1
|
Fernandez M, Pezier T, Papadopoulos S, Laurent F, Werts C, Lacroix-Lamandé S. Deleterious intestinal inflammation in neonatal mice treated with TLR2/TLR6 agonists. J Leukoc Biol 2024; 116:1142-1156. [PMID: 38872374 DOI: 10.1093/jleuko/qiae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/16/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
By providing innate immune modulatory stimuli, the early-life immune system can be enhanced to increase resistance to infections. Activation of innate cell surface receptors called pattern recognition receptors by Toll-like receptor (TLR) ligands is one promising approach that can help to control infections as described for listeriosis and cryptosporidiosis. In this study, the effect of TLR2/TLR1 and TLR2/TLR6 agonists was compared when injected into neonatal mice. Surprisingly, the stimulation of TLR2/TLR6 led to the death of the neonatal mice, which was not observed in adult mice. The TLR2/TLR6 agonist administration induced higher systemic and intestinal inflammation in both adult and neonatal mice when compared with TLR2/TLR1 agonist. The mortality of neonatal mice was interferon γ dependent and involved the intestinal production of interleukin-22 and interleukin-17A. This study clearly demonstrates that targeting TLRs as new control strategy of neonatal infections has to be used with caution. Depending on its heterodimeric form, TLR2 stimulation can induce more or less severe adverse effects relying on the age-related immune functions of the host.
Collapse
Affiliation(s)
- Mégane Fernandez
- Infectiologie et Santé Publique, Université de Tours, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-37380 Nouzilly, France
| | - Tiffany Pezier
- Infectiologie et Santé Publique, Université de Tours, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-37380 Nouzilly, France
| | - Stylianos Papadopoulos
- Centre National de la Recherche Scientifique UMR6047, Institut National de la Santé et de la Recherche Médicale U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Université Paris Cité, Paris, France
| | - Fabrice Laurent
- Infectiologie et Santé Publique, Université de Tours, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-37380 Nouzilly, France
| | - Catherine Werts
- Centre National de la Recherche Scientifique UMR6047, Institut National de la Santé et de la Recherche Médicale U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sonia Lacroix-Lamandé
- Infectiologie et Santé Publique, Université de Tours, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-37380 Nouzilly, France
| |
Collapse
|
2
|
Ignacio A, Czyz S, McCoy KD. Early life microbiome influences on development of the mucosal innate immune system. Semin Immunol 2024; 73:101885. [PMID: 38788491 DOI: 10.1016/j.smim.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The gut microbiota is well known to possess immunomodulatory capacities, influencing a multitude of cellular signalling pathways to maintain host homeostasis. Although the formation of the immune system initiates before birth in a sterile environment, an emerging body of literature indicates that the neonatal immune system is influenced by a first wave of external stimuli that includes signals from the maternal microbiota. A second wave of stimulus begins after birth and must be tightly regulated during the neonatal period when colonization of the host occurs concomitantly with the maturation of the immune system, requiring a fine adjustment between establishing tolerance towards the commensal microbiota and preserving inflammatory responses against pathogenic invaders. Besides integrating cues from commensal microbes, the neonatal immune system must also regulate responses triggered by other environmental signals, such as dietary antigens, which become more complex with the introduction of solid food during the weaning period. This "window of opportunity" in early life is thought to be crucial for the proper development of the immune system, setting the tone of subsequent immune responses in adulthood and modulating the risk of developing chronic and metabolic inflammatory diseases. Here we review the importance of host-microbiota interactions for the development and maturation of the immune system, particularly in the early-life period, highlighting the known mechanisms involved in such communication. This discussion is focused on recent data demonstrating microbiota-mediated education of innate immune cells and its role in the development of lymphoid tissues.
Collapse
Affiliation(s)
- Aline Ignacio
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sonia Czyz
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Pardy RD, Wallbank BA, Striepen B, Hunter CA. Immunity to Cryptosporidium: insights into principles of enteric responses to infection. Nat Rev Immunol 2024; 24:142-155. [PMID: 37697084 PMCID: PMC11881751 DOI: 10.1038/s41577-023-00932-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/13/2023]
Abstract
Cryptosporidium parasites replicate within intestinal epithelial cells and are an important cause of diarrhoeal disease in young children and in patients with primary and acquired defects in T cell function. This Review of immune-mediated control of Cryptosporidium highlights advances in understanding how intestinal epithelial cells detect this infection, the induction of innate resistance and the processes required for activation of T cell responses that promote parasite control. The development of a genetic tool set to modify Cryptosporidium combined with tractable mouse models provide new opportunities to understand the principles that govern the interface between intestinal epithelial cells and the immune system that mediate resistance to enteric pathogens.
Collapse
Affiliation(s)
- Ryan D Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bethan A Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Mead JR. Indole metabolites generated by microbiota inhibit Cryptosporidium growth. Trends Parasitol 2023; 39:716-717. [PMID: 37500333 DOI: 10.1016/j.pt.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Funkhouser-Jones et al. recently identified gut metabolites that affected Cryptosporidium growth. A key focus, indole, was shown to inhibit the parasite in vivo and in vitro by decreasing the host mitochondria function and the membrane potential of parasite mitosomes. These findings help clarify the role microflora and metabolites play in host resistance.
Collapse
Affiliation(s)
- Jan R Mead
- Department of Pediatrics, Emory University and Children's Healthcare Organization of Atlanta, Atlanta, GA 30322, USA; Atlanta VA Medical Center, Decatur, GA 30033, USA.
| |
Collapse
|
5
|
Funkhouser-Jones LJ, Xu R, Wilke G, Fu Y, Schriefer LA, Makimaa H, Rodgers R, Kennedy EA, VanDussen KL, Stappenbeck TS, Baldridge MT, Sibley LD. Microbiota-produced indole metabolites disrupt mitochondrial function and inhibit Cryptosporidium parvum growth. Cell Rep 2023; 42:112680. [PMID: 37384526 PMCID: PMC10530208 DOI: 10.1016/j.celrep.2023.112680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. To explore microbial influences on susceptibility, we screened 85 microbiota-associated metabolites for their effects on Cryptosporidium parvum growth in vitro. We identify eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B6 precursor, and indoles. Growth restriction of C. parvum by indoles does not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impairs host mitochondrial function and reduces total cellular ATP, as well as directly reducing the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole-producing bacteria, delays life cycle progression of the parasite in vitro and reduces the severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites impair mitochondrial function and contribute to colonization resistance to Cryptosporidium infection.
Collapse
Affiliation(s)
- Lisa J Funkhouser-Jones
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rui Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Georgia Wilke
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A Schriefer
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heyde Makimaa
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth A Kennedy
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Funkhouser-Jones LJ, Xu R, Wilke G, Fu Y, Shriefer LA, Makimaa H, Rodgers R, Kennedy EA, VanDussen KL, Stappenbeck TS, Baldridge MT, Sibley LD. Microbiota produced indole metabolites disrupt host cell mitochondrial energy production and inhibit Cryptosporidium parvum growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542157. [PMID: 37292732 PMCID: PMC10245909 DOI: 10.1101/2023.05.25.542157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. Susceptibility rapidly declines with age, associated with changes in the microbiota. To explore microbial influences on susceptibility, we screened 85 microbiota- associated metabolites enriched in the adult gut for their effects on C. parvum growth in vitro. We identified eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B 6 precursor, and indoles. Growth restriction of C. parvum by indoles did not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impaired host mitochondrial function and reduced total cellular ATP, as well as directly reduced the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole producing bacteria, delayed life cycle progression of the parasite in vitro and reduced severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites contribute to colonization resistance to Cryptosporidium infection.
Collapse
Affiliation(s)
- Lisa J. Funkhouser-Jones
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rui Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Georgia Wilke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Lawrence A. Shriefer
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Heyde Makimaa
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Elizabeth A. Kennedy
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Kelli L. VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Thaddeus S. Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
7
|
Saraav I, Sibley LD. Dendritic Cells and Cryptosporidium: From Recognition to Restriction. Microorganisms 2023; 11:1056. [PMID: 37110479 PMCID: PMC10144555 DOI: 10.3390/microorganisms11041056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Host immune responses are required for the efficient control of cryptosporidiosis. Immunity against Cryptosporidium infection has been best studied in mice, where it is mediated by both innate and adaptive immune responses. Dendritic cells are the key link between innate and adaptive immunity and participate in the defense against Cryptosporidium infection. While the effector mechanism varies, both humans and mice rely on dendritic cells for sensing parasites and restricting infection. Recently, the use of mouse-adapted strains C. parvum and mouse-specific strain C. tyzzeri have provided tractable systems to study the role of dendritic cells in mice against this parasite. In this review, we provide an overview of recent advances in innate immunity acting during infection with Cryptosporidium with a major focus on the role of dendritic cells in the intestinal mucosa. Further work is required to understand the role of dendritic cells in the activation of T cells and to explore associated molecular mechanisms. The identification of Cryptosporidium antigen involved in the activation of Toll-like receptor signaling in dendritic cells during infection is also a matter of future study. The in-depth knowledge of immune responses in cryptosporidiosis will help develop targeted prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Mead JR. Early immune and host cell responses to Cryptosporidium infection. FRONTIERS IN PARASITOLOGY 2023; 2:1113950. [PMID: 37325809 PMCID: PMC10269812 DOI: 10.3389/fpara.2023.1113950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Cryptosporidium spp. are opportunistic protozoan parasites that infect epithelial cells of the small intestine and cause diarrheal illness in both immunocompetent and immunodeficient individuals. These infections may be more severe in immunocompromised individuals and young children, especially in children under 2 in developing countries. The parasite has a global distribution and is an important cause of childhood diarrhea where it may result in cognitive impairment and growth deficits. Current therapies are limited with nitazoxanide being the only FDA-approved drug. However, it is not efficacious in immunocompromised patients. Additionally, there are no vaccines for cryptosporidiosis available. While acquired immunity is needed to clear Cryptosporidium parasites completely, innate immunity and early responses to infection are important in keeping the infection in check so that adaptive responses have time to develop. Infection is localized to the epithelial cells of the gut. Therefore, host cell defenses are important in the early response to infection and may be triggered through toll receptors or inflammasomes which induce a number of signal pathways, interferons, cytokines, and other immune mediators. Chemokines and chemokine receptors are upregulated which recruit immune cells such neutrophils, NK cells, and macrophages to the infection site to help in host cell defense as well as dendritic cells that are an important bridge between innate and adaptive responses. This review will focus on the host cell responses and the immune responses that are important in the early stages of infection.
Collapse
Affiliation(s)
- Jan R. Mead
- Department of Pediatrics, Children’s Healthcare Organization of Atlanta, Emory University, Atlanta, GA, United States
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| |
Collapse
|
9
|
Wang Y, Li X, Chen X, Kulyar MFEA, Duan K, Li H, Bhutta ZA, Wu Y, Li K. Gut Fungal Microbiome Responses to Natural Cryptosporidium Infection in Horses. Front Microbiol 2022; 13:877280. [PMID: 35875530 PMCID: PMC9298756 DOI: 10.3389/fmicb.2022.877280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
It is critical to characterize changes in the structure and composition of the host fungal community in natural Cryptosporidium infection, because it gives the possible overview of gut microbiome in host homeostasis and disease progression. A total of 168 rectal fecal samples were collected and examined using nPCR. The positive samples were double-checked using 18S rDNA high-throughput sequencing. After confirmation, ITS high-throughput sequencing was utilized to investigate the fungal community’s response to natural Cryptosporidium infection. Results showed that a total of three positive samples (1.79%) were identified with an increased abundance of fungi associated with health hazards, such as class Dothideomycetes, families, i.e., Cladosporiaceae, Glomerellaceae, and genera, i.e., Wickerhamomyces, Talaromyces, Cladosporium, Dactylonectria, and Colletotrichum. On the contrary, taxa associated with favorable physiological effects on the host were shown to have the reverse impact, such as families, i.e., Psathyrellaceae, Pseudeurotiaceae and genera (Beauveria, Nigrospora, and Diversispora). For the first time, we evaluated the condition of natural Cryptosporidium infection in horses in Wuhan, China, and discovered distinct variations in the fungal microbiome in response to natural infection. It might prompt a therapy or prevention strategy to apply specific fungal microorganisms that are probably responsible for decreased susceptibility or increased resistance to infection.
Collapse
Affiliation(s)
- Yaping Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xuwen Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiushuang Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | | | - Kun Duan
- China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Huade Li
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Creasey HN, Zhang W, Widmer G. Effect of Caging on Cryptosporidium parvum Proliferation in Mice. Microorganisms 2022; 10:1242. [PMID: 35744762 PMCID: PMC9230662 DOI: 10.3390/microorganisms10061242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Cryptosporidiosis is an enteric infection caused by several protozoan species in the genus Cryptosporidium (phylum Apicomplexa). Immunosuppressed mice are commonly used to model this infection. Surprisingly, for a pathogen like Cryptosporidium parvum, which is readily transmitted fecal-orally, mice housed in the same cage can develop vastly different levels of infection, ranging from undetectable to lethal. The motivation for this study was to investigate this phenomenon and assess the association between the severity of cryptosporidiosis and the fecal microbiota. To this aim, the association between severity of cryptosporidiosis and caging (group caged vs. individually caged) and between the microbiota taxonomy and the course of the infection was examined. In contrast to mice caged in groups of four, a majority of mice caged individually did not excrete a detectable level of oocysts. Microbiota α diversity in samples collected between three days prior to infection and one day post-infection was negatively correlated with the severity of cryptosporidiosis, suggesting a causal negative relationship between microbiota diversity and susceptibility to C. parvum.
Collapse
Affiliation(s)
- Hannah N. Creasey
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.N.C.); (W.Z.)
| | - Wen Zhang
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.N.C.); (W.Z.)
- Gerald J. and Dorothy R. Friedman School of Nutrition, Tufts University, Boston, MA 02111, USA
| | - Giovanni Widmer
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.N.C.); (W.Z.)
| |
Collapse
|
11
|
Gibson AR, Sateriale A, Dumaine JE, Engiles JB, Pardy RD, Gullicksrud JA, O’Dea KM, Doench JG, Beiting DP, Hunter CA, Striepen B. A genetic screen identifies a protective type III interferon response to Cryptosporidium that requires TLR3 dependent recognition. PLoS Pathog 2022; 18:e1010003. [PMID: 35584177 PMCID: PMC9154123 DOI: 10.1371/journal.ppat.1010003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/31/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cryptosporidium is a leading cause of severe diarrhea and diarrheal-related death in children worldwide. As an obligate intracellular parasite, Cryptosporidium relies on intestinal epithelial cells to provide a niche for its growth and survival, but little is known about the contributions that the infected cell makes to this relationship. Here we conducted a genome wide CRISPR/Cas9 knockout screen to discover host genes that influence Cryptosporidium parvum infection and/or host cell survival. Gene enrichment analysis indicated that the host interferon response, glycosaminoglycan (GAG) and glycosylphosphatidylinositol (GPI) anchor biosynthesis are important determinants of susceptibility to C. parvum infection and impact on the viability of host cells in the context of parasite infection. Several of these pathways are linked to parasite attachment and invasion and C-type lectins on the surface of the parasite. Evaluation of transcript and protein induction of innate interferons revealed a pronounced type III interferon response to Cryptosporidium in human cells as well as in mice. Treatment of mice with IFNλ reduced infection burden and protected immunocompromised mice from severe outcomes including death, with effects that required STAT1 signaling in the enterocyte. Initiation of this type III interferon response was dependent on sustained intracellular growth and mediated by the pattern recognition receptor TLR3. We conclude that host cell intrinsic recognition of Cryptosporidium results in IFNλ production critical to early protection against this infection.
Collapse
Affiliation(s)
- Alexis R. Gibson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jennifer E. Dumaine
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julie B. Engiles
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jodi A. Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keenan M. O’Dea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Sarfraz M, Nguyen TTT, Wheler C, Köster W, Gerdts V, Dar A. Characterization of Dosage Levels for In Ovo Administration of Innate Immune Stimulants for Prevention of Yolk Sac Infection in Chicks. Vet Sci 2022; 9:vetsci9050203. [PMID: 35622731 PMCID: PMC9142911 DOI: 10.3390/vetsci9050203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Innate immune stimulants, especially toll-like receptor (TLR) ligands and agonists, are the main players in the initiation of innate immunity and have been widely studied as alternatives to antibiotics to control infection. In the present study, we characterized the dosage levels of various innate immune stimulants, including unmethylated cytosine-phosphate-guanosine dinucleotide -containing oligodeoxynucleotides (CpG ODN), polyinosinic-polycytidylic acid (poly I:C), cyclic polyphosphazene 75B (CPZ75B), avian beta-defensin 2 (ABD2), and combinations of these reagents given in ovo. Data derived from a series of animal experiments demonstrated that the in ovo administration of 10–50 µg CpG ODN/embryo (on embryonic day 18) is an effective formulation for control of yolk sac infection (YSI) due to avian pathogenic Escherichia coli (E. coli) in young chicks. Amongst the different combinations of innate immune stimulants, the in ovo administration of CpG ODN 10 µg in combination with 15 µg of poly I:C was the most effective combination, offering 100% protection from YSI. It is expected that the introduction of these reagents to management practices at the hatchery level may serve as a potential replacement for antibiotics for the reduction of early chick mortality (ECM) due to YSI/colibacillosis.
Collapse
|
13
|
Advances in therapeutic and vaccine targets for Cryptosporidium: Challenges and possible mitigation strategies. Acta Trop 2022; 226:106273. [PMID: 34906550 DOI: 10.1016/j.actatropica.2021.106273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Cryptosporidium is known to be the second most common diarrheal pathogen in children, causing potentially fatal diarrhea and associated with long-term growth stunting and cognitive deficits. The only Food and Drug Administration-approved treatment for cryptosporidiosis is nitazoxanide, but this drug has not shown potentially effective results in susceptible hosts. Therefore, a safe and effective drug for cryptosporidiosis is urgently needed. Cryptosporidium genome sequencing analysis may help develop an effective drug, but both in vitro and in vivo approaches to drug evaluation are not fully standardized. On the other hand, the development of partial immunity after exposure suggests the possibility of a successful and effective vaccine, but protective surrogates are not precise. In this review, we present our current perspectives on novel cryptosporidiosis therapies, vaccine targets and efficacies, as well as potential mitigation plans, recommendations and perceived challenges.
Collapse
|
14
|
Diarrheal disease and gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:149-177. [DOI: 10.1016/bs.pmbts.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Stimulation of Toll-Like Receptor 3 Diminishes Intracellular Growth of Salmonella Typhimurium by Enhancing Autophagy in Murine Macrophages. Metabolites 2021; 11:metabo11090602. [PMID: 34564417 PMCID: PMC8466172 DOI: 10.3390/metabo11090602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative Gram-negative bacterium that causes acute gastroenteritis and food poisoning. S. Typhimurium can survive within macrophages that are able to initiate the innate immune response after recognizing bacteria via various pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs). In this study, we investigated the effects and molecular mechanisms by which agonists of endosomal TLRs—especially TLR3—contribute to controlling S. Typhimurium infection in murine macrophages. Treatment with polyinosinic:polycytidylic acid (poly(I:C))—an agonist of TLR3—significantly suppressed intracellular bacterial growth by promoting intracellular ROS production in S. Typhimurium-infected cells. Pretreatment with diphenyleneiodonium (DPI)—an NADPH oxidase inhibitor—reduced phosphorylated MEK1/2 levels and restored intracellular bacterial growth in poly(I:C)-treated cells during S. Typhimurium infection. Nitric oxide (NO) production increased through the NF-κB-mediated signaling pathway in poly(I:C)-treated cells during S. Typhimurium infection. Intracellular microtubule-associated protein 1A/1B-light chain 3 (LC3) levels were increased in poly(I:C)-treated cells; however, they were decreased in cells pretreated with 3-methyladenine (3-MA)—a commonly used inhibitor of autophagy. These results suggest that poly(I:C) induces autophagy and enhances ROS production via MEK1/2-mediated signaling to suppress intracellular bacterial growth in S. Typhimurium-infected murine macrophages, and that a TLR3 agonist could be developed as an immune enhancer to protect against S. Typhimurium infection.
Collapse
|
16
|
Crawford CK, Kol A. The Mucosal Innate Immune Response to Cryptosporidium parvum, a Global One Health Issue. Front Cell Infect Microbiol 2021; 11:689401. [PMID: 34113580 PMCID: PMC8185216 DOI: 10.3389/fcimb.2021.689401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/07/2021] [Indexed: 02/02/2023] Open
Abstract
Cryptosporidium parvum is an apicomplexan parasite that infects the intestinal epithelium of humans and livestock animals worldwide. Cryptosporidiosis is a leading cause of diarrheal-related deaths in young children and a major cause of economic loss in cattle operations. The disease is especially dangerous to infants and immunocompromised individuals, for which there is no effective treatment or vaccination. As human-to-human, animal-to-animal and animal-to-human transmission play a role in cryptosporidiosis disease ecology, a holistic 'One Health' approach is required for disease control. Upon infection, the host's innate immune response restricts parasite growth and initiates the adaptive immune response, which is necessary for parasite clearance and recovery. The innate immune response involves a complex communicative interplay between epithelial and specialized innate immune cells. Traditional models have been used to study innate immune responses to C. parvum but cannot fully recapitulate natural host-pathogen interactions. Recent shifts to human and bovine organoid cultures are enabling deeper understanding of host-specific innate immunity response to infection. This review examines recent advances and highlights research gaps in our understanding of the host-specific innate immune response to C. parvum. Furthermore, we discuss evolving research models used in the field and potential developments on the horizon.
Collapse
Affiliation(s)
- Charles K Crawford
- Department of Pathology, Microbiology, & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Amir Kol
- Department of Pathology, Microbiology, & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Interactions between Cryptosporidium, Enterocytozoon, Giardia and Intestinal Microbiota in Bactrian Camels on Qinghai-Tibet Plateau, China. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis are zoonotic pathogens commonly found in the intestinal tract of mammalian hosts including livestock and humans. The prevalence of these eukaryote microorganisms in domestic animals and their interaction with intestinal microbiota are not yet fully recognized. We analyzed the intestinal microbiota composition with metagenomics and functional characterization with Cluster of Orthologous (COG) in Bactrian camels, which were raised on Qinghai-Tibet Plateau, Northwest China. Thus, fecal samples were collected from the animals to determine the parasite infection and the profile of microbiota. Analysis of intestinal microbiota at genus level revealed important features of interaction between parasites infection and bacterial community. Coprococcus and Prevotella were more abundant while Akkermansia had lower relative abundance with E. bieneusi infection. Bacteria of Akkermansia, Lactococcus, Oxalobacter, Sphaerochaeta, Paludibacter, Fibrobacter, Anaerovibrio, Pseudomonas, Mogibacterium, Pseudoramibacter_Eubacterium, YRC22, Flexispira, SMB53, AF12, and Roseburia genera were found under-presented and Oscillospira genus over-presented when G. duodenalis infection was present. Meanwhile, Cryptosporidium spp. and E. bieneusi co-infected animals showed lower relative abundance of Allobaculum, Rikenella, Shuttleworthia, Epulopiscium, Bilophila, Dorea, Fibrobacter, and TG5. Results demonstrate important interaction between the intestinal parasites and microbiota, and provide informative link for understanding the co-evolution of zoonotic pathogens and bacteria in domestic animals.
Collapse
|
18
|
Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int J Mol Sci 2021; 22:ijms22042108. [PMID: 33672738 PMCID: PMC7924650 DOI: 10.3390/ijms22042108] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
Severe COVID-19 is characterized by a “cytokine storm”, the mechanism of which is not yet understood. I propose that cytokine storms result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This proposition is based on eight linked types of evidence and their logical connections. (1) Severe cases of COVID-19 differ from healthy controls and mild COVID-19 patients in exhibiting increased TLR4, TLR7, TLR9 and NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate TLR3, TLR7, RIG1 and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from its mild form in being characterized by bacterial and fungal infections. (5) Respiratory bacterial and fungal infections activate TLR2, TLR4, TLR9 and NLRP3. (6) A combination of SARS-CoV-2 with bacterial/fungal coinfections accounts for the IRAP found in severe COVID-19 and why it differs from mild cases. (7) Notably, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9 and TLR4 (both bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal) synergize with NLRP3 (viral and bacterial). (8) Thus, a SARS-CoV-2-bacterium/fungus coinfection produces synergistic innate activation, resulting in the hyperinflammation characteristic of a cytokine storm. Unique clinical, experimental and therapeutic predictions (such as why melatonin is effective in treating COVID-19) are discussed, and broader implications are outlined for understanding why other syndromes such as acute lung injury, acute respiratory distress syndrome and sepsis display varied cytokine storm symptoms.
Collapse
|
19
|
Neonatal Mouse Gut Metabolites Influence Cryptosporidium parvum Infection in Intestinal Epithelial Cells. mBio 2020; 11:mBio.02582-20. [PMID: 33323514 PMCID: PMC7773987 DOI: 10.1128/mbio.02582-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cryptosporidium sp. occupies a unique intracellular niche that exposes the parasite to both host cell contents and the intestinal lumen, including metabolites from the diet and produced by the microbiota. Both dietary and microbial products change over the course of early development and could contribute to the changes seen in susceptibility to cryptosporidiosis in humans and mice. The protozoan parasite Cryptosporidium sp. is a leading cause of diarrheal disease in those with compromised or underdeveloped immune systems, particularly infants and toddlers in resource-poor localities. As an enteric pathogen, Cryptosporidium sp. invades the apical surface of intestinal epithelial cells, where it resides in close proximity to metabolites in the intestinal lumen. However, the effect of gut metabolites on susceptibility to Cryptosporidium infection remains largely unstudied. Here, we first identified which gut metabolites are prevalent in neonatal mice when they are most susceptible to Cryptosporidium parvum infection and then tested the isolated effects of these metabolites on C. parvum invasion and growth in intestinal epithelial cells. Our findings demonstrate that medium or long-chain saturated fatty acids inhibit C. parvum growth, perhaps by negatively affecting the streamlined metabolism in C. parvum, which is unable to synthesize fatty acids. Conversely, long-chain unsaturated fatty acids enhanced C. parvum invasion, possibly by modulating membrane fluidity. Hence, gut metabolites, either from diet or produced by the microbiota, influence C. parvum growth in vitro and may also contribute to the early susceptibility to cryptosporidiosis seen in young animals.
Collapse
|
20
|
Charania R, Wade BE, McNair NN, Mead JR. Changes in the Microbiome of Cryptosporidium-Infected Mice Correlate to Differences in Susceptibility and Infection Levels. Microorganisms 2020; 8:microorganisms8060879. [PMID: 32532051 PMCID: PMC7356575 DOI: 10.3390/microorganisms8060879] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Cryptosporidium spp. are opportunistic protozoan parasites that infect epithelial cells of the small intestine, causing diarrheal illness in humans. Differences in severity may be due to the immunological status of the host, malnutrition or prior exposure but may also be due to differences in the host gut flora. We examined changes in bacterial flora following antibiotic treatment to determine how cryptosporidial infections and gut integrity were affected by alterations in the microbiome. DNA was extracted from fecal and intestinal samples during peak infection. V4 region amplicons were generated and sequenced using 16sRNA on an Illumina MiSeq. Species evenness and richness were estimated using the Shannon diversity index. There was a significant decrease in anaerobes and overgrowth of Enterobacteriaceae in mice treated with cloxacillin. We also examined levels of short-chain fatty acids in fecal samples. There was a significant decrease in acetate, propionate, and butyrate in these same mice. Concurrent with the shift in bacterial infection was a significant increase in severity of cryptosporidial infection and increase in gut permeability. Treatment with other antibiotics significantly altered the microbiome but did not change the infection, suggesting that specific alterations in the host microbiome allow for more favorable growth of the parasite.
Collapse
Affiliation(s)
- Raheela Charania
- Department of Pediatrics, Emory University, Atlanta, GA 30033, USA; (R.C.); (B.E.W.); (N.N.M.)
| | - Brandy E. Wade
- Department of Pediatrics, Emory University, Atlanta, GA 30033, USA; (R.C.); (B.E.W.); (N.N.M.)
| | - Nina N. McNair
- Department of Pediatrics, Emory University, Atlanta, GA 30033, USA; (R.C.); (B.E.W.); (N.N.M.)
| | - Jan R. Mead
- Department of Pediatrics, Emory University, Atlanta, GA 30033, USA; (R.C.); (B.E.W.); (N.N.M.)
- Atlanta VA Medical Center, Decatur, GA 30022, USA
- Correspondence:
| |
Collapse
|
21
|
Van Bockstal L, Bulté D, Van den Kerkhof M, Dirkx L, Mabille D, Hendrickx S, Delputte P, Maes L, Caljon G. Interferon Alpha Favors Macrophage Infection by Visceral Leishmania Species Through Upregulation of Sialoadhesin Expression. Front Immunol 2020; 11:1113. [PMID: 32582193 PMCID: PMC7296180 DOI: 10.3389/fimmu.2020.01113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
Type I interferons (IFNs) induced by an endogenous Leishmania RNA virus or exogenous viral infections have been shown to exacerbate infections with New World Cutaneous Leishmania parasites, however, the impact of type I IFNs in visceral Leishmania infections and implicated mechanisms remain to be unraveled. This study assessed the impact of type I IFN on macrophage infection with L. infantum and L. donovani and the implication of sialoadhesin (Siglec-1/CD169, Sn) as an IFN-inducible surface receptor. Stimulation of bone marrow-derived macrophages with type I IFN (IFN-α) significantly enhanced susceptibility to infection of reference laboratory strains and a set of recent clinical isolates. IFN-α particularly enhanced promastigote uptake. Enhanced macrophage susceptibility was linked to upregulated Sn surface expression as a major contributing factor to the infection exacerbating effect of IFN-α. Stimulation experiments in Sn-deficient macrophages, macrophage pretreatment with a monoclonal anti-Sn antibody or a novel bivalent anti-Sn nanobody and blocking of parasites with soluble Sn restored normal susceptibility levels. Infection of Sn-deficient mice with bioluminescent L. infantum promastigotes revealed a moderate, strain-dependent role for Sn during visceral infection under the used experimental conditions. These data indicate that IFN-responsive Sn expression can enhance the susceptibility of macrophages to infection with visceral Leishmania promastigotes and that targeting of Sn may have some protective effects in early infection.
Collapse
Affiliation(s)
- Lieselotte Van Bockstal
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Dimitri Bulté
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Laura Dirkx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
22
|
Ribes S, Arcilla C, Ott M, Schütze S, Hanisch UK, Nessler S, Nau R. Pre-treatment with the viral Toll-like receptor 3 agonist poly(I:C) modulates innate immunity and protects neutropenic mice infected intracerebrally with Escherichia coli. J Neuroinflammation 2020; 17:24. [PMID: 31952519 PMCID: PMC6969464 DOI: 10.1186/s12974-020-1700-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Individuals with impaired immunity are more susceptible to infections than immunocompetent subjects. No vaccines are currently available to induce protection against E. coli meningoencephalitis. This study evaluated the potential of poly(I:C) pre-treatment to induce trained immunity. Poly(I:C) was administered as a non-specific stimulus of innate immune responses to protect immunocompetent and neutropenic wild-type mice from a subsequent challenge by the intracranial injection of E. coli K1. METHODS Three days prior to infection, mice received an intraperitoneal injection of poly(I:C) or vehicle. Kaplan-Meier survival curves were analyzed. In short-term experiments, bacterial titers and the inflammatory response were characterized in the blood, cerebellum, and spleen homogenates. NK cell subpopulations in the brain and spleen were analyzed by flow cytometry. Numbers of microglia and activation scores were evaluated by histopathology. RESULTS Pre-treatment with 200 μg poly(I:C) increased survival time, reduced mortality, and enhanced bacterial clearance in the blood, cerebellum, and spleen at early infection in neutropenic mice. Poly(I:C)-mediated protection correlated with an augmented number of NK cells (CD45+NK1.1+CD3-) and Iba-1+ microglial cells and a higher production of IFN-γ in the brain. In the spleen, levels of CCL5/RANTES and IFN-γ were increased and sustained in surviving poly(I:C)-treated animals for 14 days after infection. In immunocompetent animals, survival time was not significantly prolonged in poly(I:C)-treated animals although poly(I:C) priming reduced brain bacterial concentrations compared with vehicle-injected animals at early infection. CONCLUSIONS Pre-treatment with the viral TLR3 agonist poly(I:C) modulated innate immune responses and strengthened the resistance of neutropenic mice against E. coli K1 meningoencephalitis.
Collapse
Affiliation(s)
- Sandra Ribes
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Christa Arcilla
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Martina Ott
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Sandra Schütze
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Uwe-Karsten Hanisch
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, 37075, Göttingen, Germany
| |
Collapse
|
23
|
Potiron L, Lacroix-Lamandé S, Marquis M, Levern Y, Fort G, Franceschini I, Laurent F. Batf3-Dependent Intestinal Dendritic Cells Play a Critical Role in the Control of Cryptosporidium parvum Infection. J Infect Dis 2020; 219:925-935. [PMID: 30203075 DOI: 10.1093/infdis/jiy528] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
Understanding the protective immune response to Cryptosporidium parvum infection is of critical importance to reduce the widespread impact caused by this disease in young individuals. Here, we analyzed the various subsets of CD103+ and CD103- intestinal dendritic cells (DCs) of wild-type and Batf3-/- neonatal mice at homoeostasis and investigated their role during infection. Neonatal Batf3-/- mice had a low CD103+/CD103- DC ratio, resulting in higher susceptibility to the acute phase of the infection and they could not cure the infection. Early during infection, CD103- DCs of Batf3-/- neonates had a lower ability to produce interleukin-12 than their wild-type littermates and lower levels of interferon-gamma mRNA were detected in the infected mucosa. Amplification of CD103+ DCs in Batf3-/- neonates prior to infectious challenge reduced their susceptibility to infection. CD103+ DCs thus outperform CD103- DCs in controlling C. parvum infections and represent a primary target of host-directed immunotherapies dedicated to neonates.
Collapse
Affiliation(s)
- Laurent Potiron
- INRA, Université François Rabelais de Tours, Centre Val de Loire, ISP, laboratoire Apicomplexes et Immunité Mucosale
| | - Sonia Lacroix-Lamandé
- INRA, Université François Rabelais de Tours, Centre Val de Loire, ISP, laboratoire Apicomplexes et Immunité Mucosale
| | - Mathilde Marquis
- INRA, Université François Rabelais de Tours, Centre Val de Loire, ISP, laboratoire Apicomplexes et Immunité Mucosale
| | - Yves Levern
- INRA, Université François Rabelais de Tours, Centre Val de Loire, ISP, Service de cytométrie
| | - Geneviève Fort
- INRA, Université François Rabelais de Tours, Centre Val de Loire, ISP, laboratoire Apicomplexes et Immunité Mucosale
| | - Isabelle Franceschini
- INRA, CNRS, Université François Rabelais de Tours, Institut Français du Cheval et de l'Equitation, Centre Val de Loire, UMR PRC, Nouzilly France
| | - Fabrice Laurent
- INRA, Université François Rabelais de Tours, Centre Val de Loire, ISP, laboratoire Apicomplexes et Immunité Mucosale
| |
Collapse
|
24
|
Oliveira BCM, Bresciani KDS, Widmer G. Deprivation of dietary fiber enhances susceptibility of mice to cryptosporidiosis. PLoS Negl Trop Dis 2019; 13:e0007411. [PMID: 31560681 PMCID: PMC6785118 DOI: 10.1371/journal.pntd.0007411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/09/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Based on our initial observations showing that mice consuming a probiotic product develop more severe cryptosporidiosis, we investigated the impact of other dietary interventions on the intracellular proliferation of Cryptosporidium parvum and C. tyzzeri in the mouse. Mice were orally infected with oocysts and parasite multiplication measured by quantifying fecal oocyst output. High-throughput sequencing of 16S ribosomal RNA amplicons was used to correlate oocyst output with diet and with the composition of the intestinal microbiota. On average, mice fed a diet without fiber (cellulose, pectin and inulin) developed more severe infections. As expected, a diet without fibers also significantly altered the fecal microbiota. Consistent with these observations, mice fed a prebiotic product sold for human consumption excreted significantly fewer oocysts. The fecal microbiota of mice consuming no plant polysaccharides was characterized by a lower relative abundance of Bacteroidetes bacteria. Since bacterial metabolites play an important role in the physiology of intestinal enterocytes, we hypothesize based on these observations that the impact of diet on parasite proliferation is mediated primarily by the metabolic activity of the anaerobic microbiota, specifically by the effect of certain metabolites on the host. This model is consistent with the metabolic dependence of intracellular stages of the parasite on the host cell. These observations underscore the potential of dietary interventions to alleviate the impact of cryptosporidiosis, particularly in infants at risk of recurrent enteric infections. The infection with Cryptosporidium parasite, a condition known as cryptosporidiosis, is a common cause of infant diarrhea in developing countries. We have previously shown that mice infected with C. parvum, one of the main cause of human cryptosporidiosis, develop a more severe infection if given probiotics. To investigate the mechanism of this effect, we fed mice prebiotics and diet lacking plant fiber. We found that fermentable fiber, whether administered as a prebiotic supplement or as part of the diet, has a protective effect against cryptosporidiosis in mice. We also observed a significant association between the severity of infection and the composition of the gut microbiota. A significant inverse correlation was found between severity of cryptosporidiosis and the ratio between the abundance of bacteria belonging to the phylum Bacteroidetes and the abundance of Firmicutes bacteria. This ratio is frequently viewed as a marker of a healthy microbiota. These results raise the possibility that dietary interventions could be used to alleviate the impact of cryptosporidiosis.
Collapse
Affiliation(s)
- Bruno César Miranda Oliveira
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
- Universidade Estadual Paulista (Unesp), Faculdade de Medicina Veterinária, Araçatuba, Brasil
| | | | - Giovanni Widmer
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
25
|
Abstract
Except for the important role coccidia have as predisposing factors of necrotic enteritis, the role parasites play in the dynamics of a healthy microbiota of chickens is not well explored. This review describes the interactions of relevant intestinal parasites of chickens with bacteria. Infection with Eimeria spp. favor the growth of Clostridium perfringens and suppress the growth of many other bacteria by increasing viscosity and passage time of the ingesta, and by causing lesions to the intestinal mucosa that improve the availability of nutrients for C. perfringens. Conversely, there are indications that bacteria influence the course of disease after infections with Eimeria spp. Not much is known about intestinal cryptosporidiosis in chickens, but results in mice show that the intestinal microbiota induces some resistance against infection with Cryptosporidium parvum and that the innate immune response triggered by infections with cryptosporidia might have an effect on other intestinal microbes. Histomonas meleagridis depend on bacteria in vitro, and in vivo it will cause lesions in chickens only in the presence of bacteria. Blastocystis spp. are very common in chickens, but there is no information about interactions with bacteria. In humans, there is evidence of the correlation of the detection of Blastocystis and changes in the intestinal microbiota. There are indications of interactions between Ascaridia galli and various bacteria in chickens and Ascaridia spp. of mammals are known to produce various types of antimicrobial molecules. However, often the underlying mechanisms of these interactions between parasites and bacteria remain unknown and only correlations but not causation can be established.
Collapse
Affiliation(s)
- Rüdiger Hauck
- A Department of Pathobiology and Department of Poultry Science, Auburn University, Auburn, AL 36849
| |
Collapse
|
26
|
Cryptosporidium parvum-Infected Neonatal Mice Show Gut Microbiota Remodelling Using High-Throughput Sequencing Analysis: Preliminary Results. Acta Parasitol 2019; 64:268-275. [PMID: 30915719 DOI: 10.2478/s11686-019-00044-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND During the last decade, the scientific community has begun to investigate the composition and role of gut microbiota in normal health and disease. These studies have provided crucial information on the relationship between gut microflora composition and intestinal parasitic infection, and have demonstrated that many enteric pathogen infections are associated with altered gut microflora composition. In this study, we investigated the effects of Cryptosporidium parvum infection (zoonotic protozoan affecting a large range of vertebrates) on both qualitative and quantitative composition of gut microbiota in a CD-1 neonatal mouse model. METHODS 5-day-old neonate mice were experimentally infected with 105Cryptosporidium parvum Iowa oocysts by oesophageal gavage. The intestinal microbiota of both infected (Cp+) and uninfected (Cp-) mice groups was examined by high-throughput sequencing of the bacterial 16S rDNA gene V3-V4 hypervariable region. RESULTS The most consistent change in the microbiota composition of Cp+ mice was the increased proportion of bacterial communities belonging to the Phylum Bacteroidetes. In contrast, the microbiota of Cp- mice was associated with increased proportions of several Firmicutes and Actinobacteria phyla members. CONCLUSION For the first time, our study provides evidence of an association between cryptosporidial infection and gut dysbiosis, thus contributing valuable knowledge to the as-yet little-explored field of Cryptosporidium-microbiota interactions in a neonatal mouse model.
Collapse
|
27
|
Probiotic Product Enhances Susceptibility of Mice to Cryptosporidiosis. Appl Environ Microbiol 2018; 84:AEM.01408-18. [PMID: 30171003 DOI: 10.1128/aem.01408-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Cryptosporidiosis, a leading cause of diarrhea among infants, is caused by apicomplexan parasites classified in the genus Cryptosporidium The lack of effective drugs is motivating research to develop alternative treatments. With this aim, the impact of probiotics on the course of cryptosporidiosis was investigated. The native intestinal microbiota of specific pathogen-free immunosuppressed mice was initially depleted with orally administered antibiotics. A commercially available probiotic product intended for human consumption was subsequently added to the drinking water. Mice were infected with Cryptosporidium parvum oocysts. On average, mice treated with the probiotic product developed more severe infections. The probiotics significantly altered the fecal microbiota, but no direct association between ingestion of probiotic bacteria and their abundance in fecal microbiota was observed. These results suggest that probiotics indirectly altered the intestinal microenvironment or the intestinal epithelium in a way that favored proliferation of C. parvum IMPORTANCE The results of our study show that C. parvum responded to changes in the intestinal microenvironment induced by a nutritional supplement. This outcome paves the way for research to identify nutritional interventions aimed at limiting the impact of cryptosporidiosis.
Collapse
|
28
|
Fulde M, Sommer F, Chassaing B, van Vorst K, Dupont A, Hensel M, Basic M, Klopfleisch R, Rosenstiel P, Bleich A, Bäckhed F, Gewirtz AT, Hornef MW. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature 2018; 560:489-493. [PMID: 30089902 DOI: 10.1038/s41586-018-0395-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/05/2018] [Indexed: 11/09/2022]
Abstract
Alterations in enteric microbiota are associated with several highly prevalent immune-mediated and metabolic diseases1-3, and experiments involving faecal transplants have indicated that such alterations have a causal role in at least some such conditions4-6. The postnatal period is particularly critical for the development of microbiota composition, host-microbe interactions and immune homeostasis7-9. However, the underlying molecular mechanisms of this neonatal priming period have not been defined. Here we report the identification of a host-mediated regulatory circuit of bacterial colonization that acts solely during the early neonatal period but influences life-long microbiota composition. We demonstrate age-dependent expression of the flagellin receptor Toll-like receptor 5 (TLR5) in the gut epithelium of neonate mice. Using competitive colonization experiments, we demonstrate that epithelial TLR5-mediated REG3γ production is critical for the counter-selection of colonizing flagellated bacteria. Comparative microbiota transfer experiments in neonate and adult wild-type and Tlr5-deficient germ-free mice reveal that neonatal TLR5 expression strongly influences the composition of the microbiota throughout life. Thus, the beneficial microbiota in the adult host is shaped during early infancy. This might explain why environmental factors that disturb the establishment of the microbiota during early life can affect immune homeostasis and health in adulthood.
Collapse
Affiliation(s)
- Marcus Fulde
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Microbiology and Epizootics, Department of Veterinary Medicine at the Freie Universität Berlin, Berlin, Germany
| | - Felix Sommer
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.,Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Kira van Vorst
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine at the Freie Universität Berlin, Berlin, Germany
| | - Aline Dupont
- Institute for Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Department of Veterinary Medicine at the Freie Universität Berlin, Berlin, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Mathias W Hornef
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany. .,Institute for Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
29
|
Ryan U, Zahedi A, Paparini A. Cryptosporidium in humans and animals-a one health approach to prophylaxis. Parasite Immunol 2017; 38:535-47. [PMID: 27454991 DOI: 10.1111/pim.12350] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/05/2016] [Indexed: 01/13/2023]
Abstract
Cryptosporidium is a major cause of moderate-to-severe diarrhoea in humans worldwide, second only to rotavirus. Due to the wide host range and environmental persistence of this parasite, cryptosporidiosis can be zoonotic and associated with foodborne and waterborne outbreaks. Currently, 31 species are recognized as valid, and of these, Cryptosporidium hominis and Cryptosporidium parvum are responsible for the majority of infections in humans. The immune status of the host, both innate and adaptive immunity, has a major impact on the severity of the disease and its prognosis. Immunocompetent individuals typically experience self-limiting diarrhoea and transient gastroenteritis lasting up to 2 weeks and recover without treatment, suggesting an efficient host antiparasite immune response. Immunocompromised individuals can suffer from intractable diarrhoea, which can be fatal. Effective drug treatments and vaccines are not yet available. As a result of this, the close cooperation and interaction between veterinarians, health physicians, environmental managers and public health operators is essential to properly control this disease. This review focuses on a One Health approach to prophylaxis, including the importance of understanding transmission routes for zoonotic Cryptosporidium species, improved sanitation and better risk management, improved detection, diagnosis and treatment and the prospect of an effective anticryptosporidial vaccine.
Collapse
Affiliation(s)
- U Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia.
| | - A Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - A Paparini
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| |
Collapse
|
30
|
Laurent F, Lacroix-Lamandé S. Innate immune responses play a key role in controlling infection of the intestinal epithelium by Cryptosporidium. Int J Parasitol 2017; 47:711-721. [PMID: 28893638 DOI: 10.1016/j.ijpara.2017.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/24/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022]
Abstract
Cryptosporidium infection leads to acute diarrhea worldwide. The development of cryptosporidiosis is closely related to the immune status of its host, affecting primarily young ruminants, infants, and immunocompromised individuals. In recent years, several studies have improved our knowledge on the immune mechanisms responsible for the control of the acute phase of the infection and have highlighted the importance of innate immunity. The parasite develops in the apical side of intestinal epithelial cells, giving these cells a central role, as they are both the exclusive host cell for replication of the parasite and participate in the protective immune response. Epithelial cells signal the infection by producing chemokines, attracting immune cells to the infected area. They also actively participate in host defense by inducing apoptosis and releasing antimicrobial peptides, free or incorporated into luminal exosomes, with parasiticidal activity. The parasite has developed several escape mechanisms to slow down these protective mechanisms. Recent development of several three-dimensional culture models and the ability to genetically manipulate Cryptosporidium will greatly help to further investigate host-pathogen interactions and identify virulence factors. Intestinal epithelial cells require the help of immune cells to clear the infection. Intestinal dendritic cells, well known for their ability to induce and orchestrate adaptive immunity, play a key role in controlling the very early steps of Cryptosporidium parvum infection by acting as immunological sentinels and active effectors. However, inflammatory monocytes, which are quickly and massively recruited to the infected mucosa, seem to participate in the loss of epithelial integrity. In addition to new promising chemotherapies, we must consider stimulating the innate immunity of neonates to strengthen their ability to control Cryptosporidium development. The microbiota plays a fundamental role in the development of intestinal immunity and may be considered to be a third actor in host-pathogen interactions. There is an urgent need to reduce the incidence of this yet poorly controlled disease in the populations of developing countries, and decrease economic losses due to infected livestock.
Collapse
Affiliation(s)
- Fabrice Laurent
- UMR1282 Infectiologie et Santé Publique, INRA Centre Val de Loire, Université François Rabelais de Tours, 37380 Nouzilly, France.
| | - Sonia Lacroix-Lamandé
- UMR1282 Infectiologie et Santé Publique, INRA Centre Val de Loire, Université François Rabelais de Tours, 37380 Nouzilly, France.
| |
Collapse
|
31
|
Ta A, Thakur BK, Dutta P, Sinha R, Koley H, Das S. Double-stranded RNA induces cathelicidin expression in the intestinal epithelial cells through phosphatidylinositol 3-kinase-protein kinase Cζ-Sp1 pathway and ameliorates shigellosis in mice. Cell Signal 2017; 35:140-153. [DOI: 10.1016/j.cellsig.2017.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
|
32
|
Bartelt LA, Bolick DT, Kolling GL, Roche JK, Zaenker EI, Lara AM, Noronha FJ, Cowardin CA, Moore JH, Turner JR, Warren CA, Buck GA, Guerrant RL. Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model. PLoS Negl Trop Dis 2016; 10:e0004820. [PMID: 27467505 PMCID: PMC4965189 DOI: 10.1371/journal.pntd.0004820] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/11/2016] [Indexed: 01/21/2023] Open
Abstract
Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children. Cryptosporidium attributable morbidities in malnourished children are increasingly recognized. Exactly how malnutrition interferes with host mucosal immunity to diarrheal pathogens and mucosal vaccine responses remains unclear. Dissecting these interactions in an experimental model of cryptosporidiosis can uncover new insights into novel therapeutic approaches against a pathogen for which effective therapies and vaccines are currently unavailable. We demonstrate that although malnutrition diminishes baseline (primary) Th1-type mucosal immunity these deficits can be partially overcome via non-specific mucosal strategies (S. Typhi and CpG) and completely restored after a sub-clinical (low-dose) exposure to viable C. parvum. These results add insight into preventive strategies to help alleviate Cryptosporidium-specific diarrhea in children in low-resource settings and abrogate prolonged post-infection sequelae.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - David T. Bolick
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Glynis L. Kolling
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - James K. Roche
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Edna I. Zaenker
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ana M. Lara
- Molecular Biology and Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Francisco Jose Noronha
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carrie A. Cowardin
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - John H. Moore
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jerrold R. Turner
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
- Departments of Pathology and Medicine—Gastroenterology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Cirle A. Warren
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Gregory A. Buck
- Molecular Biology and Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Richard L. Guerrant
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
33
|
Fecal Indole as a Biomarker of Susceptibility to Cryptosporidium Infection. Infect Immun 2016; 84:2299-306. [PMID: 27245413 DOI: 10.1128/iai.00336-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/22/2016] [Indexed: 01/16/2023] Open
Abstract
Cryptosporidium causes significant diarrhea worldwide, especially among children and immunocompromised individuals, and no effective drug treatment is currently available for those who need it most. In this report, previous volunteer infectivity studies have been extended to examine the association between fecal indole and indole-producing (IP) gut microbiota on the outcome of a Cryptosporidium infection. Fecal indole concentrations (FICs) of 50 subjects and 19 taxa of common gut microbiota, including six IP taxa (11 subjects) were determined in stool samples collected before and after a challenge with Cryptosporidium oocysts. At the baseline, the mean FIC (± the standard deviation) was 1.66 ± 0.80 mM in those who became infected after a challenge versus 3.20 ± 1.23 mM in those who remained uninfected (P = 0.0001). Only 11.1% of the subjects with a FIC of >2.5 mM became infected after a challenge versus 65.2% of the subjects with a FIC of <2.5 mM. In contrast, the FICs of infected subjects at the baseline or during diarrhea were not correlated with infection intensity or disease severity. The relative abundances (percent) of Escherichia coli, Bacillus spp., and Clostridium spp. were greater ≥2.5-fold in volunteers with a baseline FIC of >2.5 mM, while those of Bacteroides pyogenes, B. fragilis, and Akkermansia muciniphila were greater in those with a baseline FIC of <2.5 mM. These data indicate that some IP bacteria, or perhaps indole alone, can influence the ability of Cryptosporidium to establish an infection. Thus, preexisting indole levels in the gut join the oocyst dose and immune status as important factors that determine the outcome of Cryptosporidium exposure.
Collapse
|
34
|
Lin WC, Chang HY, Chen JY. Electrotransfer of the tilapia piscidin 3 and tilapia piscidin 4 genes into skeletal muscle enhances the antibacterial and immunomodulatory functions of Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2016; 50:200-209. [PMID: 26828260 DOI: 10.1016/j.fsi.2016.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Tilapia piscidin 3 (TP3) and tilapia piscidin 4 (TP4) are antimicrobial peptides recently isolated from Oreochromis niloticus. We previously showed that synthetic TP3 and TP4 possessed antimicrobial activities. Here, we analyzed the bactericidal abilities and immunomodulatory properties of these AMPs following the electroporation of pCMV-GFP-TP3 or pCMV-GFP-TP4 plasmid into tilapia (O. niloticus) muscle and subsequent infection with Vibrio vulnificus or Streptococcus agalactiae. Prior overexpression of TP3 or TP4 in tilapia muscle tissues efficiently reduced bacterial numbers at 24 and 48 h after V. vulnificus infection and reduced bacterial numbers at 24 h after S. agalactiae infection compared to numbers in controls expressing pCMV-GFP (EGFP). Electroporation of pCMV-EGFP-TP3 (TP3) or pCMV-EGFP-TP4 (TP4) significantly increased expression of several immune-related genes in muscle (IL-1β (12 h, TP3), IL-8 (12 h, TP3), TGFβ (3 h, TP4), and IκB (48 h, TP3, TP4)) and decreased the expression of TLR5 (12 h and 24 h, TP3) after V. vulnificus infection. Following S. agalactiae infection, expression of the following genes was significantly decreased in muscle: IL-1β (12 h, TP3), IL-8 (12 h, TP3, TP4), TLR5 (3 h-24 h, TP3, TP4), TGFβ (3 h, TP4; 24 h, TP3, TP4), and IκB (3 h, TP3). These data suggest that TP3 and TP4 exert antimicrobial effects after overexpression in the O. niloticus muscle, and also play important roles in the regulation of immune-related gene expression.
Collapse
Affiliation(s)
- Wen-Chun Lin
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | - Hsiao-Yun Chang
- Department of Biotechnology, Asia University, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan.
| |
Collapse
|
35
|
Ruiz J, Kanagavelu S, Flores C, Romero L, Riveron R, Shih DQ, Fukata M. Systemic Activation of TLR3-Dependent TRIF Signaling Confers Host Defense against Gram-Negative Bacteria in the Intestine. Front Cell Infect Microbiol 2016; 5:105. [PMID: 26793623 PMCID: PMC4710052 DOI: 10.3389/fcimb.2015.00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/24/2015] [Indexed: 12/11/2022] Open
Abstract
Recognition of Gram-negative bacteria by toll-like receptor (TLR)4 induces MyD88 and TRIF mediated responses. We have shown that TRIF-dependent responses play an important role in intestinal defense against Gram-negative enteropathogens. In the current study, we examined underlying mechanisms of how systemic TRIF activation enhances intestinal immune defense against Gram-negative bacteria. First we confirmed that the protective effect of poly I:C against enteric infection of mice with Yersinia enterocolitica was dependent on TLR3-mediated TRIF signaling by using TLR3-deficient mice. This protection was unique in TRIF-dependent TLR signaling because systemic stimulation of mice with agonists for TLR2 (Pam3CSK4) or TLR5 (flagellin) did not reduce mortality on Y. enterocolitica infection. Systemic administration of poly I:C mobilized CD11c+, F4/80+, and Gr−1hi cells from lamina propria and activated NK cells in the mesenteric lymph nodes (MLN) within 24 h. This innate immune cell rearrangement was type I IFN dependent and mediated through upregulation of TLR4 followed by CCR7 expression in these innate immune cells found in the intestinal mucosa. Poly I:C induced IFN-γ expression by NK cells in the MLN, which was mediated through type I IFNs and IL-12p40 from antigen presenting cells and consequent activation of STAT1 and STAT4 in NK cells. This formation of innate immunity significantly contributed to the elimination of bacteria in the MLN. Our results demonstrated an innate immune network in the intestine that can be established by systemic stimulation of TRIF, which provides a strong host defense against Gram-negative pathogens. The mechanism underlying TRIF-mediated protective immunity may be useful to develop novel therapies for enteric bacterial infection.
Collapse
Affiliation(s)
- Jose Ruiz
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - Saravana Kanagavelu
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of MedicineMiami, FL, USA; Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research InstituteLos Angeles, CA, USA
| | - Claudia Flores
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute Los Angeles, CA, USA
| | - Laura Romero
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - Reldy Riveron
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - David Q Shih
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research InstituteLos Angeles, CA, USA; Department of Medicine, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA
| | - Masayuki Fukata
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of MedicineMiami, FL, USA; Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research InstituteLos Angeles, CA, USA; Department of Medicine, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA; Department of Cell Biology, University of Miami Miller School of MedicineMiami, FL, USA; Department of Biomedical Science, Cedars-Sinai Medical CenterLos Angeles, CA, USA
| |
Collapse
|
36
|
Ludington JG, Ward HD. Systemic and Mucosal Immune Responses to Cryptosporidium-Vaccine Development. CURRENT TROPICAL MEDICINE REPORTS 2015; 2:171-180. [PMID: 26279971 PMCID: PMC4535728 DOI: 10.1007/s40475-015-0054-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cryptosporidium spp is a major cause of diarrheal disease worldwide, particularly in malnourished children and untreated AIDS patients in developing countries in whom it can cause severe, chronic and debilitating disease. Unfortunately, there is no consistently effective drug for these vulnerable populations and no vaccine, partly due to a limited understanding of both the parasite and the host immune response. In this review, we will discuss our current understanding of the systemic and mucosal immune responses to Cryptosporidium infection, discuss the feasibility of developing a Cryptosporidium vaccine and evaluate recent advances in Cryptosporidium vaccine development strategies.
Collapse
Affiliation(s)
- Jacob G. Ludington
- Tufts University Sackler School of Graduate Biomedical Sciences and Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center
| | - Honorine D. Ward
- Tufts University Sackler School of Graduate Biomedical Sciences and Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center
| |
Collapse
|
37
|
Wynn JL, Scumpia PO, Stocks BT, Romano-Keeler J, Alrifai MW, Liu JH, Kim AS, Alford CE, Matta P, Weitkamp JH, Moore DJ. Neonatal CD71+ Erythroid Cells Do Not Modify Murine Sepsis Mortality. THE JOURNAL OF IMMUNOLOGY 2015; 195:1064-70. [PMID: 26101326 DOI: 10.4049/jimmunol.1500771] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/02/2015] [Indexed: 01/19/2023]
Abstract
Sepsis is a major cause of neonatal mortality and morbidity worldwide. A recent report suggested that murine neonatal host defense against infection could be compromised by immunosuppressive CD71(+) erythroid splenocytes. We examined the impact of CD71(+) erythroid splenocytes on murine neonatal mortality to endotoxin challenge or polymicrobial sepsis and characterized circulating CD71(+) erythroid (CD235a(+)) cells in human neonates. Adoptive transfer or an Ab-mediated reduction in neonatal CD71(+) erythroid splenocytes did not alter murine neonatal survival to endotoxin challenge or polymicrobial sepsis challenge. Ex vivo immunosuppression of stimulated adult CD11b(+) cells was not limited to neonatal splenocytes; it also occurred with adult and neonatal bone marrow. Animals treated with anti-CD71 Ab showed reduced splenic bacterial load following bacterial challenge compared with isotype-treated mice. However, adoptive transfer of enriched CD71(+) erythroid splenocytes to CD71(+)-reduced animals did not reduce bacterial clearance. Human CD71(+)CD235a(+) cells were common among cord blood mononuclear cells and were shown to be reticulocytes. In summary, a lack of effect on murine survival to polymicrobial sepsis following adoptive transfer or diminution of CD71(+) erythroid splenocytes under these experimental conditions suggests that the impact of these cells on neonatal infection risk and progression may be limited. An unanticipated immune priming effect of anti-CD71 Ab treatment, rather than a reduction in immunosuppressive CD71(+) erythroid splenocytes, was likely responsible for the reported enhanced bacterial clearance. In humans, the well-described rapid decrease in circulating reticulocytes after birth suggests that they may have a limited role in reducing inflammation secondary to microbial colonization.
Collapse
Affiliation(s)
- James L Wynn
- Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232;
| | - Philip O Scumpia
- Department of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Blair T Stocks
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232
| | - Joann Romano-Keeler
- Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Mhd Wael Alrifai
- Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Jin-Hua Liu
- Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Annette S Kim
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232
| | - Catherine E Alford
- Department of Pathology, Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN 37232; and
| | - Pranathi Matta
- Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Jörn-Hendrik Weitkamp
- Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Daniel J Moore
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232; Division of Endocrinology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
38
|
Ras R, Huynh K, Desoky E, Badawy A, Widmer G. Perturbation of the intestinal microbiota of mice infected with Cryptosporidium parvum. Int J Parasitol 2015; 45:567-73. [PMID: 25913477 DOI: 10.1016/j.ijpara.2015.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/29/2023]
Abstract
Understanding the interaction between the intestinal microbiota (microbiome) and enteric pathogens is of interest in the development of alternative treatments that do not rely on chemotherapy and do not lead to drug resistance. We undertook research in a rodent model of cryptosporidiosis to assess whether the bacterial gut microbiota is impacted by infection with the protozoan pathogen Cryptosporidium parvum. The profile of the faecal bacterial microbiota in infected and uninfected animals was compared using 16S amplicon sequencing. In four independent experiments, the intestinal microbiota of infected mice differed from that of uninfected animals, regardless of the C. parvum isolate used to infect mice. The use of replicated treatment groups demonstrated that microbiota divergence between treatments was driven by the infection and did not result from spontaneous changes in the intestinal ecosystem unrelated to the infection. Microbiota perturbation induced by C. parvum appeared to be reversible, as we observed a tendency for the phylogenetic distance between infected and uninfected mice to diminish after mice cleared the infection. As mice infected with C. parvum do not develop diarrhoea, these observations indicate that microbiota perturbation results from other mechanisms than an accelerated movement of gut content.
Collapse
Affiliation(s)
- Refaat Ras
- Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA; Parasitology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Kevin Huynh
- Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Enas Desoky
- Parasitology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Badawy
- Parasitology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Giovanni Widmer
- Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA.
| |
Collapse
|
39
|
Guesdon W, Auray G, Pezier T, Bussière FI, Drouet F, Le Vern Y, Marquis M, Potiron L, Rabot S, Bruneau A, Werts C, Laurent F, Lacroix-Lamandé S. CCL20 Displays Antimicrobial Activity Against Cryptosporidium parvum, but Its Expression Is Reduced During Infection in the Intestine of Neonatal Mice. J Infect Dis 2015; 212:1332-40. [PMID: 25838265 DOI: 10.1093/infdis/jiv206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/13/2015] [Indexed: 12/13/2022] Open
Abstract
CCL20 is a chemokine with antimicrobial activity. We investigated its expression and role during neonatal cryptosporidiosis, a worldwide protozoan enteric disease leading to severe diarrhea. Surprisingly, during infection by Cryptosporidium parvum, CCL20 production by the intestine of neonatal mice is reduced by a mechanism independent both of the enteric flora and of interferon γ, a key cytokine for the resolution of this infection. However, oral administration of recombinant CCL20 to neonatal mice significantly reduced the parasite load by a mechanism that was independent of immune cell recruitment and occurred instead by direct cytolytic activity on free stages of the parasite. MiR21 functionally targets CCL20 and is upregulated during the infection, thus contributing to the downregulation of the chemokine. Our findings demonstrate for the first time the direct antiparasitic activity of CCL20 against an enteric protozoan and its downregulation during C. parvum infection, which is detrimental to parasite clearance.
Collapse
Affiliation(s)
- William Guesdon
- INRA Val de Loire, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours
| | - Gaël Auray
- INRA Val de Loire, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours
| | - Tiffany Pezier
- INRA Val de Loire, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours
| | - Françoise I Bussière
- INRA Val de Loire, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours
| | - Françoise Drouet
- INRA Val de Loire, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours
| | - Yves Le Vern
- INRA Val de Loire, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours INRA Val de Loire, Cytometry Platform
| | - Mathilde Marquis
- INRA Val de Loire, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours
| | - Laurent Potiron
- INRA Val de Loire, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours
| | - Sylvie Rabot
- INRA, UMR1319 Micalis AgroParisTech, UMR Micalis, Jouy-en-Josas
| | - Aurelia Bruneau
- INRA, UMR1319 Micalis AgroParisTech, UMR Micalis, Jouy-en-Josas
| | - Catherine Werts
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Paris, France
| | - Fabrice Laurent
- INRA Val de Loire, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours
| | - Sonia Lacroix-Lamandé
- INRA Val de Loire, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours
| |
Collapse
|
40
|
Fulde M, Hornef MW. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol Rev 2015; 260:21-34. [PMID: 24942679 DOI: 10.1111/imr.12190] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The innate immune system instructs the host on microbial exposure and infection. This information is critical to mount a protective innate and adaptive host response to microbial challenge, but is also involved in homeostatic and adaptive processes that adjust the organism to meet environmental requirements. This is of particular importance for the neonatal host during the transition from the protected fetal life to the intense and dynamic postnatal interaction with commensal and pathogenic microorganisms. Here, we discuss both adaptive and developmental mechanisms of the mucosal innate immune system that prevent inappropriate stimulation and facilitate establishment of a stable homeostatic host-microbial interaction after birth.
Collapse
Affiliation(s)
- Marcus Fulde
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
41
|
Bartelt LA, Guerrant RL. Antibiotics help control rotavirus infections and enhance antirotaviral immunity: are you serious? J Infect Dis 2014; 210:167-70. [PMID: 24625806 DOI: 10.1093/infdis/jiu153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Luther A Bartelt
- Division of Infectious Diseases and International Health, University of Virginia, Center for Global Health, Charlottesville, Virginia
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Center for Global Health, Charlottesville, Virginia
| |
Collapse
|
42
|
Lacroix-Lamandé S, Guesdon W, Drouet F, Potiron L, Lantier L, Laurent F. The gut flora is required for the control of intestinal infection by poly(I:C) administration in neonates. Gut Microbes 2014; 5:533-40. [PMID: 24918602 DOI: 10.4161/gmic.29154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We found that immunostimulation of the intestinal immune system of neonatal mice by poly(I:C) injection decreased intestinal infection by the parasite Cryptosporidium parvum. We showed that the presence of dendritic cells and the cooperation of mutually dependent cytokines, such as IL-12p40, and type I and type II IFNs, were involved in the mechanism of protection induced by poly(I:C). This protection is dependent not only on TLR3-TRIF signaling, but also on the activation of the TLR5-MyD88 pathway by gut microbiota. These results raise the possibility that flagellated intestinal commensal bacteria may, in the presence of natural or synthetic agonists of TLR3, provide synergy between the TRIF and MyD88 signaling pathways, thereby favoring the development of mucosal defenses. In this addendum, we summarize these recent findings and discuss their implications for neonatal infections and immunomodulatory strategies.
Collapse
Affiliation(s)
- Sonia Lacroix-Lamandé
- INRA Val de Loire; UMR 1282 Infectiologie et Santé Publique, F-37380; Nouzilly, France; Université François Rabelais; UMR 1282 Infectiologie et Santé Publique, F-37000 ; Tours, France
| | - William Guesdon
- INRA Val de Loire; UMR 1282 Infectiologie et Santé Publique, F-37380; Nouzilly, France; Université François Rabelais; UMR 1282 Infectiologie et Santé Publique, F-37000 ; Tours, France
| | - Françoise Drouet
- INRA Val de Loire; UMR 1282 Infectiologie et Santé Publique, F-37380; Nouzilly, France; Université François Rabelais; UMR 1282 Infectiologie et Santé Publique, F-37000 ; Tours, France
| | - Laurent Potiron
- INRA Val de Loire; UMR 1282 Infectiologie et Santé Publique, F-37380; Nouzilly, France; Université François Rabelais; UMR 1282 Infectiologie et Santé Publique, F-37000 ; Tours, France
| | - Louis Lantier
- INRA Val de Loire; UMR 1282 Infectiologie et Santé Publique, F-37380; Nouzilly, France; Université François Rabelais; UMR 1282 Infectiologie et Santé Publique, F-37000 ; Tours, France
| | - Fabrice Laurent
- INRA Val de Loire; UMR 1282 Infectiologie et Santé Publique, F-37380; Nouzilly, France; Université François Rabelais; UMR 1282 Infectiologie et Santé Publique, F-37000 ; Tours, France
| |
Collapse
|
43
|
Validation of IMP dehydrogenase inhibitors in a mouse model of cryptosporidiosis. Antimicrob Agents Chemother 2013; 58:1603-14. [PMID: 24366728 DOI: 10.1128/aac.02075-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cryptosporidium parasites are a major cause of diarrhea and malnutrition in the developing world, a frequent cause of waterborne disease in the developed world, and a potential bioterrorism agent. Currently, available treatment is limited, and Cryptosporidium drug discovery remains largely unsuccessful. As a result, the pharmacokinetic properties required for in vivo efficacy have not been established. We have been engaged in a Cryptosporidium drug discovery program targeting IMP dehydrogenase (CpIMPDH). Here, we report the activity of eight potent and selective inhibitors of CpIMPDH in the interleukin-12 (IL-12) knockout mouse model, which mimics acute human cryptosporidiosis. Two compounds displayed significant antiparasitic activity, validating CpIMPDH as a drug target. The best compound, P131 (250 mg/kg of body weight/day), performed equivalently to paromomycin (2,000 mg/kg/day) when administered in a single dose and better than paromomycin when administered in three daily doses. One compound, A110, appeared to promote Cryptosporidium infection. The pharmacokinetic, uptake, and permeability properties of the eight compounds were measured. P131 had the lowest systemic distribution but accumulated to high concentrations within intestinal cells. A110 had the highest systemic distribution. These observations suggest that systemic distribution is not required, and may be a liability, for in vivo antiparasitic activity. Intriguingly, A110 caused specific alterations in fecal microbiota that were not observed with P131 or vehicle alone. Such changes may explain how A110 promotes parasitemia. Collectively, these observations suggest a blueprint for the development of anticryptosporidial therapy.
Collapse
|