1
|
Breece E, Moreno RJ, Azzam Y, Rogers SJ, Ashwood P. Profiling of activated monocyte populations in autism and associations with increased severity and comorbid behaviors. Brain Behav Immun 2025; 125:111-116. [PMID: 39719225 DOI: 10.1016/j.bbi.2024.12.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024] Open
Abstract
Immune dysfunction in autism spectrum disorder (ASD) has been widely reported and is associated with increased impairments in social interactions, communication, repetitive behaviors, anxiety and gastrointestinal problems. Several lines of evidence point towards increased activation of the innate immune system including activation of microglia, increases in innate inflammatory cytokines/chemokines in blood, brain tissue and CSF, activated dendritic cells and macrophages, and abnormal peripheral monocyte cell function. Monocytes are major players in innate immunity and have important functions in the phagocytosis of pathogens or debris, immune defense and cytokine/chemokine production. However, little is known about the frequencies of different circulating monocytes populations in ASD compared with similarly aged typically developing (TD) controls. In this study, the profile of circulating monocytes exhibiting different markers of activation were assessed in 77 children with ASD, and 49 TD controls who were enrolled as part of the Autism Phenome Project and were of a similar age, 2-4 years old. The frequencies of monocytes expressing the activation marker CD137 (4-1BB) were significantly increased in children with ASD and associated with greater behavioral impairments. In addition, although the frequencies of non-classical monocytes (CD14+CD16+) were not significantly different across groups, they were linked to worse behaviors in both the context of ASD and TD. Conversely classical monocytes were associated with better behavioral outcomes. These data further implicate monocytes and innate immune cells in the complex pathophysiology of ASD. Monocyte cells play key roles in modulating immune responses and differences in the activation profiles of these cells may result in immune dysfunction in children with ASD.
Collapse
Affiliation(s)
- Elizabeth Breece
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA; MIND Institute, University of California, Sacramento, CA, USA
| | - Rachel J Moreno
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA; MIND Institute, University of California, Sacramento, CA, USA
| | - Yasmin Azzam
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA; MIND Institute, University of California, Sacramento, CA, USA
| | - Sally J Rogers
- MIND Institute, University of California, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA; MIND Institute, University of California, Sacramento, CA, USA.
| |
Collapse
|
2
|
Ju Y, Dai F, Wang Y, Ye Z, Li Y, Ju S, Ge Y, Chen W. Oncolytic vaccinia virus armed with 4-1BBL elicits potent and safe antitumor immunity and enhances the therapeutic efficiency of PD-1/PD-L1 blockade in a pancreatic cancer model. Transl Oncol 2024; 50:102151. [PMID: 39388958 PMCID: PMC11736404 DOI: 10.1016/j.tranon.2024.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a poor prognosis. Mono-immunotherapy, such as blockade of the PD-1/PD-L1 pathway, for PDAC has proven to be less effective. The systemic exertion of 4-1BB signaling enhanced antitumor immunity accompanied by hepatotoxicity, which is an obstacle for its clinical application. Our study exploits an oncolytic virus armed with 4-1BBL (VV-ΔTK-4L) to locally express 4-1BBL in the tumor microenvironment (TME), thus avoiding hepatotoxicity. VV-ΔTK-4L prolonged the survival time of a pancreatic tumor mouse model and modified the immune status of the TME and spleen. In the TME, the quantities of CD45+ cells, NK1.1+ cells, CD11c+ DCs, CD3+T, CD4+T, and CD8+T cells increased. Compared to VV-ΔTK treatment, VV-ΔTK-4L further increases the number of CD8+T cells with effector phenotypes, and downregulates exhaustion-related molecules on CD8+T cells, and does not increase the proportion of Foxp3+T cells. Thus, the TME of pancreatic cancer was converted from "cold" to "hot" by VV-ΔTK-4L. Blockade of the PD-1/PD-L1 pathway combined with VV-ΔTK-4L further significantly improves the survival ratio of a tumor-bearing mouse model. This study provides a systemic therapeutic strategy and approach for PDAC immunotherapy.
Collapse
Affiliation(s)
- Yushi Ju
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Feiyu Dai
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China
| | - Yirong Wang
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China
| | - Zhenyu Ye
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Yang Li
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China
| | - Songguang Ju
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China.
| | - Yan Ge
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China.
| | - Wei Chen
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China.
| |
Collapse
|
3
|
Kim AMJ, Nemeth MR, Lim SO. 4-1BB: A promising target for cancer immunotherapy. Front Oncol 2022; 12:968360. [PMID: 36185242 PMCID: PMC9515902 DOI: 10.3389/fonc.2022.968360] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy, powered by its relative efficacy and safety, has become a prominent therapeutic strategy utilized in the treatment of a wide range of diseases, including cancer. Within this class of therapeutics, there is a variety of drug types such as immune checkpoint blockade therapies, vaccines, and T cell transfer therapies that serve the purpose of harnessing the body’s immune system to combat disease. Of these different types, immune checkpoint blockades that target coinhibitory receptors, which dampen the body’s immune response, have been widely studied and established in clinic. In contrast, however, there remains room for the development and improvement of therapeutics that target costimulatory receptors and enhance the immune response against tumors, one of which being the 4-1BB (CD137/ILA/TNFRSF9) receptor. 4-1BB has been garnering attention as a promising therapeutic target in the setting of cancer, amongst other diseases, due to its broad expression profile and ability to stimulate various signaling pathways involved in the generation of a potent immune response. Since its discovery and demonstration of potential as a clinical target, major progress has been made in the knowledge of 4-1BB and the development of clinical therapeutics that target it. Thus, we seek to summarize and provide a comprehensive update and outlook on those advancements in the context of cancer and immunotherapy.
Collapse
Affiliation(s)
- Alyssa Min Jung Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Macy Rose Nemeth
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Seung-Oe Lim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute of Drug Discovery, Purdue University, West Lafayette, IN, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
- *Correspondence: Seung-Oe Lim,
| |
Collapse
|
4
|
Masoumi E, Tahaghoghi-Hajghorbani S, Jafarzadeh L, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. The application of immune checkpoint blockade in breast cancer and the emerging role of nanoparticle. J Control Release 2021; 340:168-187. [PMID: 34743998 DOI: 10.1016/j.jconrel.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most common malignancy in the female population with a high mortality rate. Despite the satisfying depth of studies evaluating the contributory role of immune checkpoints in this malignancy, few articles have reviewed the pros and cons of immune checkpoint blockades (ICBs). In the current review, we provide an overview of immune-related inhibitory molecules and also discuss the original data obtained from international research laboratories on the aberrant expression of T and non-T cell-associated immune checkpoints in breast cancer. Then, we especially focus on recent studies that utilized ICBs as the treatment strategy in breast cancer and provide their efficiency reports. As there are always costs and benefits, we discuss the limitations and challenges toward ICB therapy such as adverse events and drug resistance. In the last section, we allocate an overview of the recent data concerning the application of nanoparticle systems for cancer immunotherapy and propose that nano-based ICB approaches may overcome the challenges related to ICB therapy in breast cancer. In conclusion, it seems it is time for nanoscience to more rapidly move forward into clinical trials and illuminates the breast cancer treatment area with its potent features for the target delivery of ICBs.
Collapse
Affiliation(s)
- Elham Masoumi
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sahar Tahaghoghi-Hajghorbani
- Microbiology and Virology Research Center, Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Jafarzadeh
- Department of Laboratory Science, Sirjan Faculty of Medical Science, Sirjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Bianco A, D'Agnano V, Matera MG, Della Gravara L, Perrotta F, Rocco D. Immune checkpoint inhibitors: a new landscape for extensive stage small cell lung cancer treatment. Expert Rev Respir Med 2021; 15:1415-1425. [PMID: 34374626 DOI: 10.1080/17476348.2021.1964362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Landscape of Extensive Stage (ES)-SCLC treatment has been unchanged over the years. Chemotherapy, mostly based on cisplatin and etoposide, remained the standard-of-care for patients with ES-SCLC for almost 40 years. Recently, immune check points inhibitors have emerged marking a turning point for ES-SCLC treatmentAreas covered: Aim of the paper is to discuss ICIs impact on ES-SCLC treatment algorithms, review current clinical trials, and explore future perspectives.Expert opinion: A growing body of evidence supports ICI-containing regimens as a new mainstay of ES-SCLC treatment. Whether subgroups of SCLC patients may have greater survival benefits from ICIs treatment needs to be better defined. Understanding the impact of tumor microenvironment and identifying reliable predictive and/or prognostic biomarkers will be fundamental to move toward a personalized treatment approach leading to improved survival.
Collapse
Affiliation(s)
- Andrea Bianco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,Department of Pneumology and Oncology- A.o Dei Colli - Monaldi Hospital, Napoli, Italy
| | - Vito D'Agnano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,Department of Pneumology and Oncology- A.o Dei Colli - Monaldi Hospital, Napoli, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Luigi Della Gravara
- Department of Pneumology and Oncology- A.o Dei Colli - Monaldi Hospital, Napoli, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Danilo Rocco
- Department of Pneumology and Oncology- A.o Dei Colli - Monaldi Hospital, Napoli, Italy
| |
Collapse
|
6
|
CD137 (4-1BB) stimulation leads to metabolic and functional reprogramming of human monocytes/macrophages enhancing their tumoricidal activity. Leukemia 2021; 35:3482-3496. [PMID: 34021248 PMCID: PMC8632678 DOI: 10.1038/s41375-021-01287-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023]
Abstract
Immunotherapies have heralded a new era in the cancer treatment. In addition to checkpoint inhibitors, agonistic antibodies against co-stimulatory immune receptors hold the potential to invoke efficient antitumor immunity. Targeting CD137 has gained momentum based on its ability to drive NK- and T-cell-based responses. CD137-engaging mAbs have already entered clinical trials for different types of tumors showing promising results. Despite the efforts to translate CD137-mediated immunotherapy into clinical practice, little remains known regarding the role of CD137 in human monocytes/macrophages.We found CD137 being expressed on monocytes of healthy controls and at even higher levels in patients with multiple myeloma or CLL. CD137HI(GH) monocytes displayed a distinct phenotypic, transcriptomic, and metabolic profile. They possessed an increased phagocytic capacity enabling superior antibody-dependent phagocytosis (ADPC) of multiple myeloma and lymphoma cells that were treated with anti-CD38 or anti-CD20 mAbs. Triggering CD137 promoted both metabolic and tumoricidal activity in an extracellular signal-regulated kinase (ERK)-dependent fashion. In addition, we observed a phenotypic, transcriptomic, and functional skewing towards a M1-like phenotype.Overall, we introduce CD137 as a positive immune checkpoint on human monocytes/macrophages, which can have therapeutic implications especially in view of synergistic effects when combining CD137 agonists with tumor-targeting antibodies.
Collapse
|
7
|
Rajabi Dehnavi P, Eftekhari SM, Kadkhodaei A, Kefayat A. CD137: A Member of the TNFR Family - in Psoriasis Skin Lesions in Comparison with Normal Skin Specimens. IRANIAN JOURNAL OF PATHOLOGY 2020; 16:103-108. [PMID: 33936220 PMCID: PMC8085296 DOI: 10.30699/ijp.2020.118767.2290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 08/18/2020] [Indexed: 11/06/2022]
Abstract
Background & Objective CD137 is a member of the TNF-Receptor family. TNF-alpha antagonists have therapeutic effect in active psoriasis. In this study, the relative frequency of CD137 expression was investigated in the inflammatory cells of psoriasis lesions for the first time. Methods The specimens were obtained from pathology department of Al-Zahra hospital from paraffin-embedded skin specimens collected from 2007 till 2016. . A total number of f 64 psoriasis skin specimens and 34 normal skin specimens were reviewed for the diagnosis. Then, the immunohistochemical staining for CD137, CD4, and CD8 was performed. Results CD137 expression of dermal inflammatory cells in psoriasis lesions was 11.19±5.5%. Although, in normal skin tissues, CD137 expression was observed in 1.3±3.03% of the inflammatory cells. (P=0.001). The relative frequency of the CD137 positive inflammatory cells was significantly higher in the epidermis compared to dermis (epidermis: 31.1%±12.8, dermis 11.1%±5.5). There was no remarkable relation between the CD137 expression rate and the CD4: CD8 ratio. Conclusion CD137 as a TNF-alpha receptor has a significant role in pathogenesis of the psoriasis lesions. Therefore, CD137 antagonists can be considered as a novel target for the treatment of incurable psoriasis patients.
Collapse
Affiliation(s)
- Parvin Rajabi Dehnavi
- Department of Pathology, Faculty of Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyyed Mehdi Eftekhari
- Department of Pathology, Faculty of Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Kadkhodaei
- Department of Pathology, Faculty of Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhosein Kefayat
- Department of Pathology, Faculty of Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Choi BK, Lee HW. The Murine CD137/CD137 Ligand Signalosome: A Signal Platform Generating Signal Complexity. Front Immunol 2020; 11:553715. [PMID: 33362756 PMCID: PMC7758191 DOI: 10.3389/fimmu.2020.553715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
CD137, a member of the TNFR family, is a costimulatory receptor, and CD137L, a member of the TNF family, is its ligand. Studies using CD137- and CD137L-deficient mice and antibodies against CD137 and CD137L have revealed the diverse and paradoxical effects of these two proteins in various cancers, autoimmunity, infections, and inflammation. Both their cellular diversity and their spatiotemporal expression patterns indicate that they mediate complex immune responses. This intricacy is further enhanced by the bidirectional signal transduction events that occur when these two proteins interact in various types of immune cells. Here, we review the biology of murine CD137/CD137L, particularly, the complexity of their proximal signaling pathways, and speculate on their roles in immune responses.
Collapse
Affiliation(s)
- Beom K Choi
- Biomedicine Production Branch, Program for Immunotherapy Research, National Cancer Center, Goyang, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
9
|
Betts A, van der Graaf PH. Mechanistic Quantitative Pharmacology Strategies for the Early Clinical Development of Bispecific Antibodies in Oncology. Clin Pharmacol Ther 2020; 108:528-541. [PMID: 32579234 PMCID: PMC7484986 DOI: 10.1002/cpt.1961] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
Bispecific antibodies (bsAbs) have become an integral component of the therapeutic research strategy to treat cancer. In addition to clinically validated immune cell re‐targeting, bsAbs are being designed for tumor targeting and as dual immune modulators. Explorative preclinical and emerging clinical data indicate potential for enhanced efficacy and reduced systemic toxicity. However, bsAbs are a complex modality with challenges to overcome in early clinical trials, including selection of relevant starting doses using a minimal anticipated biological effect level approach, and predicting efficacious dose despite nonintuitive dose response relationships. Multiple factors can contribute to variability in the clinic, including differences in functional affinity due to avidity, receptor expression, effector to target cell ratio, and presence of soluble target. Mechanistic modeling approaches are a powerful integrative tool to understand the complexities and aid in clinical translation, trial design, and prediction of regimens and strategies to reduce dose limiting toxicities of bsAbs. In this tutorial, the use of mechanistic modeling to impact decision making for bsAbs is presented and illustrated using case study examples.
Collapse
Affiliation(s)
- Alison Betts
- Applied Biomath, Concord, Massachusetts, USA.,Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Piet H van der Graaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands.,Certara, Canterbury, UK
| |
Collapse
|
10
|
Kusters PJH, Lutgens E, Seijkens TTP. Exploring immune checkpoints as potential therapeutic targets in atherosclerosis. Cardiovasc Res 2019; 114:368-377. [PMID: 29309533 DOI: 10.1093/cvr/cvx248] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
In the past decades, the inflammatory nature of atherosclerosis has been well-recognized and despite the development of therapeutic strategies targeted at its classical risk factors such as dyslipidemia and hypertension, atherosclerosis remains a major cause of morbidity and mortality. Additional strategies targeting the chronic inflammatory pathways underlying the development of atherosclerosis are therefore required. Interactions between different immune cells result in the secretion of inflammatory mediators, such as cytokines and chemokines, and fuel atherogenesis. Immune checkpoint proteins have a critical role in facilitating immune cell interactions and play an essential role in the development of atherosclerosis. Although the therapeutic potential of these molecules is well-recognized in clinical oncology, the use of immune checkpoint modulators in atherosclerosis is still limited to experimental models. Here, we review recent insights on the role of immune checkpoint proteins in atherosclerosis. Additionally, we explore the therapeutic potential and challenges of immune checkpoint modulating strategies in cardiovascular medicine and we discuss novel therapeutic approaches to target these proteins in atherosclerosis.
Collapse
Affiliation(s)
- Pascal J H Kusters
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 15, 1105 CZ Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 15, 1105 CZ Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University (LMU), Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 15, 1105 CZ Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University (LMU), Pettenkoferstraße 8a, 80336 Munich, Germany
| |
Collapse
|
11
|
Optimization of 4-1BB antibody for cancer immunotherapy by balancing agonistic strength with FcγR affinity. Nat Commun 2019; 10:2141. [PMID: 31105267 PMCID: PMC6526162 DOI: 10.1038/s41467-019-10088-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/15/2019] [Indexed: 11/09/2022] Open
Abstract
Costimulation of T cell responses with monoclonal antibody agonists (mAb-AG) targeting 4-1BB showed robust anti-tumor activity in preclinical models, but their clinical development was hampered by low efficacy (Utomilumab) or severe liver toxicity (Urelumab). Here we show that isotype and intrinsic agonistic strength co-determine the efficacy and toxicity of anti-4-1BB mAb-AG. While intrinsically strong agonistic anti-4-1BB can activate 4-1BB in the absence of FcγRs, weak agonistic antibodies rely on FcγRs to activate 4-1BB. All FcγRs can crosslink anti-41BB antibodies to strengthen co-stimulation, but activating FcγR-induced antibody-dependent cell-mediated cytotoxicity compromises anti-tumor immunity by deleting 4-1BB+ cells. This suggests balancing agonistic activity with the strength of FcγR interaction as a strategy to engineer 4-1BB mAb-AG with optimal therapeutic performance. As a proof of this concept, we have developed LVGN6051, a humanized 4-1BB mAb-AG that shows high anti-tumor efficacy in the absence of liver toxicity in a mouse model of cancer immunotherapy. Agonistic 4-1BB antibodies developed for cancer immunotherapy have suffered from either hepatotoxicity or insufficient anti-cancer activity. Here the authors determine the contribution of FcγR binding and agonistic strength to these outcomes, and engineer a 4-1BB antibody with potent anti-tumor effect and no liver toxicity in mice.
Collapse
|
12
|
Söderström LÅ, Tarnawski L, Olofsson PS. CD137: A checkpoint regulator involved in atherosclerosis. Atherosclerosis 2018; 272:66-72. [PMID: 29571029 DOI: 10.1016/j.atherosclerosis.2018.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/08/2018] [Accepted: 03/02/2018] [Indexed: 12/16/2022]
Abstract
Inflammation is associated with atherosclerotic plaque development and precipitation of myocardial infarction and stroke, and anti-inflammatory therapy may reduce disease severity. Costimulatory molecules are key regulators of immune cell activity and inflammation, and are associated with disease development in atherosclerosis. Accumulating evidence indicates that a costimulatory molecule of the Tumor Necrosis Factor Receptor superfamily, the checkpoint regulator CD137, promotes atherosclerosis and vascular inflammation in experimental models. In light of the burgeoning consideration of CD137-targeted therapy in the clinic, it will be important to better understand costimulator immunobiology in development of cardiovascular disease. Here, we review available data on the costimulator CD137 and its potential role in atherosclerosis.
Collapse
Affiliation(s)
- Leif Å Söderström
- Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Perioperative Medicine and Intensive Care Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Tarnawski
- Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peder S Olofsson
- Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA.
| |
Collapse
|
13
|
Shen M, Sun Q, Wang J, Pan W, Ren X. Positive and negative functions of B lymphocytes in tumors. Oncotarget 2018; 7:55828-55839. [PMID: 27331871 PMCID: PMC5342456 DOI: 10.18632/oncotarget.10094] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/04/2016] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicated that B lymphocytes exerted complex functions in tumor immunity. On the one hand, B lymphocytes can inhibit tumor development through antibody generation, antigen presentation, tumor tissue interaction, and direct killing. On the other hand, B lymphocytes have tumor-promoting functions. A typical type of B lymphocytes, termed regulatory B cells, is confirmed to attenuate immune response in a tumor environment. In this paper, we summarize the current understanding of B-cell functions in tumor immunology, which may shed light on potential therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Meng Shen
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Wei Pan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
14
|
Bartkowiak T, Jaiswal AR, Ager CR, Chin R, Chen CH, Budhani P, Ai M, Reilley MJ, Sebastian MM, Hong DS, Curran MA. Activation of 4-1BB on Liver Myeloid Cells Triggers Hepatitis via an Interleukin-27-Dependent Pathway. Clin Cancer Res 2018; 24:1138-1151. [PMID: 29301830 DOI: 10.1158/1078-0432.ccr-17-1847] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/04/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
Purpose: Agonist antibodies targeting the T-cell costimulatory receptor 4-1BB (CD137) are among the most effective immunotherapeutic agents across preclinical cancer models. In the clinic, however, development of these agents has been hampered by dose-limiting liver toxicity. Lack of knowledge of the mechanisms underlying this toxicity has limited the potential to separate 4-1BB agonist-driven tumor immunity from hepatotoxicity.Experimental Design: The capacity of 4-1BB agonist antibodies to induce liver toxicity was investigated in immunocompetent mice, with or without coadministration of checkpoint blockade, via (i) measurement of serum transaminase levels, (ii) imaging of liver immune infiltrates, and (iii) qualitative and quantitative assessment of liver myeloid and T cells via flow cytometry. Knockout mice were used to clarify the contribution of specific cell subsets, cytokines, and chemokines.Results: We find that activation of 4-1BB on liver myeloid cells is essential to initiate hepatitis. Once activated, these cells produce interleukin-27 that is required for liver toxicity. CD8 T cells infiltrate the liver in response to this myeloid activation and mediate tissue damage, triggering transaminase elevation. FoxP3+ regulatory T cells limit liver damage, and their removal dramatically exacerbates 4-1BB agonist-induced hepatitis. Coadministration of CTLA-4 blockade ameliorates transaminase elevation, whereas PD-1 blockade exacerbates it. Loss of the chemokine receptor CCR2 blocks 4-1BB agonist hepatitis without diminishing tumor-specific immunity against B16 melanoma.Conclusions: 4-1BB agonist antibodies trigger hepatitis via activation and expansion of interleukin-27-producing liver Kupffer cells and monocytes. Coadministration of CTLA-4 and/or CCR2 blockade may minimize hepatitis, but yield equal or greater antitumor immunity. Clin Cancer Res; 24(5); 1138-51. ©2018 AACR.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- Cell Line, Tumor/transplantation
- Chemical and Drug Induced Liver Injury/etiology
- Chemical and Drug Induced Liver Injury/immunology
- Chemical and Drug Induced Liver Injury/pathology
- Drug Evaluation, Preclinical
- Humans
- Interleukins/immunology
- Interleukins/metabolism
- Liver/cytology
- Liver/drug effects
- Liver/immunology
- Liver/pathology
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Cells/drug effects
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Receptors, CCR2/antagonists & inhibitors
- Receptors, CCR2/immunology
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
Collapse
Affiliation(s)
- Todd Bartkowiak
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Ashvin R Jaiswal
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Casey R Ager
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Renee Chin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chao-Hsien Chen
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Pratha Budhani
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Midan Ai
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew J Reilley
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Manu M Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
15
|
Rahman MM, Badruzzaman ATM, Altaf Hossain FM, Husna A, Bari AM, Eo SK. The promise of 4-1BB (CD137) mediated immunomodulation and immunotherapy for viral diseases. Future Virol 2017. [DOI: 10.2217/fvl-2016-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The T-cell surface receptor, 4-1BB (CD137), has been of increasing interest to immunologists as a co-stimulatory immune checkpoint molecule over the last two decades. Ligation of 4-1BB can activate signals in CD8+ T cells and NK cells, resulting in increased proinflammatory cytokine secretion, cytolytic function and antibody-dependent cell-mediated cytotoxicity. Targeting 4-1BB, using a 4-1BB ligand (4-1BBL) or agonistic monoclonal antibodies, has delivered a new strategy to fight against cancer, autoimmune diseases and viral infections. In this review, different aspects of 4-1BB mediated antiviral responses, the mechanistic basis of such responses and future directions are discussed.
Collapse
Affiliation(s)
- Md Masudur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - ATM Badruzzaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Asmaul Husna
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Abusaleh Mahfuzul Bari
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Seong Kug Eo
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
16
|
Park JC, Hahn NM. Emerging role of immunotherapy in urothelial carcinoma-Future directions and novel therapies. Urol Oncol 2016; 34:566-576. [PMID: 27773553 DOI: 10.1016/j.urolonc.2016.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 01/05/2023]
Abstract
Tremendous advances in our understanding of the tumor immunology and molecular biology of urothelial carcinoma (UC) have led to the recent approval of immunotherapy as a novel option for patients with UC with advanced disease. Despite the promising data of novel immune checkpoint inhibitors, only a small subset of patients with UC achieves durable remissions. Because an optimal antitumor response requires coordination of multiple immune, tumor, and microenvironment effector cells, novel approaches targeting distinct mechanisms of action likely in combination are needed. In addition, discovery of reliable immune biomarkers, understanding of mechanisms of resistance, and novel clinical trial designs are warranted for maximum benefit of UC immunotherapy.
Collapse
Affiliation(s)
- Jong Chul Park
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University in Baltimore, Baltimore, MD
| | - Noah M Hahn
- Departments of Oncology and Urology at Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University in Baltimore, Baltimore, MD.
| |
Collapse
|
17
|
Souza-Fonseca-Guimaraes F, Blake SJ, Makkouk A, Chester C, Kohrt HE, Smyth MJ. Anti-CD137 enhances anti-CD20 therapy of systemic B-cell lymphoma with altered immune homeostasis but negligible toxicity. Oncoimmunology 2016; 5:e1192740. [PMID: 27622048 DOI: 10.1080/2162402x.2016.1192740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023] Open
Abstract
Studies of sequential anti-CD137/anti-CD20 therapy have previously shown that the efficacy of anti-CD20 was heavily reliant upon anti-CD137; however, the exact mechanism of the anti-B-cell lymphoma efficacy, and whether this correlates with enhanced adverse effects or toxicity, had not been elucidated. Here, we observed that sequential anti-CD137 administration with anti-CD20 resulted in a synergistic therapy, largely dependent upon Fc receptors (FcR), to prolong survival in an experimental B-cell lymphoma therapy model. Tumor suppression was accompanied by B cell depletion, which was not dependent on one activating FcR. Surprisingly, the B-cell activating factor (BAFF) was elevated in the plasma of mice receiving anti-CD137 alone or in combination with anti-CD20, while a selective increase in some plasma cytokines was also noted and triggered by anti-CD137. These effects were independent of activating FcR. Sustained treatment of advanced lymphoma revealed increased lymphocyte infiltrates into the liver and a significant decrease in the metabolic capability of the liver in mice receiving anti-CD137. Importantly, these effects were not exacerbated in mice receiving the anti-CD20/CD137 combination, and elevations in classical liver damage markers such as alanine aminotransferase (ALT) were less than that caused by the lymphoma itself. Thus, combined anti-CD20/anti-CD137 treatment increases the therapeutic index of anti-CD20 or anti-CD137 alone. These mouse data were corroborated by ongoing clinical development studies to assess safety, tolerability and pharmacodynamic activity of human patients treated by this approach. Together, these data support the use of this sequential antibody therapeutic strategy to improve the efficacy of rituximab in B-cell lymphoma patients.
Collapse
Affiliation(s)
- Fernando Souza-Fonseca-Guimaraes
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; Molecular Immunology Division, Walter & Elisa Hall Institute of Medical Research, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Blake
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD, Australia
| | - Amani Makkouk
- Department of Medicine, Division of Oncology, Stanford University , Stanford, CA, USA
| | - Cariad Chester
- Department of Medicine, Division of Oncology, Stanford University, Stanford, CA, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Holbrook E Kohrt
- Department of Medicine, Division of Oncology, Stanford University , Stanford, CA, USA
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; School of Medicine, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
18
|
Lakritz JR, Robinson JA, Polydefkis MJ, Miller AD, Burdo TH. Loss of intraepidermal nerve fiber density during SIV peripheral neuropathy is mediated by monocyte activation and elevated monocyte chemotactic proteins. J Neuroinflammation 2015; 12:237. [PMID: 26683323 PMCID: PMC4683776 DOI: 10.1186/s12974-015-0456-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022] Open
Abstract
Background Peripheral neuropathy (PN) continues to be a major complication of human immunodeficiency virus (HIV) infection despite successful anti-retroviral therapy. Human HIV-PN can be recapitulated in a CD8-depleted, simian immunodeficiency virus (SIV)-infected rhesus macaque animal model, characterized by a loss of intraepidermal nerve fiber density (IENFD) and damage to the dorsal root ganglia (DRG). Increased monocyte traffic to the DRG has previously been associated with severe DRG pathology, as well as a loss in IENFD. Here, we sought to characterize the molecular signals associated with monocyte activation and trafficking to the DRGs. Methods Eleven SIV-infected CD8-depleted rhesus macaques were compared to four uninfected control animals. sCD14, sCD163, sCD137, regulated on activation normal T cell expressed and secreted (RANTES), and monocyte chemoattractant protein 1 (MCP-1) were measured in plasma and the latter three proteins were also quantified in DRG tissue lysates. All SIV-infected animals received serial skin biopsies to measure IENFD loss as well as BrdU inoculations to measure monocyte turnover during the course of infection. The number of BrdU+ and CD14+ CD16+ peripheral blood monocytes was determined by flow cytometry. The number of MAC387+, CCR2+, CCR5+, and CD137+ cells in DRG tissue was quantified by immunohistochemistry. Results sCD14, sCD163, MCP-1, and sCD137 increased significantly in plasma from pre-infection to necropsy. Plasma sCD163 and RANTES inversely correlated with IENFD. Additionally, sCD137 in DRG tissue lysate was elevated with severe DRG pathology and associated with the recruitment of MAC387+ cells to DRG. Elevated numbers of CCR5+ and CCR2+ satellite cells in the DRG were found, suggesting a chemotactic role of their ligands, RANTES, and MCP-1 in recruiting monocytes to the tissue. Conclusions We characterized the role of systemic (plasma) and tissue-specific (DRG) monocyte activation and associated cytokines in the pathogenesis of SIV-PN. We identified sCD163 and RANTES as potential biomarkers for HIV-PN, as these were associated with a loss of IENFD. Additionally, we identified CD137 signaling to play a role in MAC387+ cell traffic to DRG and possibly contribute to severe pathology. These studies highlight the role of monocyte activation and traffic in the pathogenesis of SIV-PN, while identifying specific signaling proteins for future pharmacological blockade.
Collapse
Affiliation(s)
- Jessica R Lakritz
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jake A Robinson
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Tricia H Burdo
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
19
|
Abstract
Optimal T cell response is dependent not only on T cell receptor activation, but also on additional signaling from coreceptors. The main coreceptors include B7 and tumor necrosis factor family members. They exert costimulatory or coinhibitory effects, and their balance determines the fate of T cell response. In normal conditions, costimulators facilitate the development of protective immune response, whereas coinhibitors dampen inflammation to avoid organ/tissue damage from excessive immune reaction. In the tumor microenvironment, the balance is garbled: inhibitory pathways predominate, and T cell response is impaired. The importance of cosignaling in the tumor immune response has been experimentally and clinically demonstrated. New therapeutic strategies targeting T cell cosignaling, especially coinhibitory molecules, are under active experimental and clinical investigation. This review summarizes the functions of main T cell cosignaling axes and discusses their clinical application.
Collapse
|
20
|
CD137 expressed on neutrophils plays dual roles in antibacterial responses against Gram-positive and Gram-negative bacterial infections. Infect Immun 2013; 81:2168-77. [PMID: 23545301 DOI: 10.1128/iai.00115-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe sepsis and septic shock caused mainly by bacterial infections are life-threatening conditions that urge the development of novel therapies. However, host responses to and pathophysiology of sepsis have not been clearly understood, which remains a major obstacle for the development of effective therapeutics. Recently, we have shown that stimulation of a costimulatory molecule, CD137, enhanced survival of mice infected with the Gram-positive (G(+)) intracellular bacterium Listeria monocytogenes but decreased survival in a polymicrobial sepsis model. Herein, we report that CD137 deficiency or blocking of CD137 signaling decreased antibacterial responses of mice infected with G(+) bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis) but increased these responses in mice infected with Gram-negative (G(-)) bacteria (Escherichia coli, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium). Consistent with these findings, stimulation of CD137 by administration of agonistic antibody enhanced responses against G(+) bacteria, whereas it decreased these responses against G(-) bacteria. Neutrophils were responsible for CD137-mediated opposite roles in control of G(+) and G(-) bacterial infections. Stimulation of CD137 enhanced activities of neutrophils against S. aureus but decreased these activities against E. coli, while CD137 blocking produced opposite results with the stimulation of CD137 in vivo and in vitro. Furthermore, we found that combined signaling of CD137 and Toll-like receptor 2 (TLR2) induced synergistic production of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) by neutrophils, but combined signaling of CD137 and TLR4 did not. Our data strongly suggest that CD137 may play a dual role in sepsis in association with TLRs.
Collapse
|
21
|
Ai XY, Shi GC, Wan HY, Shi YH, Hou XX, Zhu HX, Tang W. 4-1BB ligand-mediated imbalance of helper 17 T cells and regulatory T cells in patients with allergic asthma. J Int Med Res 2013; 40:1046-54. [PMID: 22906277 DOI: 10.1177/147323001204000323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES To investigate the presence of 4-1BB ligand (4-1BBL) in the peripheral blood of patients with allergic asthma and evaluate its role in controlling the balance between helper 17 T (T(h)17) and regulatory T (T(reg)) cells. METHODS Soluble 4-1BBL (s4-1BBL) was quantified by enzyme-linked immunosorbent assay in plasma from patients with asthma (n = 45) and from healthy control subjects (n = 35). The proportion of monocytes positive for membrane-bound 4-1BBL (m4-1BBL) was determined by flow cytometry. Peripheral blood mononuclear cells from patients with asthma were incubated with anti-4-1BB monoclonal antibody in vitro. Concentrations of interleukin (IL)-17 and transforming growth factor (TGF)-β(1) in the culture supernatant were analysed. RESULTS Plasma s4-1BBL concentrations and the proportion of m4-1BBL-positive monocytes were significantly lower in patients with asthma than in control subjects. The culture supernatant concentration of TGF-β(1) was increased and that of IL-17 was decreased by incubation with anti-4-1BB monoclonal antibody. CONCLUSIONS Both soluble and membrane-bound 4-1BBL were reduced in patients with allergic asthma compared with control subjects. 4-1BBL/4-1BB signalling may play an important role in allergic asthma by regulating the T(h)17/T(reg) balance.
Collapse
Affiliation(s)
- X-Y Ai
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Anderson MW, Zhao S, Freud AG, Czerwinski DK, Kohrt H, Alizadeh AA, Houot R, Azambuja D, Biasoli I, Morais JC, Spector N, Molina-Kirsch HF, Warnke RA, Levy R, Natkunam Y. CD137 is expressed in follicular dendritic cell tumors and in classical Hodgkin and T-cell lymphomas: diagnostic and therapeutic implications. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:795-803. [PMID: 22901750 DOI: 10.1016/j.ajpath.2012.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/30/2012] [Accepted: 05/16/2012] [Indexed: 11/18/2022]
Abstract
CD137 (also known as 4-1BB and TNFRSF9) is a member of the tumor necrosis factor receptor superfamily. Originally identified as a costimulatory molecule expressed by activated T cells and NK cells, CD137 is also expressed by follicular dendritic cells, monocytes, mast cells, granulocytes, and endothelial cells. Anti-CD137 immunotherapy has recently shown promise as a treatment for solid tumors and lymphoid malignancies in preclinical models. We defined the expression of CD137 protein in both normal and neoplastic hematolymphoid tissue. CD137 protein is expressed by follicular dendritic cells in the germinal center and scattered paracortical T cells, but not by normal germinal-center B cells, bone marrow progenitor cells, or maturing thymocytes. CD137 protein is expressed by a select group of hematolymphoid tumors, including classical Hodgkin lymphoma, T-cell and NK/T-cell lymphomas, and follicular dendritic cells neoplasms. CD137 is a novel diagnostic marker of these tumors and suggests a possible target for tumor-directed antibody therapy.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Dendritic Cells, Follicular/metabolism
- Dendritic Cells, Follicular/pathology
- Flow Cytometry
- Histiocytic Disorders, Malignant/diagnosis
- Histiocytic Disorders, Malignant/metabolism
- Histiocytic Disorders, Malignant/pathology
- Histiocytic Disorders, Malignant/therapy
- Hodgkin Disease/diagnosis
- Hodgkin Disease/metabolism
- Hodgkin Disease/pathology
- Hodgkin Disease/therapy
- Humans
- Immunohistochemistry
- Lymphocyte Subsets/metabolism
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/pathology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/therapy
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
Collapse
Affiliation(s)
- Matthew W Anderson
- Department of Pathology, Stanford University School of Medicine, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
CD137 differentially regulates innate and adaptive immunity against Mycobacterium tuberculosis. Immunol Cell Biol 2011; 90:449-56. [PMID: 21747409 PMCID: PMC3330265 DOI: 10.1038/icb.2011.63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protective immunity against Mycobacterium tuberculosis is primarily mediated by the interaction of antigen-specific T cells and antigen presenting cells, which often depends on the interplay of cytokines produced by these cells. Costimulatory signals represent a complex network of receptor–ligand interactions that qualitatively and quantitatively influence immune responses. Thus, here we investigated the function of CD137 and CD137L, molecules known to have a central role in immune regulation, during human tuberculosis (TB). We demonstrated that M. tuberculosis antigen stimulation increased both CD137 and CD137L expression on monocytes and NK cells from TB patients and healthy donors, but only up-regulated CD137 on T lymphocytes. Blockage of the CD137 pathway enhanced the levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α produced by monocytes and NK against M. tuberculosis. In contrast, CD137 blockage significantly decreased the specific degranulation of CD8+ T cells and the percentage of specific IFN-γ and TNF-α producing lymphocytes against the pathogen. Furthermore, inhibition of the CD137 pathway markedly increased T-cell apoptosis. Taken together, our results demonstrate that CD137:CD137L interactions regulate the innate and adaptive immune response of the host against M. tuberculosis.
Collapse
|
24
|
Vinay DS, Kwon BS. The tumour necrosis factor/TNF receptor superfamily: therapeutic targets in autoimmune diseases. Clin Exp Immunol 2011; 164:145-57. [PMID: 21401577 DOI: 10.1111/j.1365-2249.2011.04375.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autoimmune diseases are characterized by the body's ability to mount immune attacks on self. This results from recognition of self-proteins and leads to organ damage due to increased production of pathogenic inflammatory molecules and autoantibodies. Over the years, several new potential therapeutic targets have been identified in autoimmune diseases, notable among which are members of the tumour necrosis factor (TNF) superfamily. Here, we review the evidence that certain key members of this superfamily can augment/suppress autoimmune diseases.
Collapse
Affiliation(s)
- D S Vinay
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | |
Collapse
|
25
|
Abstract
Originally discovered as a T cell-activating molecule, 4-1BB (CD137) is now also recognized as an activator of non-T cells, thus imparting a new dimension to its potential in vivo effects. 4-1BB expression is seen on a variety of non-T cells including activated dendritic cells (DCs), monocytes, neutrophils, B cells and natural killer (NK) cells, and promotes their individual effector functions. The T cell- and non-T cell-activating ability of 4-1BB may be the basis of its powerful anti-cancer, anti-autoimmune and anti-viral effects. Here we discuss the consequence and importance of 4-1BB signaling in non-T cells. We consider its effects on immune regulation, and the distinct and/or overlapping pathways involved in these responses, as well as possible therapeutic applications.
Collapse
|
26
|
CD137 agonist antibody prevents cancer recurrence: contribution of CD137 on both hematopoietic and nonhematopoietic cells. Blood 2010; 115:1941-8. [PMID: 20068221 DOI: 10.1182/blood-2008-12-192591] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antigen-specific memory T cells (Tms) are essential in the immune surveillance of residual and metastatic tumors. Activation of Tms requires designing vaccines based on tumor rejection antigens, which are often not available to cancer patients. Therefore, it is desirable to have a general applicable approach to activate Tms without extensive knowledge of tumor antigens. Here, we report that activation of antigen-specific Tms could be achieved by the administration of agonistic anti-CD137 monoclonal antibody without additional tumor vaccination, leading to the prevention of recurrence and metastases after surgical resection of primary tumors in mouse models. By reconstitution with CD137-deficient Tms, we demonstrate that expression of CD137 on antigen-specific Tms is only partially required for the effect of anti-CD137 antibody. Other host cells, including those from hematopoietic and nonhematopoietic origins, are also important because ablation of CD137 from these cells partially but significantly eliminates antitumor effect of anti-CD137 antibody. Our findings implicate a potential new approach to prevent recurrence and metastases in cancer patients.
Collapse
|
27
|
Westwood JA, Haynes NM, Sharkey J, McLaughlin N, Pegram HJ, Schwendener RA, Smyth MJ, Darcy PK, Kershaw MH. Toll-Like Receptor Triggering and T-Cell Costimulation Induce Potent Antitumor Immunity in Mice. Clin Cancer Res 2009; 15:7624-7633. [PMID: 19996209 DOI: 10.1158/1078-0432.ccr-09-2201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE: To determine the antitumor activity of a novel combination of two immunomodulatory agents that simultaneously direct multiple components of immunity against cancer. EXPERIMENTAL DESIGN: We combined the Toll-like receptor agonist CpG 1826 with a T-cell costimulatory antibody specific for CD137 in an optimal treatment route and dosing schedule against established tumors in two mouse models. Mechanistic insight was gained using gene-deficient mice and cell-depleting antibodies. RESULTS: The combination was shown to eradicate tumors in a large proportion of mice. Crucial roles for CD8(+) T cells, natural killer cells, and IFNs were shown. CpG and anti-CD137 injection led to activation of dendritic cells and optimal expansion of activated T cells in the blood. Macrophages were not necessary for therapeutic effect, and indeed depletion of macrophages in vivo enhanced therapy leading to tumor rejection in 100% of mice, which has not been previously reported in the immunotherapeutic setting. Long-term surviving mice were resistant to tumor rechallenge, demonstrating immunologic memory. In addition, we show, for the first time, that mice lacking B cells have a total loss of a recall response against tumor, suggesting a role for B cells in the induction of antitumor immunologic memory. CONCLUSION: This study provides support for the use of a novel combination of immunomodulatory agents stimulating multiple facets of immunity for the effective immunotherapy of cancer. (Clin Cancer Res 2009;15(24):7624-33).
Collapse
Affiliation(s)
- Jennifer A Westwood
- Authors' Affiliations: Cancer Immunology Research Program, Peter MacCallum Cancer Centre; Departments of Microbiology and Immunology and Pathology, University of Melbourne, Melbourne, Australia; and Laboratory of Liposome Research, Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Adjuvantive effects of anti-4-1BB agonist Ab and 4-1BBL DNA for a HIV-1 Gag DNA vaccine: different effects on cellular and humoral immunity. Vaccine 2009; 28:1300-9. [PMID: 19944789 DOI: 10.1016/j.vaccine.2009.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 12/21/2022]
Abstract
Plasmid DNA immunizations induce low levels but a broad spectrum of cellular and humoral immune responses. Here, we investigate the potential of co-stimulation through 4-1BB as an adjuvant for a HIV-1 DNA vaccine in mice. We designed plasmid DNAs expressing either the membrane bound or soluble form of 4-1BBL, and compared with the agonistic anti-4-1BB Ab for their ability to adjuvant the Gag DNA vaccine. Both, anti-4-1BB agonistic Ab as well as 4-1BBL DNA enhanced the Gag-specific cellular immune responses. However, in complete contrast to the agonistic Ab that suppressed humoral immunity to Gag, 4-1BBL DNA adjuvanted vaccines enhanced Gag-specific IgG responses. Importantly, the expression of Gag and 4-1BBL from the same plasmid was critical for the adjuvant activity. Collectively, our data suggest that for a HIV-1 vaccine where both antigen-specific cellular and humoral immunity are desirable, 4-1BBL expressed by a DNA vaccine is a superior adjuvant than anti-4-1BB agonistic Ab.
Collapse
|
29
|
Ju S, Ju S, Ge Y, Qiu H, Lu B, Qiu Y, Fu J, Liu G, Wang Q, Hu Y, Shu Y, Zhang X. A novel approach to induce human DCs from monocytes by triggering 4-1BBL reverse signaling. Int Immunol 2009; 21:1135-44. [PMID: 19684160 DOI: 10.1093/intimm/dxp077] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Dendritic cells (DCs) are responsible for the initiation of immune responses. Our study demonstrates a new pathway for generating a large quantity of stimulatory monocyte-derived DCs (Mo-DCs) from human monocytes using anti-4-1BB ligand (4-1BBL) mAb to trigger reverse signaling. The anti-4-1BBL-driven Mo-DCs (DCs(alpha-4-1BBL)) not only express higher levels of CD86, CD83 and HLA-DR, when compared with the Mo-DCs matured by tumor necrosis factor alpha, but also exhibit a unique phenotype that expresses lower levels of PD-L1. High levels of GM-CSF, M-CSF and Flt3 ligand (FL) were found in the anti-4-1BBL-differentiation culture. Neutralizing M-CSF, GM-CSF and FL inhibited Mo-DC proliferation stimulated by anti-4-1BBL mAb, suggesting that M-CSF, GM-CSF and FL are involved in cell proliferation stimulated by anti-4-1BBL. Further analysis of the DCs(alpha-4-1BBL) showed increased secretion of T(h)1-type cytokines IL-12 and IFN-gamma and decreased secretion of IL-10. DCs(alpha-4-1BBL) induced much stronger proliferative responses in the mixed lymphocyte reaction assay when compared with DCs derived by GM-CSF. Moreover, DCs(alpha-4-1BBL) preferentially induced T(h)1 responses. We have further demonstrated that anti-4-1BBL antibody stimulated nuclear translocation of NF-kappaB from the cytoplasm in monocytes, suggesting that reverse signaling by 4-1BBL is likely responsible for mediating DC differentiation. Collectively, we have found that reverse signaling of 4-1BBL promotes the differentiation of potent T(h)1-inducing DCs from human monocytes.
Collapse
Affiliation(s)
- Songwen Ju
- Biotechnology Institute, Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Stimulation of the molecule 4-1BB enhances host defense against Listeria monocytogenes infection in mice by inducing rapid infiltration and activation of neutrophils and monocytes. Infect Immun 2009; 77:2168-76. [PMID: 19237524 DOI: 10.1128/iai.01350-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The tumor necrosis factor receptor family molecule 4-1BB (CD137) has diverse roles in adaptive and innate immune responses. However, little is known of its role in bacterial infections. Previously, we showed that 4-1BB-deficient mice have enhanced susceptibility to Listeria monocytogenes infection, and mice pretreated with agonistic anti-4-1BB antibody (3E1) were much more resistant to L. monocytogenes infection than mice treated with control antibody. In this study, we report that stimulating 4-1BB by administering 3E1 in the early phase of L. monocytogenes infection is critical for promoting the survival of mice by inducing rapid infiltration of neutrophils and monocytes into L. monocytogenes-infected livers. The levels of tumor necrosis factor alpha, interleukin 6, and monocyte chemoattractant protein 1 in the livers of 3E1-treated mice increased as early as 30 min postinfection and peaked by 1 to 2 h, while those in mice treated with control antibody started to increase only at 16 h postinfection. Monocytes and neutrophils from the 3E1-treated mice had higher levels of activation markers, phagocytic activity, and reactive oxygen species than those from control mice. In vitro stimulation of 4-1BB induced the production of the inflammatory cytokines/chemokines of neutrophils, but not those of monocytes. These results suggest that 4-1BB stimulation of neutrophils in the early phase of L. monocytogenes infection causes rapid production of inflammatory cytokines/chemokines and that the subsequent infiltration of neutrophils and monocytes is crucial for eliminating the infecting L. monocytogenes.
Collapse
|
31
|
ProtEx technology for the generation of novel therapeutic cancer vaccines. Exp Mol Pathol 2009; 86:198-207. [PMID: 19454266 DOI: 10.1016/j.yexmp.2009.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Indexed: 01/15/2023]
Abstract
Therapeutic vaccines present an attractive alternative to conventional treatments for cancer. However, tumors have evolved various immune evasion mechanisms to modulate innate, adaptive, and regulatory immunity for survival. Therefore, successful vaccine formulations may require a non-toxic immunomodulator or adjuvant that not only induces/stimulates innate and adaptive tumor-specific immune responses, but also overcomes immune evasion mechanisms. Given the paramount role costimulation plays in modulating innate, adaptive, and regulatory immune responses, costimulatory ligands may serve as effective immunomodulating components of therapeutic cancer vaccines. Our laboratory has developed a novel technology designated as ProtEx that allows for the generation of recombinant costimulatory ligands with potent immunomodulatory activities and the display of these molecules on the cell surface in a rapid and efficient manner as a practical and safe alternative to gene therapy for immunomodulation. Importantly, the costimulatory ligands not only function when displayed on tumor cells, but also as soluble proteins that can be used as immunomodulatory components of conventional vaccine formulations containing tumor-associated antigens (TAAs). We herein discuss the application of the ProtEx technology to the development of effective cell-based as well as cell-free conventional therapeutic cancer vaccines.
Collapse
|
32
|
Liu GZ, Gomes AC, Fang LB, Gao XG, Hjelmstrom P. Decreased 4-1BB expression on CD4+CD25 high regulatory T cells in peripheral blood of patients with multiple sclerosis. Clin Exp Immunol 2008; 154:22-9. [PMID: 18727631 DOI: 10.1111/j.1365-2249.2008.03730.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
As a tumour necrosis factor receptor superfamily member, 4-1BB (CD137) is preferentially expressed in CD4+CD25+ regulatory T cells (Tregs) and has been suggested to play an important role in regulating the generation or function of Tregs. Recent studies of human Tregs have shown that blood CD4+CD25(high) T cells were much closer to Tregs in terms of their functionality. Furthermore, CD4+CD25(high) Tregs have been found to have a decreased effector function in patients with multiple sclerosis (MS). In this study, we examined the expression of 4-1BB and soluble 4-1BB (s4-1BB) protein levels in the peripheral blood of MS patients. Compared with healthy controls, MS patients had decreased 4-1BB expression in their CD4+C25(high) Tregs and increased plasma s4-1BB protein levels. Moreover, the plasma s4-1BB levels of MS patients were shown to be inversely correlated with the 4-1BB surface expression of CD4+CD25(high) Tregs. The down-regulated 4-1BB expression on CD4+CD25(high) Tregs of MS patients may be involved in the impaired immunoactivity of these Tregs. The elevated s4-1BB levels may, at least in part, function as a self-regulatory attempt to inhibit antigen-driven proliferation of Tregs or their immunosuppressive activity.
Collapse
Affiliation(s)
- G-Z Liu
- Department of Neurology, Peking University People's Hospital, Beijing, China.
| | | | | | | | | |
Collapse
|
33
|
Guo H, Jiang W, Liu W, Gao Y, Yang M, Zhou Y, Wang J, Qi J, Cheng X, Zhu Z, Yang C, Xiong D. Extracellular domain of 4-1BBL enhanced the antitumoral efficacy of peripheral blood lymphocytes mediated by anti-CD3 x anti-Pgp bispecific diabody against human multidrug-resistant leukemia. Cell Immunol 2008; 251:102-8. [PMID: 18482719 DOI: 10.1016/j.cellimm.2008.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/28/2008] [Accepted: 04/04/2008] [Indexed: 11/18/2022]
Abstract
Our previous data have shown a significantly higher tumor response to anti-CD3/anti-Pgp bispecific diabody-mediated immunotherapy for P-glycoprotein (Pgp)-overexpressing K562/A02 cells, but a rapid tumor relapse occurred at 1 week after therapy. In an attempt to overcome tumor recurrence, we supplemented the previous therapy with extracellular domain of human 4-1BBL (ex4-1BBL) to regulate the activation of peripheral blood lymphocyte (PBL). As a result, this combination showed enhanced cytotoxicity in vitro and eradicated the multidrug-resistant xenografts of K562/A02 in nude mice. Furthermore, no tumor recurrence was observed within 100 days after the first treatment. Therefore, when used as an adjuvant, ex4-1BBL may improve the outcome of PBL-based immunotherapy.
Collapse
Affiliation(s)
- Hongxing Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang J, Park O, Lee Y, Jung HM, Woo K, Choi Y. The 4-1BB ligand and 4-1BB expressed on osteoclast precursors enhance RANKL-induced osteoclastogenesis via bi-directional signaling. Eur J Immunol 2008; 38:1598-609. [DOI: 10.1002/eji.200737650] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Zhang P, Gao F, Wang Q, Wang X, Zhu F, Ma C, Sun W, Zhang L. Agonistic anti-4-1BB antibody promotes the expansion of natural regulatory T cells while maintaining Foxp3 expression. Scand J Immunol 2007; 66:435-40. [PMID: 17850588 DOI: 10.1111/j.1365-3083.2007.01994.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The engagement of the 4-1BB (CD137) co-stimulatory pathway promotes the activation and proliferation of conventional CD4(+) T and CD8(+) T cells, but the role of 4-1BB co-stimulation in CD4(+) CD25(+) regulatory T cells (Treg) is less clear. In particular, whether 4-1BB stimulation affects the expression of Foxp3, a master gene for Treg, is unknown. This study demonstrates that co-stimulation of 4-1BB engaged by an agonistic antibody promotes the proliferation of Treg in a dependent manner of low-concentration interleukin-2 in vitro. The 4-1BB-expanded Treg maintain Foxp3 expression and their ability to suppress conventional CD4(+) T cells and their feature to produce no interleukin-2. However, the 4-1BB-expanded Treg produce increased levels of interferon-gamma, whose significance is unknown. Thus, 4-1BB co-stimulation plays a role in the expansion of functional CD4(+) CD25(+) Treg cells without adversely affecting their suppressive activity.
Collapse
Affiliation(s)
- P Zhang
- Institute of Immunology, Shandong University Medical School, Jinan, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Marin V, Kakuda H, Dander E, Imai C, Campana D, Biondi A, D'Amico G. Enhancement of the anti-leukemic activity of cytokine induced killer cells with an anti-CD19 chimeric receptor delivering a 4-1BB-ζ activating signal. Exp Hematol 2007; 35:1388-97. [PMID: 17656004 DOI: 10.1016/j.exphem.2007.05.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 05/24/2007] [Accepted: 05/31/2007] [Indexed: 12/22/2022]
Abstract
OBJECTIVE There is growing interest in the use of cytokine-induced killer (CIK) cells in cancer therapy. In this study, we sought to maximize the antileukemic activity of anti-CD19 receptor-modified CIK cells against B-lineage acute lymphoblastic leukemia (ALL). MATERIALS AND METHODS CIK cells were transduced with retroviral vectors carrying different types of anti-CD19 chimeric receptors: anti-CD19-zeta, anti-CD19-DAP10, anti-CD19-4-1BB-zeta, and anti-CD19-CD28-zeta. A truncated form of the receptor was used as a control. Transduced CIK cells were then analyzed for their cytotoxic activity against ALL cells and for their capability to proliferate and to release cytokines after ALL encounter. RESULTS CIK cells were efficiently transduced with all the anti-CD19 retroviral vectors. Anti-CD19 receptor expression conferred powerful killing activity against ALL cells. However, there were clear advantages when receptors containing the co-stimulatory molecules 4-1BB or CD28 were transduced. Such cells had significantly more potent cytotoxicity than cells expressing the anti-CD19-zeta or anti-CD19-DAP10. Moreover, the presence of 4-1BB or CD28 in the receptor increased the production of interleukin (IL)-2, tumor necrosis factor (TNF)-alpha, TNF-beta, IL-5, IL-6, and IL-8 elicited by coculture with ALL cells. Notably, anti-CD19-4-1BB-zeta CIK cells secreted particularly low levels of interleukin-10 and proliferated strongly after contact with ALL cells. CONCLUSIONS Anti-CD19 chimeric receptors delivering primary and costimulatory signals render CIK cells powerfully cytotoxic against ALL cells and induce secretion of immunostimulatory cytokines and proliferation. These results support the testing of genetically modified CIK cells in clinical trials.
Collapse
Affiliation(s)
- Virna Marin
- Centro Ricerca M. Tettamanti, Clinica Pediatrica Università Milano-Bicocca, Ospedale San Gerardo, Monza, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Cheung CTY, Deisher TA, Luo H, Yanagawa B, Bonigut S, Samra A, Zhao H, Walker EK, McManus BM. Neutralizing anti-4-1BBL treatment improves cardiac function in viral myocarditis. J Transl Med 2007; 87:651-61. [PMID: 17468777 DOI: 10.1038/labinvest.3700563] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is the most common causative agent of infectious myocarditis. Chronic inflammation, loss of contractile tissue, and maladaptive remodeling all contribute to dilated cardiomyopathy and heart failure. The 4-1BB receptor is a costimulatory molecule expressed by T cells and cardiomyocytes. We infected mice with CVB3 to examine if virus infection triggers 4-1BB activation and whether inhibition of this pathway will reduce inflammation and improve heart function. Echocardiography was performed on days 3, 9, 30 and at 10 weeks post-infection (pi) and ejection fraction (EF), left ventricular (LV) wall thickness, contractility, and internal cardiac dimensions were measured. At day 9, reduced rate of wall thickening (30+/-17 vs 70+/-19%), increased LV wall thickness (0.15+/-0.04 vs 0.09+/-0.01 cm in diastole and 0.19+/-0.04 vs 0.15+/-0.02 cm in systole), and reduced cardiac volume (0.013+/-0.004 vs 0.023+/-0.003 ml in diastole and 0.004+/-0.002 ml vs 0.007+/-0.001 ml in systole) were observed in infected hearts as compared with shams. At 14 days pi, CVB3-infected mice were randomly assigned to receive either anti-4-1BBL neutralizing (M522) or control antibodies (Ab) for 8 weeks. Cardiac damage, fibrosis, and inflammation were assessed by histological stains and immunohistochemistry. Polymerase chain reaction (PCR) was utilized to detect matrix metalloproteinase (MMP)-2, MMP-9, and MMP-12 expressions. At 10 weeks pi, M522 treatment improved LV wall thickening rate (-10+/-13 vs -49+/-16%, expressed as percentage change from baseline) and reduced diastolic LV posterior wall thickness (17+/-10 vs 57+/-47%, expressed as percentage change from baseline), cardiac damage as assessed by histological scores (0 vs 1.3+/-1.5), fibrosis by collagen volume fraction (3.2+/-0.6 vs 4.9+/-2.2%), overall inflammation (5.9+/-1.3 vs 8.5+/-4.1%), and T-cell infiltration (1.3+/-0.9 vs 4.3+/-3.8%) as compared to control. MMP-12 was highly increased during acute and chronic myocarditis, but was significantly decreased by M522 treatment. Thus, long-term inhibition of the 4-1BB pathway reduces cardiac damage, remodeling, and inflammation during viral myocarditis.
Collapse
Affiliation(s)
- Caroline T Y Cheung
- Department of Pathology and Laboratory Medicine, The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, St Paul's Hospital/Providence Health Care, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Serghides L, Vidric M, Watts TH. Approaches to studying costimulation of human antiviral T cell responses: prospects for immunotherapeutic vaccines. Immunol Res 2006; 35:137-50. [PMID: 17003516 DOI: 10.1385/ir:35:1:137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/19/2022]
Abstract
The generation of strong and specific CD8 T cell responses is important in the control of viral infections. Costimulatory molecules provide signals necessary for the development or maintenance of these responses. A major focus of our laboratory is to investigate the role of costimulatory molecules of the TNFR and CD28 families in antiviral responses. Our aim is to translate information obtained using murine models to the study of these molecules using human cells. We have devised an in vitro system using recombinant replication- deficient adenovirus to deliver costimulatory molecules to antigen-presenting cells that are then used to stimulate autologous T cells from both healthy and HIV-infected individuals. Here we describe our findings and discuss the implications of incorporating costimulatory molecules into viral vector vaccine strategies.
Collapse
Affiliation(s)
- Lena Serghides
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
39
|
Vinay DS, Kim JD, Kwon BS. Amelioration of Mercury-Induced Autoimmunity by 4-1BB. THE JOURNAL OF IMMUNOLOGY 2006; 177:5708-17. [PMID: 17015760 DOI: 10.4049/jimmunol.177.8.5708] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In certain strains of mice, subtoxic doses of HgCl2 (mercuric chloride; mercury) induce a complex autoimmune condition characterized by the production of antinucleolar IgG Abs, lymphoproliferation, increased serum levels of IgG1/IgE Abs, and deposition of renal immune complexes. 4-1BB is an important T cell costimulatory molecule that has been implicated in T cell proliferation and cytokine production, especially production of IFN-gamma. To elucidate T cell control mediated by the 4-1BB signaling pathway in this syndrome, we assessed the effect of administering agonistic anti-4-1BB mAb on mercury-induced autoimmunity. Groups of A.SW mice (H-2s) received mercury/control Ig or mercury/anti-4-1BB or PBS alone. Anti-4-1BB mAb treatment resulted in a dramatic reduction of mercury-induced antinucleolar Ab titers, serum IgG1/IgE induction, and renal Ig deposition. These effects may be related to the present finding that anti-4-1BB mAb decreases B cell numbers and function. The anti-4-1BB mAb-treated mercury group also showed a marked reduction in Th2-type cytokines but an increase in Th1-type cytokines and chemokines. Increased IFN-gamma production due to anti-4-1BB mAb treatment appears to be responsible for the observed B cell defects because neutralization of IFN-gamma in vivo substantially restored B cell numbers and partly restored IgG1/IgE. Collectively, our results indicate that 4-1BB mAb can down-regulate mercury-induced autoimmunity by affecting B cell function in an IFN-gamma-dependent manner and thus, preventing the development of autoantibody production and tissue Ig deposition.
Collapse
Affiliation(s)
- Dass S Vinay
- Louisiana State University Eye Center, Louisiana State University Health Science Center School of Medicine, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
40
|
Liu GZ, Gomes AC, Putheti P, Karrenbauer V, Kostulas K, Press R, Hillert J, Hjelmström P, Gao XG. Increased Soluble 4-1BB Ligand (4-1BBL) Levels in Peripheral Blood of Patients with Multiple Sclerosis. Scand J Immunol 2006; 64:412-9. [PMID: 16970683 DOI: 10.1111/j.1365-3083.2006.01796.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
4-1BB ligand (4-1BBL; CD137L) is a member of the tumour necrosis factor superfamily expressed primarily on antigen presenting cells such as B cells, macrophages and dendritic cells. Its engagement with the receptor 4-1BB (CD137) has been shown to promote T-cell activation and regulate proliferation and survival of T cells. The role of the costimulatory molecule in multiple sclerosis (MS) remains unclear. In this study, the expression of 4-1BBL and soluble 4-1BBL (s4-1BBL) protein levels were analysed in peripheral blood of MS patients. Compared with healthy controls, MS patients had an increase in both plasma s4-1BBL protein levels and expression of 4-1BBL in CD14(+) monocytes. In contrast, myelin basic protein-reactive T-cell proliferation was not found to be inhibited by the use of an anti-4-1BBL antibody. The elevated s4-1BBL protein levels in the MS patients may function as a self-regulatory mechanism of 4-1BB/4-1BBL interaction and costimulation.
Collapse
Affiliation(s)
- G-Z Liu
- Department of Neurology, Peking University People's Hospital, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vinay DS, Cha K, Kwon BS. Dual immunoregulatory pathways of 4-1BB signaling. J Mol Med (Berl) 2006; 84:726-36. [PMID: 16924475 DOI: 10.1007/s00109-006-0072-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Accepted: 04/04/2006] [Indexed: 01/16/2023]
Abstract
It is perhaps rare to encounter among the various immunologically competent receptor-ligand pairs that a single cell surface determinant unleashes both a hidden suppressive function and costimulation. 4-1BB, an activation-induced tumor necrosis factor receptor family member chiefly viewed as a powerful T-cell costimulatory molecule, is one such example. Accumulated evidence in recent years uncovered an unknown facet of in vivo 4-1BB signaling (i.e., "active suppression"). Although in vitro signaling via 4-1BB is shown to support both CD4(+) and CD8(+) T-cell responses, the same induces a predominant CD8(+) T-cell response suppressing CD4(+) T-cell function when applied in vivo. How, when, and why such dual immunoregulatory effect of anti-4-1BB monoclonal antibody (MAB) comes into play is currently the focus of intense research. Existing data, although not complete, uncover several important aspects of in vivo 4-1BB signaling in the amelioration or exacerbation of various immune disorders. Despite minor disagreements, a majority agree that upregulation of interferon (IFN)-gamma is critical to anti-4-1BB MAB therapy in addition to immune modulators such as interleukin 2, transforming growth factor beta, and indolamine 2,3-dioxygenase(5), all of which contribute greatly to the success of anti-4-1BB MAB-based immunotherapy. Anti-4-1BB MAB-mediated expansion of novel CD11c(+)CD8(+) T cells is additional weaponry that appears critical for its in vivo suppressive function. These CD11c(+)CD8(+) T cells express high levels of IFN-gamma, become effective killers, and mediate selective suppression of CD4(+) T cells. In this review, we discuss the dual nature (costimulatory and suppressive) of 4-1BB-mediated immune regulation, its current status, future direction, and its impact on the immune system, with special reference to its immunotherapy.
Collapse
Affiliation(s)
- Dass S Vinay
- LSU Eye Center, Louisiana State University Health Sciences Center School of Medicine, Suite B, 2020 Gravier Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
42
|
Zhang H, Knutson KL, Hellstrom KE, Disis ML, Hellstrom I. Antitumor efficacy of CD137 ligation is maximized by the use of a CD137 single-chain Fv-expressing whole-cell tumor vaccine compared with CD137-specific monoclonal antibody infusion. Mol Cancer Ther 2006; 5:149-55. [PMID: 16432173 DOI: 10.1158/1535-7163.mct-05-0206] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor-destructive immune responses can be generated by engaging CD137 (4-1BB) via infusing a monoclonal antibody specific for CD137 or vaccinating with a single-chain Fv (scFv) CD137-expressing whole-cell tumor vaccine. We assessed whether such a vaccine can induce tumor rejection in the neu-transgenic (neu-Tg) mouse breast cancer model and compared the antitumor efficacy of vaccination with the infusion of a CD137-specific antibody. Mammary carcinoma cells (MMC) from a neu-Tg mouse were transfected to stably express surface scFv derived from the anti-CD137 rat hybridoma 1D8 or 3H3. The anti-CD137 scFv-expressing cells were rejected when transplanted into neu-Tg mice by a mechanism that involved both CD4(+) and CD8(+) T cells, and vaccination with such cells delayed the outgrowth of MMC cells transplanted 3 days previously. T cells from neu-Tg mice that had been vaccinated proliferated and produced IFN-gamma when stimulated by MMC but not by antigen-negative variant breast cancer cells that did not express the neu tumor antigen. In addition, antibodies binding to the MMC but not to antigen-negative variant cells were detected in sera from some but not all of the immunized mice. Complete regression of s.c. transplanted MMC tumors was observed in mice repeatedly immunized against MMC-1D8 starting on the day the MMC cells were transplanted. In contrast, repeated administration of either of two different anti-CD137 monoclonal antibodies did not induce complete tumor regression, although tumor growth was delayed.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Cell Transplantation
- Female
- Graft Rejection/immunology
- Immunoglobulin Fragments/immunology
- Infusions, Parenteral
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Receptors, Nerve Growth Factor/immunology
- Receptors, Tumor Necrosis Factor/immunology
- T-Lymphocytes/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9
Collapse
Affiliation(s)
- Hongtao Zhang
- Department of Pathology, Center for Translational Medicine in Women's Health, University of Washington, Seattle, USA
| | | | | | | | | |
Collapse
|
43
|
Maerten P, Kwon BS, Shen C, De Hertogh G, Cadot P, Bullens DMA, Overbergh L, Mathieu C, Van Assche G, Geboes K, Rutgeerts P, Ceuppens JL. Involvement of 4-1BB (CD137)-4-1BBligand interaction in the modulation of CD4 T cell-mediated inflammatory colitis. Clin Exp Immunol 2006; 143:228-36. [PMID: 16412046 PMCID: PMC1809580 DOI: 10.1111/j.1365-2249.2005.02991.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
4-1BB ligand (4-1BBL) expressed on antigen-presenting cells interacts with 4-1BB on activated T cells (especially CD8+ cells) and co-stimulates the latter to secrete cytokines and to proliferate. The role of 4-1BB-4-1BBL interaction was studied here in a model of colitis based on naive CD4+ T cell transfer to SCID mice, a disease model in which CD8 cells do not take part. We found that CD4+ T cells from 4-1BB-deficient mice, after transfer in SCID mice, proliferated more rapidly compared to wild-type CD4+ T cells. Mice reconstituted with naive CD4+ T cells from 4-1BB-deficient mice developed colitis, however, with a mixed Th1/Th2 response, in contrast to the Th1-type response in mice reconstituted with wild-type naive CD4+ T cells. Importantly, this altered cytokine response did not temper colitis severity. Although it has been reported previously that 4-1BB co-stimulation may contribute to regulatory T cell functioning, we found that CD4+CD25+ regulatory T cells from 4-1BB-deficient mice were perfectly able to prevent naive CD4+ T cell-induced colitis. In conclusion, our data provide evidence that 4-1BB-4-1BBL interaction modulates the effector CD4+ T cell-driven immune response and cytokine production in experimental colitis without affecting regulatory T cell function.
Collapse
Affiliation(s)
- P Maerten
- Laboratory of Experimental Immunology, University Hospital, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Several members of the tumor necrosis factor receptor (TNFR) family function after initial T cell activation to sustain T cell responses. This review focuses on CD27, 4-1BB (CD137), OX40 (CD134), HVEM, CD30, and GITR, all of which can have costimulatory effects on T cells. The effects of these costimulatory TNFR family members can often be functionally, temporally, or spatially segregated from those of CD28 and from each other. The sequential and transient regulation of T cell activation/survival signals by different costimulators may function to allow longevity of the response while maintaining tight control of T cell survival. Depending on the disease condition, stimulation via costimulatory TNF family members can exacerbate or ameliorate disease. Despite these complexities, stimulation or blockade of TNFR family costimulators shows promise for several therapeutic applications, including cancer, infectious disease, transplantation, and autoimmunity.
Collapse
Affiliation(s)
- Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
45
|
Schwarz H. Biological activities of reverse signal transduction through CD137 ligand. J Leukoc Biol 2005; 77:281-286. [PMID: 15618293 DOI: 10.1189/jlb.0904558] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CD137 is a member of the tumor necrosis factor receptor family and a potent regulator of T cell activities. Agonists of CD137 have been used widely and successfully to treat cancer in animal models, and recently, it has become evident that CD137 agonists can also be used to treat autoimmune disease. An aspect of the CD137 receptor/ligand system, which has been comparatively little-explored, is its ability of reverse signaling. Just as is CD137, the CD137 ligand is also expressed as a cell membrane protein, and it too can transduce signals into the cells on which it is expressed. This bidirectional signaling capacity allows the CD137 receptor/ligand system to mediate extensive cross-talk between immune cells and between immune and nonimmune cells. This review summarizes the known activities of the CD137 ligand on the different leukocyte subsets and on cancer cells and discusses their influence on the course of immune responses.
Collapse
Affiliation(s)
- Herbert Schwarz
- National University of Singapore, 2 Medical Drive, MD 9, Singapore 117597.
| |
Collapse
|
46
|
|
47
|
Abstract
The activation of T cells plays a central role in antitumor immunity. In order to activate naïve T cells, two key signals are required. Signal one is provided through the T-cell receptor (TCR) while signal two is that of costimulation. The CD28:B7 molecules are one of the best-studied costimulatory pathways, thought to be the main mechanism through which primary T-cell stimulation occurs. However, a number of molecules have been identified which serve to amplify and diversify the T-cell response, following initial T-cell activation. These include the more recently described 4-1BB:4-1BB ligand (4-1BBL) molecules. 4-1BB:4-1BBL are a member of the TNFR:TNF ligand family, which are expressed on T cells and antigen-presenting cells (APCs), respectively. Therapies utilizing the 4-1BB:4-1BBL signaling pathway have been shown to have antitumor effects in a number of model systems. In this paper, we focus on the 4-1BB:4-1BBL costimulatory molecules. In particular, we will describe the structure and function of the 4-1BB molecule, its receptor and how 4-1BB:4-1BBL costimulation has and may be used for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Adam T C Cheuk
- Leukaemia Science Laboratories, Department of Haematological Medicine, Guy's, King's & St Thomas' School of Medicine, King's College London, Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, UK
| | | | | |
Collapse
|
48
|
Maerten P, Geboes K, De Hertogh G, Shen C, Cadot P, Bullens DMA, Van Assche G, Penninckx F, Rutgeerts P, Ceuppens JL. Functional expression of 4-1BB (CD137) in the inflammatory tissue in Crohn's disease. Clin Immunol 2004; 112:239-46. [PMID: 15308117 DOI: 10.1016/j.clim.2004.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 04/30/2004] [Indexed: 12/21/2022]
Abstract
4-1BB ligand (L) expressed on antigen presenting cells (APC) interacts with 4-1BB, expressed on activated T cells and this interaction costimulates T cells to secrete cytokines and to proliferate. We investigated whether 4-1BB/4-1BBL interactions might be involved in the pathogenesis of Crohn's disease (CD). In immunohistochemistry, we found 4-1BB expression on lamina propria (LP) cells in inflamed and to a lesser extend in non-inflamed gut tissue from CD patients. mRNA levels for 4-1BB were also elevated in intestinal CD tissue. In contrast, only few 4-1BB-expressing cells were found in inflamed tissue from ulcerative colitis (UC) patients and almost no positive cells were found in control intestinal tissue. 4-1BB expression was better sustained on in vitro activated lamina propria T cells from CD patients compared to controls. Finally, agonistic anti-4-1BB antibody enhanced interferon-gamma (IFN-gamma) production and proliferation of lamina propria T cells from CD patients. Taken together, our data suggest that 4-1BB/4-1BBL interactions contribute to the persistence of gut inflammation in CD.
Collapse
Affiliation(s)
- Philippe Maerten
- Clinical Immunology, University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Laderach D, Wesa A, Galy A. 4-1BB-ligand is regulated on human dendritic cells and induces the production of IL-12. Cell Immunol 2003; 226:37-44. [PMID: 14746806 DOI: 10.1016/j.cellimm.2003.11.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Co-stimulation via 4-1BB and its ligand 4-1BB ligand (4-1BB-L) plays an important role in cytotoxic and pro-inflammatory immune responses. 4-1BB-L is generally described on activated antigen-presenting cells but there is limited information on its expression and function in human dendritic cells (DC). We herein compared purified CD1a+CD14- DC issued from monocytes or from hematopoietic progenitor cells (HPC). These DC expressed 4-1BB-L mRNA transcripts with highest cell surface levels on HPC-derived DC cultured with IL-1. Pro-inflammatory activation, particularly CD40 ligand+IL-1, up-regulated 4-1BB-L on DC. We confirmed reverse signaling via 4-1BB-L as immobilized 4-1BB in conjunction with CD40-L, enhanced IL-12beta mRNA and the secretion of IL-12 p70 in various APC, including monocytes. Altogether, DC may differ in T cell co-stimulation properties due to variable and regulated levels of 4-1BB-L. Data illustrate reciprocal stimulations between T cells and APC via up-regulated receptor/ligands and production of key cytokines that consolidate cellular immune responses.
Collapse
Affiliation(s)
- Diego Laderach
- Department of Immunology and Microbiology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, USA
| | | | | |
Collapse
|
50
|
Ju SW, Ju SG, Wang FM, Gu ZJ, Qiu YH, Yu GH, Ma HB, Zhang XG. A Functional Anti-Human 4-1BB Ligand Monoclonal Antibody that Enhances Proliferation of Monocytes by Reverse Signaling of 4-1BBL. ACTA ACUST UNITED AC 2003; 22:333-8. [PMID: 14678652 DOI: 10.1089/153685903322538872] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
4-1BB Ligand (4-1BBL), a transmembrane molecule, member of the tumor necrosis factor ligand superfamily, is an important costimulatory molecule in the immune response. In this study a functional anti-human 4-1BBL MAb 1F1 was obtained and the specificity of this MAb was verified by flow cytometry and Western blotting. This MAb effectively recognized the 4-1BBL molecule expressed on a series of malignant cell lines as well as on DC and monocytes and it inhibited the proliferation of T lymphocytes, costimulated by soluble 4-1BBL and agonist anti-human CD3 MAb. Furthermore, we demonstrated that MAb 1F1 induced an impressive proliferation of monocytes from peripheral blood by triggering the reverse signal through 4-1BBL. This functional anti-human 4-1BBL MAb provides a valuable tool for further study of biological functions as well as signal transduction of 4-1BBL/4-1BB.
Collapse
Affiliation(s)
- Song-Wen Ju
- Biotechnology Institute, Soochow University, Suzhou, China
| | | | | | | | | | | | | | | |
Collapse
|