1
|
Tani-Ichi S, Abe S, Miyachi H, Kitano S, Shimba A, Ejima A, Hara T, Cui G, Kado T, Hori S, Tobe K, Ikuta K. IL-7Rα signaling in regulatory T cells of adipose tissue is essential for systemic glucose homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:666-679. [PMID: 40107286 DOI: 10.1093/jimmun/vkae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/17/2024] [Indexed: 03/22/2025]
Abstract
Regulatory T cells (Tregs) mediate tissue homeostasis and repair. The function of the interleukin-7 receptor α (IL-7Rα) in nonlymphoid tissue Tregs is still unknown, although low expression of IL-7Rα is a widely accepted marker for Tregs. Here, we show that IL-33R (ST2)-expressing Tregs in the visceral adipose tissue (VAT) express the IL-7Rα at high levels. Treg-specific IL-7Rα-deficient mice exhibited reduced adipose ST2+ Tregs and impaired glucose tolerance, whereas IL-7Rα was dispensable for Tregs in lymphoid tissues. Mice deficient in thymic stromal lymphopoietin (TSLP), an additional ligand for IL-7Rα, displayed a modest decrease in adipose ST2+ Tregs and a reduced accumulation of adipose eosinophils, accompanied by slightly impaired glucose tolerance. In the VAT, mesothelial cells expressed IL-7, whereas adipose stem cells and folate receptor β-expressing tissue-resident macrophages expressed TSLP. Thus, this study indicates the significance of IL-7Rα signaling in the maintenance of VAT Tregs and glucose homeostasis, revealing a novel role for IL-7 and TSLP in immunometabolism.
Collapse
Affiliation(s)
- Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takahiro Hara
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomonobu Kado
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Tobe
- Research Center for Pre-Disease Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Lu J, He Q, Wang H, Yao L, Duffy M, Guo H, Braun C, Zhou Y, Liang Q, Lin Y, Bandyopadhyay S, Tan K, Choi Y, Liu XS, Qin L. Bone marrow adipogenic lineage precursors are the major regulator of bone resorption in adult mice. Bone Res 2025; 13:39. [PMID: 40102423 PMCID: PMC11920254 DOI: 10.1038/s41413-025-00405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 03/20/2025] Open
Abstract
Bone resorption by osteoclasts is a critical step in bone remodeling, a process important for maintaining bone homeostasis and repairing injured bone. We previously identified a bone marrow mesenchymal subpopulation, marrow adipogenic lineage precursors (MALPs), and showed that its production of RANKL stimulates bone resorption in young mice using Adipoq-Cre. To exclude developmental defects and to investigate the role of MALPs-derived RANKL in adult bone, we generated inducible reporter mice (Adipoq-CreER Tomato) and RANKL deficient mice (Adipoq-CreER RANKLflox/flox, iCKO). Single cell-RNA sequencing data analysis and lineage tracing revealed that Adipoq+ cells contain not only MALPs but also some mesenchymal progenitors capable of osteogenic differentiation. In situ hybridization showed that RANKL mRNA is only detected in MALPs, but not in osteogenic cells. RANKL deficiency in MALPs induced at 3 months of age rapidly increased trabecular bone mass in long bones as well as vertebrae due to diminished bone resorption but had no effect on the cortical bone. Ovariectomy (OVX) induced trabecular bone loss at both sites. RANKL depletion either before OVX or at 6 weeks post OVX protected and restored trabecular bone mass. Furthermore, bone healing after drill-hole injury was delayed in iCKO mice. Together, our findings demonstrate that MALPs play a dominant role in controlling trabecular bone resorption and that RANKL from MALPs is essential for trabecular bone turnover in adult bone homeostasis, postmenopausal bone loss, and injury repair.
Collapse
Affiliation(s)
- Jiawei Lu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qi He
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huan Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hanli Guo
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corben Braun
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yilu Zhou
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qiushi Liang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuewei Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shovik Bandyopadhyay
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kai Tan
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yongwen Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - X Sherry Liu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol 2025; 21:135-153. [PMID: 39379711 DOI: 10.1038/s41574-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Skeletal stem cells (SSCs) and related progenitors with osteogenic potential, collectively termed skeletal stem and/or progenitor cells (SSPCs), are crucial for providing osteoblasts for bone formation during homeostatic tissue turnover and fracture repair. Besides mediating normal bone physiology, they also have important roles in various metabolic bone diseases, including osteoporosis. SSPCs are of tremendous interest because they represent prime future targets for osteoanabolic therapies and bone regenerative medicine. Remarkable progress has been made in characterizing various SSC and SSPC populations in postnatal bone. SSPCs exist in the periosteum and within the bone marrow stroma, including subsets localizing around arteriolar and sinusoidal blood vessels; they can display osteogenic, chondrogenic, adipogenic and/or fibroblastic potential, and exert critical haematopoiesis-supportive functions. However, much remains to be clarified. By the current markers, bona fide SSCs are commonly contained within broader SSPC populations characterized by considerable heterogeneity and overlap, whose common versus specific functions in health and disease have not been fully unravelled. Here, we review the present knowledge of the identity, fates and relationships of SSPC populations in the postnatal bone environment, their contributions to bone maintenance, the changes observed upon ageing, and the effect of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Qin L, Lu J, He Q, Wang H, Yao L, Duffy M, Guo H, Braun C, Lin Y, Zhou Y, Liang Q, Bandyopadhyay S, Tan K, Choi Y, Liu S. Bone marrow adipogenic lineage precursors are the major regulator of bone resorption in adult mice. RESEARCH SQUARE 2024:rs.3.rs-4809633. [PMID: 39257979 PMCID: PMC11384808 DOI: 10.21203/rs.3.rs-4809633/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Bone resorption by osteoclasts is a critical step in bone remodeling, a process important for maintaining bone homeostasis and repairing injured bone. We previously identified a bone marrow mesenchymal subpopulation, marrow adipogenic lineage precursors (MALPs), and showed that its production of RANKL stimulates bone resorption in young mice using Adipoq-Cre. To exclude developmental defects and to investigate the role of MALPs-derived RANKL in adult bone, we generated inducible reporter mice (Adipoq-CreER Tomato) and RANKL deficient mice (Adipoq-CreER RANKLflox/flox, iCKO). Single cell-RNA sequencing data analysis, lineage tracing, and in situ hybridization revealed that Adipoq+ cells contain not only MALPs but also late mesenchymal progenitors capable of osteogenic differentiation. However, RANKLmRNA was only detected in MALPs, but not in osteogenic cells. RANKL deficiency in MALPs induced at 3 months of age rapidly increased trabecular bone mass in long bones as well as vertebrae within 1 month due to diminished bone resorption but had no effect on the cortical bone. Ovariectomy (OVX) induced trabecular bone loss at both sites. RANKL depletion either before OVX or at 6 weeks post OVX protected and restored trabecular bone mass. Furthermore, bone healing after drill-hole injury was delayed in iCKO mice. Together, our findings demonstrate that MALPs play a dominant role in controlling trabecular bone resorption and that RANKL from MALPs is essential for trabecular bone turnover in adult bone homeostasis, postmenopausal bone loss, and injury repair.
Collapse
Affiliation(s)
| | | | - Qi He
- University of Pennsylvania
| | | | | | | | | | | | | | | | | | | | - Kai Tan
- The Children's Hospital of Philadelphia
| | - Yongwon Choi
- University of Pennsylvania Perelman School of Medicine
| | | |
Collapse
|
5
|
Alshaweesh J, Dash R, Lee MSJ, Kahyaoglu P, Erci E, Xu M, Matsuo-Dapaah J, Del Rosario Zorrilla C, Aykac K, Ekemen S, Kobiyama K, Ishii KJ, Coban C. MyD88 in osteoclast and osteoblast lineages differentially controls bone remodeling in homeostasis and malaria. Int Immunol 2024; 36:451-464. [PMID: 38642134 PMCID: PMC11319481 DOI: 10.1093/intimm/dxae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Chronic bone loss is an under-recognized complication of malaria, the underlying mechanism of which remains incompletely understood. We have previously shown that persistent accumulation of Plasmodium products in the bone marrow leads to chronic inflammation in osteoblast (OB) and osteoclast (OC) precursors causing bone loss through MyD88, an adaptor molecule for diverse inflammatory signals. However, the specific contribution of MyD88 signaling in OB or OC precursors in malaria-induced bone loss remains elusive. To assess the direct cell-intrinsic role of MyD88 signaling in adult bone metabolism under physiological and infection conditions, we used the Lox-Cre system to specifically deplete MyD88 in the OB or OC lineages. Mice lacking MyD88 primarily in the maturing OBs showed a comparable decrease in trabecular bone density by microcomputed tomography to that of controls after Plasmodium yoelii non-lethal infection. In contrast, mice lacking MyD88 in OC precursors showed significantly less trabecular bone loss than controls, suggesting that malaria-mediated inflammatory mediators are primarily controlled by MyD88 in the OC lineage. Surprisingly, however, depletion of MyD88 in OB, but not in OC, precursors resulted in reduced bone mass with decreased bone formation rates in the trabecular areas of femurs under physiological conditions. Notably, insulin-like growth factor-1, a key molecule for OB differentiation, was significantly lower locally and systemically when MyD88 was depleted in OBs. Thus, our data demonstrate an indispensable intrinsic role for MyD88 signaling in OB differentiation and bone formation, while MyD88 signaling in OC lineages plays a partial role in controlling malaria-induced inflammatory mediators and following bone pathology. These findings may lead to the identification of novel targets for specific intervention of bone pathologies, particularly in malaria-endemic regions.
Collapse
Affiliation(s)
- Jalal Alshaweesh
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
| | - Rashmi Dash
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Science (CBMS), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Michelle S J Lee
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
| | - Pinar Kahyaoglu
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Department of Paediatrics, Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Ece Erci
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Department of Paediatrics, Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Mengling Xu
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Science (CBMS), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Julia Matsuo-Dapaah
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Camila Del Rosario Zorrilla
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Science (CBMS), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Kubra Aykac
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Department of Paediatrics, Hacettepe University School of Medicine, Ankara 06100, Turkey
- Ministry of Health University, Ankara Education and Research Hospital, Paediatric Infectious Diseases Unit, Ankara 06230, Turkey
| | - Suheyla Ekemen
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
| | - Kouji Kobiyama
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
- Division of Vaccine Science, Department of Microbiology and Immunology, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ken J Ishii
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Division of Vaccine Science, Department of Microbiology and Immunology, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Science (CBMS), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
6
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Cheng K, Gao S, Mei Y, Zhou D, Song C, Guo D, Hou Y, Liu Z. The bone nonunion microenvironment: A place where osteogenesis struggles with osteoclastic capacity. Heliyon 2024; 10:e31314. [PMID: 38813209 PMCID: PMC11133820 DOI: 10.1016/j.heliyon.2024.e31314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Bone nonunion is a common and serious orthopedic disorder, the occurrence of which is associated with a disruption of the dynamic balance between osteoblasts and osteoclasts during bone repair. However, the critical molecular mechanisms affecting this homeostasis are not well understood, and it is essential to investigate the specific components of this mechanism and to restore the balance between osteoblasts and osteoclasts to promote bone repair. First, we defined this complex local environmental factor as the "bone nonunion microenvironment" and identified the importance of the "struggle" between osteoblasts and osteoclasts, which is the most essential element in determining the process of repair. On this basis, we also explored the cellular factors that influence osteogenesis and the molecular signals that influence the balance between osteoclast and osteoblasts, which are important for restoring homeostasis. Further, we explored other factors involved in osteogenesis, such as the biomechanical environment, the nutritional environment, the acid-base environment, and the temperature environment, which are important players in osteogenesis. In conclusion, we found that the balance between osteoblasts and osteoclasts is the essence of bone healing, which is based on the "bone nonunion microenvironment". Therefore, investigating the role of the bone nonunion microenvironment in the system of osteoblast-osteoclast "struggle" provides an important basis for further understanding of the mechanism of nonunion and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Kang Cheng
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Silong Gao
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yongliang Mei
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Chao Song
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Daru Guo
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yunqing Hou
- Department of Medical Imaging, Luzhou Longmatan District People's Hospital, Luzhou, China
| | - Zongchao Liu
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Medical Imaging, Luzhou Longmatan District People's Hospital, Luzhou, China
| |
Collapse
|
8
|
Nookaew I, Xiong J, Onal M, Bustamante-Gomez C, Wanchai V, Fu Q, Kim HN, Almeida M, O'Brien CA. Refining the identity of mesenchymal cell types associated with murine periosteal and endosteal bone. J Biol Chem 2024; 300:107158. [PMID: 38479598 PMCID: PMC11007436 DOI: 10.1016/j.jbc.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Single-cell RNA-seq has led to novel designations for mesenchymal cells associated with bone as well as multiple designations for what appear to be the same cell type. The main goals of this study were to increase the amount of single-cell RNA sequence data for osteoblasts and osteocytes, to compare cells from the periosteum to those inside bone, and to clarify the major categories of cell types associated with murine bone. We created an atlas of murine bone-associated cells by harmonizing published datasets with in-house data from cells targeted by Osx1-Cre and Dmp1-Cre driver strains. Cells from periosteal bone were analyzed separately from those isolated from the endosteum and trabecular bone. Over 100,000 mesenchymal cells were mapped to reveal 11 major clusters designated fibro-1, fibro-2, chondrocytes, articular chondrocytes, tenocytes, adipo-Cxcl12 abundant reticular (CAR), osteo-CAR, preosteoblasts, osteoblasts, osteocytes, and osteo-X, the latter defined in part by periostin expression. Osteo-X, osteo-CAR, and preosteoblasts were closely associated with osteoblasts at the trabecular bone surface. Wnt16 was expressed in multiple cell types from the periosteum but not in cells from endocortical or cancellous bone. Fibro-2 cells, which express markers of stem cells, localized to the periosteum but not trabecular bone in adult mice. Suppressing bone remodeling eliminated osteoblasts and altered gene expression in preosteoblasts but did not change the abundance or location of osteo-X or osteo-CAR cells. These results provide a framework for identifying bone cell types in murine single-cell RNA-seq datasets and suggest that osteoblast progenitors reside near the surface of remodeling bone.
Collapse
Affiliation(s)
- Intawat Nookaew
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Biomedical Informatics, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | - Jinhu Xiong
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Orthopaedic Surgery, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Melda Onal
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Physiology and Cell Biology, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Cecile Bustamante-Gomez
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Visanu Wanchai
- Department of Biomedical Informatics, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Qiang Fu
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Maria Almeida
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Orthopaedic Surgery, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Charles A O'Brien
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Orthopaedic Surgery, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
| |
Collapse
|
9
|
Li J, Wu J, Xie Y, Yu X. Bone marrow adipocytes and lung cancer bone metastasis: unraveling the role of adipokines in the tumor microenvironment. Front Oncol 2024; 14:1360471. [PMID: 38571500 PMCID: PMC10987778 DOI: 10.3389/fonc.2024.1360471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Bone is a common site of metastasis for lung cancer. The "seed and soil" hypothesis suggests that the bone marrow microenvironment ("soil") may provide a conducive survival environment for metastasizing tumor cells ("seeds"). The bone marrow microenvironment, comprising a complex array of cells, includes bone marrow adipocytes (BMAs), which constitute about 70% of the adult bone marrow volume and may play a significant role in tumor bone metastasis. BMAs can directly provide energy for tumor cells, promoting their proliferation and migration. Furthermore, BMAs participate in the tumor microenvironment's osteogenesis regulation, osteoclast(OC) regulation, and immune response through the secretion of adipokines, cytokines, and inflammatory factors. However, the precise mechanisms of BMAs in lung cancer bone metastasis remain largely unclear. This review primarily explores the role of BMAs and their secreted adipokines (leptin, adiponectin, Nesfatin-1, Resistin, chemerin, visfatin) in lung cancer bone metastasis, aiming to provide new insights into the mechanisms and clinical treatment of lung cancer bone metastasis.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Shandong Second Provincial General Hospital, Jinan, China
| | - Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanni Xie
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Nookaew I, Xiong J, Onal M, Bustamante-Gomez C, Wanchai V, Fu Q, Kim HN, Almeida M, O’Brien CA. A framework for defining mesenchymal cell types associated with murine periosteal and endosteal bone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567528. [PMID: 38014179 PMCID: PMC10680810 DOI: 10.1101/2023.11.17.567528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Single-cell RNA sequencing has led to numerous novel designations for mesenchymal cell types associated with bone. Consequently, there are now multiple designations for what appear to be the same cell type. In addition, existing datasets contain relatively small numbers of mature osteoblasts and osteocytes and there has been no comparison of periosteal bone cells to those at the endosteum and trabecular bone. The main goals of this study were to increase the amount of single cell RNA sequence data for osteoblasts and osteocytes, to compare cells from the periosteum to those inside bone, and to clarify the major categories of cell types associated with murine bone. To do this, we created an atlas of murine bone-associated cells by harmonizing published datasets with in-house data from cells targeted by Osx1-Cre and Dmp1-Cre driver strains. Cells from periosteal bone were analyzed separately from those isolated from the endosteum and trabecular bone. Over 100,000 mesenchymal cells were mapped to reveal 11 major clusters designated fibro-1, fibro-2, chondrocytes, articular chondrocytes, tenocytes, adipo-CAR, osteo-CAR, pre-osteoblasts, osteoblasts, osteocytes, and osteo-X, the latter defined in part by Postn expression. Osteo-X, osteo-CAR, and pre-osteoblasts were closely associated with osteoblasts at the trabecular bone surface. Wnt16 was expressed in multiple cell types from the periosteum but not in any cells from endocortical or cancellous bone. Fibro-2 cells, which express markers of skeletal stem cells, localized to the periosteum but not trabecular bone in adult mice. Suppressing bone remodeling eliminated osteoblasts and altered gene expression in pre-osteoblasts but did not change the abundance or location of osteo-X or osteo-CAR cells. These results provide a framework for identifying bone cell types in murine single cell RNA sequencing datasets and suggest that osteoblast progenitors reside near the surface of remodeling bone.
Collapse
Affiliation(s)
- Intawat Nookaew
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Biomedical Informatics, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jinhu Xiong
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Orthopaedic Surgery, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Melda Onal
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Physiology and Cell Biology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Cecile Bustamante-Gomez
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Visanu Wanchai
- Department of Biomedical Informatics, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Qiang Fu
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Maria Almeida
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Orthopaedic Surgery, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Charles A. O’Brien
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Orthopaedic Surgery, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
| |
Collapse
|
11
|
Li Z, Rosen CJ. The Multifaceted Roles of Bone Marrow Adipocytes in Bone and Hematopoietic Homeostasis. J Clin Endocrinol Metab 2023; 108:e1465-e1472. [PMID: 37315208 DOI: 10.1210/clinem/dgad355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Bone marrow adipose tissue (BMAT) makes up a significant portion of the marrow space, ranging from 50% to 70%, in healthy adults. It expands with aging, obesity, anorexia nervosa, and irradiation, which are conditions associated with skeletal complications or hematopoietic disorders. Therefore, BMAT has been viewed as a negative component of the bone marrow niche for decades, although the mechanisms and causative relationships have not been well-addressed. Of note, recent studies have revealed that BMAT is a multifaceted tissue that can serve as an energy reservoir to fuel osteoblasts and hematopoietic cells under stressful situations, and also acts as an endocrine/paracrine organ to suppress bone formation and support hematopoiesis at steady-state conditions. In this review, we summarize the uniqueness of BMAT, the complex findings of previous studies, and update our understanding of the physiological roles of BMAT in bone and hematopoietic metabolism based on a newly established bone marrow adipocyte-specific mouse model.
Collapse
Affiliation(s)
- Ziru Li
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA
| |
Collapse
|
12
|
Zhong L, Lu J, Fang J, Yao L, Yu W, Gui T, Duffy M, Holdreith N, Bautista CA, Huang X, Bandyopadhyay S, Tan K, Chen C, Choi Y, Jiang JX, Yang S, Tong W, Dyment N, Qin L. Csf1 from marrow adipogenic precursors is required for osteoclast formation and hematopoiesis in bone. eLife 2023; 12:e82112. [PMID: 36779854 PMCID: PMC10005765 DOI: 10.7554/elife.82112] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/03/2023] [Indexed: 02/14/2023] Open
Abstract
Colony-stimulating factor 1 (Csf1) is an essential growth factor for osteoclast progenitors and an important regulator for bone resorption. It remains elusive which mesenchymal cells synthesize Csf1 to stimulate osteoclastogenesis. We recently identified a novel mesenchymal cell population, marrow adipogenic lineage precursors (MALPs), in bone. Compared to other mesenchymal subpopulations, MALPs expressed Csf1 at a much higher level and this expression was further increased during aging. To investigate its role, we constructed MALP-deficient Csf1 CKO mice using AdipoqCre. These mice had increased femoral trabecular bone mass, but their cortical bone appeared normal. In comparison, depletion of Csf1 in the entire mesenchymal lineage using Prrx1Cre led to a more striking high bone mass phenotype, suggesting that additional mesenchymal subpopulations secrete Csf1. TRAP staining revealed diminished osteoclasts in the femoral secondary spongiosa region of Csf1 CKOAdipoq mice, but not at the chondral-osseous junction nor at the endosteal surface of cortical bone. Moreover, Csf1 CKOAdipoq mice were resistant to LPS-induced calvarial osteolysis. Bone marrow cellularity, hematopoietic progenitors, and macrophages were also reduced in these mice. Taken together, our studies demonstrate that MALPs synthesize Csf1 to control bone remodeling and hematopoiesis.
Collapse
Affiliation(s)
- Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiawei Lu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiankang Fang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Wei Yu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital, Jinan UniversityGuangzhouChina
| | - Michael Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas Holdreith
- Division of Hematology, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Catherine A Bautista
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shovik Bandyopadhyay
- Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Medical Scientist Training Program, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Kai Tan
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Center for Childhood Cancer Research, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Shuying Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Wei Tong
- Division of Hematology, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nathanial Dyment
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
13
|
Li Z, Bagchi DP, Zhu J, Bowers E, Yu H, Hardij J, Mori H, Granger K, Skjaerlund J, Mandair G, Abrishami S, Singer K, Hankenson KD, Rosen CJ, MacDougald OA. Constitutive bone marrow adipocytes suppress local bone formation. JCI Insight 2022; 7:160915. [PMID: 36048537 PMCID: PMC9675472 DOI: 10.1172/jci.insight.160915] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
BM adipocytes (BMAd) are a unique cell population derived from BM mesenchymal progenitors and marrow adipogenic lineage precursors. Although they have long been considered to be a space filler within bone cavities, recent studies have revealed important physiological roles in hematopoiesis and bone metabolism. To date, the approaches used to study BMAd function have been confounded by contributions by nonmarrow adipocytes or by BM stromal cells. To address this gap in the field, we have developed a BMAd-specific Cre mouse model to deplete BMAds by expression of diphtheria toxin A (DTA) or by deletion of peroxisome proliferator-activated receptor gamma (Pparg). We found that DTA-induced loss of BMAds results in decreased hematopoietic stem and progenitor cell numbers and increased bone mass in BMAd-enriched locations, including the distal tibiae and caudal vertebrae. Elevated bone mass appears to be secondary to enhanced endosteal bone formation, suggesting a local effect caused by depletion of BMAd. Augmented bone formation with BMAd depletion protects mice from bone loss induced by caloric restriction or ovariectomy, and it facilitates the bone-healing process after fracture. Finally, ablation of Pparg also reduces BMAd numbers and largely recapitulates high-bone mass phenotypes observed with DTA-induced BMAd depletion.
Collapse
Affiliation(s)
- Ziru Li
- Department of Molecular & Integrative Physiology and
| | | | - Junxiong Zhu
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Emily Bowers
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hui Yu
- Department of Molecular & Integrative Physiology and
| | - Julie Hardij
- Department of Molecular & Integrative Physiology and
| | - Hiroyuki Mori
- Department of Molecular & Integrative Physiology and
| | | | - Jon Skjaerlund
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gurjit Mandair
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Simin Abrishami
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kanakadurga Singer
- Department of Molecular & Integrative Physiology and
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Ormond A. MacDougald
- Department of Molecular & Integrative Physiology and
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Jeffery EC, Mann TLA, Pool JA, Zhao Z, Morrison SJ. Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell 2022; 29:1547-1561.e6. [PMID: 36272401 DOI: 10.1016/j.stem.2022.10.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
A fundamental question in bone biology concerns the contributions of skeletal stem/progenitor cells (SSCs) in the bone marrow versus the periosteum to bone repair. We found that SSCs in adult bone marrow can be identified based on Leprcre and Adiponectin-cre/creER expression while SSCs in adult periosteum can be identified based on Gli1creERT2 expression. Under steady-state conditions, new bone arose primarily from bone marrow SSCs. After bone injuries, both SSC populations began proliferating but made very different contributions to bone repair. Drill injuries were primarily repaired by LepR+/Adiponectin+ bone marrow SSCs. Conversely, bicortical fractures were primarily repaired by Gli1+ periosteal SSCs, though LepR+/Adiponectin+ bone marrow cells transiently formed trabecular bone at the fracture site. Gli1+ periosteal cells also regenerated LepR+ bone marrow stromal cells that expressed hematopoietic niche factors at fracture sites. Different bone injuries are thus repaired by different SSCs, with periosteal cells regenerating bone and marrow stroma after non-stabilized fractures.
Collapse
Affiliation(s)
- Elise C Jeffery
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Terry L A Mann
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jade A Pool
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
15
|
Palmisano B, Labella R, Donsante S, Remoli C, Spica E, Coletta I, Farinacci G, Dello Spedale Venti M, Saggio I, Serafini M, Robey PG, Corsi A, Riminucci M. Gsα R201C and estrogen reveal different subsets of bone marrow adiponectin expressing osteogenic cells. Bone Res 2022; 10:50. [PMID: 35853852 PMCID: PMC9296668 DOI: 10.1038/s41413-022-00220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022] Open
Abstract
The Gsα/cAMP signaling pathway mediates the effect of a variety of hormones and factors that regulate the homeostasis of the post-natal skeleton. Hence, the dysregulated activity of Gsα due to gain-of-function mutations (R201C/R201H) results in severe architectural and functional derangements of the entire bone/bone marrow organ. While the consequences of gain-of-function mutations of Gsα have been extensively investigated in osteoblasts and in bone marrow osteoprogenitor cells at various differentiation stages, their effect in adipogenically-committed bone marrow stromal cells has remained unaddressed. We generated a mouse model with expression of GsαR201C driven by the Adiponectin (Adq) promoter. Adq-GsαR201C mice developed a complex combination of metaphyseal, diaphyseal and cortical bone changes. In the metaphysis, GsαR201C caused an early phase of bone resorption followed by bone deposition. Metaphyseal bone formation was sustained by cells that were traced by Adq-Cre and eventually resulted in a high trabecular bone mass phenotype. In the diaphysis, GsαR201C, in combination with estrogen, triggered the osteogenic activity of Adq-Cre-targeted perivascular bone marrow stromal cells leading to intramedullary bone formation. Finally, consistent with the previously unnoticed presence of Adq-Cre-marked pericytes in intraosseous blood vessels, GsαR201C caused the development of a lytic phenotype that affected both cortical (increased porosity) and trabecular (tunneling resorption) bone. These results provide the first evidence that the Adq-cell network in the skeleton not only regulates bone resorption but also contributes to bone formation, and that the Gsα/cAMP pathway is a major modulator of both functions.
Collapse
Affiliation(s)
- Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Rossella Labella
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
- Tettamanti Research Center, Department of Pediatrics, University of Milano Bicocca/Fondazione MBBM, Monza, 20900, Italy
| | - Cristina Remoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Emanuela Spica
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Ilenia Coletta
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Giorgia Farinacci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | | | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, 00185, Italy
- Institute of Structural Biology and School of Biological Sciences Nanyang Technological University, 639798, Singapore, Singapore
- CNR Institute of Molecular Biology and Pathology, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Marta Serafini
- Tettamanti Research Center, Department of Pediatrics, University of Milano Bicocca/Fondazione MBBM, Monza, 20900, Italy
| | - Pamela Gehron Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy.
| |
Collapse
|
16
|
Li Z, Bowers E, Zhu J, Yu H, Hardij J, Bagchi DP, Mori H, Lewis KT, Granger K, Schill RL, Romanelli SM, Abrishami S, Hankenson KD, Singer K, Rosen CJ, MacDougald OA. Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. eLife 2022; 11:e78496. [PMID: 35731039 PMCID: PMC9273217 DOI: 10.7554/elife.78496] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate roles for bone marrow adipocyte (BMAd) lipolysis in bone homeostasis, we created a BMAd-specific Cre mouse model in which we knocked out adipose triglyceride lipase (ATGL, Pnpla2 gene). BMAd-Pnpla2-/- mice have impaired BMAd lipolysis, and increased size and number of BMAds at baseline. Although energy from BMAd lipid stores is largely dispensable when mice are fed ad libitum, BMAd lipolysis is necessary to maintain myelopoiesis and bone mass under caloric restriction. BMAd-specific Pnpla2 deficiency compounds the effects of caloric restriction on loss of trabecular bone in male mice, likely due to impaired osteoblast expression of collagen genes and reduced osteoid synthesis. RNA sequencing analysis of bone marrow adipose tissue reveals that caloric restriction induces dramatic elevations in extracellular matrix organization and skeletal development genes, and energy from BMAd is required for these adaptations. BMAd-derived energy supply is also required for bone regeneration upon injury, and maintenance of bone mass with cold exposure.
Collapse
Affiliation(s)
- Ziru Li
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Emily Bowers
- University of Michigan Medical School, Department of PediatricsAnn ArborUnited States
| | - Junxiong Zhu
- Department of Orthopedic Surgery, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Hui Yu
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Julie Hardij
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Devika P Bagchi
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Hiroyuki Mori
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Kenneth T Lewis
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Katrina Granger
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Rebecca L Schill
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Steven M Romanelli
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
| | - Simin Abrishami
- University of Michigan Medical School, Department of PediatricsAnn ArborUnited States
| | - Kurt D Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical SchoolAnn ArborUnited States
| | - Kanakadurga Singer
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
- University of Michigan Medical School, Department of PediatricsAnn ArborUnited States
| | | | - Ormond A MacDougald
- University of Michigan Medical School, Department of Molecular & Integrative PhysiologyAnn ArborUnited States
- University of Michigan Medical School, Department of Internal MedicineAnn ArborUnited States
| |
Collapse
|
17
|
Tian J, Chung HK, Moon JS, Nga HT, Lee HY, Kim JT, Chang JY, Kang SG, Ryu D, Che X, Choi J, Tsukasaki M, Sasako T, Lee S, Shong M, Yi H. Skeletal muscle mitoribosomal defects are linked to low bone mass caused by bone marrow inflammation in male mice. J Cachexia Sarcopenia Muscle 2022; 13:1785-1799. [PMID: 35306755 PMCID: PMC9178379 DOI: 10.1002/jcsm.12975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mitochondrial oxidative phosphorylation (OxPhos) is a critical regulator of skeletal muscle mass and function. Although muscle atrophy due to mitochondrial dysfunction is closely associated with bone loss, the biological characteristics of the relationship between muscle and bone remain obscure. We showed that muscle atrophy caused by skeletal muscle-specific CR6-interacting factor 1 knockout (MKO) modulates the bone marrow (BM) inflammatory response, leading to low bone mass. METHODS MKO mice with lower muscle OxPhos were fed a normal chow or high-fat diet and then evaluated for muscle mass and function, and bone mineral density. Immunophenotyping of BM immune cells was also performed. BM transcriptomic analysis was used to identify key factors regulating bone mass in MKO mice. To determine the effects of BM-derived CXCL12 (C-X-C motif chemokine ligand 12) on regulation of bone homeostasis, a variety of BM niche-resident cells were treated with recombinant CXCL12. Vastus lateralis muscle and BM immune cell samples from 14 patients with hip fracture were investigated to examine the association between muscle function and BM inflammation. RESULTS MKO mice exhibited significant reductions in both muscle mass and expression of OxPhos subunits but increased transcription of mitochondrial stress response-related genes in the extensor digitorum longus (P < 0.01). MKO mice showed a decline in grip strength and a higher drop rate in the wire hanging test (P < 0.01). Micro-computed tomography and von Kossa staining revealed that MKO mice developed a low mass phenotype in cortical and trabecular bone (P < 0.01). Transcriptomic analysis of the BM revealed that mitochondrial stress responses in skeletal muscles induce an inflammatory response and adipogenesis in the BM and that the CXCL12-CXCR4 (C-X-C chemokine receptor 4) axis is important for T-cell homing to the BM. Antagonism of CXCR4 attenuated BM inflammation and increased bone mass in MKO mice. In humans, patients with low body mass index (BMI = 17.2 ± 0.42 kg/m2 ) harboured a larger population of proinflammatory and cytotoxic senescent T-cells in the BMI (P < 0.05) and showed reduced expression of OxPhos subunits in the vastus lateralis, compared with controls with a normal BMI (23.7 ± 0.88 kg/m2 ) (P < 0.01). CONCLUSIONS Defects in muscle mitochondrial OxPhos promote BM inflammation in mice, leading to decreased bone mass. Muscle mitochondrial dysfunction is linked to BM inflammatory cytokine secretion via the CXCL12-CXCR4 signalling axis, which is critical for inducing low bone mass.
Collapse
Affiliation(s)
- Jingwen Tian
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Ha Thi Nga
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
| | - Ho Yeop Lee
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
| | - Jung Tae Kim
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Joon Young Chang
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Seul Gi Kang
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Dongryeol Ryu
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonKorea
- Samsung Biomedical Research InstituteSamsung Medical CenterSeoulKorea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of MedicineKyungpook National UniversityDaeguKorea
- Department of Internal Medicine, Rheumatology and ImmunologyThe Affiliated Hospital of Yanbian UniversityYanjiChina
| | - Je‐Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of MedicineKyungpook National UniversityDaeguKorea
| | - Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of MedicineThe University of TokyoTokyoJapan
| | - Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Sang‐Hee Lee
- Bio‐Electron Microscopy Research Center (104‐Dong)Korea Basic Science InstituteCheongjuKorea
| | - Minho Shong
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Hyon‐Seung Yi
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| |
Collapse
|
18
|
Wang L, Zhang H, Wang S, Chen X, Su J. Bone Marrow Adipocytes: A Critical Player in the Bone Marrow Microenvironment. Front Cell Dev Biol 2021; 9:770705. [PMID: 34912805 PMCID: PMC8667222 DOI: 10.3389/fcell.2021.770705] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
Recognized for nearly 100 years, bone marrow adipocytes (BMAs) form bone marrow niches that contain hematopoietic and bone cells, the roles of which have long been underestimated. Distinct from canonical white, brown, and beige adipocytes, BMAs derived from bone marrow mesenchymal stromal cells possess unique characteristics and functions. Recent single-cell sequencing studies have revealed the differentiation pathway, and seminal works support the tenet that BMAs are critical regulators in hematopoiesis, osteogenesis, and osteoclastogenesis. In this review, we discuss the origin and differentiation of BMAs, as well as the roles of BMAs in hematopoiesis, osteogenesis, osteoclastogenesis, and immune regulation. Overall, BMAs represent a novel target for bone marrow-related diseases, including osteoporosis and leukemia.
Collapse
Affiliation(s)
- Lipeng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hao Zhang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sicheng Wang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
19
|
Ikuta K, Hara T, Abe S, Asahi T, Takami D, Cui G. The Roles of IL-7 and IL-15 in Niches for Lymphocyte Progenitors and Immune Cells in Lymphoid Organs. Curr Top Microbiol Immunol 2021; 434:83-101. [PMID: 34850283 DOI: 10.1007/978-3-030-86016-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lymphoid organs consist of immune cells and stromal cells. The stromal cells produce various cytokines that support the development, maintenance, and response of the immune cells. IL-7 and IL-15 are the major cytokines produced by stromal cells and are essential for the development and maintenance of lymphocytes and innate lymphoid cells (ILCs). In addition, IL-7 is indispensable for the organogenesis of lymphoid organs. However, because the amount of these two cytokines is relatively low, it has been difficult to directly detect their expression. Recently, several groups succeeded in establishing IL-7 and IL-15 reporter mouse lines. As expected, IL-7 and IL-15 were detected in mesenchymal stromal cells in the bone marrow and lymph nodes and in epithelial cells in the thymus. Furthermore, IL-7 and IL-15 were differentially expressed in lymphatic endothelial cells and blood endothelial cells, respectively. In addition to their expression, many groups have analyzed the local functions of IL-7 and IL-15 by using cell-type-specific knockout mice. From these experiments, CXCL12-expressing mesenchymal stromal cells were identified as the major niche for early B cell precursors. Single-cell RNA sequencing (scRNA-seq) analysis has revealed different subpopulations of stromal cells in the lymphoid organs, including those that express both IL-7 and IL-15. Future research is still needed to elucidate which stromal cells serve as the niche for the early precursors of ILCs and NK cells in the bone marrow.
Collapse
Affiliation(s)
- Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
| | - Takahiro Hara
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Daichi Takami
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Osteocytes are considered to be the cells responsible for mastering the remodeling process that follows the exposure to unloading conditions. Given the invasiveness of bone biopsies in humans, both rodents and in vitro culture systems are largely adopted as models for studies in space missions or in simulated microgravity conditions models on Earth. RECENT FINDINGS After a brief recall of the main changes in bone mass and osteoclastic and osteoblastic activities in space-related models, this review focuses on the potential role of osteocytes in directing these changes. The role of the best-known signalling molecules is questioned, in particular in relation to osteocyte apoptosis. The mechanotransduction actors identified in spatial conditions and the problems related to fluid flow and shear stress changes, probably enhanced by the alteration in fluid flow and lack of convection during spaceflight, are recalled and discussed.
Collapse
Affiliation(s)
- Donata Iandolo
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Maura Strigini
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Alain Guignandon
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Laurence Vico
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France.
| |
Collapse
|
21
|
Shi Y, Liao X, Long JY, Yao L, Chen J, Yin B, Lou F, He G, Ye L, Qin L, Long F. Gli1 + progenitors mediate bone anabolic function of teriparatide via Hh and Igf signaling. Cell Rep 2021; 36:109542. [PMID: 34407400 PMCID: PMC8432334 DOI: 10.1016/j.celrep.2021.109542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/27/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023] Open
Abstract
Teriparatide is the most widely prescribed bone anabolic drug in the world, but its cellular targets remain incompletely defined. The Gli1+ metaphyseal mesenchymal progenitors (MMPs) are a main source for osteoblasts in postnatal growing mice, but their potential response to teriparatide is unknown. Here, by lineage tracing, we show that teriparatide stimulates both proliferation and osteoblast differentiation of MMPs. Single-cell RNA sequencing reveals heterogeneity among MMPs, including an unexpected chondrocyte-like osteoprogenitor (COP). COP expresses the highest level of Hedgehog (Hh) target genes and the insulin-like growth factor 1 receptor (Igf1r) among all cell clusters. COP also expresses Pth1r and further upregulates Igf1r upon teriparatide treatment. Inhibition of Hh signaling or deletion of Igf1r from MMPs diminishes the proliferative and osteogenic effects of teriparatide. The study therefore identifies COP as a teriparatide target wherein Hh and insulin-like growth factor (Igf) signaling are critical for the osteoanabolic response in growing mice.
Collapse
Affiliation(s)
- Yu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Translational Research Program of Pediatric Orthopedics, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xueyang Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Translational Research Program of Pediatric Orthopedics, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James Y Long
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Lutian Yao
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jianquan Chen
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Bei Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feng Lou
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Qin
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Fanxin Long
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Zhang X, Robles H, Magee L K, Lorenz R M, Wang Z, Harris A C, Craft S C, Scheller L E. A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease. eLife 2021; 10:66275. [PMID: 34378533 PMCID: PMC8412938 DOI: 10.7554/elife.66275] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Bone marrow adipocytes accumulate with age and in diverse disease states. However, their origins and adaptations in these conditions remain unclear, impairing our understanding of their context-specific endocrine functions and relationship with surrounding tissues. In this study, by analyzing bone and adipose tissues in the lipodystrophic ‘fat-free’ mouse, we define a novel, secondary adipogenesis pathway that relies on the recruitment of adiponectin-negative stromal progenitors. This pathway is unique to the bone marrow and is activated with age and in states of metabolic stress in the fat-free mouse model, resulting in the expansion of bone marrow adipocytes specialized for lipid storage with compromised lipid mobilization and cytokine expression within regions traditionally devoted to hematopoiesis. This finding further distinguishes bone marrow from peripheral adipocytes and contributes to our understanding of bone marrow adipocyte origins, adaptations, and relationships with surrounding tissues with age and disease.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States.,Department of Biomedical Engineering, Washington University, Saint Louis, United States
| | - Hero Robles
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States
| | - Kristann Magee L
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States
| | - Madelyn Lorenz R
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States
| | - Zhaohua Wang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States.,Department of Orthopaedic Surgery, Washington University, Saint Louis, United States
| | - Charles Harris A
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, Saint Louis, United States
| | - Clarissa Craft S
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States
| | - Erica Scheller L
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States.,Department of Biomedical Engineering, Washington University, Saint Louis, United States
| |
Collapse
|
23
|
Optimization of Mouse-on-Mouse Immunohistochemistry by Utilizing Fluorescent-dye Conjugated Secondary Anti-Mouse Antibody. Appl Immunohistochem Mol Morphol 2021; 29:473-477. [PMID: 33958524 DOI: 10.1097/pai.0000000000000912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/28/2020] [Indexed: 11/25/2022]
Abstract
The application of mouse monoclonal antibody for immunostaining the mouse tissues results in a high rate of background noise because of the interaction of the secondary antibody with endogenous immunoglobulins and other immune components. The most advised blocking strategy for the mouse-on-mouse immunostaining is the use of anti-mouse Fab fragments. Nevertheless, the commercial kits containing Fab fragment are costly and unavailable in many research laboratories. In this study, we provide evidence showing the potential of the fluorescent-dye conjugated secondary anti-mouse antibody for reducing the background noise in the mouse-on-mouse immunohistochemistry. Furthermore, our findings demonstrate the inadequacy of goat serum/protein-blocking solution alone as an immunohistochemistry blocking system for reducing the background noise.
Collapse
|
24
|
Zhong L, Yao L, Seale P, Qin L. Marrow adipogenic lineage precursor: A new cellular component of marrow adipose tissue. Best Pract Res Clin Endocrinol Metab 2021; 35:101518. [PMID: 33812853 PMCID: PMC8440665 DOI: 10.1016/j.beem.2021.101518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone marrow mesenchymal stromal cells are a highly heterogenic cell population containing mesenchymal stem cells as well as other cell types. With the advance of single cell transcriptome analysis, several recent reports identified a prominent subpopulation of mesenchymal stromal cells that specifically express adipocyte markers but do not contain lipid droplets. We name this cell type marrow adipogenic lineage precursor, MALP, and consider it as a major cellular component of marrow adipose tissue. Here, we review the discovery of MALPs and summarize their unique features and regulatory roles in bone. We further discuss how these findings advance our understanding of bone remodeling, mesenchymal niche regulation of hematopoiesis, and marrow vasculature maintenance.
Collapse
Affiliation(s)
- Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Hu Y, Li X, Zhi X, Cong W, Huang B, Chen H, Wang Y, Li Y, Wang L, Fang C, Guo J, Liu Y, Cui J, Cao L, Weng W, Zhou Q, Wang S, Chen X, Su J. RANKL from bone marrow adipose lineage cells promotes osteoclast formation and bone loss. EMBO Rep 2021; 22:e52481. [PMID: 34121311 DOI: 10.15252/embr.202152481] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022] Open
Abstract
Receptor activator of NF-κB ligand (RANKL) is essential for osteoclast formation and bone remodeling. Nevertheless, the cellular source of RANKL for osteoclastogenesis has not been fully uncovered. Different from peripheral adipose tissue, bone marrow (BM) adipose lineage cells originate from bone marrow mesenchymal stromal cells (BMSCs). Here, we demonstrate that adiponectin promoter-driven Cre expression (AdipoqCre ) can target bone marrow adipose lineage cells. We cross the AdipoqCre mice with ranklfl/fl mice to conditionally delete RANKL from BM adipose lineage cells. Conditional deletion of RANKL increases cancellous bone mass of long bones in mice by reducing the formation of trabecular osteoclasts and inhibiting bone resorption but does not affect cortical bone thickness or resorption of calcified cartilage. AdipoqCre ; ranklfl/fl mice exhibit resistance to estrogen deficiency and rosiglitazone (ROS)-induced trabecular bone loss but show bone loss induced by unloading. BM adipose lineage cells therefore represent an essential source of RANKL for the formation of trabecula osteoclasts and resorption of cancellous bone during remodeling under physiological and pathological conditions. Targeting bone marrow adiposity is a promising way of preventing pathological bone loss.
Collapse
Affiliation(s)
- Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoqun Li
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhi
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Wei Cong
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Huiwen Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yajun Wang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Lipeng Wang
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chao Fang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiawei Guo
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jin Cui
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics Trauma, Shanghai Luodian Hospital, Shanghai, China
| | - Weizong Weng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qirong Zhou
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sicheng Wang
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China
| |
Collapse
|
26
|
Onji M, Werschler N, Penninger J. A critical relationship between bone and fat: the role of bone marrow adipose-derived RANKL in bone metabolism. EMBO Rep 2021; 22:e52986. [PMID: 34121307 PMCID: PMC8256289 DOI: 10.15252/embr.202152986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Recent studies have unveiled unique functions of the bone marrow adipose tissue (BMAT), which represent over 10% of the total adipose tissue mass in healthy adults. Increasing evidence is emerging as to how BMAT deposition and osteoporosis are linked under normal and pathophysiological conditions, which is opening up novel treatment avenues. However, the means by which bone marrow adipocytes (BMAs) regulate bone remodeling and their involvement in osteoporosis remained unknown. A study in this issue of EMBO Reports (Hu et al, 2021) and a study in Journal of Clinical Investigation (Yu et al, 2021) reports independently that BMA‐derived RANKL regulates osteoclastogenesis and bone remodeling, indicating that excessive RANKL generated by BMAs is an underlying cause for osteoporosis.
Collapse
Affiliation(s)
- Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria
| | - Nicolas Werschler
- School of Biomedical Engineering, Biomedical Research Center, University of British Columbia, Vancouver, BC, Canada
| | - Josef Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
27
|
Madel MB, Fu H, Pierroz DD, Schiffrin M, Winkler C, Wilson A, Pochon C, Toffoli B, Taïeb M, Jouzeau JY, Gilardi F, Ferrari S, Bonnet N, Blin-Wakkach C, Desvergne B, Moulin D. Lack of Adiponectin Drives Hyperosteoclastogenesis in Lipoatrophic Mice. Front Cell Dev Biol 2021; 9:627153. [PMID: 33869176 PMCID: PMC8047205 DOI: 10.3389/fcell.2021.627153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Long bones from mammals host blood cell formation and contain multiple cell types, including adipocytes. Physiological functions of bone marrow adipocytes are poorly documented. Herein, we used adipocyte-deficient PPARγ-whole body null mice to investigate the consequence of total adipocyte deficiency on bone homeostasis in mice. We first highlighted the dual bone phenotype of PPARγ null mice: one the one hand, the increased bone formation and subsequent trabecularization extending in the long bone diaphysis, due to the well-known impact of PPARγ deficiency on osteoblasts formation and activity; on the other hand, an increased osteoclastogenesis in the cortical bone. We then further explored the cause of this unexpected increased osteoclastogenesis using two independent models of lipoatrophy, which recapitulated this phenotype. This demonstrates that hyperosteoclastogenesis is not intrinsically linked to PPARγ deficiency, but is a consequence of the total lipodystrophy. We further showed that adiponectin, a cytokine produced by adipocytes and mesenchymal stromal cells is a potent inhibitor of osteoclastogenesis in vitro and in vivo. Moreover, pharmacological activation of adiponectin receptors by the synthetic agonist AdipoRon inhibited mature osteoclast activity both in mouse and human cells by blocking podosome formation through AMPK activation. Finally, we demonstrated that AdipoRon treatment blocks bone erosion in vivo in a murine model of inflammatory bone loss, providing potential new approaches to treat osteoporosis.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- Université Côte d'Azur, CNRS, UMR 7370, Laboratoire de PhysioMédecine Moléculaire, Nice, France
| | - He Fu
- Center for Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, Lausanne, Switzerland
| | | | - Mariano Schiffrin
- Center for Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Carine Winkler
- Center for Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Anne Wilson
- Department of Oncology, University of Lausanne, Epalinges, Switzerland
| | | | - Barbara Toffoli
- Center for Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Mahdia Taïeb
- Université Côte d'Azur, CNRS, UMR 7370, Laboratoire de PhysioMédecine Moléculaire, Nice, France
| | | | - Federica Gilardi
- Center for Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Serge Ferrari
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital, Faculty of Medicine, Geneva, Switzerland
| | | | - Claudine Blin-Wakkach
- Université Côte d'Azur, CNRS, UMR 7370, Laboratoire de PhysioMédecine Moléculaire, Nice, France
| | - Béatrice Desvergne
- Center for Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, Lausanne, Switzerland
| | - David Moulin
- Université de Lorraine, CNRS, IMoPA, Nancy, France
| |
Collapse
|
28
|
Yu W, Zhong L, Yao L, Wei Y, Gui T, Li Z, Kim H, Holdreith N, Jiang X, Tong W, Dyment N, Liu XS, Yang S, Choi Y, Ahn J, Qin L. Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss. J Clin Invest 2021; 131:140214. [PMID: 33206630 DOI: 10.1172/jci140214] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is maintained by coupled activities of bone-forming osteoblasts/osteocytes and bone-resorbing osteoclasts. Alterations in this relationship can lead to pathologic bone loss such as osteoporosis. It is well known that osteogenic cells support osteoclastogenesis via production of RANKL. Interestingly, our recently identified bone marrow mesenchymal cell population-marrow adipogenic lineage precursors (MALPs) that form a multidimensional cell network in bone-was computationally demonstrated to be the most interactive with monocyte-macrophage lineage cells through high and specific expression of several osteoclast regulatory factors, including RANKL. Using an adipocyte-specific Adipoq-Cre to label MALPs, we demonstrated that mice with RANKL deficiency in MALPs have a drastic increase in trabecular bone mass in long bones and vertebrae starting from 1 month of age, while their cortical bone appears normal. This phenotype was accompanied by diminished osteoclast number and attenuated bone formation at the trabecular bone surface. Reduced RANKL signaling in calvarial MALPs abolished osteolytic lesions after LPS injections. Furthermore, in ovariectomized mice, elevated bone resorption was partially attenuated by RANKL deficiency in MALPs. In summary, our studies identified MALPs as a critical player in controlling bone remodeling during normal bone metabolism and pathological bone loss in a RANKL-dependent fashion.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yulong Wei
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Ziqing Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas Holdreith
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xi Jiang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathaniel Dyment
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - X Sherry Liu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Zou W, Rohatgi N, Brestoff JR, Li Y, Barve RA, Tycksen E, Kim Y, Silva MJ, Teitelbaum SL. Ablation of Fat Cells in Adult Mice Induces Massive Bone Gain. Cell Metab 2020; 32:801-813.e6. [PMID: 33027637 PMCID: PMC7642038 DOI: 10.1016/j.cmet.2020.09.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/29/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Adipocytes control bone mass, but the mechanism is unclear. To explore the effect of postnatal adipocyte elimination on bone cells, we mated mice expressing an inducible primate diphtheria toxin receptor (DTR) to those bearing adiponectin (ADQ)-Cre. DTR activation eliminates peripheral and marrow adipocytes in these DTRADQ mice. Within 4 days of DTR activation, the systemic bone mass of DTRADQ mice began to increase due to stimulated osteogenesis, with a 1,000% expansion by 10-14 days post-DTR treatment. This adipocyte ablation-mediated enhancement of skeletal mass reflected bone morphogenetic protein (BMP) receptor activation following the elimination of its inhibitors, associated with simultaneous epidermal growth factor (EGF) receptor signaling. DTRADQ-induced osteosclerosis is not due to ablation of peripheral adipocytes but likely reflects the elimination of marrow ADQ-expressing cells. Thus, anabolic drugs targeting BMP receptor inhibitors with short-term EGF receptor activation may be a means of profoundly increasing skeletal mass to prevent or reverse pathological bone loss.
Collapse
Affiliation(s)
- Wei Zou
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nidhi Rohatgi
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan R Brestoff
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yongjia Li
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Tycksen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yung Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Silva
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Teitelbaum
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Bagchi DP, Li Z, Corsa CA, Hardij J, Mori H, Learman BS, Lewis KT, Schill RL, Romanelli SM, MacDougald OA. Wntless regulates lipogenic gene expression in adipocytes and protects against diet-induced metabolic dysfunction. Mol Metab 2020; 39:100992. [PMID: 32325263 PMCID: PMC7264081 DOI: 10.1016/j.molmet.2020.100992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Obesity is a key risk factor for many secondary chronic illnesses, including type 2 diabetes and cardiovascular disease. Canonical Wnt/β-catenin signaling is established as an important endogenous inhibitor of adipogenesis. This pathway is operative in mature adipocytes; however, its roles in this context remain unclear due to complexities of Wnt signaling and differences in experimental models. In this study, we used novel cultured cell and mouse models to investigate functional roles of Wnts secreted from adipocytes. METHODS We generated adipocyte-specific Wntless (Wls) knockout mice and cultured cell models to investigate molecular and metabolic consequences of disrupting Wnt secretion from mature adipocytes. To characterize Wls-deficient cultured adipocytes, we evaluated the expression of Wnt target and lipogenic genes and the downstream functional effects on carbohydrate and lipid metabolism. We also investigated the impact of adipocyte-specific Wls deletion on adipose tissues and global glucose metabolism in mice fed normal chow or high-fat diets. RESULTS Many aspects of the Wnt signaling apparatus are expressed and operative in mature adipocytes, including the Wnt chaperone Wntless. Deletion of Wntless in cultured adipocytes results in the inhibition of de novo lipogenesis and lipid monounsaturation, likely through repression of Srebf1 (SREBP1c) and Mlxipl (ChREBP) and impaired cleavage of immature SREBP1c into its active form. Adipocyte-specific Wls knockout mice (Wls-/-) have lipogenic gene expression in adipose tissues and isolated adipocytes similar to that of controls when fed a normal chow diet. However, closer investigation reveals that a subset of Wnts and downstream signaling targets are upregulated within stromal-vascular cells of Wls-/- mice, suggesting that adipose tissues defend loss of Wnt secretion from adipocytes. Interestingly, this compensation is lost with long-term high-fat diet challenges. Thus, after six months of a high-fat diet, Wls-/- mice are characterized by decreased adipocyte lipogenic gene expression, reduced visceral adiposity, and improved glucose homeostasis. CONCLUSIONS Taken together, these studies demonstrate that adipocyte-derived Wnts regulate de novo lipogenesis and lipid desaturation and coordinate the expression of lipogenic genes in adipose tissues. In addition, we report that Wnt signaling within adipose tissues is defended, such that a loss of Wnt secretion from adipocytes is sensed and compensated for by neighboring stromal-vascular cells. With chronic overnutrition, this compensatory mechanism is lost, revealing that Wls-/- mice are resistant to diet-induced obesity, adipocyte hypertrophy, and metabolic dysfunction.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ziru Li
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Callie A Corsa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Hardij
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Brian S Learman
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, USA.
| | - Kenneth T Lewis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Rebecca L Schill
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Steven M Romanelli
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Tratwal J, Labella R, Bravenboer N, Kerckhofs G, Douni E, Scheller EL, Badr S, Karampinos DC, Beck-Cormier S, Palmisano B, Poloni A, Moreno-Aliaga MJ, Fretz J, Rodeheffer MS, Boroumand P, Rosen CJ, Horowitz MC, van der Eerden BCJ, Veldhuis-Vlug AG, Naveiras O. Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne) 2020; 11:65. [PMID: 32180758 PMCID: PMC7059536 DOI: 10.3389/fendo.2020.00065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
The interest in bone marrow adiposity (BMA) has increased over the last decade due to its association with, and potential role, in a range of diseases (osteoporosis, diabetes, anorexia, cancer) as well as treatments (corticosteroid, radiation, chemotherapy, thiazolidinediones). However, to advance the field of BMA research, standardization of methods is desirable to increase comparability of study outcomes and foster collaboration. Therefore, at the 2017 annual BMA meeting, the International Bone Marrow Adiposity Society (BMAS) founded a working group to evaluate methodologies in BMA research. All BMAS members could volunteer to participate. The working group members, who are all active preclinical or clinical BMA researchers, searched the literature for articles investigating BMA and discussed the results during personal and telephone conferences. According to the consensus opinion, both based on the review of the literature and on expert opinion, we describe existing methodologies and discuss the challenges and future directions for (1) histomorphometry of bone marrow adipocytes, (2) ex vivo BMA imaging, (3) in vivo BMA imaging, (4) cell isolation, culture, differentiation and in vitro modulation of primary bone marrow adipocytes and bone marrow stromal cell precursors, (5) lineage tracing and in vivo BMA modulation, and (6) BMA biobanking. We identify as accepted standards in BMA research: manual histomorphometry and osmium tetroxide 3D contrast-enhanced μCT for ex vivo quantification, specific MRI sequences (WFI and H-MRS) for in vivo studies, and RT-qPCR with a minimal four gene panel or lipid-based assays for in vitro quantification of bone marrow adipogenesis. Emerging techniques are described which may soon come to complement or substitute these gold standards. Known confounding factors and minimal reporting standards are presented, and their use is encouraged to facilitate comparison across studies. In conclusion, specific BMA methodologies have been developed. However, important challenges remain. In particular, we advocate for the harmonization of methodologies, the precise reporting of known confounding factors, and the identification of methods to modulate BMA independently from other tissues. Wider use of existing animal models with impaired BMA production (e.g., Pfrt-/-, KitW/W-v) and development of specific BMA deletion models would be highly desirable for this purpose.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rossella Labella
- Tissue and Tumour Microenvironments Lab, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Department Materials Engineering, KU Leuven, Leuven, Belgium
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, United States
| | - Sammy Badr
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, Lille, France
- CHU Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille, France
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Sarah Beck-Cormier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
| | - Biagio Palmisano
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Antonella Poloni
- Hematology, Department of Clinic and Molecular Science, Università Politecnica Marche-AOU Ospedali Riuniti, Ancona, Italy
| | - Maria J. Moreno-Aliaga
- Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| | - Jackie Fretz
- Department of Orthopaedics and Rehabilitation, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew S. Rodeheffer
- Department of Comparative Medicine and Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Clifford J. Rosen
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
| | - Mark C. Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annegreet G. Veldhuis-Vlug
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
- Jan van Goyen Medical Center/OLVG Hospital, Department of Internal Medicine, Amsterdam, Netherlands
- *Correspondence: Annegreet G. Veldhuis-Vlug
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Hematology Service, Departments of Oncology and Laboratory Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Olaia Naveiras ;
| |
Collapse
|
32
|
Lewis KT, MacDougald OA. Local interactions in the bone marrow microenvironment and their contributions to systemic metabolic processes. LIPID SIGNALING AND METABOLISM 2020:63-80. [DOI: 10.1016/b978-0-12-819404-1.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Craft CS, Robles H, Lorenz MR, Hilker ED, Magee KL, Andersen TL, Cawthorn WP, MacDougald OA, Harris CA, Scheller EL. Bone marrow adipose tissue does not express UCP1 during development or adrenergic-induced remodeling. Sci Rep 2019; 9:17427. [PMID: 31758074 PMCID: PMC6874537 DOI: 10.1038/s41598-019-54036-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/24/2019] [Indexed: 12/31/2022] Open
Abstract
Adipocytes within the skeleton are collectively termed bone marrow adipose tissue (BMAT). BMAT contributes to peripheral and local metabolism, however, its capacity for cell-autonomous expression of uncoupling protein 1 (UCP1), a biomarker of beige and brown adipogenesis, remains unclear. To overcome this, Ucp1-Cre was used to drive diphtheria toxin expression in cells expressing UCP1 (Ucp1Cre+/DTA+). Despite loss of brown adipose tissue, BMAT volume was not reduced in Ucp1Cre+/DTA+ mice. Comparably, in mTmG reporter mice (Ucp1Cre+/mTmG+), Ucp1-Cre expression was absent from BMAT in young (3-weeks) and mature (16-weeks) male and female mice. Further, β3-agonist stimulation failed to induce Ucp1-Cre expression in BMAT. This demonstrates that BMAT adipocytes are not UCP1-expressing beige/brown adipocytes. Thus, to identify novel and emerging roles for BMAT adipocytes in skeletal and whole-body homeostasis, we performed gene enrichment analysis of microarray data from adipose tissues of adult rabbits. Pathway analysis revealed genetic evidence for differences in BMAT including insulin resistance, decreased fatty acid metabolism, and enhanced contributions to local processes including bone mineral density through candidate genes such as osteopontin. In sum, this supports a paradigm by which BMAT adipocytes are a unique subpopulation that is specialized to support cells within the skeletal and hematopoietic niche.
Collapse
Affiliation(s)
- Clarissa S Craft
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Cell Biology & Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hero Robles
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Madelyn R Lorenz
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Eric D Hilker
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kristann L Magee
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Thomas L Andersen
- Department of Pathology, Odense University Hospital - Department of Clinical Research & Department Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - William P Cawthorn
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh Bioquarter, University of Edinburgh, Edinburgh, UK
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Charles A Harris
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Veterans Affairs St. Louis Healthcare System, John Cochran Division, St. Louis, MO, USA
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Cell Biology & Physiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|