1
|
Rodgarpoor Z, Meshkin A, Ehramianpour M, Zare F. The role of leukemia inhibitory factor in autoimmune disorders: insights into recovery and treatment. Reumatismo 2025. [PMID: 40167124 DOI: 10.4081/reumatismo.2025.1753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/05/2024] [Indexed: 04/02/2025] Open
Abstract
OBJECTIVE Leukemia inhibitory factor (LIF) is a multifunctional cytokine involved in numerous physiological processes, including inflammation and immune response regulation. Recent studies have highlighted its potential role in the pathogenesis and treatment of autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS). This review aims to investigate the role of LIF in various autoimmune disorders and its impact on the recovery and treatment of these diseases. METHODS A comprehensive literature search was conducted using Google Scholar, PubMed, and Scopus databases. Relevant studies published up to December 2023 were identified using keywords such as "leukemia inhibitory factor", "autoimmune diseases", "rheumatoid arthritis" and "multiple sclerosis". RESULTS The literature indicates that LIF has a dual role in autoimmune diseases. In RA, LIF plays an important role in the progression of joint damage by increasing the inflammatory response. In MS, LIF has been shown to promote remyelination and neuroprotection, suggesting its potential as a therapeutic agent. However, the precise mechanisms by which LIF modulates immune responses in these conditions remain incompletely understood. CONCLUSIONS LIF represents a promising target for treating autoimmune diseases, particularly RA and MS. Further research is required to elucidate its mechanisms of action and develop targeted therapies that can control its beneficial effects while minimizing potential adverse outcomes.
Collapse
Affiliation(s)
- Zahra Rodgarpoor
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd
| | - Ahmad Meshkin
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd
| | | | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd
| |
Collapse
|
2
|
Liu Y, Li F, Wang J, Yang R. Exploring effects of gut microbiota on tertiary lymphoid structure formation for tumor immunotherapy. Front Immunol 2025; 15:1518779. [PMID: 40124706 PMCID: PMC11925796 DOI: 10.3389/fimmu.2024.1518779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 03/25/2025] Open
Abstract
Anti-tumor immunity, including innate and adaptive immunity is critical in inhibiting tumorigenesis and development of tumor. The adaptive immunity needs specific lymph organs such as tertiary lymphoid structures (TLSs), which are highly correlated with improved survival outcomes in many cancers. In recent years, with increasing attention on the TLS in tumor microenvironment, TLSs have emerged as a novel target for anti-tumor therapy. Excitingly, studies have shown the contribution of TLSs to the adaptive immune responses. However, it is unclear how TLSs to form and how to more effectively defense against tumor through TLS formation. Recent studies have shown that the inflammation plays a critical role in TLS formation. Interestingly, studies have also found that gut microbiota can regulate the occurrence and development of inflammation. Therefore, we here summarize the potential effects of gut microbiota- mediated inflammation or immunosuppression on the TLS formation in tumor environments. Meanwhile, this review also explores how to manipulate mature TLS formation through regulating gut microbiota/metabolites or gut microbiota associated signal pathways for anti-tumor immunity, which potentially lead to a next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Fan Li
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Park H, Song J, Jeong HW, Grönloh MLB, Koh BI, Bovay E, Kim KP, Klotz L, Thistlethwaite PA, van Buul JD, Sorokin L, Adams RH. Apelin modulates inflammation and leukocyte recruitment in experimental autoimmune encephalomyelitis. Nat Commun 2024; 15:6282. [PMID: 39060233 PMCID: PMC11282314 DOI: 10.1038/s41467-024-50540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Demyelination due to autoreactive T cells and inflammation in the central nervous system are principal features of multiple sclerosis (MS), a chronic and highly disabling human disease affecting brain and spinal cord. Here, we show that treatment with apelin, a secreted peptide ligand for the G protein-coupled receptor APJ/Aplnr, is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Apelin reduces immune cell entry into the brain, delays the onset and reduces the severity of EAE. Apelin affects the trafficking of leukocytes through the lung by modulating the expression of cell adhesion molecules that mediate leukocyte recruitment. In addition, apelin induces the internalization and desensitization of its receptor in endothelial cells (ECs). Accordingly, protection against EAE major outcomes of apelin treatment are phenocopied by loss of APJ/Aplnr function, achieved by EC-specific gene inactivation in mice or knockdown experiments in cultured primary endothelial cells. Our findings highlight the importance of the lung-brain axis in neuroinflammation and indicate that apelin targets the transendothelial migration of immune cells into the lung during acute inflammation.
Collapse
Affiliation(s)
- Hongryeol Park
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany.
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Max L B Grönloh
- Vascular Cell Biology Lab, Department of Medical Biochemistry, Amsterdam UMC, and Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Bong Ihn Koh
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Esther Bovay
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Kee-Pyo Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Luisa Klotz
- Department of Neurology, University of Münster, Münster, Germany
| | | | - Jaap D van Buul
- Vascular Cell Biology Lab, Department of Medical Biochemistry, Amsterdam UMC, and Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany.
| |
Collapse
|
4
|
Kim B, Song A, Son A, Shin Y. Gut microbiota and epigenetic choreography: Implications for human health: A review. Medicine (Baltimore) 2024; 103:e39051. [PMID: 39029010 PMCID: PMC11398772 DOI: 10.1097/md.0000000000039051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
The interwoven relationship between gut microbiota and the epigenetic landscape constitutes a pivotal axis in understanding human health and disease. Governed by a myriad of dietary, genetic, and environmental influences, the gut microbiota orchestrates a sophisticated metabolic interplay, shaping nutrient utilization, immune responses, and defenses against pathogens. Recent strides in genomics and metabolomics have shed light on the intricate connections between these microbial influencers and the host's physiological dynamics, presenting a dynamic panorama across diverse disease spectra. DNA methylation and histone modifications, as key players in epigenetics, intricately align with the dynamic orchestration of the gut microbiota. This seamless collaboration, notably evident in conditions like inflammatory bowel disease and obesity, has captured the attention of researchers, prompting an exploration of its nuanced choreography. Nevertheless, challenges abound. Analyzing data is intricate due to the multifaceted nature of the gut microbiota and the limitations of current analytical methods. This underscores the need for a multidisciplinary approach, where diverse disciplines converge to pave innovative research pathways. The integration of insights from microbiome and epigenome studies assumes paramount importance in unraveling the complexities of this intricate partnership. Deciphering the synchronized interactions within this collaboration offers a deeper understanding of these delicate interplays, potentially heralding revolutionary strides in treatment modalities and strategies for enhancing public health.
Collapse
Affiliation(s)
- Bailee Kim
- Crescenta Valley High School, La Crescenta, CA
| | - Angel Song
- Harvard-Westlake School, Studio City, CA
| | - Andrew Son
- Bellarmine College Preparatory, San Jose, CA
| | - Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| |
Collapse
|
5
|
Ekstedt N, Jamioł-Milc D, Pieczyńska J. Importance of Gut Microbiota in Patients with Inflammatory Bowel Disease. Nutrients 2024; 16:2092. [PMID: 38999840 PMCID: PMC11242987 DOI: 10.3390/nu16132092] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Inflammatory bowel diseases (IBDs), such as Crohn's disease (CD) and ulcerative colitis (UC), are chronic diseases of the digestive system with a multifactorial and not fully understood etiology. There is research suggesting that they may be initiated by genetic, immunological, and lifestyle factors. In turn, all of these factors play an important role in the modulation of intestinal microflora, and a significant proportion of IBD patients struggle with intestinal dysbiosis, which leads to the conclusion that intestinal microflora disorders may significantly increase the risk of developing IBD. Additionally, in IBD patients, Toll-like receptors (TLRs) produced by intestinal epithelial cells and dendritic cells treat intestinal bacterial antigens as pathogens, which causes a disruption of the immune response, resulting in the development of an inflammatory process. This may result in the occurrence of intestinal dysbiosis, which IBD patients are significantly vulnerable to. In this study, we reviewed scientific studies (in particular, systematic reviews with meta-analyses, being studies with the highest level of evidence) regarding the microflora of patients with IBD vs. the microflora in healthy people, and the use of various strains in IBD therapy.
Collapse
Affiliation(s)
- Natalia Ekstedt
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Dominika Jamioł-Milc
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Joanna Pieczyńska
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| |
Collapse
|
6
|
Mazzoccoli L, Liu B. Dendritic Cells in Shaping Anti-Tumor T Cell Response. Cancers (Basel) 2024; 16:2211. [PMID: 38927916 PMCID: PMC11201542 DOI: 10.3390/cancers16122211] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Among professional antigen-presenting cells, dendritic cells (DCs) orchestrate innate and adaptive immunity and play a pivotal role in anti-tumor immunity. DCs are a heterogeneous population with varying functions in the tumor microenvironment (TME). Tumor-associated DCs differentiate developmentally and functionally into three main subsets: conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (MoDCs). There are two major subsets of cDCs in TME, cDC1 and cDC2. cDC1 is critical for cross-presenting tumor antigens to activate cytotoxic CD8+ T cells and is also required for priming earlier CD4+ T cells in certain solid tumors. cDC2 is vital for priming anti-tumor CD4+ T cells in multiple tumor models. pDC is a unique subset of DCs and produces type I IFN through TLR7 and TLR9. Studies have shown that pDCs are related to immunosuppression in the TME through the secretion of immunosuppressive cytokines and by promoting regulatory T cells. MoDCs differentiate separately from monocytes in response to inflammatory cues and infection. Also, MoDCs can cross-prime CD8+ T cells. In this review, we summarize the subsets and functions of DCs. We also discuss the role of different DC subsets in shaping T cell immunity in TME and targeting DCs for potential immunotherapeutic benefits against cancer.
Collapse
Affiliation(s)
- Luciano Mazzoccoli
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Tang X, de Vos P. Structure-function effects of different pectin chemistries and its impact on the gastrointestinal immune barrier system. Crit Rev Food Sci Nutr 2023; 65:1201-1215. [PMID: 38095591 DOI: 10.1080/10408398.2023.2290230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The gastrointestinal immune system is crucial for overall health, safeguarding the human body against harmful substances and pathogens. One key player in this defense is dietary fiber pectin, which supports the gut's immune barrier and fosters beneficial gut bacteria. Pectin's composition, including degree of methylation (DM), RG-I, and neutral sugar content, influences its health benefits. This review assesses how pectin composition impacts the gastrointestinal immune barrier and what advantages specific chemistries of pectin has for metabolic, cardiovascular, and immune health. We delve into recent findings regarding pectin's interactions with the immune system, including receptors like TLRs and galectin 3. Pectin is shown to fortify mucosal and epithelial layers, but the specific effects are structure dependent. Additionally, we explore potential strategies for enhancing the gut immune barrier function. Understanding how distinct pectin chemistries affect the gastrointestinal immune system is vital for developing preventive and therapeutic solutions for conditions related to microbiota imbalances and immune issues. Ultimately, this review offers insights into strategies to boost the gut immune barrier's effectiveness, fostering better overall health by using specific pectins in the diet.
Collapse
Affiliation(s)
- X Tang
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Yuan S, Wang KS, Meng H, Hou XT, Xue JC, Liu BH, Cheng WW, Li J, Zhang HM, Nan JX, Zhang QG. The gut microbes in inflammatory bowel disease: Future novel target option for pharmacotherapy. Biomed Pharmacother 2023; 165:114893. [PMID: 37352702 DOI: 10.1016/j.biopha.2023.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 06/25/2023] Open
Abstract
Gut microbes constitute the main microbiota in the human body, which can regulate biological processes such as immunity, cell proliferation, and differentiation, hence playing a specific function in intestinal diseases. In recent years, gut microbes have become a research hotspot in the pharmaceutical field. Because of their enormous number, diversity, and functional complexity, gut microbes have essential functions in the development of many digestive diseases. Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease with a complex etiology, the exact cause and pathogenesis are unclear. There are no medicines that can cure IBD, and more research on therapeutic drugs is urgently needed. It has been reported that gut microbes play a critical role in pathogenesis, and there is a tight and complex association between gut microbes and IBD. The dysregulation of gut microbes may be a predisposing factor for IBD, and at the same time, IBD may exacerbate gut microbes' disorders, but the mechanism of interaction between the two is still not well defined. The study of the relationship between gut microbes and IBD is not only important to elucidate the pathogenesis but also has a positive effect on the treatment based on the regimen of regulating gut microbes. This review describes the latest research progress on the functions of gut microbes and their relationship with IBD, which can provide reference and assistance for further research. It may provide a theoretical basis for the application of probiotics, fecal microbiota transplantation, and other therapeutic methods to regulate gut microbes in IBD.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ke-Si Wang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Huan Meng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Xiao-Ting Hou
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jia-Chen Xue
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China; Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, China
| | - Bao-Hong Liu
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Wen-Wen Cheng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jiao Li
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Hua-Min Zhang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China.
| |
Collapse
|
9
|
Muszyński S, Hułas-Stasiak M, Dobrowolski P, Arciszewski MB, Hiżewska L, Donaldson J, Mozel S, Rycerz K, Kapica M, Puzio I, Tomaszewska E. Maternal acrylamide exposure changes intestinal epithelium, immunolocalization of leptin and ghrelin and their receptors, and gut barrier in weaned offspring. Sci Rep 2023; 13:10286. [PMID: 37355724 PMCID: PMC10290718 DOI: 10.1038/s41598-023-37590-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/23/2023] [Indexed: 06/26/2023] Open
Abstract
Acrylamide (ACR) is an amide formed as a byproduct in many heat-processed starchy-rich foods. In utero ACR exposure has been associated with restricted fetal growth, but its effects of postnatal functional development of small intestine is completely unknown. The current study investigated the time- and segment-dependent effects of prenatal ACR exposure on morphological and functional development of small intestine in weaned rat offspring. Four groups of pregnant female Wistar rats were exposed to ACR (3 mg/kg b.w./day) for 0, 5, 10 and 15 days during pregnancy. Basal intestinal morphology, immunolocalization of gut hormones responsible for food intake and proteins of intestinal barrier, activity of the intestinal brush border disaccharidases, apoptosis and proliferation in intestinal mucosa were analyzed in offspring at weaning (postnatal day 21). The results showed that in utero ACR exposure disturbs offspring gut structural and functional postnatal development in a time- and segment-depended manner and even a short prenatal exposure to ACR resulted in changes in intestinal morphology, immunolocalization of leptin and ghrelin and their receptors, barrier function, activity of gut enzymes and upregulation of apoptosis and proliferation. In conclusion, prenatal ACR exposure disturbed the proper postnatal development of small intestine.
Collapse
Affiliation(s)
- Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950, Lublin, Poland
| | - Monika Hułas-Stasiak
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033, Lublin, Poland
| | - Marcin B Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland
| | - Ligia Hiżewska
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Sylwia Mozel
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland
| | - Karol Rycerz
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland
| | - Małgorzata Kapica
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland
| | - Iwona Puzio
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950, Lublin, Poland.
| |
Collapse
|
10
|
Zhang X, Wu Y, Liu X, Lin X, Liu Y, Kang L, Ye H, Wang Z, Ma Y, Dai Z, Che D, Pi Y, Che L, Wang J, Han D. Pro-inflammatory Polarization of Macrophages Causes Intestinal Inflammation in Low-Birth-Weight Piglets and Mice. J Nutr 2023:S0022-3166(23)37559-X. [PMID: 37084872 DOI: 10.1016/j.tjnut.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Low-birth-weight (LBW) animals suffer from intestinal damage and inflammation in their early life. OBJECTIVES The aim of this study was to investigate the role of macrophages in intestinal inflammation in LBW piglets and mice. METHODS Major genes involved in intestinal barrier function such as claudin-1, zonula occludens-1 (ZO-1), occludin, and mucin 2 and inflammatory cytokines such as IL-1β, TNF-α, IL-10, and IL-13 were evaluated in 21-day-old, normal birth weight (NBW) and LBW piglets and mice. Macrophage markers such as CD16/32, CD163, and CD206 were also assessed by immunofluorescence and flow cytometry. Polarized and unpolarized macrophages were further transferred into NBW and LBW mice, followed by evaluation of intestinal permeability and inflammation. RESULTS Claudin-1 mRNA in LBW piglets as well as claudin-1, occludin, ZO-1 and mucin 2 mRNAs in LBW mice was significantly downregulated. IL-1β and TNF-α were significantly upregulated in LBW piglets (P < 0.05). LBW mice showed a reduced expression of IL-10 and IL-13 (P < 0.05), with a heightened IL-6 level (P < 0.01) in the jejunum. CD16, a marker for M1 macrophages, was significantly elevated in the jejunum of LBW piglets, whereas CD163, a marker for M2 macrophages, was significantly decreased (P < 0.05). Similarly, LBW mice had more CD11b+CD16/32+ M1 macrophages (P < 0.05) and fewer CD206+ M2 macrophages (P < 0.01) than NBW mice. Moreover, transfer of M1 macrophages exacerbated intestinal inflammation in LBW mice. Furthermore, two major glycolysis-associated genes, hexokinase 2 (HK2) and lactate dehydrogenase A (LDHA), were significantly upregulated in LBW piglets and mice (P < 0.05). CONCLUSIONS This study revealed for the first time that the intestinal macrophages are polarized towards a pro-inflammatory phenotype in LBW piglets and mice, contributing to intestinal inflammation. The findings of this study provide new options for the management of intestinal inflammation in LBW animals.
Collapse
Affiliation(s)
- Xiangyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xu Lin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Luyuan Kang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Ye
- Department of Animal Sciences, Wageningen University, Wageningen 6700 AH, Netherlands
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yingying Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, 130118, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan 611130, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Lee E, Lee GH, Park B, Ahn SS, Noh CK. Positive faecal immunochemical test predicts the onset of inflammatory bowel disease: A nationwide, propensity score-matched study. Front Immunol 2023; 14:1128736. [PMID: 36860865 PMCID: PMC9968927 DOI: 10.3389/fimmu.2023.1128736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Background & aims The faecal immunochemical test (FIT), a non-invasive test for screening colorectal cancer (CRC), is being increasingly understood to reflect heightened inflammation. We aimed to investigate the association between abnormal FIT results and onset of inflammatory bowel disease (IBD), a disease characterized with chronic gut mucosal inflammation. Methods Participants in the Korean National Cancer Screening Program for CRC between 2009-2013 were analysed and divided into positive and negative FIT result groups. The incidence rates of IBD after screening were calculated after excluding cases of haemorrhoids, CRC, and IBD at baseline. Cox proportional hazard analyses were used to identify independent risk factors for IBD occurrence during follow-up, and 1:2 propensity score matching was performed as a sensitivity analysis. Results In total, 229,594 and 815,361 participants were assigned to the positive and negative FIT result groups, respectively. The age- and sex-adjusted incidence rates of IBD in participants with positive and negative test results were 1.72 and 0.50 per 10,000 person-years, respectively. Adjusted Cox analysis revealed that FIT positivity was associated with a significantly higher risk of IBD (hazard ratio 2.93, 95% confidence interval: 2.46, 3.47, P <.001), which was consistent for both disease subtypes of ulcerative colitis and Crohn's disease. The results of Kaplan-Meier analysis in the matched population yielded identical findings. Conclusions Abnormal FIT results could be a preceding sign of incident IBD in the general population. Those with positive FIT results and suspected IBD symptoms could benefit from regular screening for early disease detection.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea,Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Gil Ho Lee
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea,Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea,*Correspondence: Sung Soo Ahn, ; Choong-Kyun Noh,
| | - Choong-Kyun Noh
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea,*Correspondence: Sung Soo Ahn, ; Choong-Kyun Noh,
| |
Collapse
|
12
|
Jansen D, Matthijnssens J. The Emerging Role of the Gut Virome in Health and Inflammatory Bowel Disease: Challenges, Covariates and a Viral Imbalance. Viruses 2023; 15:173. [PMID: 36680214 PMCID: PMC9861652 DOI: 10.3390/v15010173] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Virome research is a rapidly growing area in the microbiome field that is increasingly associated with human diseases, such as inflammatory bowel disease (IBD). Although substantial progress has been made, major methodological challenges limit our understanding of the virota. In this review, we describe challenges that must be considered to accurately report the virome composition and the current knowledge on the virome in health and IBD. First, the description of the virome shows strong methodological biases related to wetlab (e.g., VLP enrichment) and bioinformatics approaches (viral identification and classification). Second, IBD patients show consistent viral imbalances characterized by a high relative abundance of phages belonging to the Caudovirales and a low relative abundance of phages belonging to the Microviridae. Simultaneously, a sporadic contraction of CrAss-like phages and a potential expansion of the lysogenic potential of the intestinal virome are observed. Finally, despite numerous studies that have conducted diversity analysis, it is difficult to draw firm conclusions due to methodological biases. Overall, we present the many methodological and environmental factors that influence the virome, its current consensus in health and IBD, and a contributing hypothesis called the "positive inflammatory feedback loop" that may play a role in the pathophysiology of IBD.
Collapse
Affiliation(s)
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute, Department of Microbiology, Immunology and Transplantation, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
13
|
Akuzum B, Lee JY. Context-Dependent Regulation of Type17 Immunity by Microbiota at the Intestinal Barrier. Immune Netw 2022; 22:e46. [PMID: 36627936 PMCID: PMC9807962 DOI: 10.4110/in.2022.22.e46] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 12/30/2022] Open
Abstract
T-helper-17 (Th17) cells and related IL-17-producing (type17) lymphocytes are abundant at the epithelial barrier. In response to bacterial and fungal infection, the signature cytokines IL-17A/F and IL-22 mediate the antimicrobial immune response and contribute to wound healing of injured tissues. Despite their protective function, type17 lymphocytes are also responsible for various chronic inflammatory disorders, including inflammatory bowel disease (IBD) and colitis associated cancer (CAC). A deeper understanding of type17 regulatory mechanisms could ultimately lead to the discovery of therapeutic strategies for the treatment of chronic inflammatory disorders and the prevention of cancer. In this review, we discuss the current understanding of the development and function of type17 immune cells at the intestinal barrier, focusing on the impact of microbiota-immune interactions on intestinal barrier homeostasis and disease etiology.
Collapse
Affiliation(s)
- Begum Akuzum
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
14
|
Cui X, Ye Z, Wang D, Yang Y, Jiao C, Ma J, Tang N, Zhang H. Aryl hydrocarbon receptor activation ameliorates experimental colitis by modulating the tolerogenic dendritic and regulatory T cell formation. Cell Biosci 2022; 12:46. [PMID: 35461286 PMCID: PMC9034494 DOI: 10.1186/s13578-022-00780-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
Background Intestinal immune dysfunction is involved in the onset of Crohn’s disease (CD). Dendritic cells (DCs), antigen-presenting cells, play a key role in the maintenance of intestinal immune homeostasis. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor widely expressed in various immune cells, including DCs. Although AhR plays an important role in immune tolerance, its role in the DCs is unclear. The purpose of this study was to investigate whether the activation of AhR can induce tolerogenic DCs (tolDCs) and the differentiation of regulatory T (Treg) cells, as well as ameliorate experimental colitis. Results AhR activation in the DCs resulted in a lower expression of surface markers such as CD80, CD83, CD86, and pro-inflammatory cytokine production, and higher anti-inflammatory production (IL-1β, IL-23, and IL-12) compared to the control DCs. The surface dendrites in DCs were significantly reduced following AhR activation by 6-formylindolo [3,2-b]carbazole (FICZ). Such DCs with FICZ-mediated activation of AhR, namely tolDCs, promoted Treg cell differentiation. Adoptive transfer of tolDCs to a TNBS-induced colitis mouse model significantly alleviated the severity of inflammation by improving the colon length and decreasing the disease activity index (DAI) and histopathological score. Moreover, the transferred tolDCs decreased the frequency of Th17 cells and increased the frequency of Treg cells in the spleen and mesenteric lymph nodes (MLNs) in murine colitis models. Conclusions Activation of AhR in the DCs could induce tolDCs, and the transplantation of tolDCs may help in relieving intestinal inflammation and maintaining the Th17/Treg differentiation balance. Thus, our data suggest that AhR may be a potential therapeutic target for CD.
Collapse
|
15
|
Sardinha-Silva A, Alves-Ferreira EVC, Grigg ME. Intestinal immune responses to commensal and pathogenic protozoa. Front Immunol 2022; 13:963723. [PMID: 36211380 PMCID: PMC9533738 DOI: 10.3389/fimmu.2022.963723] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The physical barrier of the intestine and associated mucosal immunity maintains a delicate homeostatic balance between the host and the external environment by regulating immune responses to commensals, as well as functioning as the first line of defense against pathogenic microorganisms. Understanding the orchestration and characteristics of the intestinal mucosal immune response during commensal or pathological conditions may provide novel insights into the mechanisms underlying microbe-induced immunological tolerance, protection, and/or pathogenesis. Over the last decade, our knowledge about the interface between the host intestinal mucosa and the gut microbiome has been dominated by studies focused on bacterial communities, helminth parasites, and intestinal viruses. In contrast, specifically how commensal and pathogenic protozoa regulate intestinal immunity is less well studied. In this review, we provide an overview of mucosal immune responses induced by intestinal protozoa, with a major focus on the role of different cell types and immune mediators triggered by commensal (Blastocystis spp. and Tritrichomonas spp.) and pathogenic (Toxoplasma gondii, Giardia intestinalis, Cryptosporidium parvum) protozoa. We will discuss how these various protozoa modulate innate and adaptive immune responses induced in experimental models of infection that benefit or harm the host.
Collapse
|
16
|
Extracellular Vesicles—Oral Therapeutics of the Future. Int J Mol Sci 2022; 23:ijms23147554. [PMID: 35886902 PMCID: PMC9315796 DOI: 10.3390/ijms23147554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Considered an artifact just after discovery, the possibility of oral delivery of extracellular vesicles (EVs) and their functional cargos has recently gained much research attention. EVs from various sources, including edible plants, milk, bacteria and mammalian cells, have emerged as a platform for miRNA and drug delivery that seem to induce the expected immune effects locally and in distant tissues after oral administration. Such a possibility greatly expands the clinical applicability of EVs. The present review summarizes research findings that either support or deny the biological/therapeutical activity of orally administered EVs and their role in cross-species and cross-kingdom signaling.
Collapse
|
17
|
Noh CK, Lee E, Park B, Ahn SS. A positive faecal immunochemical test result and its association with the incidence of rheumatoid arthritis, systemic lupus erythematosus, and psoriatic arthritis: an analysis of one-million national colorectal cancer screening programme results. BMC Med 2022; 20:226. [PMID: 35786411 PMCID: PMC9251919 DOI: 10.1186/s12916-022-02416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulating evidence now indicates that the presence of faecal haemoglobin, in the absence of gastrointestinal bleeding, may be an indicator of systemic inflammation and is linked to the development of human diseases. We evaluated whether a positive faecal immunochemical test (FIT) is associated with the development of immune-mediated inflammatory diseases (IMIDs). METHODS Data from the nationwide colorectal cancer screening programme from 2009 to 2013 were used. Participants (n=8,646,887) were divided into FIT (+) and FIT (-) groups by performing a 1:1 random sampling matched by age and sex. Participants with concurrent haemorrhoids, colorectal cancer (CRC), inflammatory bowel disease (IBD), and missed CRC and IBD were excluded using the colonoscopy results, ICD-10 codes, and the special exemption code (V code). Endpoints were the incidence of IMIDs (rheumatoid arthritis [RA], systemic lupus erythematosus [SLE], and psoriatic arthritis [PsA]) after FIT. RESULTS Of the 1,044,955 eligible participants, 229,594 and 815,361 individuals were included in the FIT (+) and the FIT (-) groups, respectively. During the mean follow-up period of 7.59 years, a total of 7645 (incidence rate [IR] 9.56/10,000 person-years [PY]), 208 (IR 0.26/10,000 PY), and 101 (IR 0.13/10,000 PY) patients were diagnosed with RA, SLE, and PsA, respectively. An adjusted Cox analysis demonstrated that FIT positivity conferred a 1.16 (95% confidence interval [CI] 1.09-1.24, p<0.001) times greater risk of developing RA. Kaplan-Meier analysis in the 1:2 propensity-score matched population also confirmed these results (hazard ratio [HR] 1.18, 95% CI 1.10-1.27, p<0.001). CONCLUSIONS Positive FIT is associated with increased risk of RA in the general population, corroborating that aberrancies of gut mucosa are associated with the development of IMIDs. Vigilant monitoring and early referral to a specialist upon medical suspicion is required in this population. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Choong-Kyun Noh
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Eunyoung Lee
- Department of Medical Sciences, Biomedical Informatics, Graduate School of Ajou University, Suwon, Republic of Korea
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
- Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea.
- Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea.
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea.
| |
Collapse
|
18
|
Cruz-Muñoz JR, Barrios-García T, Valdez-Morales EE, Durán-Vazquez MF, Méndez-Rodríguez KB, Barajas-Espinosa A, Ochoa-Cortes F, Martínez-Saldaña MC, Gómez-Aguirre YA, Alba RG. Ethanolic extract from Lepidium virginicum L. ameliorates DNBS-induced colitis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115056. [PMID: 35104576 DOI: 10.1016/j.jep.2022.115056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/23/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lepidium virginicum L. (Brassicaceae) is a plant widely used in traditional Mexican medicine as an expectorant, diuretic, and as a remedy to treat diarrhea and dysentery, infection-derived gastroenteritis. However, there is no scientific study that validates its clinical use as an anti-inflammatory in the intestine. AIM OF THE STUDY This study aimed to investigate the anti-inflammatory properties of the ethanolic extract of Lepidium virginicum L. (ELv) in an animal model of inflammatory bowel disease (IBD)-like colitis. MATERIALS AND METHODS The 2,4-dinitrobenzene sulfonic acid (DNBS) animal model of IBD was used. Colitis was induced by intrarectal instillation of 200 mg/kg of DNBS dissolved vehicle, 50% ethanol. Control rats only received the vehicle. Six hours posterior to DNBS administration, ELv (3, 30, or 100 mg/kg) was administered daily by gavage or intraperitoneal injection. The onset and course of the inflammatory response were monitored by assessing weight loss, stool consistency, and fecal blood. Colonic damage was evaluated by colon weight/length ratio, histopathology, colonic myeloperoxidase (MPO) activity, and gene expression of proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), chemokine C-X-C motif ligand 1 (CXCL-1), and interleukin-6 (IL-6). RESULTS Rats treated with DNBS displayed significant weight loss, diarrhea, fecal blood, colon shortening, a significant increase in immune cell infiltration and MPO activity, as well as increased proinflammatory cytokine expression. Intraperitoneal administration of ELv significantly reduced colon inflammation, whereas oral treatment proved to be ineffective. In fact, intraperitoneal ELv significantly attenuated the clinical manifestations of colitis, immune cell infiltration, MPO activity, and pro-inflammatory (CXCL-1, TNF-α, and IL-1β) gene expression in a dose-dependent manner. CONCLUSION Traditional medicine has employed ELv as a remedy for common infection-derived gastrointestinal symptoms; however, we hereby present the first published study validating its anti-inflammatory properties in the mitigation of DNBS-induced colitis.
Collapse
Affiliation(s)
- José R Cruz-Muñoz
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags, C.P. 20100, Mexico.
| | - Tonatiuh Barrios-García
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags, C.P. 20100, Mexico.
| | - Eduardo E Valdez-Morales
- Cátedras CONACYT. Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Av. Universidad s/n. Exhacienda 5 señores Oaxaca, Ciudad Universitaria, C.P 68120, Oaxaca de Juárez Oaxaca, Mexico.
| | - María F Durán-Vazquez
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags, C.P. 20100, Mexico.
| | - Karen B Méndez-Rodríguez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, Lomas Segunda Sección, 78210, San Luis Potosí, S.L.P., Mexico.
| | - Alma Barajas-Espinosa
- Licenciatura en Enfermería, Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Calle acceso principal al corredor industrial s/n, Colonia Parque de Poblamiento, C.P. 43000, Huejutla de Reyes, Hidalgo, Mexico.
| | - Fernando Ochoa-Cortes
- Licenciatura en Enfermería, Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Calle acceso principal al corredor industrial s/n, Colonia Parque de Poblamiento, C.P. 43000, Huejutla de Reyes, Hidalgo, Mexico.
| | - María C Martínez-Saldaña
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags., C.P. 20100, Mexico.
| | - Yenny A Gómez-Aguirre
- CONACyT Research Fellow- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags., C.P. 20100, Mexico.
| | - Raquel Guerrero Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes, Ags, C.P. 20100, Mexico.
| |
Collapse
|
19
|
Lee JS, Yoon S, Han SJ, Kim ED, Kim J, Shin HS, Seo KY. Eyedrop vaccination: an immunization route with promises for effective responses to pandemics. Expert Rev Vaccines 2021; 21:91-101. [PMID: 34788181 DOI: 10.1080/14760584.2022.2008246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mucosal vaccines have several advantages over parenteral vaccines. They induce both systemic and mucosal antigen-specific immune responses, allow easy administration, and bypass the need for trained medical personnel. AREAS COVERED Eye mucosa is a novel route of mucosal vaccine administration. Eyedrop vaccination induces systemic and mucosal immune responses similar to other forms of mucosal vaccines such as oral and intranasal vaccines. EXPERT OPINION Eyedrop vaccines are free of serious adverse side effects like the infiltration of CNS by pathogens. Studies over the years have shown promising results for eye drop vaccines against infectious agents like the influenza virus, Salmonella typhi, and Escherichia coli in animal models. Such efficacy and safety of eyedrop vaccination enable the application of eyedrop vaccines against other infectious diseases as well as chronic diseases. In this review of published literature, we examine the mechanism, efficacy, and safety of eyedrop vaccines and contemplate their role in times of a pandemic.
Collapse
Affiliation(s)
- Jihei Sara Lee
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Sangchul Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Department of Medical Humanities and Social Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Jung Han
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Do Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Jiyeon Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Hae-Sol Shin
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Korea Mouse Sensory Phenotyping Center (Kmspc), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Korea Mouse Sensory Phenotyping Center (Kmspc), Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Snyder LM, Doherty CM, Mercer HL, Denkers EY. Induction of IL-12p40 and type 1 immunity by Toxoplasma gondii in the absence of the TLR-MyD88 signaling cascade. PLoS Pathog 2021; 17:e1009970. [PMID: 34597344 PMCID: PMC8513874 DOI: 10.1371/journal.ppat.1009970] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/13/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is an orally acquired pathogen that induces strong IFN-γ based immunity conferring protection but that can also be the cause of immunopathology. The response in mice is driven in part by well-characterized MyD88-dependent signaling pathways. Here we focus on induction of less well understood immune responses that do not involve this Toll-like receptor (TLR)/IL-1 family receptor adaptor molecule, in particular as they occur in the intestinal mucosa. Using eYFP-IL-12p40 reporter mice on an MyD88-/- background, we identified dendritic cells, macrophages, and neutrophils as cellular sources of MyD88-independent IL-12 after peroral T. gondii infection. Infection-induced IL-12 was lower in the absence of MyD88, but was still clearly above noninfected levels. Overall, this carried through to the IFN-γ response, which while generally decreased was still remarkably robust in the absence of MyD88. In the latter mice, IL-12 was strictly required to induce type I immunity. Type 1 and type 3 innate lymphoid cells (ILC), CD4+ T cells, and CD8+ T cells each contributed to the IFN-γ pool. We report that ILC3 were expanded in infected MyD88-/- mice relative to their MyD88+/+ counterparts, suggesting a compensatory response triggered by loss of MyD88. Furthermore, bacterial flagellin and Toxoplasma specific CD4+ T cell populations in the lamina propria expanded in response to infection in both WT and KO mice. Finally, we show that My88-independent IL-12 and T cell mediated IFN-γ production require the presence of the intestinal microbiota. Our results identify MyD88-independent intestinal immune pathways induced by T. gondii including myeloid cell derived IL-12 production, downstream type I immunity and IFN-γ production by ILC1, ILC3, and T lymphocytes. Collectively, our data reveal an underlying network of immune responses that do not involve signaling through MyD88. Toxoplasma gondii is an apicomplexan parasite estimated to infect 30–50% of humans worldwide. The parasite normally establishes latency in brain and muscle tissue marked by persistent asymptomatic infection. T. gondii masterfully strikes a balance between eliciting strong, anti-parasite immunity while also persisting in the host. Although the murine host recognizes Toxoplasma profilin via MyD88 and Toll-like receptors 11/12, humans lack these receptors and MyD88 deficient patients retain resistance to T. gondii infection. Given these observations, it is important to identify MyD88 independent pathways of immunity. Using an oral infection mouse model, we identified cellular sources of IL-12 and IFN-γ, two cytokines that are essential for host resistance to this microbial pathogen. We determined how these responses are impacted by the presence and absence of MyD88 and the intestinal microbiota. Our data demonstrate that T. gondii triggers MyD88-independent innate and adaptive immunity in the intestinal mucosa that requires the presence of intestinal microbes. These pathways may be conserved among species and understanding how they work in rodents will likely help determine how humans recognize and respond to T. gondii infection.
Collapse
Affiliation(s)
- Lindsay M Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Claire M Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Heather L Mercer
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
21
|
Tang J, Liu J, Yan Q, Gu Z, August A, Huang W, Jiang Z. Konjac Glucomannan Oligosaccharides Prevent Intestinal Inflammation Through SIGNR1-Mediated Regulation of Alternatively Activated Macrophages. Mol Nutr Food Res 2021; 65:e2001010. [PMID: 34390195 DOI: 10.1002/mnfr.202001010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 08/05/2021] [Indexed: 12/23/2022]
Abstract
SCOPE Konjac glucomannan oligosaccharides (KMOS) are prebiotics and may improve intestinal immunity through modulation of macrophage function. However, the underlying molecular mechanisms were unclear. METHODS AND RESULTS Using a mouse model of dextran sulfated sodium (DSS)-induced acute colitis, the study demonstrates here that KMOS (400 mg-1 kg-1 d-1 ) can ameliorate intestinal inflammation in a macrophage dependent manner. Oral exposure to KMOS prevents DSS-induced intestinal pathology, improves epithelial integrity, and decreases accumulation of colonic inflammatory leukocytes and cytokines. The therapeutic effects of KMOS are dependent on the function of macrophages, as depletion of macrophages abolished the effects. In colonic lamina propria of DSS-treated mice, as well as in vitro culture of bone marrow derived macrophages (BMDMs), KMOS skews reprogramming of classically activated macrophages (CAM/M1) into alternatively activated macrophages (AAM/M2). The study further determines that the activation of SIGNR1/phospho-c-Raf (S338)/phospho-p65 (S276)/acetyl-p65 (K310) pathway is responsible for KMOS-induced AAM/M2 polarization. Blockage of SIGNR1 abolishes KMOS-induced AAM/M2 polarization of activated macrophages, expression of phospho-p65 (S276) in colonic macrophages, and alleviation of DSS-induced colitis in mice, suggesting that SIGNR1 is critical for macrophage responses to KMOS. CONCLUSIONS This study reveals a SIGNR1-mediated macrophage-dependent pathway that supports regulatory function of KMOS in host immunity and intestinal homeostasis.
Collapse
Affiliation(s)
- Jiqing Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhenglong Gu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 13843, USA
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 13843, USA.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
22
|
Heydari R, Abdollahpour-Alitappeh M, Shekari F, Meyfour A. Emerging Role of Extracellular Vesicles in Biomarking the Gastrointestinal Diseases. Expert Rev Mol Diagn 2021; 21:939-962. [PMID: 34308738 DOI: 10.1080/14737159.2021.1954909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Extracellular vesicles (EVs) play an important role in cell-cell communication and regulation of various cellular functions under physiological and pathophysiological conditions through transferring their cargo to recipient cells. Molecular constituents of EVs are a fingerprinting profile of secreting cells which can be used as promising prognostic, diagnostic, and drug-response biomarkers in clinical settings. AREAS COVERED The present study provides a brief introduction about the biology of EVs and reviews methodologies used for EV isolation and characterization as well as high-throughput strategies to analyze EV contents. Furthermore, this review highlights the importance and unique role of EVs in the development and progression of gastrointestinal (GI) diseases, especially GI cancers, and then discusses their potential use, particularly those isolated from body fluids, in diagnosis and prognosis of GI diseases. EXPERT OPINION In-depth analysis of EV content can lead to the identification of new potential biomarkers for early diagnosis and prognosis prediction of GI diseases. The use of a more targeted approach by establishing more reproducible and standardized methods to decrease variations and obtain desired EV population as well as revisiting large pools of identified biomarkers and their evaluation in larger patient cohorts can result in the introduction of more reliable biomarkers in clinic.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
23
|
Guo J, Zhang R, Zhao Y, Wang J. MiRNA-29c-3p Promotes Intestinal Inflammation via Targeting Leukemia Inhibitory Factor in Ulcerative Colitis. J Inflamm Res 2021; 14:2031-2043. [PMID: 34040415 PMCID: PMC8140949 DOI: 10.2147/jir.s302832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dysregulation of micro-RNAs (miRNAs) is profoundly linked to inflammatory bowel diseases (IBD), but little is known about the specific biological functions of miRNAs in IBD. This study sought to elucidate the effect and the underlying target of miR-29c-3p in ulcerative colitis (UC). METHODS The levels of miR-29c-3p and leukemia inhibitory factor (LIF) were measured in inflamed lesions of UC patients and dextran sulfate sodium (DSS)-induced colitis mice by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. MiR-29c-3p was predicted to target LIF by bioinformatics software, which was verified via luciferase reporter assay and transfection of miR-29c-3p mimics or inhibitor. The role of miR-29c-3p/LIF axis in intestinal inflammation was explored in experimental colitis mice and Caco-2 cells. RESULTS MiR-29c-3p was markedly downregulated while LIF was upregulated in colon tissues of UC patients and DSS-challenged colitis mice as well as in primary intestinal epithelial cells (IECs) and LPS-treated Caco-2 cells. MiR-29c-3p inhibited LIF expression at the transcriptional level via binding to LIF 3'-untranslated region (UTR) in Caco-2 cells. Targeting miR-29c-3p/LIF axis regulated inflammatory cytokines production, cell proliferation and apoptosis. Overexpression of miR-29c-3p aggravated mice experimental colitis via suppressing LIF. CONCLUSION Our findings demonstrate that the upregulation of miR-29c-3p promotes gut inflammation and the expression of pro-inflammatory mediators via suppressing LIF, thereby modulating the pathogenesis of UC.
Collapse
Affiliation(s)
- Jian Guo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, People’s Republic of China
- Department of General Surgery, Shanxi Provincial People’s Hospital, The Affiliated People’s Hospital of Shanxi Medical University, Taiyuan, 030012, People’s Republic of China
| | - Ruiya Zhang
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, The Affiliated People’s Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Yiqing Zhao
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, The Affiliated People’s Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Junping Wang
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, The Affiliated People’s Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, People’s Republic of China
| |
Collapse
|
24
|
Guzmán-Mejía F, Godínez-Victoria M, Vega-Bautista A, Pacheco-Yépez J, Drago-Serrano ME. Intestinal Homeostasis under Stress Siege. Int J Mol Sci 2021; 22:ijms22105095. [PMID: 34065791 PMCID: PMC8150578 DOI: 10.3390/ijms22105095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/15/2023] Open
Abstract
Intestinal homeostasis encompasses a complex and balanced interplay among a wide array of components that collaborate to maintain gut barrier integrity. The appropriate function of the gut barrier requires the mucus layer, a sticky cushion of mucopolysaccharides that overlays the epithelial cell surface. Mucus plays a critical anti-inflammatory role by preventing direct contact between luminal microbiota and the surface of the epithelial cell monolayer. Moreover, mucus is enriched with pivotal effectors of intestinal immunity, such as immunoglobulin A (IgA). A fragile and delicate equilibrium that supports proper barrier function can be disturbed by stress. The impact of stress upon intestinal homeostasis results from neuroendocrine mediators of the brain-gut axis (BGA), which comprises a nervous branch that includes the enteric nervous system (ENS) and the sympathetic and parasympathetic nervous systems, as well as an endocrine branch of the hypothalamic-pituitary-adrenal axis. This review is the first to discuss the experimental animal models that address the impact of stress on components of intestinal homeostasis, with special emphasis on intestinal mucus and IgA. Basic knowledge from animal models provides the foundations of pharmacologic and immunological interventions to control disturbances associated with conditions that are exacerbated by emotional stress, such as irritable bowel syndrome.
Collapse
Affiliation(s)
- Fabiola Guzmán-Mejía
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960 Mexico City, Mexico; (F.G.-M.); (A.V.-B.)
| | - Marycarmen Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, CP 11340 Mexico City, Mexico;
- Correspondence: (M.G.-V.); (M.E.D.-S.); Tel.: +52-55-5729-6000 (ext. 62743) (M.G.-V.); +52-55-5483-7000 (ext. 3624) (M.E.D.-S.)
| | - Alan Vega-Bautista
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960 Mexico City, Mexico; (F.G.-M.); (A.V.-B.)
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, CP 11340 Mexico City, Mexico;
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960 Mexico City, Mexico; (F.G.-M.); (A.V.-B.)
- Correspondence: (M.G.-V.); (M.E.D.-S.); Tel.: +52-55-5729-6000 (ext. 62743) (M.G.-V.); +52-55-5483-7000 (ext. 3624) (M.E.D.-S.)
| |
Collapse
|
25
|
Snyder LM, Denkers EY. From Initiators to Effectors: Roadmap Through the Intestine During Encounter of Toxoplasma gondii With the Mucosal Immune System. Front Cell Infect Microbiol 2021; 10:614701. [PMID: 33505924 PMCID: PMC7829212 DOI: 10.3389/fcimb.2020.614701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
The gastrointestinal tract is a major portal of entry for many pathogens, including the protozoan parasite Toxoplasma gondii. Billions of people worldwide have acquired T. gondii at some point in their life, and for the vast majority this has led to latent infection in the central nervous system. The first line of host defense against Toxoplasma is located within the intestinal mucosa. Appropriate coordination of responses by the intestinal epithelium, intraepithelial lymphocytes, and lamina propria cells results in an inflammatory response that controls acute infection. Under some conditions, infection elicits bacterial dysbiosis and immune-mediated tissue damage in the intestine. Here, we discuss the complex interactions between the microbiota, the epithelium, as well as innate and adaptive immune cells in the intestinal mucosa that induce protective immunity, and that sometimes switch to inflammatory pathology as T. gondii encounters tissues of the gut.
Collapse
Affiliation(s)
- Lindsay M Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
26
|
Popov Aleksandrov A, Mirkov I, Tucovic D, Kulas J, Ninkov M, Kataranovski M. Cadmium and immunologically-mediated homeostasis of anatomical barrier tissues. Toxicol Lett 2020; 337:38-45. [PMID: 33246043 DOI: 10.1016/j.toxlet.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that when absorbed into the body causes nephrotoxicity and effects in other tissues.Anatomical barrier tissues are tissues that prevent the entry of pathogens and include skin, mucus membranes and the immune system. The adverse effects of Cd-induced immune cell's activity are the most extensively studied in the kidneys and the liver. There are though fewer data relating the effect of this metal on the other tissues, particularly in those in which cells of the immune system form local circuits of tissue defense, maintaining immune-mediated homeostasis. In this work, data on the direct and indirect effects of Cd on anatomical barrier tissue of inner and outer body surfaces (the lungs, gut, reproductive organs, and skin) were summarized.
Collapse
Affiliation(s)
- Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, Belgrade, 11000, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, Belgrade, 11000, Serbia
| | - Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, Belgrade, 11000, Serbia
| | - Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, Belgrade, 11000, Serbia
| | - Marina Ninkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, Belgrade, 11000, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, Belgrade, 11000, Serbia.
| |
Collapse
|
27
|
Tachibana M, Watanabe N, Koda Y, Oya Y, Kaminuma O, Katayama K, Fan Z, Sakurai F, Kawabata K, Hiroi T, Mizuguchi H. Ablation of IL-17A leads to severe colitis in IL-10-deficient mice: implications of myeloid-derived suppressor cells and NO production. Int Immunol 2020; 32:187-201. [PMID: 31755523 PMCID: PMC7067553 DOI: 10.1093/intimm/dxz076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 11/20/2019] [Indexed: 12/18/2022] Open
Abstract
IL-10 is an immune regulatory cytokine and its genetic defect leads to gastrointestinal inflammation in humans and mice. Moreover, the IL-23/Th17 axis is known to be involved in these inflammatory disorders. IL-17A, a representative cytokine produced by Th17 cells, has an important role for the pathological process of inflammatory diseases. However, the precise function of IL-17A in inflammatory bowel disease (IBD) remains controversial. In this study, we evaluated the effect of IL-17A on colitis in IL-10-deficient (Il10−/−) mice. Mice lacking both IL-10 and IL-17A (Il10−/−Il17a−/−) suffered from fatal wasting and manifested more severe colitis compared with Il10−/−Il17a+/− mice. Moreover, we found that CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) accumulated in the bone marrow, spleen and peripheral blood of Il10−/−Il17a−/− mice. These MDSCs highly expressed inducible nitric oxide synthase (iNOS) (Nos2) and suppressed the T-cell response in vitro in a NOS-dependent manner. In correlation with these effects, the concentration of nitric oxide was elevated in the serum of Il10−/−Il17a−/− mice. Surprisingly, the severe colitis observed in Il10−/−Il17a−/− mice was ameliorated in Il10−/−Il17a−/−Nos2−/− mice. Our findings suggest that IL-17A plays suppressive roles against spontaneous colitis in Il10−/− mice in an iNOS-dependent manner and inhibits MDSC differentiation and/or proliferation.
Collapse
Affiliation(s)
- Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Osaka University, Osaka, Japan.,Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Nobumasa Watanabe
- Department of Genome Medicine, Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuzo Koda
- Laboratory of Biochemistry and Molecular Biology, Osaka University, Osaka, Japan
| | - Yukako Oya
- Laboratory of Biochemistry and Molecular Biology, Osaka University, Osaka, Japan
| | - Osamu Kaminuma
- Department of Genome Medicine, Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazufumi Katayama
- Laboratory of Biochemistry and Molecular Biology, Osaka University, Osaka, Japan
| | - Zifei Fan
- Laboratory of Biochemistry and Molecular Biology, Osaka University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Osaka University, Osaka, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Takachika Hiroi
- Department of Genome Medicine, Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| |
Collapse
|
28
|
Bistoletti M, Bosi A, Banfi D, Giaroni C, Baj A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:43-110. [PMID: 33814115 DOI: 10.1016/bs.pmbts.2020.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
29
|
Hosomi K, Shibata N, Shimoyama A, Uto T, Nagatake T, Tojima Y, Nishino T, Takeyama H, Fukase K, Kiyono H, Kunisawa J. Lymphoid Tissue-Resident Alcaligenes Establish an Intracellular Symbiotic Environment by Creating a Unique Energy Shift in Dendritic Cells. Front Microbiol 2020; 11:561005. [PMID: 33101234 PMCID: PMC7545135 DOI: 10.3389/fmicb.2020.561005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/07/2020] [Indexed: 12/03/2022] Open
Abstract
Lymphoid-tissue–resident commensal bacteria (LRCs), including Alcaligenes faecalis, are present in intestinal lymphoid tissue including the Peyer’s patches (PPs) of mammals and modulate the host immune system. Although LRCs can colonize within dendritic cells (DCs), the mechanisms through which LRCs persist in DCs and the symbiotic relationships between LRCs and DCs remain to be investigated. Here, we show an intracellular symbiotic system in which the LRC Alcaligenes creates a unique energy shift in DCs. Whereas DCs showed low mitochondrial respiration when they were co-cultured with Escherichia coli, DCs carrying A. faecalis maintained increased mitochondrial respiration. Furthermore, E. coli induced apoptosis of DCs but A. faecalis did not. Regarding an underlying mechanism, A. faecalis—unlike E. coli—did not induce intracellular nitric oxide (NO) production in DCs due to the low activity of its lipopolysaccharide (LPS). Therefore, A. faecalis, an example of LRCs, may persist within intestinal lymphoid tissue because they elicit little NO production in DCs. In addition, the symbiotic DCs exhibit characteristic physiologic changes, including a low rate of apoptosis and increased mitochondrial respiration.
Collapse
Affiliation(s)
- Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, Ibaraki, Japan.,Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Naoko Shibata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, Ibaraki, Japan.,Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | | | - Tomoya Uto
- Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, Ibaraki, Japan.,Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Yoko Tojima
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, Ibaraki, Japan.,Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Tomomi Nishino
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, Ibaraki, Japan.,Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Koichi Fukase
- Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, Chiba University, Chuo City, Japan.,Department of Medicine, School of Medicine and Chiba University - UC San Diego Center for Mucosal Immunology, Allergy, and Vaccine, University of California, San Diego, San Diego, CA, United States
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, Ibaraki, Japan.,Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan.,IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, Chiba University, Chuo City, Japan.,Department of Medicine, School of Medicine and Chiba University - UC San Diego Center for Mucosal Immunology, Allergy, and Vaccine, University of California, San Diego, San Diego, CA, United States.,Graduate School of Medicine, Osaka University, Suita, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Graduate School of Density, Osaka University, Suita, Japan.,Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
30
|
Grondin JA, Kwon YH, Far PM, Haq S, Khan WI. Mucins in Intestinal Mucosal Defense and Inflammation: Learning From Clinical and Experimental Studies. Front Immunol 2020; 11:2054. [PMID: 33013869 PMCID: PMC7500085 DOI: 10.3389/fimmu.2020.02054] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Throughout the gastrointestinal (GI) tract, a distinct mucus layer composed of highly glycosylated proteins called mucins plays an essential role in providing lubrication for the passage of food, participating in cell signaling pathways and protecting the host epithelium from commensal microorganisms and invading pathogens, as well as toxins and other environmental irritants. These mucins can be broadly classified into either secreted gel-forming mucins, those that provide the structural backbone for the mucus barrier, or transmembrane mucins, those that form the glycocalyx layer covering the underlying epithelial cells. Goblet cells dispersed among the intestinal epithelial cells are chiefly responsible for the synthesis and secretion of mucins within the gut and are heavily influenced by interactions with the immune system. Evidence from both clinical and animal studies have indicated that several GI conditions, including inflammatory bowel disease (IBD), colorectal cancer, and numerous enteric infections are accompanied by considerable changes in mucin quality and quantity. These changes include, but are not limited to, impaired goblet cell function, synthesis dysregulation, and altered post-translational modifications. The current review aims to highlight the structural and functional features as well as the production and immunological regulation of mucins and the impact these key elements have within the context of barrier function and host defense in intestinal inflammation.
Collapse
Affiliation(s)
- Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Parsa Mehraban Far
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
31
|
Hosomi K, Kiyono H, Kunisawa J. Fatty acid metabolism in the host and commensal bacteria for the control of intestinal immune responses and diseases. Gut Microbes 2020; 11:276-284. [PMID: 31120334 PMCID: PMC7524326 DOI: 10.1080/19490976.2019.1612662] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intestinal tissue has a specialized immune system that exhibits an exquisite balance between active and suppressive responses important for the maintenance of health. Intestinal immunity is functionally affected by both diet and gut commensal bacteria. Here, we review the effects of fatty acids on the regulation of intestinal immunity and immunological diseases, revealing that dietary fatty acids and their metabolites play an important role in the regulation of allergy, inflammation, and immunosurveillance in the intestine. Several lines of evidence have revealed that some dietary fatty acids are converted to biologically active metabolites by enzymes not only in the host but also in the commensal bacteria. Thus, biological interaction between diet and commensal bacteria could form the basis of a new era in the control of host immunity and its associated diseases.
Collapse
Affiliation(s)
- Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,Graduate School of Medicine, Chiba University, Chiba, Japan,Department of Medicine, School of Medicine and CU-UCSD Center for Mucosal Immunology, Allergy and Vaccine, University of California, California, USA
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, Japan,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Dentistry, Osaka University, Osaka, Japan,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan,CONTACT Jun Kunisawa Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki City, Osaka567-0085, Japan
| |
Collapse
|
32
|
Schmid D, Song M, Zhang X, Willett WC, Vaidya R, Giovannucci EL, Michels KB. Yogurt consumption in relation to mortality from cardiovascular disease, cancer, and all causes: a prospective investigation in 2 cohorts of US women and men. Am J Clin Nutr 2020; 111:689-697. [PMID: 31968071 PMCID: PMC7049530 DOI: 10.1093/ajcn/nqz345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although a link between regular yogurt consumption and mortality appears plausible, data are sparse and have yielded inconsistent results. OBJECTIVES We examined the association between regular yogurt consumption and risk of all-cause and cause-specific mortality among US women and men. METHODS A total of 82,348 women in the Nurses' Health Study and 40,278 men in the Health Professionals Follow-Up Study without a history of cardiovascular disease (CVD) and cancer in 1980 (women) or 1986 (men) were followed up until 2012. Yogurt consumption was assessed by updated validated FFQs. RESULTS During 3,354,957 person-years of follow-up, 20,831 women and 12,397 men died. Compared with no yogurt consumption, the multivariable-adjusted HRs (95% CIs) of mortality were 0.89 (0.86, 0.93), 0.85 (0.81, 0.89), 0.88 (0.84, 0.91), and 0.91 (0.85, 0.98) for ≤1-3 servings/mo, 1 serving/wk, 2-4 servings/wk, and >4 servings/wk in women (P-trend = 0.34), respectively. For men, the corresponding HRs (95% CIs) were 0.99 (0.94, 1.03), 0.98 (0.91, 1.05), 1.04 (0.98, 1.10), and 1.05 (0.95, 1.16), respectively. We further noted inverse associations for cancer mortality (multivariable-adjusted HR comparing extreme categories: 0.87; 95% CI: 0.78, 0.98; P-trend = 0.04) and CVD mortality (HR: 0.92; 95% CI: 0.79, 1.08; P-trend = 0.41) in women, although the latter was attenuated in the multivariable-adjusted model. Replacement of 1 serving/d of yogurt with 1 serving/d of nuts (women and men) or whole grains (women) was associated with a lower risk of all-cause mortality, whereas replacement of yogurt with red meat, processed meat (women and men), and milk or other dairy foods (women) was associated with a greater mortality. CONCLUSIONS In our study, regular yogurt consumption was related to lower mortality risk among women. Given that no clear dose-response relation was apparent, this result must be interpreted with caution.
Collapse
Affiliation(s)
- Daniela Schmid
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Division for Quantitative Methods in Public Health and Health Services Research, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT—Private University for Health Sciences, Medical Informatics and Technology, Hall in Tiol, Austria
| | - Mingyang Song
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Walter C Willett
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rita Vaidya
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karin B Michels
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Hu J, Kang H, Liu C, Hu P, Yang M, Zhou F. Regulatory T Cells Could Improve Intestinal Barrier Dysfunction in Heatstroke. Inflammation 2020; 42:1228-1238. [PMID: 30820807 DOI: 10.1007/s10753-019-00983-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intestinal barrier dysfunction plays a pivotal role in multiorgan dysfunction during heatstroke (HS). Neutrophils are involved in intestinal inflammation and thus dampen the mucosal integrity. Regulatory T cells (Tregs) have been shown to orchestrate neutrophils and thus sustain mucosal integrity in miscellaneous inflammation-related diseases. However, whether Tregs are involved in HS-induced intestinal barrier dysfunction remains unknown. Thus, we investigated whether Tregs could alleviate intestinal barrier dysfunction in mice. We found that HS could induce intestinal injury and mucosal barrier dysfunction 0, 24, and 72 h after heat stress. Flow cytometry revealed an increase of neutrophil infiltration and a decrease of Treg frequencies in the small intestinal epithelium 72 h after heat stress. Treg depletion starting 2 days before HS exacerbated intestinal damage and mucosal barrier dysfunction. Adoptive transfer of Tregs at 0 h improved intestinal injury and mucosal barrier dysfunction at 72 h. The manipulation of Tregs affected the neutrophil frequencies in the small intestinal epithelium 72 h after heat stress. Our study demonstrated that Tregs could improve HS-induced intestinal barrier dysfunction, probably via modulation of neutrophils in the intestine of mice during HS.
Collapse
Affiliation(s)
- Jie Hu
- Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Hongjun Kang
- Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Chao Liu
- Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Pan Hu
- Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Mengmeng Yang
- Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Feihu Zhou
- Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
34
|
Wang L, Zhu L, Qin S. Gut Microbiota Modulation on Intestinal Mucosal Adaptive Immunity. J Immunol Res 2019; 2019:4735040. [PMID: 31687412 PMCID: PMC6794961 DOI: 10.1155/2019/4735040] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian intestine harbors a remarkable number of microbes and their components and metabolites, which are fundamental for the instigation and development of the host immune system. The intestinal innate and adaptive immunity coordinate and interact with the symbionts contributing to the intestinal homeostasis through establishment of a mutually beneficial relationship by tolerating to symbiotic microbiota and retaining the ability to exert proinflammatory response towards invasive pathogens. Imbalance between the intestinal immune system and commensal organisms disrupts the intestinal microbiological homeostasis, leading to microbiota dysbiosis, compromised integrity of the intestinal barrier, and proinflammatory immune responses towards symbionts. This, in turn, exacerbates the degree of the imbalance. Intestinal adaptive immunity plays a critical role in maintaining immune tolerance towards symbionts and the integrity of intestinal barrier, while the innate immune system regulates the adaptive immune responses to intestinal commensal bacteria. In this review, we will summarize recent findings on the effects and mechanisms of gut microbiota on intestinal adaptive immunity and the plasticity of several immune cells under diverse microenvironmental settings.
Collapse
Affiliation(s)
- Li Wang
- Hepatology Department, Infectious Disease Hospital of Yantai, 62 Huanshan Road, Zhifu District, Yantai 264001, China
| | - Limeng Zhu
- Institute of Processing Engineering, University of Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing 100049, China
| | - Song Qin
- Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Laishan District, Yantai 264003, China
| |
Collapse
|
35
|
Zhao M, Xiong X, Ren K, Xu B, Cheng M, Sahu C, Wu K, Nie Y, Huang Z, Blumberg RS, Han X, Ruan HB. Deficiency in intestinal epithelial O-GlcNAcylation predisposes to gut inflammation. EMBO Mol Med 2019; 10:emmm.201708736. [PMID: 29941542 PMCID: PMC6079539 DOI: 10.15252/emmm.201708736] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Post-translational modifications in intestinal epithelial cells (IECs) allow for precise control in intestinal homeostasis, the breakdown of which may precipitate the pathological damage and inflammation in inflammatory bowel disease. The O-linked β-N-acetylglucosamine (O-GlcNAc) modification on intracellular proteins controls diverse biological processes; however, its roles in intestinal homeostasis are still largely unexplored. Here, we found that levels of protein O-GlcNAcylation and the expression of O-GlcNAc transferase (OGT), the enzyme adding the O-GlcNAc moiety, were reduced in IECs in human IBD patients. Deletion of OGT specifically in IECs resulted in disrupted epithelial barrier, microbial dysbiosis, Paneth cell dysfunction, and intestinal inflammation in mice. Using fecal microbiota transplantation in mice, we demonstrated that microbial dysbiosis although was insufficient to induce spontaneous inflammation but exacerbated chemical-induced colitis. Paneth cell-specific deletion of OGT led to Paneth cell dysfunction, which might predispose mice to chemical-induced colitis. On the other hand, the augmentation of O-GlcNAc signaling by inhibiting O-GlcNAcase, the enzyme removing O-GlcNAcylation, alleviated chemical-induced colitis. Our data reveal that protein O-GlcNAcylation in IECs controls key regulatory mechanisms to maintain mucosal homeostasis.
Collapse
Affiliation(s)
- Ming Zhao
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Kaiqun Ren
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA.,College of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Meng Cheng
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Chinmayi Sahu
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zan Huang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA.,Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaonan Han
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,MOH Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Hai-Bin Ruan
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China .,Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
36
|
De Filippo C, Di Paola M, Giani T, Tirelli F, Cimaz R. Gut microbiota in children and altered profiles in juvenile idiopathic arthritis. J Autoimmun 2019; 98:1-12. [PMID: 30638708 DOI: 10.1016/j.jaut.2019.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Abstract
Microbial diversity plays a key role in the maintenance of intestinal homeostasis and in the development of the immune system in the gut mucosa. Maybe one of the most important function of our gut microbiota is the immune system education, in particular the discrimination of friends from foes that occurs during childhood. In addition to bacterial antigens, several metabolites of microbial origin have a crucial role in training of the immune system, such as Short Chain Fatty Acids (SCFAs). There are many evidences on the role of the gut microbiota in rheumatic diseases, in particular modifications of microbiota composition causing dysbiosis that, in turn, can induce gut permeability, and thus immunological imbalance and trigger inflammation. In particular, immune cells can reach extra-intestinal sites, such as joints and trigger local inflammation. Childhood is a crucial period of life for development and evolution of the gut microbiota, especially for the acquisition of fundamental functions such as immunotolerance of commensal microorganisms. For this reason, gut dysbiosis is gaining interest as a potential pathogenetic factor for Juvenile Idiopathic Arthritis (JIA). Here we summarized the studies conducted on JIA patients in which a pro-arthritogenic microbial profiles has been observed; this, together with a depletion of microbial biodiversity, clearly distinguish patients' from healthy subjects' microbiota. Further studies are however needed to better clarify the role of microbiota in JIA pathogenesis.
Collapse
Affiliation(s)
- Carlotta De Filippo
- Institute of Biology and Agrarian Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Monica Di Paola
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Teresa Giani
- Rheumatology Unit, Anna Meyer Children's Hospital, University of Florence, Viale G. Pieraccini 24, 50139, Florence, Italy; Department of Medica Biotechnologies, University of Siena, Viale Mario Bracci, 16 53100, Siena, Italy
| | - Francesca Tirelli
- Rheumatology Unit, Anna Meyer Children's Hospital, University of Florence, Viale G. Pieraccini 24, 50139, Florence, Italy
| | - Rolando Cimaz
- Rheumatology Unit, Anna Meyer Children's Hospital, University of Florence, Viale G. Pieraccini 24, 50139, Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, Meyer Children's Hospital, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
37
|
Dandrieux JR, Martinez Lopez LM, Stent A, Jergens A, Allenspach K, Nowell CJ, Firestone SM, Kimpton W, Mansfield CS. Changes in duodenal CD163-positive cells in dogs with chronic enteropathy after successful treatment. Innate Immun 2018; 24:400-410. [PMID: 30223681 PMCID: PMC6830873 DOI: 10.1177/1753425918799865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic enteropathy (CE) in dogs is characterized retrospectively per treatment response as food-responsive enteropathy (FRE), antibiotic-responsive enteropathy (ARE), and immunosuppressant-responsive enteropathy (IRE) - the latter most resembling inflammatory bowel disease in people. The aim of this study was to characterize duodenal macrophages (Mϕ) in CE using immunohistochemistry; with calprotectin (CAL) as a marker of early differentiated Mϕ and CD163 expression as a marker for resident Mϕ in the duodenum before and after treatment. Prior to treatment, dogs with FRE and IRE had a lower CD163+/CAL+ ratio than control dogs (CTRL) in crypts; this increased significantly and normalized compared with CTRL after treatment. Conversely, the CD163+/CAL+ ratio in dogs with ARE was comparable to that in healthy dogs before and after treatment. In summary, these results suggest that Mϕ play a role in the pathogenesis of CE in FRE and IRE, with a decrease in resident Mϕ and an increase in early differentiated Mϕ, but not in ARE dogs. Mϕ normalize after successful treatment.
Collapse
Affiliation(s)
- Julien Rs Dandrieux
- 1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia.,2 Translational Research and Animal Clinical Trial Study (TRACTS) group, U-Vet Animal Hospital, Australia
| | - Lina Maria Martinez Lopez
- 1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia.,2 Translational Research and Animal Clinical Trial Study (TRACTS) group, U-Vet Animal Hospital, Australia
| | - Andrew Stent
- 1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia.,2 Translational Research and Animal Clinical Trial Study (TRACTS) group, U-Vet Animal Hospital, Australia
| | - Albert Jergens
- 3 College of Veterinary Medicine, Iowa State University, USA
| | | | - Cameron J Nowell
- 4 Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Simon M Firestone
- 1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia.,5 Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia
| | - Wayne Kimpton
- 1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia
| | - Caroline S Mansfield
- 1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia.,2 Translational Research and Animal Clinical Trial Study (TRACTS) group, U-Vet Animal Hospital, Australia
| |
Collapse
|
38
|
Gomes RG, Brito CAAD, Martinelli VF, Santos RND, Gomes FODS, Peixoto CA, Crispim JO, Diniz GTN, Donadi EA, Lucena-Silva N. HLA-G is expressed in intestinal samples of ulcerative colitis and Crohn’s disease patients and HLA-G5 expression is differentially correlated with TNF and IL-10 cytokine expression. Hum Immunol 2018; 79:477-484. [DOI: 10.1016/j.humimm.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022]
|
39
|
Zhou C, Sun L, Zhao L, Zhang X. Advancement in regional immunity and its clinical implication. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1178-1190. [PMID: 29170892 DOI: 10.1007/s11427-017-9224-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 12/30/2022]
Abstract
Organs in our body have formed their own unique immune surveillance system that is finely tuned by in situ milieu. Sequestrated tissue-resident immune cells differ from their counterparts in circulation and participate in tissue physiological activities and the maintenance of local homeostasis. Dysregulation of regional immunity leads to organ-specific inflammatory injuries. Here we review the recent developments in the field of tissue-resident immune cells and organ-specific regional immunity, and discuss their clinical implication.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Luxi Sun
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, 100730, China.
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
40
|
Gynostemma pentaphyllum saponins attenuate inflammation in vitro and in vivo by inhibition of NF-κB and STAT3 signaling. Oncotarget 2017; 8:87401-87414. [PMID: 29152090 PMCID: PMC5675642 DOI: 10.18632/oncotarget.20997] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
Recent advances in the development of anti-inflammatory agents have improved their therapeutic outcome in inflammatory bowel disease (IBD), however, the presence of side effects and limited effectiveness hinder their widespread use. Therefore, novel compounds with strong anti-inflammatory efficacy are still required. In this study, we investigated the anti-inflammatory effect and potential mechanisms of Gynostemma pentaphyllum (Thunb.) Makino saponins (GpS), a major component of the herbal medicine widely used in Asian countries. In in vitro studies, we demonstrated that GpS dose dependently suppressed activation of macrophages, one of the main effectors in IBD. GpS also suppressed cytokine production and the activation of NF-κB and STAT3 signaling in lipopolysaccharide-induced macrophages, without affecting their viability. Further in vivo studies demonstrated that GpS could ameliorate the weight loss, increased disease activity index, colon shortening and histological damage associated with dextran sulfate sodium (DSS)-induced colitis in mice. In agreement with results from our in vitro experiments, GpS suppressed cytokine production and activation of NF-κB and STAT3 signaling in the colons of DSS-induced mice. In this study, we present for the first time, evidence of the therapeutic effect of GpS in IBD, highlighting its potential as an effective therapeutic against the disease.
Collapse
|
41
|
Zundler S, Neurath MF. Pathogenic T cell subsets in allergic and chronic inflammatory bowel disorders. Immunol Rev 2017; 278:263-276. [DOI: 10.1111/imr.12544] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Zundler
- Department of Medicine 1; University of Erlangen-Nuremberg; Kussmaul Campus for Medical Research & Translational Research Center; Erlangen Germany
| | - Markus F. Neurath
- Department of Medicine 1; University of Erlangen-Nuremberg; Kussmaul Campus for Medical Research & Translational Research Center; Erlangen Germany
| |
Collapse
|
42
|
Wang F, Johnson RL, DeSmet ML, Snyder PW, Fairfax KC, Fleet JC. Vitamin D Receptor-Dependent Signaling Protects Mice From Dextran Sulfate Sodium-Induced Colitis. Endocrinology 2017; 158:1951-1963. [PMID: 28368514 PMCID: PMC5460931 DOI: 10.1210/en.2016-1913] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
Abstract
Low vitamin D status potentiates experimental colitis, but the vitamin D-responsive cell in colitis has not been defined. We hypothesized that vitamin D has distinct roles in colonic epithelial cells and in nonepithelial cells during colitis. We tested this hypothesis by using mice with vitamin D receptor (VDR) deletion from colon epithelial cells (CEC-VDRKO) or nonintestinal epithelial cells (NEC-VDRKO). Eight-week-old mice were treated with 1.35% dextran sulfate sodium (DSS) for 5 days and then euthanized 2 or 10 days after removal of DSS. DSS induced body weight loss and increased disease activity index and spleen size. This response was increased in NEC-VDRKO mice but not CEC-VDRKO mice. DSS-induced colon epithelial damage and immune cell infiltration scores were increased in both mouse models. Although the epithelium healed between 2 and 10 days after DSS administration in control and CEC-VDRKO mice, epithelial damage remained high in NEC-VDRKO mice 10 days after removal of DSS, indicating delayed epithelial healing. Gene expression levels for the proinflammatory, M1 macrophage (Mɸ) cytokines tumor necrosis factor-α, nitric oxide synthase 2, and interleukin-1β were significantly elevated in the colon of NEC-VDRKO mice at day 10. In vitro experiments in murine peritoneal Mɸs demonstrated that 1,25 dihydroxyvitamin D directly inhibited M1 polarization, facilitated M2 polarization, and regulated Mɸ phenotype switching toward the M2 and away from the M1 phenotype. Our data revealed unique protective roles for vitamin D signaling during colitis in the colon epithelium as well as nonepithelial cells in the colon microenvironment (i.e., modulation of Mɸ biology).
Collapse
Affiliation(s)
- Fa Wang
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47906
| | - Robert L. Johnson
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47906
| | - Marsha L. DeSmet
- Purdue University Interdisciplinary Life Sciences Ph.D. Training Program, Purdue University, West Lafayette, Indiana 47906
| | - Paul W. Snyder
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47906
- Center for Cancer Research, West Lafayette, Indiana 47907
| | - Keke C. Fairfax
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47906
| | - James C. Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47906
- Center for Cancer Research, West Lafayette, Indiana 47907
| |
Collapse
|
43
|
Hua Y, Yang Y, Sun S, Iwanowycz S, Westwater C, Reizis B, Li Z, Liu B. Gut homeostasis and regulatory T cell induction depend on molecular chaperone gp96 in CD11c + cells. Sci Rep 2017; 7:2171. [PMID: 28526855 PMCID: PMC5438351 DOI: 10.1038/s41598-017-02415-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/26/2017] [Indexed: 12/12/2022] Open
Abstract
The intestinal immunity and tolerance are orchestrated by both the innate and the adaptive immune system. Intestinal professional antigen presenting cells (pAPCs) recognize and respond to the gut microbiota through multiple pattern-recognition receptors, including TLRs and NLRs. How gut pAPCs maintain mucosal homeostasis remains incompletely understood. Heat shock protein gp96, also known as grp94, is an essential immune chaperone for TLRs. However, the role of gp96 in regulating CD11c+ APCs in the gut immunity and tolerance is unknown. By a genetic strategy, we report here that selective deletion of gp96 from CD11c+ cells in mice results in alteration of dendritic cell and T cell subsets in the gut as well as loss of antigen-specific regulatory T cell induction in the mesenteric lymph nodes. Strikingly, these conditional gp96-null mice developed spontaneous colitis, had increased levels of systemic and fecal IgA, and were highly susceptible to chemical-induced colitis. Our findings for the first time demonstrate that gp96 is essential for CD11c+ cells to induce regulatory T cells and maintain gut homeostasis, illustrating the importance of protein immune chaperone in safeguarding against immune pathology.
Collapse
Affiliation(s)
- Yunpeng Hua
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States.,Department of Hepatobiliary Surgery, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yi Yang
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Shaoli Sun
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Stephen Iwanowycz
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Caroline Westwater
- Department of Oral Health Science, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Boris Reizis
- Department of Pathology and Medicine, Langone Medical Center, New York University, New York, United States
| | - Zihai Li
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Bei Liu
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States.
| |
Collapse
|
44
|
Uhde AK, Herder V, Akram Khan M, Ciurkiewicz M, Schaudien D, Teich R, Floess S, Baumgärtner W, Huehn J, Beineke A. Viral Infection of the Central Nervous System Exacerbates Interleukin-10 Receptor Deficiency-Mediated Colitis in SJL Mice. PLoS One 2016; 11:e0161883. [PMID: 27611574 PMCID: PMC5017624 DOI: 10.1371/journal.pone.0161883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
Abstract
Theiler´s murine encephalomyelitis virus (TMEV)-infection is a widely used animal model for studying demyelinating disorders, including multiple sclerosis (MS). The immunosuppressive cytokine Interleukin (IL)-10 counteracts hyperactive immune responses and critically controls immune homeostasis in infectious and autoimmune disorders. In order to investigate the effect of signaling via Interleukin-10 receptor (IL-10R) in infectious neurological diseases, TMEV-infected SJL mice were treated with IL-10R blocking antibody (Ab) in the acute and chronic phase of the disease. The findings demonstrate that (i) Ab-mediated IL-10 neutralization leads to progressive colitis with a reduction in Foxp3+ regulatory T cells and increased numbers of CD8+CD44+ memory T cells as well as activated CD4+CD69+ and CD8+CD69+ T cells in uninfected mice. (ii) Concurrent acute TMEV-infection worsened enteric disease-mediated by IL-10R neutralization. Virus-triggered effects were associated with an enhanced activation of CD4+ T helper cells and CD8+ cytotoxic T lymphocytes and augmented cytokine expression. By contrast, (iii) IL-10R neutralization during chronic TMEV-infection was not associated with enhanced peripheral immunopathology but an increased CD3+ T cell influx in the spinal cord. IL-10R neutralization causes a breakdown in peripheral immune tolerance in genetically predisposed mice, which leads to immune-mediated colitis, resembling inflammatory bowel disease. Hyperactive immune state following IL-10R blockade is enhanced by central nervous system-restricted viral infection in a disease phase-dependent manner.
Collapse
Affiliation(s)
- Ann-Kathrin Uhde
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Muhammad Akram Khan
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pathobiology, Faculty of Veterinary & Animal Sciences, PMAS—Arid Agriculture University, Rawalpindi, Pakistan
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer—Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - René Teich
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- * E-mail:
| |
Collapse
|
45
|
Bribi N, Algieri F, Rodriguez-Nogales A, Vezza T, Garrido-Mesa J, Utrilla MP, Del Mar Contreras M, Maiza F, Segura-Carretero A, Rodriguez-Cabezas ME, Gálvez J. Intestinal anti-inflammatory effects of total alkaloid extract from Fumaria capreolata in the DNBS model of mice colitis and intestinal epithelial CMT93 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:901-13. [PMID: 27387398 DOI: 10.1016/j.phymed.2016.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Fumaria capreolata L. (Papaveraceae) is a botanical drug used in North Africa for its gastro-intestinal and anti-inflammatory properties. It is characterized for the presence of several alkaloids that could be responsible for some of its effects, including an immunomodulatory activity. PURPOSE To test in vivo the intestinal anti-inflammatory properties of the total alkaloid fraction extracted from the aerial parts of F. capreolata (AFC), and to evaluate its effects on an intestinal epithelial cell line. STUDY DESIGN AND METHODS AFC was chemically characterized by liquid chromatography coupled to diode array detection and high resolution mass spectrometry. Different doses of AFC (25, 50 and 100mg/kg) were assayed in the DNBS model of experimental colitis in mice, and the colonic damage was evaluated both histologically and biochemically. In addition, in vitro experiments were performed with this alkaloid fraction on the mouse intestinal epithelial cell line CMT93 stimulated with LPS. RESULTS The chemical analysis of AFC revealed the presence of 23 alkaloids, being the most abundants stylopine, protopine and coptisine. Oral administration of AFC produced a significant inhibition of the release and the expression of IL-6 and TNF-α in the colonic tissue. It also suppressed in vivo the transcription of other pro-inflammatory mediators such as IL-1β, iNOS, IL-12 and IL-17. Furthermore, AFC showed an immunomodulatory effect in vitro since it was able to inhibit the mRNA expression of IL-6, TNF-α and ICAM-1. Moreover, the beneficial effect of AFC in the colitic mice could also be associated with the normalization of the expression of MUC-2 and ZO-1, which are important for the intestinal epithelial integrity. CONCLUSION The present study suggests that AFC, containing 1.3% of stylopine and 0.9% of protopine, significantly exerted intestinal anti-inflammatory effects in an experimental model of mouse colitis. This fact could be related to a modulation of the intestinal immune response and a restoration of the intestinal epithelial function.
Collapse
Affiliation(s)
- Noureddine Bribi
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria; CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - Alba Rodriguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - Jose Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - María Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - María Del Mar Contreras
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071-Granada, Spain; Research and Development Centre for Functional Food (CIDAF), Health-Science Technological Park, Avenida del Conocimiento 37, 18016-Granada, Spain
| | - Fadila Maiza
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071-Granada, Spain; Research and Development Centre for Functional Food (CIDAF), Health-Science Technological Park, Avenida del Conocimiento 37, 18016-Granada, Spain
| | - Maria Elena Rodriguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| |
Collapse
|
46
|
Zhao Y, Ma T, Chen W, Chen Y, Li M, Ren L, Chen J, Cao R, Feng Y, Zhang H, Shi R. MicroRNA-124 Promotes Intestinal Inflammation by Targeting Aryl Hydrocarbon Receptor in Crohn's Disease. J Crohns Colitis 2016; 10:703-712. [PMID: 26802080 DOI: 10.1093/ecco-jcc/jjw010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Dysregulation of microRNAs (miRNAs) is associated with a variety of diseases, including Crohn's disease (CD), but the essential biological functions and crucial targets of miRNAs remain largely unknown. The present study investigated the aberrant colonic mucosal miRNAs in active CD patients. METHODS miRNA levels were assayed in inflamed colon of active CD patients by quantitative real-time polymerase chain reaction. The influence of differential expressed miR-124 on its putative target, the aryl hydrocarbon receptor (AHR), was investigated in CD patients, intestinal epithelial cells (IECs) and 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis mice. The role of miR-124 was further studied in experimental colitis mice by intracolonic administration of miR-124 inhibitors or precursors. RESULTS We found an inverse correlation between miR-124 and AHR protein levels in colon tissues and IECs of active CD patients. Further results demonstrated that miR-124 suppressed AHR expression by directly targeting the AHR 3'-untranslated region (3'-UTR) in Caco-2 cells and HT-29 cells. MiR-124 mediated the inflammatory response in lipopolysaccharide-stimulated cells through retroregulation of AHR in vitro. Downregulation or upregulation of miR-124 in TNBS-induced colitic colon alleviated or aggravated experimental colitis, respectively. CONCLUSIONS These findings suggest that miR-124 induces intestinal inflammation by inhibiting AHR to modulate pro-inflammatory cytokine production and thereby promotes the pathogenesis of CD.
Collapse
Affiliation(s)
- Ye Zhao
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, PR China Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Teng Ma
- Department of Thoracic and Cardiovascular Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, PR China Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Weixu Chen
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, PR China Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Yanfang Chen
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, PR China Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Ming Li
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, PR China
| | - Lihua Ren
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, PR China
| | - Jian Chen
- Department of Gastroenterology, Nanjing General Hospital of Nanjing Military Command, Nanjing, Jiangsu Province, PR China
| | - Risheng Cao
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Yadong Feng
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Hongjie Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
47
|
Lee IK, Kye YC, Kim G, Kim HW, Gu MJ, Umboh J, Maaruf K, Kim SW, Yun CH. Stress, Nutrition, and Intestinal Immune Responses in Pigs - A Review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1075-82. [PMID: 27189643 PMCID: PMC4932560 DOI: 10.5713/ajas.16.0118] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/29/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022]
Abstract
Modern livestock production became highly intensive and large scaled to increase production efficiency. This production environment could add stressors affecting the health and growth of animals. Major stressors can include environment (air quality and temperature), nutrition, and infection. These stressors can reduce growth performance and alter immune systems at systemic and local levels including the gastrointestinal tract. Heat stress increases the permeability, oxidative stress, and inflammatory responses in the gut. Nutritional stress from fasting, antinutritional compounds, and toxins induces the leakage and destruction of the tight junction proteins in the gut. Fasting is shown to suppress pro-inflammatory cytokines, whereas deoxynivalenol increases the recruitment of intestinal pro-inflammatory cytokines and the level of lymphocytes in the gut. Pathogenic and viral infections such as Enterotoxigenic E. coli (ETEC) and porcine epidemic diarrhea virus can lead to loosening the intestinal epithelial barrier. On the other hand, supplementation of Lactobacillus or Saccharaomyces reduced infectious stress by ETEC. It was noted that major stressors altered the permeability of intestinal barriers and profiles of genes and proteins of pro-inflammatory cytokines and chemokines in mucosal system in pigs. However, it is not sufficient to fully explain the mechanism of the gut immune system in pigs under stress conditions. Correlation and interaction of gut and systemic immune system under major stressors should be better defined to overcome aforementioned obstacles.
Collapse
Affiliation(s)
- In Kyu Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoon Chul Kye
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Girak Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Han Wool Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Min Jeong Gu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Johnny Umboh
- Faculty of Animal Science, Sam Ratulangi University, Manado Jl Kampus Selatan, Manado 95115, Indonesia
| | - Kartini Maaruf
- Faculty of Animal Science, Sam Ratulangi University, Manado Jl Kampus Selatan, Manado 95115, Indonesia
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea.,Biomodulation major and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
48
|
Wong WY, Lee MML, Chan BD, Kam RKT, Zhang G, Lu AP, Tai WCS. Proteomic profiling of dextran sulfate sodium induced acute ulcerative colitis mice serum exosomes and their immunomodulatory impact on macrophages. Proteomics 2016; 16:1131-45. [DOI: 10.1002/pmic.201500174] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 12/01/2015] [Accepted: 01/21/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Wing-Yan Wong
- Department of Applied Biology & Chemical Technology; The Hong Kong Polytechnic University; Hung Hom Hong Kong S.A.R. China
| | - Magnolia Muk-Lan Lee
- Department of Applied Biology & Chemical Technology; The Hong Kong Polytechnic University; Hung Hom Hong Kong S.A.R. China
| | - Brandon Dow Chan
- Department of Applied Biology & Chemical Technology; The Hong Kong Polytechnic University; Hung Hom Hong Kong S.A.R. China
| | - Richard Kin-Tin Kam
- Department of Chemical Pathology, Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong S.A.R. China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine; Hong Kong Baptist University; Kowloon Tong Hong Kong S.A.R. China
| | - Ai-Ping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine; Hong Kong Baptist University; Kowloon Tong Hong Kong S.A.R. China
- Centre for Cancer and Inflammation Research, School of Chinese Medicine; Hong Kong Baptist University; Kowloon Tong Hong Kong S.A.R. China
| | - William Chi-Shing Tai
- Department of Applied Biology & Chemical Technology; The Hong Kong Polytechnic University; Hung Hom Hong Kong S.A.R. China
| |
Collapse
|
49
|
Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, Feng W, McClain CJ, Zhang HG. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles 2015; 4:28713. [PMID: 26610593 PMCID: PMC4662062 DOI: 10.3402/jev.v4.28713] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
Daily exposure of humans to nanoparticles from edible plants is inevitable, but significant advances are required to determine whether edible plant nanoparticles are beneficial to our health. Additionally, strategies are needed to elucidate the molecular mechanisms underlying any beneficial effects. Here, as a proof of concept, we used a mouse model to show that orally given nanoparticles isolated from ginger extracts using a sucrose gradient centrifugation procedure resulted in protecting mice against alcohol-induced liver damage. The ginger-derived nanoparticle (GDN)–mediated activation of nuclear factor erythroid 2-related factor 2 (Nrf2) led to the expression of a group of liver detoxifying/antioxidant genes and inhibited the production of reactive oxygen species, which partially contributes to the liver protection. Using lipid knock-out and knock-in strategies, we further identified that shogaol in the GDN plays a role in the induction of Nrf2 in a TLR4/TRIF-dependent manner. Given the critical role of Nrf2 in modulating numerous cellular processes, including hepatocyte homeostasis, drug metabolism, antioxidant defenses, and cell-cycle progression of liver, this finding not only opens up a new avenue for investigating GDN as a means to protect against the development of liver-related diseases such as alcohol-induced liver damage but sheds light on studying the cellular and molecular mechanisms underlying interspecies communication in the liver via edible plant–derived nanoparticles.
Collapse
Affiliation(s)
- Xiaoying Zhuang
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Zhong-Bin Deng
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Jingyao Mu
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Lifeng Zhang
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Jun Yan
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Donald Miller
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Wenke Feng
- Division of Gastroenterology, Department of Medicine, University of Louisville, Louisville, KY, USA.,Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Craig J McClain
- Division of Gastroenterology, Department of Medicine, University of Louisville, Louisville, KY, USA.,Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA.,Robley Rex Louisville Veterans Administration Medical Center, Louisville, KY, USA
| | - Huang-Ge Zhang
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA.,Robley Rex Louisville Veterans Administration Medical Center, Louisville, KY, USA;
| |
Collapse
|
50
|
Asarat M, Vasiljevic T, Apostolopoulos V, Donkor O. Short-Chain Fatty Acids Regulate Secretion of IL-8 from Human Intestinal Epithelial Cell Linesin vitro. Immunol Invest 2015; 44:678-93. [DOI: 10.3109/08820139.2015.1085389] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|