mazcko
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica A Beck
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy K LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
O'Neill DG, Edmunds GL, Urquhart-Gilmore J, Church DB, Rutherford L, Smalley MJ, Brodbelt DC. Dog breeds and conformations predisposed to osteosarcoma in the UK: a VetCompass study. Canine Med Genet 2023; 10:8. [PMID: 37365662 DOI: 10.1186/s40575-023-00131-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Osteosarcoma is a malignant bone neoplasia that has high welfare consequences for affected dogs. Awareness of breed and canine conformational risk factors for osteosarcoma can assist with earlier diagnosis and improved clinical management. Study of osteosarcoma in dogs also offers translational value for humans. Anonymised clinical data within VetCompass on dogs under primary veterinary care in the UK were searched for osteosarcoma cases. Descriptive statistics reported overall and breed-specific prevalence. Risk factor analysis used multivariable logistic regression modelling. RESULTS From 905,552 study dogs, 331 osteosarcoma cases were confirmed yielding a one-year period prevalence of 0.037% (95% CI: 0.033-0.041). Breeds with the highest annual prevalence were the Scottish Deerhound (3.28%, 95% CI 0.90-8.18), Leonberger (1.48%, 95% CI 0.41- 3.75), Great Dane (0.87%, 95% CI 0.43- 1.55) and Rottweiler (0.84%, 95% CI 0.64-1.07). The median age at diagnosis was 9.64 years (IQR: 7.97-11.41). Following multivariable modelling, 11 breeds showed increased odds of osteosarcoma compared with crossbred dogs. Breeds with the highest odds included Scottish Deerhound (OR 118.40, 95% CI 41.12-340.95), Leonberger (OR 55.79, 95% CI 19.68-158.15), Great Dane (OR 34.24, 95% CI 17.81-65.83) and Rottweiler (OR 26.67, 95% CI 18.57-38.29). Compared with breeds with mesocephalic skull conformation, breeds with dolichocephalic skull conformation (OR 2.72, 95% CI 2.06-3.58) had increased odds while breeds with brachycephalic skull conformation showed reduced odds (OR 0.50, 95% CI 0.32-0.80). Chondrodystrophic breeds had 0.10 times the odds (95% CI 0.06-0.15) compared with non-chondrodystrophic breeds. Increasing adult bodyweight was associated with increasing odds of osteosarcoma. CONCLUSIONS The current study cements the concept that breed, bodyweight and longer leg or longer skull length are all strong risk factors for osteosarcoma in dogs. With this awareness, veterinarians can update their clinical suspicion and judgement, breeders can select towards lower-risk animals, and researchers can robustly define more useful study populations for fundamental and translational bioscience.
Collapse
Affiliation(s)
- Dan G O'Neill
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK.
| | - Grace L Edmunds
- School of Veterinary Sciences, University of Bristol and Langford Vets, Stock Lane, Langford, BS40 5DU, UK
| | - Jade Urquhart-Gilmore
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - David B Church
- Clinical Science and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Lynda Rutherford
- Clinical Science and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Dave C Brodbelt
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| |
Collapse
|
28
|
Twenhafel L, Moreno D, Punt T, Kinney M, Ryznar R. Epigenetic Changes Associated with Osteosarcoma: A Comprehensive Review. Cells 2023; 12:1595. [PMID: 37371065 DOI: 10.3390/cells12121595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Osteosarcoma is the most common malignant primary bone tumor in children and adolescents. While clinical outcomes have improved, the 5-year survival rate is only around 60% if discovered early and can require debilitating treatments, such as amputations. A better understanding of the disease could lead to better clinical outcomes for patients with osteosarcoma. One promising avenue of osteosarcoma research is in the field of epigenetics. This research investigates changes in genetic expression that occur above the genome rather than in the genetic code itself. The epigenetics of osteosarcoma is an active area of research that is still not fully understood. In a narrative review, we examine recent advances in the epigenetics of osteosarcoma by reporting biomarkers of DNA methylation, histone modifications, and non-coding RNA associated with disease progression. We also show how cancer tumor epigenetic profiles are being used to predict and improve patient outcomes. The papers in this review cover a large range of epigenetic target genes and pathways that modulate many aspects of osteosarcoma, including but not limited to metastases and chemotherapy resistance. Ultimately, this review will shed light on the recent advances in the epigenetics of osteosarcoma and illustrate the clinical benefits of this field of research.
Collapse
Affiliation(s)
- Luke Twenhafel
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - DiAnna Moreno
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Trista Punt
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Madeline Kinney
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Rebecca Ryznar
- Department of Biomedical Sciences, Rocky Vista University, Englewood, CO 80112, USA
| |
Collapse
|
29
|
Małek A, Wojnicki M, Borkowska A, Wójcik M, Ziółek G, Lechowski R, Zabielska-Koczywąs K. Gold Nanoparticles Inhibit Extravasation of Canine Osteosarcoma Cells in the Ex Ovo Chicken Embryo Chorioallantoic Membrane Model. Int J Mol Sci 2023; 24:9858. [PMID: 37373007 DOI: 10.3390/ijms24129858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Canine osteosarcoma (OS) is an aggressive bone tumor with high metastatic potential and poor prognosis, mainly due to metastatic disease. Nanomedicine-based agents can be used to improve both primary and metastatic tumor treatment. Recently, gold nanoparticles were shown to inhibit different stages of the metastatic cascade in various human cancers. Here, we assessed the potential inhibitory effect of the glutathione-stabilized gold nanoparticles (Au-GSH NPs) on canine OS cells extravasation, utilizing the ex ovo chick embryo chorioallantoic membrane (CAM) model. The calculation of cells extravasation rates was performed using wide-field fluorescent microscopy. Transmission electron microscopy and Microwave Plasma Atomic Emission Spectroscopy revealed Au-GSH NPs absorption by OS cells. We demonstrated that Au-GSH NPs are non-toxic and significantly inhibit canine OS cells extravasation rates, regardless of their aggressiveness phenotype. The results indicate that Au-GSH NPs can act as a possible anti metastatic agent for OS treatment. Furthermore, the implemented CAM model may be used as a valuable preclinical platform in veterinary medicine, such as testing anti-metastatic agents.
Collapse
Affiliation(s)
- Anna Małek
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Aleksandra Borkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Michał Wójcik
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Gabriela Ziółek
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Roman Lechowski
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Zabielska-Koczywąs
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| |
Collapse
|
30
|
Leitner N, Ertl R, Gabner S, Fuchs-Baumgartinger A, Walter I, Hlavaty J. Isolation and Characterization of Novel Canine Osteosarcoma Cell Lines from Chemotherapy-Naïve Patients. Cells 2023; 12:cells12071026. [PMID: 37048099 PMCID: PMC10093184 DOI: 10.3390/cells12071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The present study aimed to establish novel canine osteosarcoma cell lines (COS3600, COS3600B, COS4074) and characterize the recently described COS4288 cells. The established D-17 cell line served as a reference. Analyzed cell lines differed notably in their biological characteristics. Calculated doubling times were between 22 h for COS3600B and 426 h for COS4074 cells. COS3600B and COS4288 cells produced visible colonies after anchorage-independent growth in soft agar. COS4288 cells were identified as cells with the highest migratory capacity. All cells displayed the ability to invade through an artificial basement membrane matrix. Immunohistochemical analyses revealed the mesenchymal origin of all COS cell lines as well as positive staining for the osteosarcoma-relevant proteins alkaline phosphatase and karyopherin α2. Expression of p53 was confirmed in all tested cell lines. Gene expression analyses of selected genes linked to cellular immune checkpoints (CD270, CD274, CD276), kinase activity (MET, ERBB2), and metastatic potential (MMP-2, MMP-9) as well as selected long non-coding RNA (MALAT1) and microRNAs (miR-9, miR-34a, miR-93) are provided. All tested cell lines were able to grow as multicellular spheroids. In all spheroids except COS4288, calcium deposition was detected by von Kossa staining. We believe that these new cell lines serve as useful biological models for future studies.
Collapse
Affiliation(s)
- Natascha Leitner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Simone Gabner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | | | - Ingrid Walter
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Juraj Hlavaty
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
- Correspondence: ; Tel.: +431-250-77-3402; Fax: +431-250-77-3490
| |
Collapse
|
31
|
Boukhalfa A, Robinson SR, Meola DM, Robinson NA, Ling LA, LaMastro JN, Upshaw JN, Pulakat L, Jaffe IZ, London CA, Chen HH, Yang VK. Using cultured canine cardiac slices to model the autophagic flux with doxorubicin. PLoS One 2023; 18:e0282859. [PMID: 36928870 PMCID: PMC10019679 DOI: 10.1371/journal.pone.0282859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/19/2023] [Indexed: 03/18/2023] Open
Abstract
Chemotherapy-induced impairment of autophagy is implicated in cardiac toxicity induced by anti-cancer drugs. Imperfect translation from rodent models and lack of in vitro models of toxicity has limited investigation of autophagic flux dysregulation, preventing design of novel cardioprotective strategies based on autophagy control. Development of an adult heart tissue culture technique from a translational model will improve investigation of cardiac toxicity. We aimed to optimize a canine cardiac slice culture system for exploration of cancer therapy impact on intact cardiac tissue, creating a translatable model that maintains autophagy in culture and is amenable to autophagy modulation. Canine cardiac tissue slices (350 μm) were generated from left ventricular free wall collected from euthanized client-owned dogs (n = 7) free of cardiovascular disease at the Foster Hospital for Small Animals at Tufts University. Cell viability and apoptosis were quantified with MTT assay and TUNEL staining. Cardiac slices were challenged with doxorubicin and an autophagy activator (rapamycin) or inhibitor (chloroquine). Autophagic flux components (LC3, p62) were quantified by western blot. Cardiac slices retained high cell viability for >7 days in culture and basal levels of autophagic markers remained unchanged. Doxorubicin treatment resulted in perturbation of the autophagic flux and cell death, while rapamycin co-treatment restored normal autophagic flux and maintained cell survival. We developed an adult canine cardiac slice culture system appropriate for studying the effects of autophagic flux that may be applicable to drug toxicity evaluations.
Collapse
Affiliation(s)
- Asma Boukhalfa
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Sally R Robinson
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Dawn M Meola
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Nicholas A Robinson
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Lauren A Ling
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Joey N LaMastro
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Jenica N Upshaw
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Division of Cardiology, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Lakshmi Pulakat
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Cheryl A London
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Howard H Chen
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Vicky K Yang
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
32
|
Endogenous Extracellular Matrix Regulates the Response of Osteosarcoma 3D Spheroids to Doxorubicin. Cancers (Basel) 2023; 15:cancers15041221. [PMID: 36831562 PMCID: PMC9954237 DOI: 10.3390/cancers15041221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The extracellular matrix (ECM) modulates cell behavior, shape, and viability as well as mechanical properties. In recent years, ECM disregulation and aberrant remodeling has gained considerable attention in cancer targeting and prevention since it may stimulate tumorigenesis and metastasis. Here, we developed an in vitro model that aims at mimicking the in vivo tumor microenvironment by recapitulating the interactions between osteosarcoma (OS) cells and ECM with respect to cancer progression. We long-term cultured 3D OS spheroids made of metastatic or non-metastatic OS cells mixed with mesenchymal stromal cells (MSCs); confirmed the deposition of ECM proteins such as Type I collagen, Type III collagen, and fibronectin by the stromal component at the interface between tumor cells and MSCs; and found that ECM secretion is inhibited by a neutralizing anti-IL-6 antibody, suggesting a new role of this cytokine in OS ECM deposition. Most importantly, we showed that the cytotoxic effect of doxorubicin is reduced by the presence of Type I collagen. We thus conclude that ECM protein deposition is crucial for modelling and studying drug response. Our results also suggest that targeting ECM proteins might improve the outcome of a subset of chemoresistant tumors.
Collapse
|
33
|
Cataracts Across the Tree of Life: A Roadmap for Prevention and Biomedical Innovation. Am J Ophthalmol 2023; 249:167-173. [PMID: 36716847 DOI: 10.1016/j.ajo.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/30/2023]
Abstract
PURPOSE Spontaneous cataracts have been identified in the lenses of animals across a phylogenetically wide range of species. This can be a source of insights and innovation for human health professionals, but many persons may lack awareness of it. By providing a phylogenetic survey and analysis of species with cataract vulnerability, this paper demonstrates how a broad comparative perspective can provide critical information about environmental hazards to human visual health and can spark potential innovations in the prevention and treatment of cataracts in humans. DESIGN Perspectives. METHODS Review and synthesis of selected literature with interpretation and perspective. RESULTS We found 273 recorded cases of spontaneously occurring cataracts in 113 species of birds, 83 species of mammals, 30 species of actinopterygii fish, 10 species of amphibians, 6 species of reptiles, and 1 species of cephalopod. CONCLUSION A phylogenetically wide range of species, including many living in and around human environments, are vulnerable to cataracts. These animals may serve as sentinels for human visual health. Variation in cataract vulnerability across species may also facilitate the identification of resistance-conferring physiologies, leading to accelerated innovation in the prevention and treatment of cataracts in humans.
Collapse
|
34
|
Ruger LN, Hay AN, Vickers ER, Coutermarsh-Ott SL, Gannon JM, Covell HS, Daniel GB, Laeseke PF, Ziemlewicz TJ, Kierski KR, Ciepluch BJ, Vlaisavljevich E, Tuohy JL. Characterizing the Ablative Effects of Histotripsy for Osteosarcoma: In Vivo Study in Dogs. Cancers (Basel) 2023; 15:741. [PMID: 36765700 PMCID: PMC9913343 DOI: 10.3390/cancers15030741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Osteosarcoma (OS) is a malignant bone tumor treated by limb amputation or limb salvage surgeries and chemotherapy. Histotripsy is a non-thermal, non-invasive focused ultrasound therapy using controlled acoustic cavitation to mechanically disintegrate tissue. Recent ex vivo and in vivo pilot studies have demonstrated the ability of histotripsy for ablating OS but were limited in scope. This study expands on these initial findings to more fully characterize the effects of histotripsy for bone tumors, particularly in tumors with different compositions. A prototype 500 kHz histotripsy system was used to treat ten dogs with suspected OS at an intermediate treatment dose of 1000 pulses per location. One day after histotripsy, treated tumors were resected via limb amputation, and radiologic and histopathologic analyses were conducted to determine the effects of histotripsy for each patient. The results of this study demonstrated that histotripsy ablation is safe and feasible in canine patients with spontaneous OS, while offering new insights into the characteristics of the achieved ablation zone. More extensive tissue destruction was observed after histotripsy compared to that in previous reports, and radiographic changes in tumor size and contrast uptake following histotripsy were reported for the first time. Overall, this study significantly expands our understanding of histotripsy bone tumor ablation and informs future studies for this application.
Collapse
Affiliation(s)
- Lauren N. Ruger
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Alayna N. Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Elliana R. Vickers
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA
| | - Sheryl L. Coutermarsh-Ott
- Department of Biological Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Jessica M. Gannon
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Hannah S. Covell
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Gregory B. Daniel
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Paul F. Laeseke
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Katharine R. Kierski
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Brittany J. Ciepluch
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Joanne L. Tuohy
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
35
|
Sapino S, Chindamo G, Chirio D, Morel S, Peira E, Vercelli C, Gallarate M. Nanocarriers in Veterinary Medicine: A Challenge for Improving Osteosarcoma Conventional Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4501. [PMID: 36558354 PMCID: PMC9785518 DOI: 10.3390/nano12244501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
In recent years, several nanocarrier-based drug delivery systems, such as polymeric nanoparticles, solid lipid nanoparticles, metallic nanoparticles, liposomes, and others, have been explored to target and treat a wide variety of diseases. Their employment has brought many benefits, not only to human medicine but also to veterinary medicine, albeit at a slower rate. Soon, the use of nanocarriers could revolutionize the animal health sector, and many veterinary therapies will be more effective as a result. The purpose of this review is to offer an overview of the main applications of nanocarriers in the veterinary field, from supplements for animal health and reproduction to nanovaccines and nanotherapies. Among the major pathologies that can affect animals, special attention is given to canine osteosarcoma (OSA): a comparison with human OSA is provided and the main treatment options are reviewed emphasizing the benefits that nanocarriers could bring in the treatment of this widespread disease.
Collapse
Affiliation(s)
- Simona Sapino
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Giulia Chindamo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Daniela Chirio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Silvia Morel
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale A. Avogadro, 28100 Novara, Italy
| | - Elena Peira
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Cristina Vercelli
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, 10095 Grugliasco, Italy
| | - Marina Gallarate
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| |
Collapse
|
36
|
Tarone L, Mareschi K, Tirtei E, Giacobino D, Camerino M, Buracco P, Morello E, Cavallo F, Riccardo F. Improving Osteosarcoma Treatment: Comparative Oncology in Action. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122099. [PMID: 36556464 PMCID: PMC9783386 DOI: 10.3390/life12122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OSA) is the most common pediatric malignant bone tumor. Although surgery together with neoadjuvant/adjuvant chemotherapy has improved survival for localized OSA, most patients develop recurrent/metastatic disease with a dismally poor outcome. Therapeutic options have not improved for these OSA patients in recent decades. As OSA is a rare and "orphan" tumor, with no distinct targetable driver antigens, the development of new efficient therapies is still an unmet and challenging clinical need. Appropriate animal models are therefore critical for advancement in the field. Despite the undoubted relevance of pre-clinical mouse models in cancer research, they present some intrinsic limitations that may be responsible for the low translational success of novel therapies from the pre-clinical setting to the clinic. From this context emerges the concept of comparative oncology, which has spurred the study of pet dogs as a uniquely valuable model of spontaneous OSA that develops in an immune-competent system with high biological and clinical similarities to corresponding human tumors, including in its metastatic behavior and resistance to conventional therapies. For these reasons, the translational power of studies conducted on OSA-bearing dogs has seen increasing recognition. The most recent and relevant veterinary investigations of novel combinatorial approaches, with a focus on immune-based strategies, that can most likely benefit both canine and human OSA patients have been summarized in this commentary.
Collapse
Affiliation(s)
- Lidia Tarone
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Katia Mareschi
- Department of Public Health and Paediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Department, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy
| | - Elisa Tirtei
- Department of Public Health and Paediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Department, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Mariateresa Camerino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Correspondence: (F.C.); (F.R.)
| | - Federica Riccardo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Correspondence: (F.C.); (F.R.)
| |
Collapse
|
37
|
Simpson S, Rizvanov AA, Jeyapalan JN, de Brot S, Rutland CS. Canine osteosarcoma in comparative oncology: Molecular mechanisms through to treatment discovery. Front Vet Sci 2022; 9:965391. [PMID: 36570509 PMCID: PMC9773846 DOI: 10.3389/fvets.2022.965391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is a leading cause of non-communicable morbidity and mortality throughout the world, similarly, in dogs, the most frequent cause of mortality is tumors. Some types of cancer, including osteosarcoma (OSA), occur at much higher rates in dogs than people. Dogs therefore not only require treatment themselves but can also act as an effective parallel patient population for the human disease equivalent. It should be noted that although there are many similarities between canine and human OSA, there are also key differences and it is important to research and highlight these features. Despite progress using chorioallantoic membrane models, 2D and 3D in vitro models, and rodent OSA models, many more insights into the molecular and cellular mechanisms, drug development, and treatment are being discovered in a variety of canine OSA patient populations.
Collapse
Affiliation(s)
- Siobhan Simpson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A. Rizvanov
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Jennie N. Jeyapalan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone de Brot
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Comparative Pathology Platform (COMPATH), Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
38
|
Beird HC, Bielack SS, Flanagan AM, Gill J, Heymann D, Janeway KA, Livingston JA, Roberts RD, Strauss SJ, Gorlick R. Osteosarcoma. Nat Rev Dis Primers 2022; 8:77. [PMID: 36481668 DOI: 10.1038/s41572-022-00409-y] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Osteosarcoma is the most common primary malignant tumour of the bone. Osteosarcoma incidence is bimodal, peaking at 18 and 60 years of age, and is slightly more common in males. The key pathophysiological mechanism involves several possible genetic drivers of disease linked to bone formation, causing malignant progression and metastasis. While there have been significant improvements in the outcome of patients with localized disease, with event-free survival outcomes exceeding 60%, in patients with metastatic disease, event-free survival outcomes remain poor at less than 30%. The suspicion of osteosarcoma based on radiographs still requires pathological evaluation of a bone biopsy specimen for definitive diagnosis and CT imaging of the chest should be performed to identify lung nodules. So far, population-based screening and surveillance strategies have not been implemented due to the rarity of osteosarcoma and the lack of reliable markers. Current screening focuses only on groups at high risk such as patients with genetic cancer predisposition syndromes. Management of osteosarcoma requires a multidisciplinary team of paediatric and medical oncologists, orthopaedic and general surgeons, pathologists, radiologists and specialist nurses. Survivors of osteosarcoma require specialized medical follow-up, as curative treatment consisting of chemotherapy and surgery has long-term adverse effects, which also affect the quality of life of patients. The development of osteosarcoma model systems and related research as well as the evaluation of new treatment approaches are ongoing to improve disease outcomes, especially for patients with metastases.
Collapse
Affiliation(s)
- Hannah C Beird
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stefan S Bielack
- Pediatric Oncology, Hematology, Immunology, Klinikum Stuttgart - Olgahospital, Stuttgart Cancer Center, Stuttgart, Germany
| | - Adrienne M Flanagan
- Research Department of Pathology, Cancer Institute, University College London, London, UK
| | - Jonathan Gill
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - J Andrew Livingston
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan D Roberts
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sandra J Strauss
- University College London Hospitals NHS Foundation Trust, University College London, London, UK
| | - Richard Gorlick
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. .,Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
39
|
Tan G, Xu J, Yu Q, Yang Z, Zhang H. The safety and efficiency of photodynamic therapy for the treatment of osteosarcoma: A systematic review of in vitro experiment and animal model reports. Photodiagnosis Photodyn Ther 2022; 40:103093. [PMID: 36031143 DOI: 10.1016/j.pdpdt.2022.103093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is an aggressive malignant bone tumour with high mortality. A poor prognosis is noted in patients with distal metastases or multidrug resistance. As an emerging antitumor strategy, photodynamic therapy (PDT) mediated by visible and near infrared light has attracted intensive attention given its target selectivity, remote controllability, minimal or non-invasive features. However, PDT also has obvious limitations. Specifically, due to the limited penetration of light, it is mainly used in the clinical treatment of superficial malignant tumours, such as musculoskeletal sarcomas and melanoma, but it has not been applied to the clinical treatment of deep malignant bone tumours except for a very small number of experiments on deep canine OS models. MATERIALS AND METHODS We searched for studies that focused on the effectiveness and safety of PDT for OS based on in vitro experiments and animal models in the last decade. A systematic search was conducted using electronic databases, including PubMed, ClinicalTrials.gov, and the Cochrane Library. INCLUSION CRITERIA (1) original research articles about PDT for OS; (2) articles in English; (3) in vitro or animal model research; and (4) detailed information, including cell name, fluence, irradiation wavelength, time of incubation with PS, duration between PS treatment and irradiation, and duration between irradiation and viability assays. EXCLUSION CRITERIA (1) study was a review/systemic review article, patent, letter, or conference abstract/paper; (2) articles were not published in English; (3) studies containing overlapping or insufficient data. RESULTS We identified 201 publications, and 44 articles met the inclusion criteria and were included in the synthesis. Unfortunately, there are no relevant clinical reports of the use of PDT in the treatment of human OS. In these studies, 8 studies only employed in vivo experiments to evaluate the efficiency of PDT in an OS animal model, 19 studies exclusively performed in vitro viability assays of cells treated with PDT under different conditions, and 17 studies included in vitro cell experiments and in vivo animal OS models to evaluate the effect of PDT on OS in vivo and in vitro. All studies have shown that PDT is cytotoxic to OS cells or can inhibit the growth of OS in heterologous or homologous animal OS models but exhibits minimal cytotoxicity at a certain range of dosages. CONCLUSION Based on this systematic review, PDT can eradicate OS cells in cell culture and there is some evidence for efficacy in animal models. However, the ability for PDT to control human OS is unclear, the animal and human reports do not show evidence of human OS control, they just do show feasibility. The major issues concerning the potential for treatment of osteosarcoma with PDT are that adequate light should be transmitted to tumor loci and if the disease is caught before metastasis and irradiation of tumor sites is feasible, curative potential is there. Otherwise, PDT may be mainly palliative. To determine whether PDT can safely and efficiently be used in the clinical treatment of OS, many preclinical orthotopic animal OS models and OS models of multiple systemic metastases must be performed and interstitial PDT or intraoperative PDT may be a good and potential candidate for human OS treatment. If these problems can be well solved, PDT may be a potentially effective strategy for the treatment of OS patients.
Collapse
Affiliation(s)
- Gang Tan
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Xu
- Operating Room, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Yu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zeyu Yang
- Rotex Tech.Ltd.Co. Room 1104, floor 11, building 6, No. 599, Shijicheng South Road, high tech Zone, Chengdu, Sichuan, China.
| | - Hui Zhang
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
40
|
Fu Y, Yu J, Liatsou I, Du Y, Josefsson A, Nedrow JR, Rindt H, Bryan JN, Kraitchman DL, Sgouros G. Anti-GD2 antibody for radiopharmaceutical imaging of osteosarcoma. Eur J Nucl Med Mol Imaging 2022; 49:4382-4393. [PMID: 35809088 DOI: 10.1007/s00259-022-05888-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/19/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE Osteosarcoma (OS) is the most frequently diagnosed bone cancer in children with little improvement in overall survival in the past decades. The high surface expression of disialoganglioside GD2 on OS tumors and restricted expression in normal tissues makes it an ideal target for anti-OS radiopharmaceuticals. Since human and canine OS share many biological and molecular features, spontaneously occurring OS in canines has been an ideal model for testing new imaging and treatment modalities for human translation. In this study, we evaluated a humanized anti-GD2 antibody, hu3F8, as a potential delivery vector for targeted radiopharmaceutical imaging of human and canine OS. METHODS The cross-reactivity of hu3F8 with human and canine OS cells and tumors was examined by immunohistochemistry and flow cytometry. The hu3F8 was radiolabeled with indium-111, and the biodistribution of [111In]In-hu3F8 was assessed in tumor xenograft-bearing mice. The targeting ability of [111In]In-hu3F8 to metastatic OS was tested in spontaneous OS canines. RESULTS The hu3F8 cross reacts with human and canine OS cells and canine OS tumors with high binding affinity. Biodistribution studies revealed selective uptake of [111In]In-hu3F8 in tumor tissue. SPECT/CT imaging of spontaneous OS canines demonstrated avid uptake of [111In]In-hu3F8 in all metastatic lesions. Immunohistochemistry confirmed the extensive binding of radiolabeled hu3F8 within both osseous and soft lesions. CONCLUSION This study demonstrates the feasibility of targeting GD2 on OS cells and spontaneous OS canine tumors using hu3F8-based radiopharmaceutical imaging. Its ability to deliver an imaging payload in a targeted manner supports the utility of hu3F8 for precision imaging of OS and potential future use in radiopharmaceutical therapy.
Collapse
Affiliation(s)
- Yingli Fu
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Jing Yu
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Ioanna Liatsou
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Yong Du
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Anders Josefsson
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Jessie R Nedrow
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Hans Rindt
- Department of Veterinary Medicine & Surgery, the University of Missouri, Columbia, MO, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine & Surgery, the University of Missouri, Columbia, MO, USA
| | - Dara L Kraitchman
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - George Sgouros
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA.
| |
Collapse
|
41
|
Pinard CJ, Lagree A, Lu FI, Klein J, Oblak ML, Salgado R, Cardenas JCP, Brunetti B, Muscatello LV, Sarli G, Foschini MP, Hardas A, Castillo SP, AbdulJabbar K, Yuan Y, Moore DA, Tran WT. Comparative Evaluation of Tumor-Infiltrating Lymphocytes in Companion Animals: Immuno-Oncology as a Relevant Translational Model for Cancer Therapy. Cancers (Basel) 2022; 14:5008. [PMID: 36291791 PMCID: PMC9599753 DOI: 10.3390/cancers14205008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the important role of preclinical experiments to characterize tumor biology and molecular pathways, there are ongoing challenges to model the tumor microenvironment, specifically the dynamic interactions between tumor cells and immune infiltrates. Comprehensive models of host-tumor immune interactions will enhance the development of emerging treatment strategies, such as immunotherapies. Although in vitro and murine models are important for the early modelling of cancer and treatment-response mechanisms, comparative research studies involving veterinary oncology may bridge the translational pathway to human studies. The natural progression of several malignancies in animals exhibits similar pathogenesis to human cancers, and previous studies have shown a relevant and evaluable immune system. Veterinary oncologists working alongside oncologists and cancer researchers have the potential to advance discovery. Understanding the host-tumor-immune interactions can accelerate drug and biomarker discovery in a clinically relevant setting. This review presents discoveries in comparative immuno-oncology and implications to cancer therapy.
Collapse
Affiliation(s)
- Christopher J. Pinard
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Andrew Lagree
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Fang-I Lu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan Klein
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Michelle L. Oblak
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Roberto Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Department of Pathology, GZA-ZNA Hospitals, 2610 Antwerp, Belgium
| | | | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Alexandros Hardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Simon P. Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - David A. Moore
- Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
- University College Hospitals NHS Trust, London NW1 2PG, UK
| | - William T. Tran
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
42
|
Jimenez IA, Pool RR, Gabrielson KL. Canine Idiopathic Arteriopathy, Appendicular Bone Infarcts, and Neoplastic Transformation of Bone Infarcts in 108 Dogs ( Canis lupus familiaris). Comp Med 2022; 72:306-319. [PMID: 36113969 PMCID: PMC9827601 DOI: 10.30802/aalas-cm-22-000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023]
Abstract
Osteosarcoma (OSA) is the most common primary bone tumor in both dogs and humans. The dog is an important research model for OSA, yet dogs have much higher prevalence of bone tumors than do humans, a disparity that has yet to be explained. Neoplastic transformation of cells within or adjacent to bone infarcts into primary bone tumors has been described in humans but only sparsely characterized in the veterinary literature. In this study, 653 cases of canine bone infarcts were received through a referral veterinary osteopathology service over a 14-y period. We identified an idiopathic disorder affecting the nutrient artery, termed canine idiopathic arteriopathy (CIA), which to our knowledge has no direct counterpart in human medicine. This disorder was documented alongside ischemic necrosis of the medullary cavity in 114 bone infarcts in 108 dogs. We hypothesize that CIA precipitated an ischemic environment, resulting in development of a bone infarct down- stream of the abnormal artery. In 52% (59 of 114) of cases, bone infarcts demonstrated evidence of repair (termed reparative bone infarcts [RBI]), while in 48% (55 of 114) of infarcts, a bone tumor was also present, including pleomorphic sarcoma, OSA, fibrosarcoma, and chondrosarcoma. In some cases, a spectrum of tumors was present. We hypothesize that the ischemic infarct environment provoked bone marrow mesenchymal stem cells (MSCs) to attempt repair of the stroma, and in approximately half of cases, MSCs underwent neoplastic transformation (BINT) to produce tumors. The most common sites of bone infarcts were the distal femur, distal radius, proximal humerus, and distal tibia, coinciding with common sites of canine OSA. The authors propose that CIA leading to bone infarcts and infarct-derived tumors, in combination with possible underdiagnosis of canine bone infarcts and misdiagnosis of some RBI as neoplasia, may contribute to the higher reported proportion of bone tumors in dogs compared with humans.
Collapse
Affiliation(s)
- Isabel A Jimenez
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland;,
| | - Roy R Pool
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine & Biomedical Sciences, College Station, Texas
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
43
|
Proteasome Inhibitors and Their Potential Applicability in Osteosarcoma Treatment. Cancers (Basel) 2022; 14:cancers14194544. [PMID: 36230467 PMCID: PMC9559645 DOI: 10.3390/cancers14194544] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Bone cancer has seen minimal benefits in therapeutic options in the past 30 years. Proteasome inhibitors present a new avenue of research for the treatment of bone cancer. Proteasome inhibitors impair the function of the proteasome, a structure within the cell that removes unwanted and misfolded proteins. Bone cancer cells heavily rely on the proteasome to properly function and survive. Impairing the proteasome function can have detrimental consequences and lead to cell death. This review provides a thorough summary of the in vitro, in vivo, and clinical research that has explored proteasome inhibitors for the treatment of bone cancer. Abstract Osteosarcoma (OS) is the most common type of bone cancer, with ~30% of patients developing secondary/metastatic tumors. The molecular complexity of tumor metastasis and the lack of effective therapies for OS has cultivated interest in exploiting the proteasome as a molecular target for anti-cancer therapy. As our understanding towards the behavior of malignant cells expands, it is evident that cancerous cells display a greater reliance on the proteasome to maintain homeostasis and sustain efficient biological activities. This led to the development and approval of first- and second-generation proteasome inhibitors (PIs), which have improved outcomes for patients with multiple myeloma and mantle cell lymphoma. Researchers have since postulated the therapeutic potential of PIs for the treatment of OS. As such, this review aims to summarize the biological effects and latest findings from clinical trials investigating PI-based treatments for OS. Integrating PIs into current treatment regimens may better outcomes for patients diagnosed with OS.
Collapse
|
44
|
Salaroli R, Andreani G, Bernardini C, Zannoni A, La Mantia D, Protti M, Forni M, Mercolini L, Isani G. Anticancer activity of an Artemisia annua L. hydroalcoholic extract on canine osteosarcoma cell lines. Res Vet Sci 2022; 152:476-484. [PMID: 36156377 DOI: 10.1016/j.rvsc.2022.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Since ancient times, Artemisia annua (A. annua) has been used as a medicinal plant in Traditional Chinese Medicine. In addition, recent studies have investigated the cytotoxic effects of A. annua extracts towards cancer cells. The leading aim of the present research is to evaluate the cytotoxic effects of an hydroalcoholic extract of A. annua on two canine osteosarcoma (OSA) cell lines, OSCA-8 and OSCA-40, focusing on the possible involvement of ferroptosis. The quantitative determination of artemisinin concentration in the extract, culture medium and OSA cells was carried out through the use of an instrumental analytical method based on liquid chromatography coupled with spectrophotometric detection and tandem mass spectrometry (LC-DAD-MS/MS). OSCA-8 and OSCA-40 were exposed to different dilutions of the extract for the EC50 calculation then the uptake of artemisinin by the cells, the effects on the cell cycle, the intracellular iron level, the cellular morphology and the lipid oxidation state were evaluated. A concentration of artemisinin of 63.8 ± 3.4 μg/mL was detected in the extract. A dose-dependent cytotoxic effect was evidenced. In OSCA-40 alterations of the cell cycle and a significantly higher intracellular iron content were observed. In both cell lines the treatment with the extract was associated with lipid peroxidation and with the appearance of a "ballooning" phenotype suggesting the activation of ferroptosis. In conclusion the A. annua idroalcoholic extract utilized in this study showed anticancer activity on canine OSA cell lines that could be useful in treating drug resistant canine OSAs.
Collapse
Affiliation(s)
- Roberta Salaroli
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Giulia Andreani
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Debora La Mantia
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy.
| | - Monica Forni
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy.
| | - Gloria Isani
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
45
|
The Italian Network of Laboratories for Veterinary Oncology (NILOV) 2.0: Improving Knowledge on Canine Tumours. Vet Sci 2022; 9:vetsci9080394. [PMID: 36006310 PMCID: PMC9415383 DOI: 10.3390/vetsci9080394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Advances in cancer research are crucial, and pet oncology can improve the knowledge in several ways. Dogs are not only models of specific naturally occurring tumours but can also be sentinels of environmental exposures to carcinogenic substances, as they share the same environment with their owners. The purpose of this work was to describe the data collected by The Italian Network of Laboratories for Veterinary Oncology in the first 9 years of activity (2013–2021) and to evaluate their potential epidemiological significance. Frequencies of tumour sites in dogs were described, analysed and compared, considering several risk factors (breed, sex, period and region of residence). These observations allowed us to highlight differences not only in the site of occurrence of some tumours but also to formulate hypotheses on the potential role of some risk factors, e.g., neutering/spaying or geographical location. In our opinion, the results of this study confirm the importance of initiating and consolidating animal cancer registration initiatives that would facilitate the possibility of conducting multicentric collaborative studies to deepen the knowledge of the epidemiology of tumours in dogs and, from a comparative perspective, in humans. Abstract Advances in tumour research are crucial, and comparative oncology can improve the knowledge in several ways. Dogs are not only models of specific naturally occurring tumours but can also be sentinels of environmental exposures to carcinogens, as they share the same environment with their owners. The purpose of this work was to describe the data collected by The Italian Network of Laboratories for Veterinary Oncology in the first 9 years of activity (2013–2021) and to evaluate their potential epidemiological significance. Frequencies of tumour topographies and main morphologies in dogs were described, analysed and compared, calculating age-adjusted proportional morbidity ratios and considering several risk factors (breed, sex, period and region of residence). These observations allowed us to highlight differences not only in morphology and topography of some tumours but also to formulate hypotheses on the potential role of some risk factors, e.g., neutering/spaying or geographical location. In our opinion, the results of this case series confirm the importance of initiating and consolidating animal cancer registration initiatives that would facilitate the possibility of conducting multicentric collaborative studies to deepen the knowledge of the epidemiology of tumours in dogs from a comparative perspective.
Collapse
|
46
|
Leitner N, Hlavatý J, Ertl R, Gabner S, Fuchs-Baumgartinger A, Walter I. Lipid droplets and perilipins in canine osteosarcoma. Investigations on tumor tissue, 2D and 3D cell culture models. Vet Res Commun 2022; 46:1175-1193. [PMID: 35834072 DOI: 10.1007/s11259-022-09975-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Lipid droplets were identified as important players in biological processes of various tumor types. With emphasis on lipid droplet-coating proteins (perilipins, PLINs), this study intended to shed light on the presence and formation of lipid droplets in canine osteosarcoma. For this purpose, canine osteosarcoma tissue samples (n = 11) were analyzed via immunohistochemistry and electron microscopy for lipid droplets and lipid droplet-coating proteins (PLINs). Additionally, we used the canine osteosarcoma cell lines D-17 and COS4288 in 2D monolayer and 3D spheroid (cultivated for 7, 14, and 21 days) in vitro models, and further analyzed the samples by means of histochemistry, immunofluorescence, molecular biological techniques (RT-qPCR, Western Blot) and electron microscopical imaging. Lipid droplets, PLIN2, and PLIN3 were detected in osteosarcoma tissue samples as well as in 2D and 3D cultivated D-17 and COS4288 cells. In spheroids, specific distribution patterns of lipid droplets and perilipins were identified, taking into consideration cell line specific zonal apportionment. Upon external lipid supplementation (oleic acid), a rise of lipid droplet amount accompanied with an increase of PLIN2 expression was observed. Detailed electron microscopical analyzes revealed that lipid droplet sizes in tumor tissue were comparable to that of 3D spheroid models. Moreover, the biggest lipid droplets were found in the central zone of the spheroids at all sampling time-points, reaching their maximum size at 21 days. Thus, the 3D spheroids can be considered as a relevant in vitro model for further studies focusing on lipid droplets biology and function in osteosarcoma.
Collapse
Affiliation(s)
- N Leitner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - J Hlavatý
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - R Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - S Gabner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - A Fuchs-Baumgartinger
- Institute of Pathology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - Ingrid Walter
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria. .,VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria.
| |
Collapse
|
47
|
Doxorubicin-Loaded Lipid Nanoparticles Coated with Calcium Phosphate as a Potential Tool in Human and Canine Osteosarcoma Therapy. Pharmaceutics 2022; 14:pharmaceutics14071362. [PMID: 35890258 PMCID: PMC9322757 DOI: 10.3390/pharmaceutics14071362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Osteosarcoma (OSA) is the most frequently diagnosed primary malignant bone tumor in humans and dogs. In both species, standard chemotherapy can be limited by multidrug resistance of neoplastic cells, which prevents intracellular accumulation of cytotoxic drugs, resulting in chemotherapy failure. In this study, a lipophilic ester of doxorubicin (C12DOXO) was loaded into nanoparticles (NPs) using the “cold microemulsion dilution” method. The resulting NPs were then coated with calcium phosphate (CaP) in two different ways to have calcium or phosphate ions externally exposed on the surface. These systems were characterized by determining mean diameter, zeta potential, and drug entrapment efficiency; afterward, they were tested on human and canine OSA cells to study the role that the coating might play in increasing both drug uptake into tumor cells and cytotoxicity. Mean diameter of the developed NPs was in the 200–300 nm range, zeta potential depended on the coating type, and C12DOXO entrapment efficiency was in the 60–75% range. Results of studies on human and canine OSA cells were very similar and showed an increase in drug uptake and cytotoxicity for CaP-coated NPs, especially when calcium ions were externally exposed. Therefore, applications in both human and veterinary medicine can be planned in the near future.
Collapse
|
48
|
Etzioni AL. Osteosarcoma diagnosed in a dog using a formalin‐fixed fine‐needle aspirate biopsy. Vet Clin Pathol 2022; 51:349-355. [DOI: 10.1111/vcp.13056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Athema L. Etzioni
- Department of Pathobiology Tuskegee University College of Veterinary Medicine Tuskegee Alabama USA
| |
Collapse
|
49
|
Nam A, Song WJ, An JH, Rebhun RB, Youn HY, Seo KW. Expression of the hedgehog signaling pathway and the effect of inhibition at the level of Smoothened in canine osteosarcoma cell lines. Vet Comp Oncol 2022; 20:778-787. [PMID: 35521940 DOI: 10.1111/vco.12828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Osteosarcoma (OSA) is the most common malignant bone cancer in dogs. Canine and human OSA share several features, including tumor environments, response to traditional treatment, and several molecular pathways. Hedgehog (Hh) signaling is known to contribute to tumorigenesis and progression of various cancers, including human OSA. This study aimed to identify the role of the Hh signaling pathway in canine OSA cell lines, including Abrams, D17, and Moresco, focusing on the signal transducer Smoothened (SMO). mRNA and protein levels of Hh pathway components, including SHH, IHH, SMO, and PTCH1, were aberrant in all examined OSA cell lines compared with canine osteoblast cells. The SMO inhibitor cyclopamine significantly decreased cell viability and colony-forming ability in the canine OSA cell lines in a dose-dependent manner. Moresco cells, which expressed the highest level of SMO protein, were the most sensitive to the anticancer effect of cyclopamine among the three canine OSA cell lines tested. Hh downstream target gene and protein expression in canine OSA cell lines were downregulated after cyclopamine treatment. In addition, cyclopamine significantly increased apoptotic cell death in Abrams and Moresco cells. The findings that Hh/SMO is activated in canine OSA cell lines and cyclopamine suppresses OSA cell survival via inhibition of SMO suggest that the Hh/SMO signaling pathway might be a novel therapeutic target for canine OSA. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aryung Nam
- Department of Veterinary Internal Medicine, Konkuk University Veterinary Medical Teaching Hospital, Seoul, South Korea
| | - Woo-Jin Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute of Veterinary Science, Jeju National University, Jeju, South Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, United States of America
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
50
|
Mills LJ, Scott MC, Shah P, Cunanan AR, Deshpande A, Auch B, Curtin B, Beckman KB, Spector LG, Sarver AL, Subramanian S, Richmond TA, Modiano JF. Comparative analysis of genome-wide DNA methylation identifies patterns that associate with conserved transcriptional programs in osteosarcoma. Bone 2022; 158:115716. [PMID: 33127576 PMCID: PMC8076342 DOI: 10.1016/j.bone.2020.115716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma is an aggressive tumor of the bone that primarily affects young adults and adolescents. Osteosarcoma is characterized by genomic chaos and heterogeneity. While inactivation of tumor protein p53 (TP53) is nearly universal other high frequency mutations or structural variations have not been identified. Despite this genomic heterogeneity, key conserved transcriptional programs associated with survival have been identified across human, canine and induced murine osteosarcoma. The epigenomic landscape, including DNA methylation, plays a key role in establishing transcriptional programs in all cell types. The role of epigenetic dysregulation has been studied in a variety of cancers but has yet to be explored at scale in osteosarcoma. Here we examined genome-wide DNA methylation patterns in 24 human and 44 canine osteosarcoma samples identifying groups of highly correlated DNA methylation marks in human and canine osteosarcoma samples. We also link specific DNA methylation patterns to key transcriptional programs in both human and canine osteosarcoma. Building on previous work, we built a DNA methylation-based measure for the presence and abundance of various immune cell types in osteosarcoma. Finally, we determined that the underlying state of the tumor, and not changes in cell composition, were the main driver of differences in DNA methylation across the human and canine samples. SIGNIFICANCE: Genome wide comparison of DNA methylation patterns in osteosarcoma across two species lays the ground work for the exploration of DNA methylation programs that help establish conserved transcriptional programs in the context of varied mutational landscapes.
Collapse
Affiliation(s)
- Lauren J Mills
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Childhood Cancer Genomics Group, Department of Pediatric, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Milcah C Scott
- Department of Microbiology and Immunology, Center for Immunology, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pankti Shah
- Roche Sequencing Solution, Pleasanton, CA, USA
| | | | | | - Benjamin Auch
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA
| | - Bridget Curtin
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Logan G Spector
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Childhood Cancer Genomics Group, Department of Pediatric, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul 55108, USA; Institute of Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jaime F Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul 55108, USA; Institute of Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, UDS Institute for Engineering in Medicine, Minneapolis, MN 55455, USA
| |
Collapse
|