1
|
Ilinykh PA, Huang K, Gunn BM, Kuzmina NA, Kedarinath K, Jurado-Cobena E, Zhou F, Subramani C, Hyde MA, Velazquez JV, Williamson LE, Gilchuk P, Carnahan RH, Alter G, Crowe JE, Bukreyev A. Antibodies targeting the glycan cap of Ebola virus glycoprotein are potent inducers of the complement system. Commun Biol 2024; 7:871. [PMID: 39020082 PMCID: PMC11255267 DOI: 10.1038/s42003-024-06556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Antibodies to Ebola virus glycoprotein (EBOV GP) represent an important correlate of the vaccine efficiency and infection survival. Both neutralization and some of the Fc-mediated effects are known to contribute the protection conferred by antibodies of various epitope specificities. At the same time, the role of the complement system remains unclear. Here, we compare complement activation by two groups of representative monoclonal antibodies (mAbs) interacting with the glycan cap (GC) or the membrane-proximal external region (MPER) of GP. Binding of GC-specific mAbs to GP induces complement-dependent cytotoxicity (CDC) in the GP-expressing cell line via C3 deposition on GP in contrast to MPER-specific mAbs. In the mouse model of EBOV infection, depletion of the complement system leads to an impairment of protection exerted by one of the GC-specific, but not MPER-specific mAbs. Our data suggest that activation of the complement system represents an important mechanism of antiviral protection by GC antibodies.
Collapse
Affiliation(s)
- Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Kritika Kedarinath
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Eduardo Jurado-Cobena
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Fuchun Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Chandru Subramani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | | | - Jalene V Velazquez
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA, USA
| | - Lauren E Williamson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Galveston National Laboratory, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
2
|
Bukreyev A, Ilinykh P, Huang K, Gunn B, Kuzmina N, Gilchuk P, Alter G, Crowe J. Antiviral protection by antibodies targeting the glycan cap of Ebola virus glycoprotein requires activation of the complement system. RESEARCH SQUARE 2023:rs.3.rs-2765936. [PMID: 37131834 PMCID: PMC10153373 DOI: 10.21203/rs.3.rs-2765936/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Antibodies to Ebola virus glycoprotein (EBOV GP) represent an important correlate of the vaccine efficiency and infection survival. Both neutralization and some of the Fc-mediated effects are known to contribute the protection conferred by antibodies of various epitope specificities. At the same time, the role of the complement system in antibody-mediated protection remains unclear. In this study, we compared complement activation by two groups of representative monoclonal antibodies (mAbs) interacting with the glycan cap (GC) or the membrane-proximal external region (MPER) of the viral sole glycoprotein GP. Binding of GC-specific mAbs to GP induced complement-dependent cytotoxicity (CDC) in the GP-expressing cell line via C3 deposition on GP in contrast to MPER-specific mAbs that did not. Moreover, treatment of cells with a glycosylation inhibitor increased the CDC activity, suggesting that N-linked glycans downregulate CDC. In the mouse model of EBOV infection, depletion of the complement system by cobra venom factor led to an impairment of protection exerted by GC-specific but not MPER-specific mAbs. Our data suggest that activation of the complement system is an essential component of antiviral protection by antibodies targeting GC of EBOV GP.
Collapse
|
3
|
Escaffre O, Juelich TL, Neef N, Massey S, Smith J, Brasel T, Smith JK, Kalveram B, Zhang L, Perez D, Ikegami T, Freiberg AN, Comer JE. STAT-1 Knockout Mice as a Model for Wild-Type Sudan Virus (SUDV). Viruses 2021; 13:v13071388. [PMID: 34372594 PMCID: PMC8310124 DOI: 10.3390/v13071388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022] Open
Abstract
Currently there is no FDA-licensed vaccine or therapeutic against Sudan ebolavirus (SUDV) infections. The largest ever reported 2014–2016 West Africa outbreak, as well as the 2021 outbreak in the Democratic Republic of Congo, highlight the critical need for countermeasures against filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would greatly add to the screening of antivirals and vaccines. Here, we infected signal transducer and activator of transcription-1 knock out (STAT-1 KO) mice with five different wildtype filoviruses to determine susceptibility. SUDV and Marburg virus (MARV) were the most virulent, and caused 100% or 80% lethality, respectively. Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Taï Forest ebolavirus (TAFV) caused 40%, 20%, and no mortality, respectively. Further characterization of SUDV in STAT-1 KO mice demonstrated lethality down to 3.1 × 101 pfu. Viral genomic material was detectable in serum as early as 1 to 2 days post-challenge. The onset of viremia was closely followed by significant changes in total white blood cells and proportion of neutrophils and lymphocytes, as well as by an influx of neutrophils in the liver and spleen. Concomitant significant fluctuations in blood glucose, albumin, globulin, and alanine aminotransferase were also noted, altogether consistent with other models of filovirus infection. Finally, favipiravir treatment fully protected STAT-1 KO mice from lethal SUDV challenge, suggesting that this may be an appropriate small animal model to screen anti-SUDV countermeasures.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Natasha Neef
- XTR Toxicologic Pathology Services LLC, Sterling, VA 20165, USA;
| | - Shane Massey
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
| | - Jeanon Smith
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
| | - Trevor Brasel
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Birte Kalveram
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - David Perez
- Texas A&M University Division of Research, Texas A&M University, College Station, TX 77843, USA;
| | - Tetsuro Ikegami
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Correspondence: (A.N.F.); (J.E.C.)
| | - Jason E. Comer
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Correspondence: (A.N.F.); (J.E.C.)
| |
Collapse
|
4
|
Gunn BM, Lu R, Slein MD, Ilinykh PA, Huang K, Atyeo C, Schendel SL, Kim J, Cain C, Roy V, Suscovich TJ, Takada A, Halfmann PJ, Kawaoka Y, Pauthner MG, Momoh M, Goba A, Kanneh L, Andersen KG, Schieffelin JS, Grant D, Garry RF, Saphire EO, Bukreyev A, Alter G. A Fc engineering approach to define functional humoral correlates of immunity against Ebola virus. Immunity 2021; 54:815-828.e5. [PMID: 33852832 PMCID: PMC8111768 DOI: 10.1016/j.immuni.2021.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 01/31/2023]
Abstract
Protective Ebola virus (EBOV) antibodies have neutralizing activity and induction of antibody constant domain (Fc)-mediated innate immune effector functions. Efforts to enhance Fc effector functionality often focus on maximizing antibody-dependent cellular cytotoxicity, yet distinct combinations of functions could be critical for antibody-mediated protection. As neutralizing antibodies have been cloned from EBOV disease survivors, we sought to identify survivor Fc effector profiles to help guide Fc optimization strategies. Survivors developed a range of functional antibody responses, and we therefore applied a rapid, high-throughput Fc engineering platform to define the most protective profiles. We generated a library of Fc variants with identical antigen-binding fragments (Fabs) from an EBOV neutralizing antibody. Fc variants with antibody-mediated complement deposition and moderate natural killer (NK) cell activity demonstrated complete protective activity in a stringent in vivo mouse model. Our findings highlight the importance of specific effector functions in antibody-mediated protection, and the experimental platform presents a generalizable resource for identifying correlates of immunity to guide therapeutic antibody design.
Collapse
Affiliation(s)
- Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Richard Lu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Matthew D Slein
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Jiyoung Kim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Caitlin Cain
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Ayato Takada
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Peter J Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Matthias G Pauthner
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Mambu Momoh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
| | - Augustine Goba
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
| | - Lansana Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
| | - Kristian G Andersen
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA; Scripps Research Translational Institute, La Jolla, CA, USA
| | - John S Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Donald Grant
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Ilinykh PA, Huang K, Santos RI, Gilchuk P, Gunn BM, Karim MM, Liang J, Fouch ME, Davidson E, Parekh DV, Kimble JB, Pietzsch CA, Meyer M, Kuzmina NA, Zeitlin L, Saphire EO, Alter G, Crowe JE, Bukreyev A. Non-neutralizing Antibodies from a Marburg Infection Survivor Mediate Protection by Fc-Effector Functions and by Enhancing Efficacy of Other Antibodies. Cell Host Microbe 2020; 27:976-991.e11. [PMID: 32320678 PMCID: PMC7292764 DOI: 10.1016/j.chom.2020.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/10/2019] [Accepted: 03/26/2020] [Indexed: 11/15/2022]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV) belong to the family Filoviridae. MARV causes severe disease in humans with high fatality. We previously isolated a large panel of monoclonal antibodies (mAbs) from B cells of a human survivor with previous naturally acquired MARV infection. Here, we characterized functional properties of these mAbs and identified non-neutralizing mAbs targeting the glycoprotein (GP) 2 portion of the mucin-like domain (MLD) of MARV GP, termed the wing region. One mAb targeting the GP2 wing, MR228, showed therapeutic protection in mice and guinea pigs infected with MARV. The protection was mediated by the Fc fragment functions of MR228. Binding of another GP2 wing-specific non-neutralizing mAb, MR235, to MARV GP increased accessibility of epitopes in the receptor-binding site (RBS) for neutralizing mAbs, resulting in enhanced virus neutralization by these mAbs. These findings highlight an important role for non-neutralizing mAbs during natural human MARV infection.
Collapse
Affiliation(s)
- Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Rodrigo I Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Marcus M Karim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jenny Liang
- Integral Molecular, Philadelphia, PA 19104, USA
| | | | | | - Diptiben V Parekh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - James B Kimble
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Colette A Pietzsch
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Michelle Meyer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | | | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics (Infectious Diseases), Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; Galveston National Laboratory, Galveston, TX, USA.
| |
Collapse
|