1
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
2
|
Cockbain B, Fidler S, Lyall H. Preventing perinatal HIV acquisition; current gaps and future perspectives. Curr Opin HIV AIDS 2024; 19:01222929-990000000-00110. [PMID: 39196368 PMCID: PMC11451969 DOI: 10.1097/coh.0000000000000881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
PURPOSE OF REVIEW Although current treatment could eradicate vertical transmission, in 2022, 130 000 infants acquired HIV globally. HIV suppression with antiretroviral therapy (ART) transforms survival for people living with HIV (PLWH), and prevents transmission, including vertical. International guidelines recommend lifelong ART for PLWH, consequently perinatal HIV acquisition reflects implementation gaps in the HIV care cascade. We summarize these gaps, exploring potential novel approaches and therapeutic innovations towards eliminating vertical HIV transmission. RECENT FINDINGS Multifactorial challenges continue to underpin gaps in the HIV care cascade, including accessibility, availability and sustainability of HIV testing, prevention and treatment, alongside stigma, gender-based violence and poverty. Long-acting ART may be important in preventing perinatal HIV acquisition, with early data demonstrating tolerability and efficacy of injectable ART throughout pregnancy, both as HIV treatment and prevention. Carefully selected long-acting broadly neutralizing antibodies (bNAbs) matching circulating, exposing viral envelope sequences have demonstrated safety, clinical trials are ongoing to demonstrate efficacy. SUMMARY Emerging clinical studies should prioritize pregnant/lactating people and infants to ensure such therapies are well tolerated and efficacious. Alongside therapeutic innovation, programmatic strategies must address social and economic challenges, ensuring sustainable HIV treatment/prevention programmes and facilitating global elimination of blood-borne viruses.
Collapse
Affiliation(s)
- Beatrice Cockbain
- Department of Infectious Disease, Imperial College London, Imperial College NIHR BRC
- Chelsea and Westminster Hospital NHS Foundation Trust
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, Imperial College NIHR BRC
- Department of Infectious Disease and NIHR Imperial BRC, Imperial College London, UK
| | - Hermione Lyall
- Department of Infectious Disease and NIHR Imperial BRC, Imperial College London, UK
| |
Collapse
|
3
|
Batorsky R, Ceasrine AM, Shook LL, Kislal S, Bordt EA, Devlin BA, Perlis RH, Slonim DK, Bilbo SD, Edlow AG. Hofbauer cells and fetal brain microglia share transcriptional profiles and responses to maternal diet-induced obesity. Cell Rep 2024; 43:114326. [PMID: 38848212 DOI: 10.1016/j.celrep.2024.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Maternal immune activation is associated with adverse offspring neurodevelopmental outcomes, many mediated by in utero microglial programming. As microglia remain inaccessible throughout development, identification of noninvasive biomarkers reflecting fetal brain microglial programming could permit screening and intervention. We used lineage tracing to demonstrate the shared ontogeny between fetal brain macrophages (microglia) and fetal placental macrophages (Hofbauer cells) in a mouse model of maternal diet-induced obesity, and single-cell RNA-seq to demonstrate shared transcriptional programs. Comparison with human datasets demonstrated conservation of placental resident macrophage signatures between mice and humans. Single-cell RNA-seq identified common alterations in fetal microglial and Hofbauer cell gene expression induced by maternal obesity, as well as sex differences in these alterations. We propose that Hofbauer cells, which are easily accessible at birth, provide insights into fetal brain microglial programs and may facilitate the early identification of offspring vulnerable to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, Medford, MA, USA
| | - Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Roy H Perlis
- Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University, Durham, NC, USA; Lurie Center for Autism, Massachusetts General Hospital, Boston, MA, USA
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Enninga EAL, Quach HQ, Jang JS, de Araujo Correia MCM, Fedyshyn Y, Fedyshyn B, Lemens M, Littlefield D, Behl S, Sintim-Aboagye E, Mejia Plazas MC, Cardenas MC, Chakraborty S, Yamaoka S, Ebihara H, Pandey A, Li H, Badley AD, Johnson EL, Sun J, Norgan AP, Theiler RN, Chakraborty R. Maternal SARS-CoV-2 infection in pregnancy disrupts gene expression in Hofbauer cells with limited impact on cytotrophoblasts. PLoS Pathog 2024; 20:e1011990. [PMID: 38324589 PMCID: PMC10878512 DOI: 10.1371/journal.ppat.1011990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Hofbauer cells (HBCs) and cytotrophoblasts (CTBs) are major cell populations in placenta. The indirect impact of maternal SARS-CoV-2 disease on these cells that are not directly infected has not been extensively studied. Herein, we profiled gene expression in HBCs and CTBs isolated from placentae of recovered pregnant subjects infected with SARS-CoV-2 during all trimesters of pregnancy, placentae from subjects with active infection, SARS-CoV-2 vaccinated subjects, and those who were unexposed to the virus. METHODS Placentae were collected within 4 h post-delivery and membrane-free tissues were enzymatically digested for the isolation of HBCs and CTBs. RNA extracted from HBCs and CTBs were sequenced using 150bp paired-end reads. Differentially expressed genes (DEGs) were identified by DESeq2 package in R and enriched in GO Biological Processes, KEGG Pathway, Reactome Gene Sets, Hallmark Gene Sets, and Canonical Pathways. Protein-protein interactions among the DEGs were modelled using STRING and BioGrid. RESULTS Pregnant subjects (n = 30) were recruited and categorized into six groups: infected with SARS-CoV-2 in i) the first (1T, n = 4), ii) second (2T, n = 5), iii) third (3T, n = 5) trimester, iv) tested positive at delivery (Delivery, n = 5), v) never infected (Control, n = 6), and vi) fully mRNA-vaccinated by delivery (Vaccinated, n = 5). Compared to the Control group, gene expression analysis showed that HBCs from infected subjects had significantly altered gene expression profiles, with the 2T group having the highest number of DEGs (1,696), followed by 3T and 1T groups (1,656 and 958 DEGs, respectively). These DEGs were enriched for pathways involved in immune regulation for host defense, including production of cytokines, chemokines, antimicrobial proteins, ribosomal assembly, neutrophil degranulation inflammation, morphogenesis, and cell migration/adhesion. Protein-protein interaction analysis mapped these DEGs with oxidative phosphorylation, translation, extracellular matrix organization, and type I interferon signaling. Only 95, 23, and 8 DEGs were identified in CTBs of 1T, 2T, and 3T groups, respectively. Similarly, 11 and 3 DEGs were identified in CTBs and HBCs of vaccinated subjects, respectively. Reassuringly, mRNA vaccination did not induce an inflammatory response in placental cells. CONCLUSIONS Our studies demonstrate a significant impact of indirect SARS-CoV-2 infection on gene expression of inner mesenchymal HBCs, with limited effect on lining CTB cells isolated from pregnant subjects infected and recovered from SARS-CoV-2. The pathways associated with these DEGs identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elizabeth Ann L. Enninga
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jin Sung Jang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Yaroslav Fedyshyn
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Bohdana Fedyshyn
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Maureen Lemens
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Dawn Littlefield
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Supriya Behl
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Elise Sintim-Aboagye
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Maria C. Mejia Plazas
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Maria C. Cardenas
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Shree Chakraborty
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Satoko Yamaoka
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew D. Badley
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Erica L. Johnson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Jie Sun
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
- Carter Immunology Center University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Andrew P. Norgan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Regan N. Theiler
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rana Chakraborty
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
5
|
Batorsky R, Ceasrine AM, Shook LL, Kislal S, Bordt EA, Devlin BA, Perlis RH, Slonim DK, Bilbo SD, Edlow AG. Hofbauer cells and fetal brain microglia share transcriptional profiles and responses to maternal diet-induced obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571680. [PMID: 38187648 PMCID: PMC10769274 DOI: 10.1101/2023.12.16.571680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Maternal immune activation is associated with adverse offspring neurodevelopmental outcomes, many mediated by in utero microglial programming. As microglia remain inaccessible throughout development, identification of noninvasive biomarkers reflecting fetal brain microglial programming could permit screening and intervention. We used lineage tracing to demonstrate the shared ontogeny between fetal brain macrophages (microglia) and fetal placental macrophages (Hofbauer cells) in a mouse model of maternal diet-induced obesity, and single-cell RNA-seq to demonstrate shared transcriptional programs. Comparison with human datasets demonstrated conservation of placental resident macrophage signatures between mice and humans. Single-cell RNA-seq identified common alterations in fetal microglial and Hofbauer cell gene expression induced by maternal obesity, as well as sex differences in these alterations. We propose that Hofbauer cells, which are easily accessible at birth, provide novel insights into fetal brain microglial programs, and may facilitate the early identification of offspring vulnerable to neurodevelopmental disorders in the setting of maternal exposures.
Collapse
Affiliation(s)
| | - Alexis M. Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Lydia L. Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Evan A. Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin A. Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Roy H. Perlis
- Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Donna K. Slonim
- Department of Computer Science, Tufts University, Medford, MA
| | - Staci D. Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Lurie Center for Autism, Massachusetts General Hospital, Boston, MA
| | - Andrea G. Edlow
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Chu C, Yu S, Min F, Sun L, Liu M, Meng Q. Establishment and application of a point-of-care testing and diagnosis method for early immediate expression gene IE1 of cytomegalovirus in maternal urine based on isothermal amplification. Virus Res 2023; 337:199229. [PMID: 37769815 PMCID: PMC10579523 DOI: 10.1016/j.virusres.2023.199229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Human Cytomegalovirus virus (HCMV) is a worldwide virus that causes no serious symptoms in most adults. However, HCMV infection during pregnancy, it may lead to a series of serious complications, such as hearing loss, mental retardation, visual impairment, microcephaly and developmental retardation. AIM The aim of this study was to develop a simple, low dependence on equipment and accurate method for HCMV detection based on the recombinase polymerase amplification (RPA) and lateral flow chromatography strip (LFS) reading. METHODS In order to meet the feasibility of HCMV early screening, three pairs of RPA primers were designed based on the UL123 gene encoding IE1, which was expressed immediately in the early stage of HCMV. In order to improve the specificity of the reaction and satisfy the visual detection, a specific probe was designed to insert THF site between upstream and downstream primers, fluorescein isothiocyanate (FITC) and C3spacer were used to modify the 5' end and the 3' end respectively, and Biotin was used to modify the 5' end of the reverse primer. HCMV standard strain AD169 was enriched by ARPE-19 cells culture, and its genome was extracted. The primers and probes were screened by RPA-LFS test, and the optimal reaction temperature and time were determined The specificity was verified in different viruses, bacteria and parasites. The standard curve was drawn based on the constructed recombinant plasmid of pMD18T-HCMV-UL123 and used for HCMV genomic DNA quantification and determination of the detection sensitivity. Urine samples from artificial HCMV contamination or clinical collection were prepared to evaluate the consistency with the results of real-time quantitative PCR. RESULTS The results showed that the primers and probes for HCMV RPA-LFS detection based on UL123 gene were successfully screened, the amplification of HCMV genomic DNA with as low as 30 copies could be completed at 37 °C within 15 min, it did not react with Human herpesvirus 1, Streptococcus pyogenes, Candida albicans, Listeria monocytogenes, Y. enterocolitica, Klebsiella Pneumoniae, Enterobacter cloacae, Citrobacter freundii, Vibrio alginnolyfificus, Vibrio parahaemolyticus, S. typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa and Trichomonas vaginalis. The positive rate of PCR was 96.67 % in 30 simulated urine samples and 100 % in 127 clinical urine samples with the same UL123 gene detection. CONCLUSIONS To sum up, we developed a diagnostic method for HCMV based on UL123 gene combined with RPA and LFS, which is low dependent on equipment, fast, sensitive and specific, provide reference for point-of-care testing HCMV in grass-roots laboratories and remote areas.
Collapse
Affiliation(s)
- Chu Chu
- Obstetrical Department, Lianyungang Maternal and Child Health Care Hospital, Lianyungang, Jiangsu 222006, China
| | - Shijiao Yu
- Obstetrical Department, Lianyungang Maternal and Child Health Care Hospital, Lianyungang, Jiangsu 222006, China
| | - Fanli Min
- Obstetrical Department, Lianyungang Maternal and Child Health Care Hospital, Lianyungang, Jiangsu 222006, China
| | - Lizhou Sun
- Obstetrical Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 222006, China
| | - Meilin Liu
- Obstetrical Department, Lianyungang Maternal and Child Health Care Hospital, Lianyungang, Jiangsu 222006, China.
| | - Qian Meng
- Obstetrical Department, Lianyungang Maternal and Child Health Care Hospital, Lianyungang, Jiangsu 222006, China.
| |
Collapse
|
7
|
Cardenas MC, Farnan S, Hamel BL, Mejia Plazas MC, Sintim-Aboagye E, Littlefield DR, Behl S, Punia S, Enninga EAL, Johnson E, Temesgen Z, Theiler R, Gray CM, Chakraborty R. Prevention of the Vertical Transmission of HIV; A Recap of the Journey so Far. Viruses 2023; 15:849. [PMID: 37112830 PMCID: PMC10142818 DOI: 10.3390/v15040849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
In 1989, one in four (25%) infants born to women living with HIV were infected; by the age of 2 years, there was 25% mortality among them due to HIV. These and other pieces of data prompted the development of interventions to offset vertical transmission, including the landmark Pediatric AIDS Clinical Trial Group Study (PACTG 076) in 1994. This study reported a 67.5% reduction in perinatal HIV transmission with prophylactic antenatal, intrapartum, and postnatal zidovudine. Numerous studies since then have provided compelling evidence to further optimize interventions, such that annual transmission rates of 0% are now reported by many health departments in the US and elimination has been validated in several countries around the world. Despite this success, the elimination of HIV's vertical transmission on the global scale remains a work in progress, limited by socioeconomic factors such as the prohibitive cost of antiretrovirals. Here, we review some of the key trials underpinning the development of guidelines in the US as well as globally, and discuss the evidence through a historic lens.
Collapse
Affiliation(s)
- Maria Camila Cardenas
- Pediatric Residency Program, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sheila Farnan
- Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin L. Hamel
- Pediatric Residency Program, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Maria Camila Mejia Plazas
- Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Pediatric Residency Program, Nicklaus Children’s Hospital, 3100 SW 62nd Ave, Miami, FL 33155, USA
| | - Elise Sintim-Aboagye
- Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Dawn R. Littlefield
- Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Supriya Behl
- Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sohan Punia
- Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Elizabeth Ann L Enninga
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 33155, USA
| | - Erica Johnson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Zelalem Temesgen
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Regan Theiler
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 33155, USA
| | - Clive M. Gray
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7600, South Africa
| | - Rana Chakraborty
- Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Pantazi P, Kaforou M, Tang Z, Abrahams VM, McArdle A, Guller S, Holder B. Placental macrophage responses to viral and bacterial ligands and the influence of fetal sex. iScience 2022; 25:105653. [PMID: 36505933 PMCID: PMC9732417 DOI: 10.1016/j.isci.2022.105653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial and viral infections of the placenta are associated with inflammation and adverse pregnancy outcomes. Hofbauer cells (HBCs) are fetal-origin macrophages in the placenta, proposed to protect the fetus from vertical pathogen transmission. We performed quantitative proteomics on term HBCs under resting conditions and following exposure to bacterial and viral pathogen-associated molecular patterns (PAMPs), and investigated the contribution of fetal sex. Resting HBCs expressed proteins pertinent to macrophage function, including chemokines, cytokines, Toll-like receptors, and major histocompatibility complex class I and II molecules. HBCs mounted divergent responses to bacterial versus viral PAMPs but exhibited protein expression changes suggestive of a more pro-inflammatory phenotype. A comparison between male and female HBCs showed that the latter mounted a stronger and wider response. Here, we provide a comprehensive understanding of the sex-dependent responses of placental macrophages to infectious triggers, which were primarily associated with lipid metabolism in males and cytoskeleton organization in females.
Collapse
Affiliation(s)
- Paschalia Pantazi
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London W12 0HS, UK
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London London W2 1NY, UK
| | - Zhonghua Tang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Vikki M. Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Andrew McArdle
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London London W2 1NY, UK
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Beth Holder
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London W12 0HS, UK
| |
Collapse
|
9
|
Semmes EC, Li SH, Hurst JH, Yang Z, Niedzwiecki D, Fouda GG, Kurtzberg J, Walsh KM, Permar SR. Congenital Human Cytomegalovirus Infection Is Associated With Decreased Transplacental IgG Transfer Efficiency Due to Maternal Hypergammaglobulinemia. Clin Infect Dis 2022; 74:1131-1140. [PMID: 34260701 PMCID: PMC8994583 DOI: 10.1093/cid/ciab627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Placentally transferred maternal immunoglobulin G (IgG) protects against pathogens in early life, yet vertically transmitted infections can interfere with transplacental IgG transfer. Although human cytomegalovirus (HCMV) is the most common placentally-transmitted viral infection worldwide, the impact of congenital HCMV (cCMV) infection on transplacental IgG transfer has been underexplored. METHODS We evaluated total and antigen-specific maternal and cord blood IgG levels and transplacental IgG transfer efficiency in a US-based cohort of 93 mother-infant pairs including 27 cCMV-infected and 66 cCMV-uninfected pairs, of which 29 infants were born to HCMV-seropositive nontransmitting mothers and 37 to HCMV-seronegative mothers. Controls were matched on sex, race/ethnicity, maternal age, and delivery year. RESULTS Transplacental IgG transfer efficiency was decreased by 23% (95% confidence interval [CI] 10-36%, P = .0079) in cCMV-infected pairs and 75% of this effect (95% CI 28-174%, P = .0085) was mediated by elevated maternal IgG levels (ie, hypergammaglobulinemia) in HCMV-transmitting women. Despite reduced transfer efficiency, IgG levels were similar in cord blood from infants with and without cCMV infection. CONCLUSIONS Our results indicate that cCMV infection moderately reduces transplacental IgG transfer efficiency due to maternal hypergammaglobulinemia; however, infants with and without cCMV infection had similar antigen-specific IgG levels, suggesting comparable protection from maternal IgG acquired via transplacental transfer.
Collapse
Affiliation(s)
- Eleanor C Semmes
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Duke Children’s Health & Discovery Initiative, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Shuk Hang Li
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Jillian H Hurst
- Department of Pediatrics, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
- Duke Children’s Health & Discovery Initiative, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Zidanyue Yang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Genevieve G Fouda
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
- Duke Children’s Health & Discovery Initiative, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Joanne Kurtzberg
- Carolinas Cord Blood Bank, Duke University Medical Center, Durham, North Carolina, USA
| | - Kyle M Walsh
- Duke Children’s Health & Discovery Initiative, Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Duke Children’s Health & Discovery Initiative, Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell School of Medicine, New York City, New York, USA
| |
Collapse
|
10
|
Girsch JH, Mejia Plazas MC, Olivier A, Farah M, Littlefield D, Behl S, Punia S, Sakemura R, Hemsath JR, Norgan A, Enninga EAL, Johnson EL, Chakraborty R. Host-Viral Interactions at the Maternal-Fetal Interface. What We Know and What We Need to Know. FRONTIERS-A JOURNAL OF WOMEN STUDIES 2022; 2:833106. [PMID: 36742289 PMCID: PMC9894500 DOI: 10.3389/fviro.2022.833106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In humans, the hemochorial placenta is a unique temporary organ that forms during pregnancy to support fetal development, gaseous exchange, delivery of nutrition, removal of waste products, and provides immune protection, while maintaining tolerance to the HLA-haploidentical fetus. In this review, we characterize decidual and placental immunity during maternal viral (co)-infection with HIV-1, human cytomegalovirus (HCMV), and Zika virus. We discuss placental immunology, clinical presentation, and epidemiology, before characterizing host susceptibility and cellular tropism, and how the three viruses gain access into specific placental target cells. We describe current knowledge on host-viral interactions with decidual and stromal human placental macrophages or Hofbauer cells, trophoblasts including extra villous trophoblasts, T cells, and decidual natural killer (dNK) cells. These clinically significant viral infections elicit both innate and adaptive immune responses to control replication. However, the three viruses either during mono- or co-infection (HIV-1 and HCMV) escape detection to initiate placental inflammation associated with viral transmission to the developing fetus. Aside from congenital or perinatal infection, other adverse pregnancy outcomes include preterm labor and spontaneous abortion. In addition, maternal HIV-1 and HCMV co-infection are associated with impaired fetal and infant immunity in postnatal life and poor clinical outcomes during childhood in exposed infants, even in the absence of vertical transmission of HIV-1. Given the rapidly expanding numbers of HIV-1-exposed uninfected infants and children globally, further research is urgently needed on neonatal immune programming during maternal mono-and co-infection. This review therefore includes sections on current knowledge gaps that may prompt future research directions. These gaps reflect an emerging but poorly characterized field. Their significance and potential investigation is underscored by the fact that although viral infections result in adverse consequences in both mother and developing fetus/newborn, antiviral and immunomodulatory therapies can improve clinical outcomes in the dyad.
Collapse
Affiliation(s)
- James H. Girsch
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States,,Mayo Clinic Graduate School of Biomedical Science, Rochester, MN, United States
| | - Maria C. Mejia Plazas
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Amanda Olivier
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Mohamed Farah
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Dawn Littlefield
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Supriya Behl
- Department of Pediatric Research, Mayo Clinic, Rochester, MN, United States
| | - Sohan Punia
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Reona Sakemura
- Department of Hematology Research, Mayo Clinic, Rochester, MN, United States
| | - Jack R. Hemsath
- Department of Infectious Diseases Research, Mayo Clinic, Rochester, MN, United States
| | - Andrew Norgan
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Elizabeth A. L. Enninga
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, United States,,Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Erica L. Johnson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Rana Chakraborty
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States,,Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, United States,,Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, United States,Correspondence: Rana Chakraborty
| |
Collapse
|
11
|
Fakonti G, Pantazi P, Bokun V, Holder B. Placental Macrophage (Hofbauer Cell) Responses to Infection During Pregnancy: A Systematic Scoping Review. Front Immunol 2022; 12:756035. [PMID: 35250964 PMCID: PMC8895398 DOI: 10.3389/fimmu.2021.756035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Congenital infection of the fetus via trans-placental passage of pathogens can result in severe morbidity and mortality. Even without transmission to the fetus, infection of the placenta itself is associated with pregnancy complications including pregnancy loss and preterm birth. Placental macrophages, also termed Hofbauer cells (HBCs), are fetal-origin macrophages residing in the placenta that are likely involved in responding to placental infection and protection of the developing fetus. As HBCs are the only immune cell present in the villous placenta, they represent one of the final opportunities for control of infection and prevention of passage to the developing fetus. OBJECTIVE AND RATIONALE The objective of this review was to provide a systematic overview of the literature regarding HBC responses during infection in pregnancy, including responses to viral, bacterial, and parasitic pathogens. METHODS PubMed and Scopus were searched on May 20th, 2021, with no limit on publication date, to identify all papers that have studied placental macrophages/Hofbauer cells in the context of infection. The following search strategy was utilized: (hofbauer* OR "hofbauer cells" OR "hofbauer cell" OR "placental macrophage" OR "placental macrophages") AND [infect* OR virus OR viral OR bacteri* OR parasite* OR pathogen* OR LPS OR "poly(i:c)" OR toxoplasm* OR microb* OR HIV)]. OUTCOMES 86 studies were identified for review. This included those that investigated HBCs in placentas from pregnancies complicated by maternal infection and in vitro studies investigating HBC responses to pathogens or Pathogen-Associated Molecular Patterns (PAMPs). HBCs can be infected by a variety of pathogens, and HBC hyperplasia was a common observation. HBCs respond to pathogen infection and PAMPs by altering their transcriptional, translational and secretion profiles. Co-culture investigations demonstrate that they can replicate and transmit pathogens to other cells. In other cases, they may eliminate the pathogen through a variety of mechanisms including phagocytosis, cytokine-mediated pathogen elimination, release of macrophage extracellular traps and HBC-antibody-mediated neutralization. HBC responses differ across gestation and may be influenced by pre-existing immunity. Clinical information, including gestational age at infection, gestational age of the samples, mode of sample collection and pregnancy outcome were missing for the majority of studies.
Collapse
Affiliation(s)
| | | | | | - Beth Holder
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Semmes EC, Coyne CB. Innate immune defenses at the maternal-fetal interface. Curr Opin Immunol 2022; 74:60-67. [PMID: 34768027 PMCID: PMC11063961 DOI: 10.1016/j.coi.2021.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022]
Abstract
The human maternal-fetal interface is an immunologically complex environment that must balance the divergent demands of tolerance towards the developing fetus with anti-pathogen defense. The innate immune responses at the maternal-fetal interface that function in anti-microbial defense have been understudied to-date and how 'TORCH' pathogens evade maternal innate immunity to infect the fetus remains poorly understood. Herein, we discuss how newly described decidual innate lymphoid cells and maternal placenta-associated macrophage subsets may be involved in anti-pathogen defense. Moreover, we outline recent advances in our understanding of how placental trophoblasts and fetal-derived macrophages (Hofbauer cells) function in anti-microbial defense. In summary, we highlight current gaps in knowledge and describe novel experimental models of the human decidua and placenta that are poised to advance our knowledge of innate immune defenses at the maternal-fetal interface.
Collapse
Affiliation(s)
- Eleanor C Semmes
- Medical Scientist Training Program, Duke University, Durham, NC, USA; Molecular Genetics and Microbiology Department, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Carolyn B Coyne
- Molecular Genetics and Microbiology Department, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Human Immunodeficiency Virus (HIV) and Human Cytomegalovirus (HCMV) Coinfection of Infant Tonsil Epithelium May Synergistically Promote both HIV-1 and HCMV Spread and Infection. J Virol 2021; 95:e0092121. [PMID: 34232730 DOI: 10.1128/jvi.00921-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1) and human cytomegalovirus (HCMV) may occur during pregnancy, labor, or breastfeeding. These viruses from amniotic fluid, cervicovaginal secretions, and breast milk may simultaneously interact with oropharyngeal and tonsil epithelia; however, the molecular mechanism of HIV-1 and HCMV cotransmission through the oral mucosa and its role in MTCT are poorly understood. To study the molecular mechanism of HIV-1 and HCMV MTCT via oral epithelium, we established polarized infant tonsil epithelial cells and polarized-oriented ex vivo tonsil tissue explants. Using these models, we showed that cell-free HIV-1 and its proteins gp120 and tat induce the disruption of tonsil epithelial tight junctions and increase paracellular permeability, which facilitates HCMV spread within the tonsil mucosa. Inhibition of HIV-1 gp120-induced upregulation of mitogen-activated protein kinase (MAPK) and NF-κB signaling in tonsil epithelial cells, reduces HCMV infection, indicating that HIV-1-activated MAPK and NF-κB signaling may play a critical role in HCMV infection of tonsil epithelium. HCMV infection of tonsil epithelial cells also leads to the disruption of tight junctions and increases paracellular permeability, facilitating HIV-1 paracellular spread into tonsil mucosa. HCMV-promoted paracellular spread of HIV-1 increases its accessibility to tonsil CD4 T lymphocytes, macrophages, and dendritic cells. HIV-1-enhanced HCMV paracellular spread and infection of epithelial cells subsequently leads to the spread of HCMV to tonsil macrophages and dendritic cells. Our findings revealed that HIV-1- and HCMV-induced disruption of infant tonsil epithelial tight junctions promotes MTCT of these viruses through tonsil mucosal epithelium, and therapeutic intervention for both HIV-1 and HCMV infection may substantially reduce their MTCT. IMPORTANCE Most HIV-1 and HCMV MTCT occurs in infancy, and the cotransmission of these viruses may occur via infant oropharyngeal and tonsil epithelia, which are the first biological barriers for viral pathogens. We have shown that HIV-1 and HCMV disrupt epithelial junctions, reducing the barrier functions of epithelia and thus allowing paracellular penetration of both viruses via mucosal epithelia. Subsequently, HCMV infects epithelial cells, macrophages, and dendritic cells, and HIV-1 infects CD4+ lymphocytes, macrophages, and dendritic cells. Infection of these cells in HCMV- and HIV-1-coinfected tonsil tissues is much higher than that by HCMV or HIV-1 infection alone, promoting their MTCT at its initial stages via infant oropharyngeal and tonsil epithelia.
Collapse
|
14
|
Johnson EL, Swieboda D, Olivier A, Enninga EAL, Chakraborty R. Robust innate immune responses at the placenta during early gestation may limit in utero HIV transmission. PLoS Pathog 2021; 17:e1009860. [PMID: 34432853 PMCID: PMC8437274 DOI: 10.1371/journal.ppat.1009860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/13/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022] Open
Abstract
In 2019, >90% of new HIV infections in infants globally occurred vertically. Studies suggest intrauterine transmission most often occurs in the third trimester; however, there are no mechanistic studies to support these observations. We therefore obtained early/mid-gestation and term placentae from 20 HIV/Hepatitis B/CMV negative women. Isolated primary placental macrophages (Hofbauer cells [HCs]) were exposed to HIV-1BaL and/or interferon (IFN)-α, IFN-β, IFN-λ1, and RIG-I-like receptor (RLR) agonists. qRT-PCR, FACS, ELISA, Luminex, and Western blot analyses determined expression of activation markers, co-receptors, viral antigen, cytokines, antiviral genes, and host proteins. Early gestation HCs express higher levels of CCR5 and exhibit a more activated phenotype. Despite downregulation of CCR5, term HCs were more susceptible to HIV replication. Early gestation HCs displayed a more activated phenotype than term HCs and HIV exposure lead to the further up-regulation of T-cell co-stimulatory and MHC molecules. Limited HIV replication in early/mid gestation HCs was associated with increased secretion of anti-inflammatory cytokines, chemokines, and a more robust antiviral immune response. In contrast, term HCs were more susceptible to HIV replication, associated with dampening of IFN-induced STAT1 and STAT2 protein activation. Treatment of early/mid gestation and term HCs, with type I IFNs or RLR agonists reduced HIV replication, underscoring the importance of IFN and RLR signaling in inducing an antiviral state. Viral recognition and antiviral immunity in early gestation HCs may prevent in utero HIV infection, whereas diminished antiviral responses at term can facilitate transmission. Defining mechanisms and specific timing of vertical transmission are critical for the development of specific vaccines and antiviral therapeutics to prevent new HIV infections in children globally.
Collapse
Affiliation(s)
- Erica L. Johnson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Dominika Swieboda
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Amanda Olivier
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Elizabeth Ann L. Enninga
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Rana Chakraborty
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| |
Collapse
|
15
|
Shahi M, Mamber Czeresnia R, Cheek EH, Quinton RA, Chakraborty R, Enninga EAL. Expression of Immune Checkpoint Receptors in Placentae With Infectious and Non-Infectious Chronic Villitis. Front Immunol 2021; 12:705219. [PMID: 34394102 PMCID: PMC8361490 DOI: 10.3389/fimmu.2021.705219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Pregnancy is an immunological paradox whereby maternal immunity accepts a genetically unique fetus (or fetuses), while maintaining protective innate and adaptive responses to infectious pathogens. This close contact between the genetically diverse mother and fetus requires numerous mechanisms of immune tolerance initiated by trophoblast cell signals. However, in a placental condition known as villitis of unknown etiology (VUE), there appears to be a breakdown in this tolerance allowing maternal cytotoxic T-cells to traffic into the placenta to destroy fetal villi. VUE is associated with several gestational complications and an increased risk of recurrence in a subsequent pregnancy, making it a significant obstetrical diagnosis. The cause of VUE remains unclear, but dysfunctional signaling through immune checkpoint pathways, which have a critical role in blunting immune responses, may play an important role. Therefore, using placental tissue from normal pregnancy (n=8), VUE (n=8) and cytomegalovirus (CMV) infected placentae (n=4), we aimed to identify differences in programmed cell death 1 (PD-1), programmed death ligand-1 (PD-L1), LAG3 and CTLA4 expression between these etiologies by immunohistochemistry (IHC). Results demonstrated significantly lower expression of PD-L1 on trophoblast cells from VUE placentae compared to control and CMV infection. Additionally, we observed significantly higher counts of PD-1+ (>100 cells/image) and LAG3+ (0-120 cells/image) cells infiltrating into the villi during VUE compared to infection and control. Minimal CTLA4 staining was observed in all placentae, with only a few Hofbauer cells staining positive. Together, this suggests that a loss of tolerance through immune checkpoint signaling may be an important mechanism leading to the activation and trafficking of maternal cells into fetal villi during VUE. Further mechanistic studies are warranted to understand possible allograft rejection more clearly and in developing effective strategies to prevent this condition from occurring in utero.
Collapse
Affiliation(s)
- Maryam Shahi
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Ricardo Mamber Czeresnia
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - E. Heidi Cheek
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Reade A. Quinton
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Rana Chakraborty
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Elizabeth Ann L. Enninga
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, United States
| |
Collapse
|
16
|
Fabusoro OK, Mejia LA. Nutrition in HIV-Infected Infants and Children: Current Knowledge, Existing Challenges, and New Dietary Management Opportunities. Adv Nutr 2021; 12:1424-1437. [PMID: 33439976 PMCID: PMC8321844 DOI: 10.1093/advances/nmaa163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 11/14/2022] Open
Abstract
HIV infection and undernutrition remain significant public health concerns for infants and children. In infants and children under these conditions, undernutrition is one of the leading causes of death. Proper management of nutrition and related nutrition complications in these groups with increased nutrition needs are prominent challenges, particularly in HIV-prevalent poor-resource environments. Several studies support the complexity of the relation between HIV infection, nutrition, and the immune system. These elements interact and create a vicious circle of poor health outcomes. Recent studies on the use of probiotics as a novel approach to manage microbiome imbalance and gut-mucosal impairment in HIV infection are gaining attention. This new strategy could help to manage dysbiosis and gut-mucosal impairment by reducing immune activation, thereby potentially forestalling unwanted health outcomes in children with HIV. However, existing trials on HIV-infected children are still insufficient. There are also conflicting reports on the dosage and effectiveness of single or multiple micronutrient supplementation in the survival of HIV-infected children with severe acute malnutrition. The WHO has published guidelines that include time of initiation of antiretroviral therapy for HIV-pregnant mothers and their HIV-exposed or HIV-infected children, micronutrient supplementation, dietary formulations, prevention, and management of HIV therapy. However, such guidelines need to be reviewed owing to recent advances in the field of nutrition. There is a need for new intervention studies, practical strategies, and evidence-based guidelines to reduce the disease burden, improve adherence to treatment regimen, and enhance the nutrition, health, and well-being of HIV-infected infants and children. This review provides up-to-date scientific information on current knowledge and existing challenges for nutrition therapy in HIV-infected infants and children. Moreover, it presents new research findings that could be incorporated into current guidelines.
Collapse
Affiliation(s)
- Olufemi K Fabusoro
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Luis A Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
17
|
Zaga-Clavellina V, Diaz L, Olmos-Ortiz A, Godínez-Rubí M, Rojas-Mayorquín AE, Ortuño-Sahagún D. Central role of the placenta during viral infection: Immuno-competences and miRNA defensive responses. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166182. [PMID: 34058350 DOI: 10.1016/j.bbadis.2021.166182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Pregnancy is a unique immunological condition in which an "immune-diplomatic" dialogue between trophoblasts and maternal immune cells is established to protect the fetus from rejection, to create a privileged environment in the uterus and to simultaneously be alert to any infectious challenge. The maternal-placental-fetal interface (MPFI) performs an essential role in this immunological defense. In this review, we will address the MPFI as an active immuno-mechanical barrier that protects against viral infections. We will describe the main viral infections affecting the placenta and trophoblasts and present their structure, mechanisms of immunocompetence and defensive responses to viral infections in pregnancy. In particular, we will analyze infection routes in the placenta and trophoblasts and the maternal-fetal outcomes in both. Finally, we will focus on the cellular targets of the antiviral microRNAs from the C19MC cluster, and their effects at both the intra- and extracellular level.
Collapse
Affiliation(s)
- Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México C.P. 11000, Mexico
| | - Lorenza Diaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México C.P. 14080, Mexico
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, INPer, Ciudad de México C.P. 11000, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Investigación en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Argelia E Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Guadalajara 45200, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Guadalajara, Jalisco 44340, Mexico.
| |
Collapse
|
18
|
Relaño-Rodríguez I, Espinar-Buitrago MS, Martín-Cañadilla V, Gómez-Ramirez R, Jiménez JL, Muñoz-Fernández MA. Nanotechnology against human cytomegalovirus in vitro: polyanionic carbosilane dendrimers as antiviral agents. J Nanobiotechnology 2021; 19:65. [PMID: 33658029 PMCID: PMC7927225 DOI: 10.1186/s12951-021-00809-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is a worldwide infection, causing different troublesome in immunosupressed patients and very related to Human Immunodeficiency Virus 1 (HIV-1) infection, mainly in developing countries, with a co-infection rate of 80% in Africa. The high cost of present treatments and the lack of routinely tests in these countries urge the necessity to develop new molecules or strategies against HCMV. The new treatments should be low-cost and capable of avoiding the emerging problem of resistant virus. Nanoparticles play an important role in several viral infections. Our main focus is to study the potential activity of polyanionic carbosilane dendrimers (PDC), which are hyperbranched molecules with several sulfonate or sulfate groups in their periphery, against different viruses. RESULTS We studied the activity of G1-S4, G2-S16 and G2-S24P PDCs in MRC-5 cell line against HCMV infection by several plaque reduction assays. Our results show that dendrimers present good biocompatibility at the concentrations tested (1-50 µM) for 6 days in cell culture. Interestingly, both G2-S16 and G2-S24P showed a remarked inhibition at 10 µM against HCMV infection. Results on attachment and virucidal assays indicated that the inhibition was not directed to the virus or the virus-cell attachment. However, results of time of addition, showed a longer lasting activity of these dendrimers in comparison to ganciclovir, and the combination of G2-S16 or G2-S24P with ganciclovir increases the HCMV inhibition around 90 %. CONCLUSIONS Nanotechnology, in particular polyanionic carbosilane dendrimers, have proved their potential application against HCMV, being capable of inhibiting the infection by themselves or enhancing the activity of ganciclovir, the actual treatment. These compounds represent a low-cost approach to fight HCMV infections.
Collapse
Affiliation(s)
- I Relaño-Rodríguez
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - M S Espinar-Buitrago
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - V Martín-Cañadilla
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - R Gómez-Ramirez
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, Alcalá de Henares, 28871, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - J L Jiménez
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Spanish HIV-HGM BioBank, Madrid, Spain
| | - M A Muñoz-Fernández
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
- Spanish HIV-HGM BioBank, Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
19
|
Duri K, Chimhuya S, Gomo E, Munjoma PT, Chandiwana P, Yindom LM, Mhandire K, Ziruma A, Mtapuri-Zinyowera S, Mazengera LR, Misselwitz B, Gumbo FZ, Jordi S, Rowland-Jones S. Role of antenatal plasma cytomegalovirus DNA levels on pregnancy outcome and HIV-1 vertical transmission among mothers in the University of Zimbabwe birth cohort study (UZBCS). Virol J 2021; 18:30. [PMID: 33514390 PMCID: PMC7846993 DOI: 10.1186/s12985-021-01494-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Despite being a leading infectious cause of childhood disability globally, testing for cytomegalovirus (CMV) infections in pregnancy is generally not done in Sub-Sahara Africa (SSA), where breastfeeding practice is almost universal. Whilst CMV and human immunodeficiency virus (HIV) are both endemic in SSA, the relationship between antenatal plasma CMV-DNA, HIV-1-RNA levels and HIV-1-mother to child transmission (MTCT) including pregnancy outcomes remains poorly described. METHODS Pregnant women at least 20 weeks' gestational age at enrolment were recruited from relatively poor high-density suburbs in Harare, Zimbabwe. Mother-infant dyads were followed up until 6 months postpartum. In a case-control study design, we tested antenatal plasma CMV-DNA levels in all 11 HIV-1 transmitting mothers, as well as randomly selected HIV-infected but non-transmitting mothers and HIV-uninfected controls. CMV-DNA was detected and quantified using polymerase chain reaction (PCR) technique. Antenatal plasma HIV-1-RNA load was quantified by reverse transcriptase PCR. Infants' HIV-1 infection was detected using qualitative proviral DNA-PCR. Predictive value of antenatal plasma CMV-DNAemia (CMV-DNA of > 50 copies/mL) for HIV-1-MTCT was analyzed in univariate and multivariate regression analyses. Associations of CMV-DNAemia with HIV-1-RNA levels and pregnancy outcomes were also explored. RESULTS CMV-DNAemia data were available for 11 HIV-1 transmitting mothers, 120 HIV-infected but non-transmitting controls and 46 HIV-uninfected mothers. In a multivariate logistic regression model, we found a significant association between CMV-DNAemia of > 50 copies/mL and HIV-1 vertical transmission (p = 0.035). There was no difference in frequencies of detectable CMV-DNAemia between HIV-infected and -uninfected pregnant women (p = 0.841). However, CMV-DNA levels were higher in immunosuppressed HIV-infected pregnant women, CD4 < 200 cells/µL (p = 0.018). Non-significant associations of more preterm births (< 37 weeks, p = 0.063), and generally lower birth weights (< 2500 g, p = 0.450) were observed in infants born of HIV-infected mothers with CMV-DNAemia. Furthermore, in a multivariate analysis of HIV-infected but non-transmitting mothers, CMV-DNAemia of > 50 copies/mL correlated significantly with antenatal plasma HIV-1-RNA load (p = 0.002). CONCLUSION Antenatal plasma CMV-DNA of > 50 copies/mL may be an independent risk factor for HIV-1-MTCT and higher plasma HIV-1-RNA load, raising the possibility that controlling antenatal CMV-DNAemia might improve infant health outcomes. Further studies with larger sample sizes are warranted to confirm our findings.
Collapse
Affiliation(s)
- Kerina Duri
- Department of Immunology, University of Zimbabwe College of Health Science (UZ-CHS), P.O. Box A178, Avondale, Harare, Zimbabwe.
| | | | - Exnevia Gomo
- Department of Medical Laboratory Sciences, UZ-CHS, Harare, Zimbabwe
| | - Privilege Tendai Munjoma
- Department of Immunology, University of Zimbabwe College of Health Science (UZ-CHS), P.O. Box A178, Avondale, Harare, Zimbabwe
| | - Panashe Chandiwana
- Department of Immunology, University of Zimbabwe College of Health Science (UZ-CHS), P.O. Box A178, Avondale, Harare, Zimbabwe
| | | | | | - Asaph Ziruma
- Department of Obstetrics and Gynaecology, UZ-CHS, Harare, Zimbabwe
| | | | - Lovemore Ronald Mazengera
- Department of Immunology, University of Zimbabwe College of Health Science (UZ-CHS), P.O. Box A178, Avondale, Harare, Zimbabwe
| | - Benjamin Misselwitz
- Clinic for Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| | | | - Sebastian Jordi
- Clinic for Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
- Department of Gastroenterology and Hepatology, University Hospital Zurich and Zurich University, Zurich, Switzerland
| | | |
Collapse
|
20
|
Xu L, Ma Z, Li Y, Pang Z, Xiao S. Antibody dependent enhancement: Unavoidable problems in vaccine development. Adv Immunol 2021; 151:99-133. [PMID: 34656289 PMCID: PMC8438590 DOI: 10.1016/bs.ai.2021.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In some cases, antibodies can enhance virus entry and replication in cells. This phenomenon is called antibody-dependent infection enhancement (ADE). ADE not only promotes the virus to be recognized by the target cell and enters the target cell, but also affects the signal transmission in the target cell. Early formalin-inactivated virus vaccines such as aluminum adjuvants (RSV and measles) have been shown to induce ADE. Although there is no direct evidence that there is ADE in COVID-19, this potential risk is a huge challenge for prevention and vaccine development. This article focuses on the virus-induced ADE phenomenon and its molecular mechanism. It also summarizes various attempts in vaccine research and development to eliminate the ADE phenomenon, and proposes to avoid ADE in vaccine development from the perspective of antigens and adjuvants.
Collapse
|
21
|
Njue A, Coyne C, Margulis AV, Wang D, Marks MA, Russell K, Das R, Sinha A. The Role of Congenital Cytomegalovirus Infection in Adverse Birth Outcomes: A Review of the Potential Mechanisms. Viruses 2020; 13:v13010020. [PMID: 33374185 PMCID: PMC7823935 DOI: 10.3390/v13010020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (CMV) is a major cause of nonhereditary adverse birth outcomes, including hearing and visual loss, neurologic deficits, and intrauterine growth retardation (IUGR), and may contribute to outcomes such as stillbirth and preterm delivery. However, the mechanisms by which CMV could cause adverse birth outcomes are not fully understood. This study reviewed proposed mechanisms underlying the role of CMV in stillbirth, preterm birth, and IUGR. Targeted literature searches were performed in PubMed and Embase to identify relevant articles. Several potential mechanisms were identified from in vitro studies in which laboratory-adapted and low-passage strains of CMV and various human placental models were used. Potential mechanisms identified included impairment of trophoblast progenitor stem cell differentiation and function, impairment of extravillous trophoblast invasiveness, dysregulation of Wnt signaling pathways in cytotrophoblasts, tumor necrosis factor-α mediated apoptosis of trophoblasts, CMV-induced cytokine changes in the placenta, inhibition of indoleamine 2,3-dioxygenase activity, and downregulation of trophoblast class I major histocompatibility complex molecules. Inherent challenges for the field remain in the identification of suitable in vivo animal models. Nonetheless, we believe that our review provides useful insights into the mechanisms by which CMV impairs placental development and function and how these changes could result in adverse birth outcomes.
Collapse
Affiliation(s)
- Annete Njue
- RTI Health Solutions, Manchester M20 2LS, UK
- Correspondence:
| | - Carolyn Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | | | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Morgan A. Marks
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Kevin Russell
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Rituparna Das
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Anushua Sinha
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| |
Collapse
|
22
|
Ellwanger JH, Kulmann-Leal B, Kaminski VDL, Rodrigues AG, Bragatte MADS, Chies JAB. Beyond HIV infection: Neglected and varied impacts of CCR5 and CCR5Δ32 on viral diseases. Virus Res 2020; 286:198040. [PMID: 32479976 PMCID: PMC7260533 DOI: 10.1016/j.virusres.2020.198040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CCR5 regulates multiple cell types (e.g., T regulatory and Natural Killer cells) and immune responses. The effects of CCR5, CCR5Δ32 (variant associated with reduced CCR5 expression) and CCR5 antagonists vary between infections. CCR5 affects the pathogenesis of flaviviruses, especially in the brain. The genetic variant CCR5Δ32 increases the risk of symptomatic West Nile virus infection. The triad “CCR5, extracellular vesicles and infections” is an emerging topic.
The interactions between chemokine receptors and their ligands may affect susceptibility to infectious diseases as well as their clinical manifestations. These interactions mediate both the traffic of inflammatory cells and virus-associated immune responses. In the context of viral infections, the human C-C chemokine receptor type 5 (CCR5) receives great attention from the scientific community due to its role as an HIV-1 co-receptor. The genetic variant CCR5Δ32 (32 base-pair deletion in CCR5 gene) impairs CCR5 expression on the cell surface and is associated with protection against HIV infection in homozygous individuals. Also, the genetic variant CCR5Δ32 modifies the CCR5-mediated inflammatory responses in various conditions, such as inflammatory and infectious diseases. CCR5 antagonists mimic, at least in part, the natural effects of the CCR5Δ32 in humans, which explains the growing interest in the potential benefits of using CCR5 modulators for the treatment of different diseases. Nevertheless, beyond HIV infection, understanding the effects of the CCR5Δ32 variant in multiple viral infections is essential to shed light on the potential effects of the CCR5 modulators from a broader perspective. In this context, this review discusses the involvement of CCR5 and the effects of the CCR5Δ32 in human infections caused by the following pathogens: West Nile virus, Influenza virus, Human papillomavirus, Hepatitis B virus, Hepatitis C virus, Poliovirus, Dengue virus, Human cytomegalovirus, Crimean-Congo hemorrhagic fever virus, Enterovirus, Japanese encephalitis virus, and Hantavirus. Subsequently, this review addresses the impacts of CCR5 gene editing and CCR5 modulation on health and viral diseases. Also, this article connects recent findings regarding extracellular vesicles (e.g., exosomes), viruses, and CCR5. Neglected and emerging topics in “CCR5 research” are briefly described, with focus on Rocio virus, Zika virus, Epstein-Barr virus, and Rhinovirus. Finally, the potential influence of CCR5 on the immune responses to coronaviruses is discussed.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Bruna Kulmann-Leal
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunologia Aplicada, Instituto de Ciência e Tecnologia - ICT, Universidade Federal de São Paulo - UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Andressa Gonçalves Rodrigues
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Marcelo Alves de Souza Bragatte
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Núcleo de Bioinformática do Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
23
|
Zhao Y, Zheng Q, Jin L. The Role of B7 Family Molecules in Maternal-Fetal Immunity. Front Immunol 2020; 11:458. [PMID: 32265918 PMCID: PMC7105612 DOI: 10.3389/fimmu.2020.00458] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/27/2020] [Indexed: 01/08/2023] Open
Abstract
Pregnancy is a complex but well-arranged process, and a healthy fetus requires immune privilege and surveillance in the presence of paternally derived antigens. Maternal and fetal cells interact at the maternal–fetal interface. The upregulation and downregulation of maternal immunity executed by the leukocyte population predominantly depend on the activity of decidual natural killer cells and trophoblasts and are further modulated by a series of duplex signals. The B7 family, which consists of B7-1, B7-2, B7-H1, B7-DC, B7-H2, B7-H3, B7-H4, B7-H5, BTNL2, B7-H6, and B7-H7, is one of the most characterized and widely distributed signaling molecule superfamilies and conducts both stimulatory and inhibitory signals through separate interactions. In particular, the roles of B7-1, B7-2, B7-H1, and their corresponding receptors in the progression of normal pregnancy and some pregnancy complications have been extensively studied. Together with the TCR–MHC complex, B7 and its receptors play a critical role in cell proliferation and cytokine secretion. Depending on this ligand–receptor crosstalk, the balance between the tolerance and rejection of the fetus is perfectly maintained. This review aims to provide an overview of the current knowledge of the B7 family and its functions in regulating maternal–fetal immunity through individual interactions.
Collapse
Affiliation(s)
- Yongbo Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingliang Zheng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liping Jin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Hao H, Han T, Xuan B, Sun Y, Tang S, Yue N, Qian Z. Dissecting the Role of DDX21 in Regulating Human Cytomegalovirus Replication. J Virol 2019; 93:e01222-19. [PMID: 31554690 PMCID: PMC6880175 DOI: 10.1128/jvi.01222-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
DDX21 regulates the biogenesis of rRNA and transcription of ribonucleoprotein genes. Recently, it has been reported that DDX21 regulates the growth of some RNA viruses through various mechanisms, such as inhibiting viral genome replication, suppressing virion assembly and release, and modulating antiviral immune responses (Chen et al., Cell Host Microbe 15:484-493, 2014, https://doi.org/10.1016/j.chom.2014.03.002; Dong et al., Biophys Res Commun, 473:648-653, 2016, https://doi.org/10.1016/j.bbrc.2016.03.120; and Watanabe et al., PLoS Pathog 5:e1000654, 2009, https://doi.org/10.1371/journal.ppat.1000654). The relationship between DDX21 and DNA viruses has not yet been explored. In this study, we used human cytomegalovirus (HCMV), a large human DNA virus, to investigate the potential role of DDX21 in DNA virus replication. We found that HCMV infection prevented the repression of DDX21 at protein and mRNA levels. Knockdown of DDX21 inhibited HCMV growth in human fibroblast cells (MRC5). Immunofluorescence and quantitative PCR (qPCR) results showed that knockdown of DDX21 did not affect viral DNA replication or the formation of the viral replication compartment but did significantly inhibit viral late gene transcription. Some studies have reported that DDX21 knockdown promotes the accumulation of R-loops that could restrain RNA polymerase II elongation and inhibit the transcription of certain genes. Thus, we used the DNA-RNA hybrid-specific S9.6 antibody to stain R-loops and observed that more R-loops formed in DDX21-knockdown cells than in control cells. Moreover, an DNA-RNA immunoprecipitation assay showed that more R-loops accumulated on a viral late gene in DDX21-knockdown cells. Altogether, these results suggest that DDX21 knockdown promotes the accumulation of R-loops, which prevents viral late gene transcription and consequently results in the suppression of HCMV growth. This finding provides new insight into the relationship between DDX21 and DNA virus replication.IMPORTANCE Previous studies have confirmed that DDX21 is vital for the regulation of various aspects of RNA virus replication. Our research is the first report on the role of DDX21 in HCMV DNA virus replication. We identified that DDX21 knockdown affected HCMV growth and viral late gene transcription. In order to elucidate how DDX21 regulated this transcription, we applied DNA-RNA immunoprecipitation by using the DNA-RNA hybrid-specific S9.6 antibody to test whether more R-loops accumulated on the viral late gene. Consistent with our expectation, more R-loops were detected on the viral late gene at late HCMV infection time points, which demonstrated that the accumulation of R-loops caused by DDX21 knockdown prevented viral late gene transcription and consequently impaired HCMV replication. These results reveal that DDX21 plays an important role in regulating HCMV replication and also provide a basis for investigating the role of DDX21 in regulating other DNA viruses.
Collapse
Affiliation(s)
- Hongyun Hao
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tian Han
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Baoqin Xuan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yamei Sun
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shubing Tang
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Nan Yue
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|