1
|
Daniel L, Karam A, Franco CHJ, Conde C, Sacramento de Morais A, Mosnier J, Fonta I, Villarreal W, Pradines B, Moreira DRM, Navarro M. Metal(triphenylphosphine)-atovaquone Complexes: Synthesis, Antimalarial Activity, and Suppression of Heme Detoxification. Inorg Chem 2024; 63:17087-17099. [PMID: 39185932 PMCID: PMC11409218 DOI: 10.1021/acs.inorgchem.4c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
To ascertain the bioinorganic chemistry of metals conjugated with quinones, the complexes [Ag(ATV)(PPh3)2] (1), [Au(ATV)(PPh3)]·2H2O (2), and [Cu(ATV)(PPh3)2] (3) were synthesized by the coordination of the antimalarial naphthoquinone atovaquone (ATV) to the starting materials [Ag(PPh3)2]NO3, [Au(PPh3)Cl], and [Cu(PPh3)2NO3], respectively. These complexes were characterized by analytical and spectroscopical techniques. X-ray diffraction of single crystals precisely confirmed the coordination mode of ATV to the metals, which was monodentate or bidentate, depending on the metal center. Both coordination modes showed high stability in the solid state and in solution. All three complexes showed negative log D values at pH 5, but at pH 7.4, while complex 2 continued to have a negative log D value, complexes 1 and 3 displayed positive values, indicating a more hydrophilic character. ATV and complexes 1-3 could bind to ferriprotoporphyrin IX (FePPIX); however, only complexes 1-3 could inhibit β-hematin crystal formation. Phenotype-based activity revealed that all three metal complexes are able to inhibit the growth of P. falciparum with potency and selectivity comparable to those of ATV, while the starting materials lack this activity. The outcomes of this chemical design may provide significant insights into structure-activity relationships for the development of new antimalarial agents.
Collapse
Affiliation(s)
- Luana Daniel
- Laboratório de Química Bioinorgânica e Catalise, Departamento Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Arquímedes Karam
- Laboratório de Química Bioinorgânica e Catalise, Departamento Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Chris Hebert J Franco
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
| | - Camila Conde
- Laboratório de Química Bioinorgânica e Catalise, Departamento Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | | | - Joel Mosnier
- Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées, Marseille, 13005, France
- Aix-Marseille Univ, SSA, AP-HM, RITMES, Marseille, 13005, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille, 13005, France
- Centre National de Référence du Paludisme, Marseille, 13005, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées, Marseille, 13005, France
- Aix-Marseille Univ, SSA, AP-HM, RITMES, Marseille, 13005, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille, 13005, France
- Centre National de Référence du Paludisme, Marseille, 13005, France
| | - Wilmer Villarreal
- Grupo de Química Inorgânica Medicinal e Reações Aplicadas, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées, Marseille, 13005, France
- Aix-Marseille Univ, SSA, AP-HM, RITMES, Marseille, 13005, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille, 13005, France
- Centre National de Référence du Paludisme, Marseille, 13005, France
| | | | - Maribel Navarro
- Laboratório de Química Bioinorgânica e Catalise, Departamento Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
2
|
Azhari A, Naini AA, Harneti D, Wulandari AP, Mulyani Y, Purbaya S, Sari AP, Pratama GB, Anwar R, Fajar M, Abdullah FF, Farabi K, Supratman U. New steroid produced by Periconia pseudobyssoides K5 isolated from Toona sureni (Meliaceae) and its heme polymerization inhibition activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:1117-1124. [PMID: 37017205 DOI: 10.1080/10286020.2023.2195105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A new ergostane-type steroid named (22E)-3α,6α,9α-ergosta-7,22-diene-3,6,9-triol (1), along with six known steroids 5α,8α-epidioxy-24-ethyl-cholest-6-en-3β-ol (2), ergosterol-5,8-peroxide (3), cerevisterol (4), isocyathisterol (5), 6β-hydroxystigmast-4-en-3-one (6), 6β-hydroxy-4-campesten-3-one (7), were isolated from the fermented unpolished rice media by Periconia pseudobyssoides K5 (Periconiaceae), an endophytic fungus from medicinal plant Toona sureni (Meliaceae). The fermentation takes at 28 ± 2 °C for 30 days. The structure of new steroid (1) was elucidated by extensive spectroscopic measurements (IR, HR-ESI-TOFMS, and 1D and 2D NMR) analyses. The isolated compounds (1-7) were evaluated for heme polymerization inhibition assay (HPIA). The IC50 HPIA value of 1 is 8.24 ± 0.03 mg/ml.
Collapse
Affiliation(s)
- Azmi Azhari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
- Department of Chemistry Education, Faculty of Tarbiyah and Teacher Training, Institut Agama Islam Negeri Syekh Nurjati Cirebon, Cirebon 45132, Indonesia
| | - Al Arofatus Naini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Asri Peni Wulandari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Yeni Mulyani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Sari Purbaya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Aprilia Permata Sari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Galih Bayu Pratama
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Risyandi Anwar
- Herbal Medicine Research, Department of Pediatric Dentistry, Faculty of Dental Medicine, University of Muhammadiyah Semarang, Semarang 50272, Indonesia
| | - Mohammad Fajar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Fajar Fauzi Abdullah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| |
Collapse
|
3
|
Vásquez-Ocmín PG, Gallard JF, Van Baelen AC, Leblanc K, Cojean S, Mouray E, Grellier P, Guerra CAA, Beniddir MA, Evanno L, Figadère B, Maciuk A. Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant Piper coruscans Kunth. Molecules 2022; 27:7638. [PMID: 36364460 PMCID: PMC9656727 DOI: 10.3390/molecules27217638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 09/08/2024] Open
Abstract
Improved methodological tools to hasten antimalarial drug discovery remain of interest, especially when considering natural products as a source of drug candidates. We propose a biodereplication method combining the classical dereplication approach with the early detection of potential antiplasmodial compounds in crude extracts. Heme binding is used as a surrogate of the antiplasmodial activity and is monitored by mass spectrometry in a biomimetic assay. Molecular networking and automated annotation of targeted mass through data mining were followed by mass-guided compound isolation by taking advantage of the versatility and finely tunable selectivity offered by centrifugal partition chromatography. This biodereplication workflow was applied to an ethanolic extract of the Amazonian medicinal plant Piper coruscans Kunth (Piperaceae) showing an IC50 of 1.36 µg/mL on the 3D7 Plasmodium falciparum strain. It resulted in the isolation of twelve compounds designated as potential antiplasmodial compounds by the biodereplication workflow. Two chalcones, aurentiacin (1) and cardamonin (3), with IC50 values of 2.25 and 5.5 µM, respectively, can be considered to bear the antiplasmodial activity of the extract, with the latter not relying on a heme-binding mechanism. This biodereplication method constitutes a rapid, efficient, and robust technique to identify potential antimalarial compounds in complex extracts such as plant extracts.
Collapse
Affiliation(s)
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Anne-Cécile Van Baelen
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, SIMoS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Karine Leblanc
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | | | - Elisabeth Mouray
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Universités, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Philippe Grellier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Universités, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Carlos A. Amasifuén Guerra
- Dirección de Recursos Genéticos y Biotecnología (DRGB), Instituto Nacional de Innovación Agraria (INIA), Avenida La Molina N° 1981, La Molina, Lima 15024, Peru
| | | | - Laurent Evanno
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | - Bruno Figadère
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | | |
Collapse
|
4
|
Ekasari W, Fatmawati D, Khoiriah SM, Baqiuddin WA, Nisa HQ, Maharupini AAS, Wahyuni TS, Oktarina RD, Suhartono E, Sahu RK. Antimalarial Activity of Extract and Fractions of Sauropus androgynus (L.) Merr. SCIENTIFICA 2022; 2022:3552491. [PMID: 36119646 PMCID: PMC9477630 DOI: 10.1155/2022/3552491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Sauropus androgynus (L.) Merr., in the Indonesian local name known as "Katuk," is a tropical shrub plant of the family Euphorbiaceae. Based on genus and chemotaxonomic approaches, as well as in vitro testing of Plasmodium falciparum, leaves of S. androgynus are presumed to have an active compound content as an antimalarial. The current study aims to investigate the antimalarial activity of 96% ethanol extract and fractions of S. androgynus leaves. The ethanolic extract was fractionated using the vacuum liquid chromatography (VLC) method with three solvents of different polarities (n-hexane, chloroform, and 96% ethanol). The fraction obtained was then evaluated for antimalarial activity against P. falciparum 3D7 strain. The ethanolic extract was evaluated for antimalarial suppressive and prophylactic activity against P. berghei-infected mice, as well as inhibitory activity against the heme detoxification process in vitro. Fractionation of ethanolic extract resulted in seven combined fractions, with the most active fraction being FV (50% inhibitory concentration (IC50) = 2.042 µg/mL). The ethanolic extract showed good parasitic suppressive (therapeutic) activity with a median effective dose (ED50) value of 15.35 mg/kg body weight. In a prophylactic test, ethanolic extract showed parasite growth inhibitory activity of 67.74 ± 9.21% after the administration of 400 mg/kg body weight for 4 days before infection, and 65.30 ± 10.44% after the administration of 200 mg/kg body weight for 8 consecutive days (4 days before and after infection). The ethanolic extract also showed an effect in inhibiting the formation of β-hematin of about 26.87-79.36% at a concentration of 0.1-4 mg/mL and an IC50 value of 0.479 mg/mL. The S. androgynus leaves were shown to have antimalarial activity in vitro and in vivo, where ethanolic extract were more active compared with the fraction obtained. The antimalarial properties of the extract showed a higher suppressive activity than prophylactic activity.
Collapse
Affiliation(s)
- Wiwied Ekasari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Dwi Fatmawati
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Siti M. Khoiriah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Wenda A. Baqiuddin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Hawi Q. Nisa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Adinda A. S. Maharupini
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Tutik S. Wahyuni
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Rice D. Oktarina
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Eko Suhartono
- Department of Medical Chemistry/Biochemistry, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin 70122, South Kalimantan, Indonesia
| | - Ram K. Sahu
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar 788011, Assam, India
| |
Collapse
|
5
|
Long S, Duarte D, Carvalho C, Oliveira R, Santarém N, Palmeira A, Resende DISP, Silva AMS, Moreira R, Kijjoa A, Cordeiro da Silva A, Nogueira F, Sousa E, Pinto MMM. Indole-Containing Pyrazino[2,1- b]quinazoline-3,6-diones Active against Plasmodium and Trypanosomatids. ACS Med Chem Lett 2022; 13:225-235. [PMID: 35178179 PMCID: PMC8842117 DOI: 10.1021/acsmedchemlett.1c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/07/2022] [Indexed: 01/27/2023] Open
Abstract
Malaria, leishmaniasis, and sleeping sickness are potentially fatal diseases that represent a real health risk for more than 3,5 billion people. New antiparasitic compounds are urgent leading to a constant search for novel scaffolds. Herein, pyrazino[2,1-b]quinazoline-3,6-diones containing indole alkaloids were explored for their antiparasitic potential against Plasmodium falciparum, Trypanosoma brucei, and Leishmania infantum. The synthetic libraries furnished promising hit compounds that are species specific (7, 12) or with broad antiparasitic activity (8). Structure-activity relationships were more evident for Plasmodium with anti-isomers (1S,4R) possessing excellent antimalarial activity, while the presence of a substituent on the anthranilic acid moiety had a negative effect on the activity. Hit compounds against malaria did not inhibit β-hematin, and in silico studies predicted these molecules as possible inhibitors for prolyl-tRNA synthetase both from Plasmodium and Leishmania. These results disclosed a potential new chemotype for further optimization toward novel and affordable antiparasitic drugs.
Collapse
Affiliation(s)
- Solida Long
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Department
of Bioengineering, Royal University of Phnom
Penh, Russian Confederation
Blvd, 12156 Phnom
Penh, Cambodia
| | - Denise Duarte
- Global
Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina
Tropical, IHMT, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Carla Carvalho
- Parasite
Disease Group, IBMC-Instituto de Biologia
Molecular e Celular, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Rafael Oliveira
- Global
Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina
Tropical, IHMT, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Nuno Santarém
- Parasite
Disease Group, IBMC-Instituto de Biologia
Molecular e Celular, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Andreia Palmeira
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I. S. P. Resende
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Artur M. S. Silva
- QOPNA
- Química
Orgânica, Produtos Naturais e Agroalimentares, Departamento
de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui Moreira
- Research
Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade
de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Anake Kijjoa
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto
de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Anabela Cordeiro da Silva
- Parasite
Disease Group, IBMC-Instituto de Biologia
Molecular e Celular, Rua Alfredo Allen, 4200-135 Porto, Portugal
- Departamento
de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Fátima Nogueira
- Global
Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina
Tropical, IHMT, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Emília Sousa
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Madalena M. M. Pinto
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
6
|
Randrianarivo S, Rasolohery C, Rafanomezantsoa S, Randriamampionona H, Haramaty L, Rafanomezantsoa RM, Andrianasolo EH. (-)-6-epi-Artemisinin, a Natural Stereoisomer of (+)-Artemisinin in the Opposite Enantiomeric Series, from the Endemic Madagascar Plant Saldinia proboscidea, an Atypical Source. Molecules 2021; 26:molecules26185540. [PMID: 34577011 PMCID: PMC8472513 DOI: 10.3390/molecules26185540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Chemical and biological investigation of the Madagascar endemic plant Saldinia proboscidea led to the isolation of an isomer of artemisinin, (-)-6-epi-artemisinin (2). Its structure was elucidated using a combination of NMR and mass spectrometry. The absolute configuration was established by chemical syntheses of compound 2 as well as a new stereoisomer (3). The comparable bioactivities of artemisinin (1) and its isomer (-)-6-epi-artemisinin (2) revealed that this change in configuration was not critical to their biological properties. Bioactivity was assessed using an apoptosis induction assay, a SARS-CoV-2 inhibitor assay, and a haematin polymerization inhibitory activity (HPIA) assay. This is the first report of an artemisinin-related compound from a genus not belonging to Artemisia and it is the first isolation of an artemisinin-related natural product that is the opposite enantiomeric series relative to artemisinin from Artemisia annua.
Collapse
Affiliation(s)
- Saholinirina Randrianarivo
- Ecole Doctorale de Géochimie et Chimie Médicinale (GEOCHIMED), Université de Fianarantsoa, Fianarantsoa 301, Madagascar; (S.R.); (C.R.); (S.R.); (H.R.); (R.M.R.)
| | - Claudine Rasolohery
- Ecole Doctorale de Géochimie et Chimie Médicinale (GEOCHIMED), Université de Fianarantsoa, Fianarantsoa 301, Madagascar; (S.R.); (C.R.); (S.R.); (H.R.); (R.M.R.)
| | - Sitraka Rafanomezantsoa
- Ecole Doctorale de Géochimie et Chimie Médicinale (GEOCHIMED), Université de Fianarantsoa, Fianarantsoa 301, Madagascar; (S.R.); (C.R.); (S.R.); (H.R.); (R.M.R.)
| | - Heriniaina Randriamampionona
- Ecole Doctorale de Géochimie et Chimie Médicinale (GEOCHIMED), Université de Fianarantsoa, Fianarantsoa 301, Madagascar; (S.R.); (C.R.); (S.R.); (H.R.); (R.M.R.)
| | - Liti Haramaty
- DMCS, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Roger Marie Rafanomezantsoa
- Ecole Doctorale de Géochimie et Chimie Médicinale (GEOCHIMED), Université de Fianarantsoa, Fianarantsoa 301, Madagascar; (S.R.); (C.R.); (S.R.); (H.R.); (R.M.R.)
| | - Eric H. Andrianasolo
- Departement Chimie, Centre National de Recherches Industrielle et Technologique (CNRIT), Antananarivo 101, Madagascar
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Correspondence: ; Tel.: +1-519-893-2213
| |
Collapse
|
7
|
Antimalarial Activity of Sea Sponge Extract of Stylissa massa originating from waters of Rote Island. JURNAL KIMIA SAINS DAN APLIKASI 2021. [DOI: 10.14710/jksa.24.4.136-145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Research on the isolation, toxicity test, antimalarial test, and identification of the active compound from the ethyl acetate fraction of Stylissa massa sponge from Oenggae waters, Rote Island, has been conducted. This study aimed to investigate the antimalarial activity of the ethyl acetate fraction of the Stylissa massa sponge. Isolation was carried out by the extraction method using a mixed solvent of methanol: dichloromethane of 3: 2 (v/v), then the extract was partitioned in a solvent mixture of ethyl acetate: water of 1: 2 (v/v). The ethyl acetate extract obtained was separated by column chromatography using the gradient polarity system method. The toxicity test of each fraction was carried out by the Brine Shrimp Lethality Test (BSLT) method, and the antimalarial test was carried out by the haematin polymerization inhibition method. Identification of compounds from the active fraction in the antimalarial test was carried out using Liquid Chromatography-Mass Spectrometry (LC-MS). The extraction yield was 1.14 g (0.23%) of the ethyl acetate extract in the form of a dark brownish-yellow oily solid. Separation by column chromatography resulted in 15 fractions. Toxicity test results showed the four most active fractions with LC50 values, which are very promising for new drug discovery. The IC50 value in the antimalarial activity test of the four fractions indicated that the Stylissa massa sponge ethyl acetate extract was more active than the standard chloroquine compound (115 μg/mL). The LC-MS analysis indicates that fraction 11 contains two compounds that have been reported, and 1 compound is unknown. In contrast, fraction 14 indicates that it contains three compounds that have been reported and one unknown compound.
Collapse
|
8
|
Zakiah M, Syarif RA, Mustofa M, Jumina J, Fatmasari N, Sholikhah EN. In Vitro Antiplasmodial, Heme Polymerization, and Cytotoxicity of Hydroxyxanthone Derivatives. J Trop Med 2021; 2021:8866681. [PMID: 33859703 PMCID: PMC8026324 DOI: 10.1155/2021/8866681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022] Open
Abstract
The previous study showed that xanthone had antiplasmodial activity. Xanthone, with additional hydroxyl groups, was synthesized to increase its antiplasmodial activity. One of the strategies to evaluate a compound that can be developed into an antimalarial drug is by testing its mechanism in inhibiting heme polymerization. In acidic condition, hematin can be polymerized to β-hematin in vitro, which is analog with hemozoin in Plasmodium. This study was conducted to evaluate the antiplasmodial activity of hydroxyxanthone derivative compounds on two strains of Plasmodium falciparum 3D-7 and FCR-3, to assess inhibition of heme polymerization activity and determine the selectivity of hydroxyxanthone derivative compounds. The antiplasmodial activity of each compound was tested on Plasmodium falciparum 3D-7 and FCR-3 with 72 hours incubation period, triplicated in three replications with the microscopic method. The compound that showed the best antiplasmodial activity underwent flow cytometry assay. Heme polymerization inhibition test was performed using the in vitro heme polymerization inhibition activity (HPIA) assay. The antiplasmodial activity and heme polymerization inhibition activity were expressed as the 50% inhibitory concentration (IC50). In vitro cytotoxicity was tested using the MTT assay method on Vero cell lines to determine its selectivity index. The results showed that among 5-hydroxyxanthone derivative compounds, the 1,6,8-trihydroxyxanthone had the best in vitro antiplasmodial activity on both 3D-7 and FCR-3 Plasmodium falciparum strains with IC50 values of 6.10 ± 2.01 and 6.76 ± 2.38 μM, respectively. The 1,6,8-trihydroxyxanthone showed inhibition activity of heme polymerization with IC50 value of 2.854 mM and showed the high selectivity with selectivity index of 502.2-556.54. In conclusion, among 5-hydroxyxanthone derivatives tested, the 1,6,8-trihydroxyxantone showed the best antiplasmodial activity and has heme polymerization inhibition activity and high selectivity.
Collapse
Affiliation(s)
- Mistika Zakiah
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Sekip Utara, Indonesia
- Faculty of Medicine, Universitas Tanjungpura, Pontianak 78115, Indonesia
| | - Rul Afiyah Syarif
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Sekip Utara, Indonesia
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Sekip Utara, Indonesia
| | - Jumina Jumina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Sekip Utara, Indonesia
| | - Nela Fatmasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Sekip Utara, Indonesia
| | - Eti Nurwening Sholikhah
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Sekip Utara, Indonesia
| |
Collapse
|
9
|
Artemisinin-Based Drugs Target the Plasmodium falciparum Heme Detoxification Pathway. Antimicrob Agents Chemother 2021; 65:AAC.02137-20. [PMID: 33495226 DOI: 10.1128/aac.02137-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/16/2021] [Indexed: 12/18/2022] Open
Abstract
Artemisinin (ART)-based antimalarial drugs are believed to exert lethal effects on malarial parasites by alkylating a variety of intracellular molecular targets. Recent work with live parasites has shown that one of the alkylated targets is free heme within the parasite digestive vacuole, which is liberated upon hemoglobin catabolism by the intraerythrocytic parasite, and that reduced levels of heme alkylation occur in artemisinin-resistant parasites. One implication of heme alkylation is that these drugs may inhibit parasite detoxification of free heme via inhibition of heme-to-hemozoin crystallization; however, previous reports that have investigated this hypothesis present conflicting data. By controlling reducing conditions and, hence, the availability of ferrous versus ferric forms of free heme, we modify a previously reported hemozoin inhibition assay to quantify the ability of ART-based drugs to target the heme detoxification pathway under reduced versus oxidizing conditions. Contrary to some previous reports, we find that artemisinins are potent inhibitors of hemozoin crystallization, with effective half-maximal concentrations approximately an order of magnitude lower than those for most quinoline-based antimalarial drugs. We also examine hemozoin and in vitro parasite growth inhibition for drug pairs found in the most commonly used ART-based combination therapies (ACTs). All ACTs examined inhibit hemozoin crystallization in an additive fashion, and all but one inhibit parasite growth in an additive fashion.
Collapse
|
10
|
Ekasari W, Basuki DR, Arwati H, Wahyuni TS. Antiplasmodial activity of Ethanolic extract of Cassia spectabilis DC leaf and its inhibition effect in Heme detoxification. BMC Complement Med Ther 2021; 21:71. [PMID: 33607987 PMCID: PMC7896390 DOI: 10.1186/s12906-021-03239-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In previous studies, Cassia spectabilis DC leaf has shown a good antiplasmodial activity. Therefore, this study is a follow-up study of the extract of leaf of C. spectabilis DC on its in vitro and in vivo antiplasmodial activity and mechanism as an antimalarial. METHODS The extract was fractionated, sub-fractionated and isolated to obtain the purified compound. In vitro antiplasmodial activity test against Plasmodium falciparum to find out the active compound. In vivo test against P. berghei ANKA-infected mice was conducted to determine prophylactic activity and antiplasmodial activity either alone or in combination with artesunate. The inhibition of heme detoxification test as one of the antimalarial mechanisms was carried out using the Basilico method. RESULTS The results showed that active antimalarial compound isolated from C. spectabilis DC leaf had a structural pattern that was identical to (-)-7-hydroxycassine. Prophylactic test of 90% ethanolic extract of C. spectabilis DC leaf alone against P. berghei ANKA-infected mice obtained the highest percentage inhibition was 68.61%, while positive control (doxycycline 13 mg/kg) was 73.54%. In combination with artesunate, 150 mg/kg three times a day of C. spectabilis DC (D0-D2) + artesunate (D2) was better than the standard combination of amodiaquine + artesunate where the inhibition percentages were 99.18 and 92.88%, respectively. The IC50 of the extract for the inhibitory activity of heme detoxification was 0.375 mg/ml which was better than chloroquine diphosphate (0.682 mg/ml). CONCLUSION C. spectabilis DC leaf possessed potent antiplasmodial activity and may offer a potential agent for effective and affordable antimalarial phytomedicine.
Collapse
Affiliation(s)
- Wiwied Ekasari
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Campus C, Mulyorejo Street, Surabaya, 60115, Indonesia.
| | - Dewi Resty Basuki
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Campus C, Mulyorejo Street, Surabaya, 60115, Indonesia
| | - Heny Arwati
- Department of Medical Parasitology, Faculty of Medicine, Universitas Airlangga, Campus A, Surabaya, 60132, Indonesia
| | - Tutik Sri Wahyuni
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Campus C, Mulyorejo Street, Surabaya, 60115, Indonesia
| |
Collapse
|
11
|
Matz JM, Drepper B, Blum TB, van Genderen E, Burrell A, Martin P, Stach T, Collinson LM, Abrahams JP, Matuschewski K, Blackman MJ. A lipocalin mediates unidirectional heme biomineralization in malaria parasites. Proc Natl Acad Sci U S A 2020; 117:16546-16556. [PMID: 32601225 PMCID: PMC7368307 DOI: 10.1073/pnas.2001153117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During blood-stage development, malaria parasites are challenged with the detoxification of enormous amounts of heme released during the proteolytic catabolism of erythrocytic hemoglobin. They tackle this problem by sequestering heme into bioinert crystals known as hemozoin. The mechanisms underlying this biomineralization process remain enigmatic. Here, we demonstrate that both rodent and human malaria parasite species secrete and internalize a lipocalin-like protein, PV5, to control heme crystallization. Transcriptional deregulation of PV5 in the rodent parasite Plasmodium berghei results in inordinate elongation of hemozoin crystals, while conditional PV5 inactivation in the human malaria agent Plasmodium falciparum causes excessive multidirectional crystal branching. Although hemoglobin processing remains unaffected, PV5-deficient parasites generate less hemozoin. Electron diffraction analysis indicates that despite the distinct changes in crystal morphology, neither the crystalline order nor unit cell of hemozoin are affected by impaired PV5 function. Deregulation of PV5 expression renders P. berghei hypersensitive to the antimalarial drugs artesunate, chloroquine, and atovaquone, resulting in accelerated parasite clearance following drug treatment in vivo. Together, our findings demonstrate the Plasmodium-tailored role of a lipocalin family member in hemozoin formation and underscore the heme biomineralization pathway as an attractive target for therapeutic exploitation.
Collapse
Affiliation(s)
- Joachim M Matz
- Malaria Biochemistry Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom;
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Benjamin Drepper
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Thorsten B Blum
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Eric van Genderen
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Alana Burrell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Peer Martin
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Thomas Stach
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Jan Pieter Abrahams
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4051 Basel, Switzerland
- Institute of Biology, Leiden University, 2311 EZ Leiden, The Netherlands
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, WC1E 7HT London, United Kingdom
| |
Collapse
|
12
|
Chen AJ, Huang KC, Bopp S, Summers R, Dong P, Huang Y, Zong C, Wirth D, Cheng JX. Quantitative imaging of intraerythrocytic hemozoin by transient absorption microscopy. JOURNAL OF BIOMEDICAL OPTICS 2019; 25:1-11. [PMID: 31849205 PMCID: PMC6916744 DOI: 10.1117/1.jbo.25.1.014507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Hemozoin, the heme detoxification end product in malaria parasites during their growth in the red blood cells (RBCs), serves as an important marker for diagnosis and treatment target of malaria disease. However, the current method for hemozoin-targeted drug screening mainly relies on in vitro β-hematin inhibition assays, which may lead to false-positive events due to under-representation of the real hemozoin crystal. Quantitative in situ imaging of hemozoin is highly desired for high-throughput screening of antimalarial drugs and for elucidating the mechanisms of antimalarial drugs. We present transient absorption (TA) imaging as a high-speed single-cell analysis platform with chemical selectivity to hemozoin. We first demonstrated that TA microscopy is able to identify β-hematin, the artificial form of hemozoin, from the RBCs. We further utilized time-resolved TA imaging to in situ discern hemozoin from malaria-infected RBCs with optimized imaging conditions. Finally, we quantitatively analyzed the hemozoin amount in RBCs at different infection stages by single-shot TA imaging. These results highlight the potential of TA imaging for efficient antimalarial drug screening and drug mechanism investigation.
Collapse
Affiliation(s)
- Andy J. Chen
- Purdue University, Department of Biological Sciences, West Lafayette, Indiana, United States
| | - Kai-Chih Huang
- Boston University, Photonics Center, Boston, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Selina Bopp
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Robert Summers
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Puting Dong
- Boston University, Photonics Center, Boston, Massachusetts, United States
| | - Yimin Huang
- Boston University, Photonics Center, Boston, Massachusetts, United States
| | - Cheng Zong
- Boston University, Photonics Center, Boston, Massachusetts, United States
| | - Dyann Wirth
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Ji-Xin Cheng
- Boston University, Photonics Center, Boston, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Boston University, Department of Chemistry, Boston, Massachusetts, United States
| |
Collapse
|
13
|
Various Parts of Helianthus annuus Plants as New Sources of Antimalarial Drugs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7390385. [PMID: 31885662 PMCID: PMC6899295 DOI: 10.1155/2019/7390385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 01/24/2023]
Abstract
Background Each part of H. annuus plants is traditionally used as medicinal remedies for several diseases, including malaria. Antimalarial activity of the leaf and the seed has already been observed; however, there is no report about antimalarial activity of the other parts of H. annuus plants. In this study, we assess in vitro and in vivo antimalarial activity of each part of the plants and its mechanism as antimalarial agent against inhibition of heme detoxification. Objective To investigate the antimalarial activity of various parts of H. annuus. Methods Various parts of the H. annuus plant were tested for in vitro antimalarial activity against Plasmodium falciparum 3D7 strain (chloroquine-sensitive), in vivo antimalarial activity against P. berghei using Peters' 4-day suppressive test in BALB/c mice, curative and prophylaxis assay, and inhibition of heme detoxification by evaluating β-hematin level. Results Ethanol extract of the roots showed the highest antimalarial activity, followed by ethanol extract of leaves, with IC50 values of 2.3 ± 1.4 and 4.3 ± 2.2 μg/mL, respectively and the percentage inhibition of P. berghei of 63.6 ± 8.0 and 59.3 ± 13.2 at a dose of 100 mg/kg, respectively. Ethanol extract of roots produced an ED50 value of 10.6 ± 0.2 mg/kg in the curative test and showed an inhibition of 79.2% at a dose of 400 mg/kg in the prophylactic assay. In inhibition of heme detoxification assay, root and leaf ethanol extracts yielded a lower IC50 value than positive (chloroquine) control with a value of 0.4 ± 0.0 and 0.5 ± 0.0 mg/mL, respectively. Conclusion There were promising results of the ethanol extracts of root of H. annuus as a new source for the development of a new plant-based antimalarial agent.
Collapse
|
14
|
Amos A, Anafi SB, Magaji MG. Cysteine Protease Inhibitors from the Methanol Extract of the Root Bark of Securidaca longepedunculata with Antimalarial Potentials in Chloroquine-Resistant P. berghei Parasite. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2019. [DOI: 10.32527/2019/101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Gupta P, Singh L, Singh K. The hybrid antimalarial approach. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1016/bs.armc.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Sinha S, Sarma P, Sehgal R, Medhi B. Development in Assay Methods for in Vitro Antimalarial Drug Efficacy Testing: A Systematic Review. Front Pharmacol 2017; 8:754. [PMID: 29123481 PMCID: PMC5662882 DOI: 10.3389/fphar.2017.00754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
The emergence and spread of drug resistance are the major challenges in malaria eradication mission. Besides various strategies laid down by World Health Organization, such as vector management, source reduction, early case detection, prompt treatment, and development of new diagnostics and vaccines, nevertheless the need for new and efficacious drugs against malaria has become a critical priority on the global malaria research agenda. At several screening stages, millions of compounds are screened (1,000–2,000,000 compounds per screening campaign), before pre-clinical trials to select optimum lead. Carrying out in vitro screening of antimalarials is very difficult as different assay methods are subject to numerous sources of variability across different laboratories around the globe. Despite this, in vitro screening is an essential part of antimalarial drug development as it enables to resource various confounding factors such as host immune response and drug–drug interaction. Therefore, in this article, we try to illustrate the basic necessity behind in vitro study and how new methods are developed and subsequently adopted for high-throughput antimalarial drug screening and its application in achieving the next level of in vitro screening based on the current approaches (such as stem cells).
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
17
|
Fitzroy SM, Gildenhuys J, Olivier T, Tshililo NO, Kuter D, de Villiers KA. The Effects of Quinoline and Non-Quinoline Inhibitors on the Kinetics of Lipid-Mediated β-Hematin Crystallization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7529-7537. [PMID: 28689414 PMCID: PMC5709178 DOI: 10.1021/acs.langmuir.7b01132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The throughput of a biomimetic lipid-mediated assay used to investigate the effects of inhibitors on the kinetics of β-hematin formation has been optimized through the use of 24-well microplates. The rate constant for β-hematin formation mediated by monopalmitoyl-rac-glycerol was reduced from 0.17 ± 0.04 min-1 previously measured in Falcon tubes to 0.019 ± 0.002 min-1 in the optimized assay. While this necessitated longer incubation times, transferring aliquots from multiple 24-well plates to a single 96-well plate for final absorbance measurements actually improved the overall turnaround time per inhibitor. This assay has been applied to investigate the effects of four clinically relevant antimalarial drugs (chloroquine, amodiaquine, quinidine, and quinine) as well as several short-chain 4-aminoquinoline derivatives and non-quinoline (benzamide) compounds on the kinetics of β-hematin formation. The adsorption strength of these inhibitors to crystalline β-hematin (Kads) was quantified using a theoretical kinetic model that is based on the Avrami equation and the Langmuir isotherm. Statistically significant linear correlations between lipid-mediated β-hematin inhibitory activity and Kads values for quinoline (r2 = 0.76, P-value = 0.0046) and non-quinoline compounds (r2 = 0.99, P-stat = 0.0006), as well as between parasite inhibitory activity (D10) and Kads values for quinoline antimalarial drugs and short-chain chloroquine derivatives (r2 = 0.64, P-value = 0.0098), provide a strong indication that drug action involves adsorption to the surface of β-hematin crystals. Independent support in this regard is provided by experiments that spectrophotometrically monitor the direct adsorption of antimalarial drugs to preformed β-hematin.
Collapse
|
18
|
Xiao SH, Sun J. Schistosoma hemozoin and its possible roles. Int J Parasitol 2016; 47:171-183. [PMID: 28012717 DOI: 10.1016/j.ijpara.2016.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022]
Abstract
More than 95years ago Schistosoma pigment had been deemed as a degradation product of haemoglobin. Until the 1950s, scientists initiated to pay attention to understand the hematophagous habit of schistosomes, and to study the degradation of haemoglobin as well as the formation of hemozoin inside the gut of the worms. For a long time, the formation of hemozoin in both Plasmodium and in Schistosoma was considered to be the major route of heme detoxification, and hemozoin served a role in waste disposal. At the beginning of this century, the chemical structure of Schistosoma pigment was confirmed to be identical to that of malarial pigment (hemozoin) and its synthetic analogue, β-hematin. Since then, studies on Schistosoma hemozoin have been investigated by some workers and the results showed that Schistosoma hemozoin may play important roles in pathogenicity, immune modulation, iron supply for egg formation, and interaction with some anti-schistosomal drugs. In this review, we briefly review and discuss the hematophagous habit of schistosomes, degradation of haemoglobin, formation of hemozoin in the worm gut, and possible roles of hemozoin.
Collapse
Affiliation(s)
- Shu-Hua Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Shanghai 200025, China.
| | - Jun Sun
- Institute for Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
19
|
Secondary metabolites and their biological activities in Indonesian soft coral of the genus Lobophytum. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Phenolic content, anti-oxidant, anti-plasmodium and cytotoxic properties of the sponge Acanthella cavernosa. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61136-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Singh K, Kaur T. Pyrimidine-based antimalarials: design strategies and antiplasmodial effects. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00084c] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The versatility in the design strategies of pyrimidine scaffold offer considerable opportunity for developing antimalarials capable of hitting different biological targets.
Collapse
Affiliation(s)
- Kamaljit Singh
- Department of Chemistry
- Centre for Advanced Studies-II
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Tavleen Kaur
- Department of Nephrology
- Guru Nanak Dev Hospital
- Amritsar
- India
| |
Collapse
|
22
|
Tempera C, Franco R, Caro C, André V, Eaton P, Burke P, Hänscheid T. Characterization and optimization of the haemozoin-like crystal (HLC) assay to determine Hz inhibiting effects of anti-malarial compounds. Malar J 2015; 14:403. [PMID: 26458401 PMCID: PMC4603294 DOI: 10.1186/s12936-015-0913-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/25/2015] [Indexed: 01/13/2023] Open
Abstract
Background The haem-haemozoin biocrystallization pathway is an attractive target where several efficacious and safe anti-malarial drugs act. Consequently, in vitro haemozoin (Hz) inhibition assays have been developed to identify novel compounds. However, results may differ between assays and often require complex methods or sophisticated infrastructure. The recently reported growth of haemozoin-like crystals (HLC) appears to be a simple alternative although the endproduct is structurally different to Hz. This study set out to characterize this assay in depth, optimize it, and assess its performance. Methods The HLC assay was used as previously described but a range of different growth conditions were examined. Obtained HLCs were investigated and compared to synthetic (sHz) and natural haemozoin (nHz) using scanning electron microscopy, powder X-ray diffraction (PXRD), Fourier Transform Infrared spectroscopy (FTIR) and Raman spectroscopy (RS). Interactions of HLC with quinolines was analysed using RS. Inhibitory effects of currently used anti-malarial drugs under four final growth conditions were established. Results HLC growth requires Mycoplasma Broth Base, Tween 80, pancreatin, and lysed blood or haemin. HLCs are similar to nHz and sHz in terms of solubility, macroscopic and microscopic appearance although PXRD, FTIR and RS confirm that the haem aggregates of HLCs are structurally different. RS reveals that CQ seems to interact with HLCs in similar ways as with Hz. Inhibition of quinoline drugs ranged from 62.5 µM (chloroquine, amodiaquine, piperaquine) to 500 µM in mefloquine. Conclusions The HLC assay provides data on inhibiting properties of compounds. Even if the end-product is not structurally identical to Hz, the inhibitory effects appear consistent with those obtained with sHz assays, as illustrated by the results obtained for quinolines. The assay is simple, inexpensive, robust, reproducible and can be performed under basic laboratory conditions with a simple visual positive/negative read-out. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0913-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina Tempera
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Ricardo Franco
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO, REQUIMTE, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Carlos Caro
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO, REQUIMTE, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| | - Peter Eaton
- , Departamento de Química e Bioquímica, Faculdade de Ciências, REQUIMTE/UCIBIO, Universidade do Porto, 4169-007, Porto, Portugal.
| | - Peter Burke
- STERIS Corporation, 5960 Heisley Road, Mentor, OH, 44060, USA.
| | - Thomas Hänscheid
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal. .,Faculdade de Medicina, Instituto de Microbiologia, Lisbon, Portugal.
| |
Collapse
|
23
|
Cohen A, Suzanne P, Lancelot JC, Verhaeghe P, Lesnard A, Basmaciyan L, Hutter S, Laget M, Dumètre A, Paloque L, Deharo E, Crozet MD, Rathelot P, Dallemagne P, Lorthiois A, Sibley CH, Vanelle P, Valentin A, Mazier D, Rault S, Azas N. Discovery of new thienopyrimidinone derivatives displaying antimalarial properties toward both erythrocytic and hepatic stages of Plasmodium. Eur J Med Chem 2015; 95:16-28. [DOI: 10.1016/j.ejmech.2015.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/24/2022]
|
24
|
Young RM, Adendorff MR, Wright AD, Davies-Coleman MT. Antiplasmodial activity: The first proof of inhibition of heme crystallization by marine isonitriles. Eur J Med Chem 2015; 93:373-80. [DOI: 10.1016/j.ejmech.2015.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
|
25
|
Sola I, Castellà S, Viayna E, Galdeano C, Taylor MC, Gbedema SY, Pérez B, Clos MV, Jones DC, Fairlamb AH, Wright CW, Kelly JM, Muñoz-Torrero D. Synthesis, biological profiling and mechanistic studies of 4-aminoquinoline-based heterodimeric compounds with dual trypanocidal-antiplasmodial activity. Bioorg Med Chem 2015; 23:5156-67. [PMID: 25678015 DOI: 10.1016/j.bmc.2015.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/13/2022]
Abstract
Dual submicromolar trypanocidal-antiplasmodial compounds have been identified by screening and chemical synthesis of 4-aminoquinoline-based heterodimeric compounds of three different structural classes. In Trypanosoma brucei, inhibition of the enzyme trypanothione reductase seems to be involved in the potent trypanocidal activity of these heterodimers, although it is probably not the main biological target. Regarding antiplasmodial activity, the heterodimers seem to share the mode of action of the antimalarial drug chloroquine, which involves inhibition of the haem detoxification process. Interestingly, all of these heterodimers display good brain permeabilities, thereby being potentially useful for late stage human African trypanosomiasis. Future optimization of these compounds should focus mainly on decreasing cytotoxicity and acetylcholinesterase inhibitory activity.
Collapse
Affiliation(s)
- Irene Sola
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Sílvia Castellà
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Elisabet Viayna
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Carles Galdeano
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Stephen Y Gbedema
- Bradford School of Pharmacy, University of Bradford, West Yorkshire BD7 1 DP, United Kingdom; Department of Pharmaceutics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Belén Pérez
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - M Victòria Clos
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Deuan C Jones
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Alan H Fairlamb
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Colin W Wright
- Bradford School of Pharmacy, University of Bradford, West Yorkshire BD7 1 DP, United Kingdom
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
26
|
Paulo A, Figueiras M, Machado M, Charneira C, Lavrado J, Santos SA, Lopes D, Gut J, Rosenthal PJ, Nogueira F, Moreira R. Bis-alkylamine Indolo[3,2-b]quinolines as Hemozoin Ligands: Implications for Antimalarial Cytostatic and Cytocidal Activities. J Med Chem 2014; 57:3295-313. [DOI: 10.1021/jm500075d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alexandra Paulo
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Figueiras
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Machado
- UEI
Malaria, Centro da Malária e Doenças Tropicais, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, P-1349-008 Lisboa, Portugal
| | - Catarina Charneira
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Lavrado
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Sofia A. Santos
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Dinora Lopes
- UEI
Malaria, Centro da Malária e Doenças Tropicais, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, P-1349-008 Lisboa, Portugal
| | - Jiri Gut
- Department
of Medicine, San Francisco General Hospital, University of California, San Francisco, Box 0811, San Francisco, California 94143, United States
| | - Philip J. Rosenthal
- Department
of Medicine, San Francisco General Hospital, University of California, San Francisco, Box 0811, San Francisco, California 94143, United States
| | - Fátima Nogueira
- UEI
Malaria, Centro da Malária e Doenças Tropicais, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, P-1349-008 Lisboa, Portugal
| | - Rui Moreira
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
27
|
Abstract
Recent initiatives to develop more effective and affordable drugs, controlling mosquitoes and development of a preventative vaccine have been launched with the goal of completely eradicating malaria. To this end, Novartis (Surrey, UK) and GlaxoSmithKline (Middlesex, UK) screened their chemical libraries of approximately two million small molecules for antimalarial properties, which resulted in a set of over 20,000 'highly druggable' initial hits. Efforts in academia are centered on specific pathway targets. One such high-throughput screening effort has been focused on hemozoin formation, a unique heme detoxification pathway found in the malaria parasite. This review discusses the current approaches and limitations of high-throughput screening discovery of hemozoin inhibitors. In the future, new methods must be developed to validate the mechanism of action of these hit compounds within the parasite.
Collapse
|
28
|
Gorka AP, de Dios A, Roepe PD. Quinoline drug-heme interactions and implications for antimalarial cytostatic versus cytocidal activities. J Med Chem 2013; 56:5231-46. [PMID: 23586757 DOI: 10.1021/jm400282d] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Historically, the most successful molecular target for antimalarial drugs has been heme biomineralization within the malarial parasite digestive vacuole. Heme released from catabolized host red blood cell hemoglobin is toxic, so malarial parasites crystallize heme to nontoxic hemozoin. For years it has been accepted that a number of effective quinoline antimalarial drugs (e.g., chloroquine, quinine, amodiaquine) function by preventing hemozoin crystallization. However, recent studies over the past decade have revealed a surprising molecular diversity in quinoline-heme molecular interactions. This diversity shows that even closely related quinoline drugs may have quite different molecular pharmacology. This paper reviews the molecular diversity and highlights important implications for understanding quinoline antimalarial drug resistance and for future drug design.
Collapse
Affiliation(s)
- Alexander P Gorka
- Department of Chemistry, Department of Biochemistry, Cellular, and Molecular Biology, and Center for Infectious Diseases, Georgetown University , 37th and O Streets, NW, Washington, D.C. 20057, United States
| | | | | |
Collapse
|
29
|
Thomas V, Góis A, Ritts B, Burke P, Hänscheid T, McDonnell G. A novel way to grow hemozoin-like crystals in vitro and its use to screen for hemozoin inhibiting antimalarial compounds. PLoS One 2012; 7:e41006. [PMID: 22815894 PMCID: PMC3399802 DOI: 10.1371/journal.pone.0041006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/15/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hemozoin crystals are normally formed in vivo by Plasmodium parasites to detoxify free heme released after hemoglobin digestion during its intraerythrocytic stage. Inhibition of hemozoin formation by various drugs results in free heme concentration toxic for the parasites. As a consequence, in vitro assays have been developed to screen and select candidate antimalarial drugs based on their capacity to inhibit hemozoin formation. In this report we describe new ways to form hemozoin-like crystals that were incidentally discovered during research in the field of prion inactivation. METHODS We investigated the use of a new assay based on naturally occurring "self-replicating" particles and previously described as presenting resistance to decontamination comparable to prions. The nature of these particles was determined using electron microscopy, Maldi-Tof analysis and X-ray diffraction. They were compared to synthetic hemozoin and to hemozoin obtained from Plasmodium falciparum. We then used the assay to evaluate the capacity of various antimalarial and anti-prion compounds to inhibit "self-replication" (crystallisation) of these particles. RESULTS We identified these particles as being similar to ferriprotoporphyrin IX crystal and confirmed the ability of these particles to serve as nuclei for growth of new hemozoin-like crystals (HLC). HLC are morphologically similar to natural and synthetic hemozoin. Growth of HLC in a simple assay format confirmed inhibition by quinolines antimalarials at potencies described in the literature. Interestingly, artemisinins and tetracyclines also seemed to inhibit HLC growth. CONCLUSIONS The described HLC assay is simple and easy to perform and may have the potential to be used as an additional tool to screen antimalarial drugs for their hemozoin inhibiting activity. As already described by others, drugs that inhibit hemozoin crystal formation have also the potential to inhibit misfolded proteins assemblies formation.
Collapse
Affiliation(s)
| | - Ana Góis
- Unidade de Microbiologia Molecular e Infecção, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisbon, Portugal
| | - Bruce Ritts
- STERIS Corporation, St. Louis, Missouri, United States of America
| | - Peter Burke
- STERIS Corporation, Mentor, Ohio, United States of America
- * E-mail:
| | - Thomas Hänscheid
- Unidade de Microbiologia Molecular e Infecção, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
30
|
Vargas S, Ndjoko Ioset K, Hay AE, Ioset JR, Wittlin S, Hostettmann K. Screening medicinal plants for the detection of novel antimalarial products applying the inhibition of β-hematin formation. J Pharm Biomed Anal 2011; 56:880-6. [PMID: 21872416 DOI: 10.1016/j.jpba.2011.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
Abstract
The identification of novel scaffolds for the development of effective and safe treatments to fight malaria is urgently needed. One of the main opportunities is the discovery of new molecules from natural origin. A simple, robust and cost-effective colorimetric assay based on the inhibition of β-hematin has been adapted to routinely screen plant extracts with the ultimate goal to identify novel antimalarial ingredients. The development of this assay has included a careful optimization of all critical experimental parameters. The β-hematin assay can be completed in less than one working day, requiring a 96-well UV-vis plate reader and low-cost commercially available reagents using a standard operating protocol. It can be used on its own or in combination with the well-known Plasmodium growth inhibition assay and has the obvious merit to be informative at the early stage of drug discovery regarding the mechanism of action of the actives. A total of 40 diverse natural products and 219 plants extracts were tested. Good correlations in respect with specificity (pure compounds 85%, extracts 93%) and positive predictive value (pure compounds 72%, extracts 50%) were obtained in comparison with Plasmodium growth inhibition assay that was used as the reference assay.
Collapse
Affiliation(s)
- S Vargas
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Feng TS, Guantai EM, Nell M, van Rensburg CEJ, Ncokazi K, Egan TJ, Hoppe HC, Chibale K. Effects of highly active novel artemisinin-chloroquinoline hybrid compounds on β-hematin formation, parasite morphology and endocytosis in Plasmodium falciparum. Biochem Pharmacol 2011; 82:236-47. [PMID: 21596024 DOI: 10.1016/j.bcp.2011.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 11/25/2022]
Abstract
4-Aminoquinolines were hybridized with artemisinin and 1,4-naphthoquinone derivatives via the Ugi-four-component condensation reaction, and their biological activities investigated. The artemisinin-containing compounds 6a-c and its salt 6c-citrate were the most active target compounds in the antiplasmodial assays. However, despite the potent in vitro activities, they also displayed cytotoxicity against a mammalian cell-line, and had lower therapeutic indices than chloroquine. Morphological changes in parasites treated with these artemisinin-containing hybrid compounds were similar to those observed after addition of artemisinin. These hybrid compounds appeared to share mechanism(s) of action with both chloroquine and artemisinin: they exhibited potent β-hematin inhibitory activities; they caused an increase in accumulation of hemoglobin within the parasites that was intermediate between the increase observed with artesunate and chloroquine; and they also appeared to inhibit endocytosis as suggested by the decrease in the number of transport vesicles in the parasites. No cross-resistance with chloroquine was observed for these hybrid compounds, despite the fact that they contained the chloroquinoline moiety. The hybridization strategy therefore appeared to be borrowing the best from both classes of antimalarials.
Collapse
Affiliation(s)
- Tzu-Shean Feng
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tiwari V, Meshram J, Ali P, Sheikh J, Tripathi U. Novel oxazine skeletons as potential antiplasmodial active ingredients: Synthesis, in vitro and in vivo biology of some oxazine entities produced via cyclization of novel chalcone intermediates. J Enzyme Inhib Med Chem 2010; 26:569-78. [DOI: 10.3109/14756366.2010.539566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vandana Tiwari
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur
| | - Jyotsna Meshram
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur
| | - Parvez Ali
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur
| | - Javed Sheikh
- National Environmental Engineering and Research Institute, Nagpur
| | | |
Collapse
|
33
|
Acharya BN, Saraswat D, Tiwari M, Shrivastava AK, Ghorpade R, Bapna S, Kaushik MP. Synthesis and antimalarial evaluation of 1, 3, 5-trisubstituted pyrazolines. Eur J Med Chem 2010; 45:430-8. [DOI: 10.1016/j.ejmech.2009.10.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 07/30/2009] [Accepted: 10/15/2009] [Indexed: 11/27/2022]
|
34
|
|
35
|
Colorimetric high-throughput screen for detection of heme crystallization inhibitors. Antimicrob Agents Chemother 2009; 53:2564-8. [PMID: 19307367 DOI: 10.1128/aac.01466-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria infects 500 million people annually, a number that is likely to rise as drug resistance to currently used antimalarials increases. During its intraerythrocytic stage, the causative parasite, Plasmodium falciparum, metabolizes hemoglobin and releases toxic heme, which is neutralized by a parasite-specific crystallization mechanism to form hemozoin. Evidence suggests that chloroquine, the most successful antimalarial agent in history, acts by disrupting the formation of hemozoin. Here we describe the development of a 384-well microtiter plate screen to detect small molecules that can also disrupt heme crystallization. This assay, which is based on a colorimetric assay developed by Ncokazi and Egan (K. K. Ncokazi and T. J. Egan, Anal. Biochem. 338:306-319, 2005), requires no parasites or parasite-derived reagents and no radioactive materials and is suitable for a high-throughput screening platform. The assay's reproducibility and large dynamic range are reflected by a Z factor of 0.74. A pilot screen of 16,000 small molecules belonging to diverse structural classes was conducted. The results of the target-based assay were compared with a whole-parasite viability assay of the same small molecules to identify small molecules active in both assays.
Collapse
|
36
|
Acharya BN, Saraswat D, Kaushik MP. Pharmacophore based discovery of potential antimalarial agent targeting haem detoxification pathway. Eur J Med Chem 2008; 43:2840-52. [DOI: 10.1016/j.ejmech.2008.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/05/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
|
37
|
Guillon J, Moreau S, Mouray E, Sinou V, Forfar I, Fabre SB, Desplat V, Millet P, Parzy D, Jarry C, Grellier P. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity. Bioorg Med Chem 2008; 16:9133-44. [PMID: 18819813 DOI: 10.1016/j.bmc.2008.09.038] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/01/2008] [Accepted: 09/10/2008] [Indexed: 11/25/2022]
Abstract
Following our search for antimalarial compounds, novel series of ferrocenic pyrrolo[1,2-a]quinoxaline derivatives 1-2 were synthesized from various substituted nitroanilines and tested for in vitro activity upon the erythrocytic development of Plasmodiumfalciparum strains with different chloroquine-resistance status. The pyrrolo[1,2-a]quinoxalines 1 were prepared in 6-8 steps through a regioselective palladium-catalyzed monoamination by coupling 4-chloropyrrolo[1,2-a]quinoxalines with 1,3-bis(aminopropyl)piperazine or -methylamine using Xantphos as the ligand. The ferrocenic bispyrrolo[1,2-a]quinoxalines 2 were prepared by reductive amination of previously described bispyrrolo[1,2-a]quinoxalines 9 with ferrocene-carboxaldehyde, by treatment with NaHB(OAc)(3). The best results were observed with ferrocenic pyrrolo[1,2-a]quinoxalines linked by a bis(3-aminopropyl)piperazine. Moreover, it was observed that a methoxy group on the pyrrolo[1,2-a]quinoxaline nucleus and no substitution on the terminal N-ferrocenylmethylamine function enhanced the pharmacological activity. Selected compounds 1b, 1f-h, 1l and 2a were tested for their ability to inhibit beta-haematin formation, the synthetic equivalent of hemozoin, by using the HPIA (heme polymerization inhibitory activity) assay. Of the tested compounds, only 2a showed a beta-haematin formation inhibition, but no inhibition of haem polymerization was observed with the other selected ferrocenic monopyrrolo[1,2-a]quinoxaline derivatives 1b, 1f-h and 1l, as the IC(50) values were superior to 10 equivalents.
Collapse
Affiliation(s)
- Jean Guillon
- EA 4138-Pharmacochimie, UFR des Sciences Pharmaceutiques, Université Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Egan TJ. Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation. J Inorg Biochem 2008; 102:1288-99. [DOI: 10.1016/j.jinorgbio.2007.12.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/19/2007] [Accepted: 10/31/2007] [Indexed: 11/15/2022]
|
39
|
|
40
|
Narayan Acharya B, Thavaselvam D, Parshad Kaushik M. Synthesis and antimalarial evaluation of novel pyridine quinoline hybrids. Med Chem Res 2008. [DOI: 10.1007/s00044-008-9092-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Haemozoin formation. Mol Biochem Parasitol 2008; 157:127-36. [DOI: 10.1016/j.molbiopara.2007.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 11/18/2022]
|
42
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Wright CW. Recent developments in naturally derived antimalarials: cryptolepine analogues. J Pharm Pharmacol 2007; 59:899-904. [PMID: 17637183 DOI: 10.1211/jpp.59.6.0017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Increasing resistance of Plasmodium falciparum to commonly used antimalarial drugs has made the need for new agents increasingly urgent. In this paper, the potential of cryptolepine, an alkaloid from the West African shrub Cryptolepis sanguinolenta, as a lead towards new antimalarial agents is discussed. Several cryptolepine analogues have been synthesized that have promising in-vitro and in-vivo antimalarial activity. Studies on the antimalarial modes of action of these analogues indicate that they may have different or additional modes of action to the parent compound. Elucidation of the mode of action may facilitate the development of more potent antimalarial cryptolepine analogues.
Collapse
Affiliation(s)
- Colin W Wright
- The School of Pharmacy, University of Bradford, West Yorkshire, BD7 1DP, UK.
| |
Collapse
|
44
|
Garavito G, Monje MC, Maurel S, Valentin A, Nepveu F, Deharo E. A non-radiolabeled heme–GSH interaction test for the screening of antimalarial compounds. Exp Parasitol 2007; 116:311-3. [PMID: 17336296 DOI: 10.1016/j.exppara.2007.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/23/2006] [Accepted: 01/11/2007] [Indexed: 11/26/2022]
Abstract
Intraerythrocytic Plasmodium produces large amounts of toxic heme during the digestion of hemoglobin, a parasite specific pathway. Heme is then partially biocristallized into hemozoin and mostly detoxified by reduced glutathione. We proposed an in vitro micro assay to test the ability of drugs to inhibit heme-glutathione dependent degradation. As glutathione and o-phthalaldehyde form a fluorescent adduct, we followed the extinction of the fluorescent signal when heme was added with or without antimalarial compounds. In this assay, 50 microM of amodiaquine, arthemether, chloroquine, methylene blue, mefloquine and quinine inhibited the interaction between glutathione (50 microM) and heme (50 microM), while atovaquone did not. Consequently, this test could detect drugs that can inhibit heme-GSH degradation in a fast, simple and specific way, making it suitable for high throughput screening of potential antimalarials.
Collapse
Affiliation(s)
- Giovanny Garavito
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá, DC, Colombia
| | | | | | | | | | | |
Collapse
|
45
|
Carney CK, Schrimpe AC, Halfpenny K, Harry RS, Miller CM, Broncel M, Sewell SL, Schaff JE, Deol R, Carter MD, Wright DW. The basis of the immunomodulatory activity of malaria pigment (hemozoin). J Biol Inorg Chem 2006; 11:917-29. [PMID: 16868743 DOI: 10.1007/s00775-006-0147-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 07/05/2006] [Indexed: 11/28/2022]
Abstract
The most common and deadly form of the malaria parasite, Plasmodium falciparum, is responsible for 1.5-2.7 million deaths and 300-500 million acute illnesses annually [Bremen in J. Trop. Med. Hyg. 64:1-11 (2001); World Health Organization (2002)]. Hemozoin, the biomineral formed to detoxify the free heme produced during parasitic hemoglobin catabolism, has long been suspected of contributing to the pathological immunodeficiencies that occur during malarial infection. While there is a growing consensus in the literature that native hemozoin maintains immunosuppressive activity, there is considerable controversy over the reactivity of the synthetic form, beta-hematin (BH). Given the emerging importance of hemozoin in modulating a host immune response to malarial infection, a careful examination of the effects of the constitutive components of the malaria pigment on macrophage response has been made in order to clarify the understanding of this process. Herein, we present evidence that BH alone is unable to inhibit stimulation of NADPH oxidase and inducible nitric oxide synthase, the key enzymes involved in oxidative burst, and is sensitive to the microbicidal agents of these enzymes both in vitro and in vivo. Further, by systematically examining each of the malaria pigment's components, we were able to dissect their impact on the immune reactivity of a macrophage model cell line. Reactions between BH and red blood cell (RBC) ghosts effectively reconstituted the observed immunomodulatory reactivity of native hemozoin. Together, these results suggest that the interaction between hemozoin and the RBC lipids results in the generation of toxic products and that these products are responsible for disrupting macrophage function in vivo.
Collapse
Affiliation(s)
- Clare K Carney
- Department of Chemistry, Vanderbilt University, Station B. 351822, Nashville, TN 37235, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Scholl PF, Tripathi AK, Sullivan DJ. Bioavailable iron and heme metabolism in Plasmodium falciparum. Curr Top Microbiol Immunol 2006; 295:293-324. [PMID: 16265896 DOI: 10.1007/3-540-29088-5_12] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Iron metabolism is essential for cell function and potentially toxic because iron can catalyze oxygen radical production. Malaria-attributable anemia and iron deficiency anemia coincide as being treatable diseases in the developing world. In absolute amounts, more than 95% of Plasmodium metal biochemistry occurs in the acidic digestive vacuole where heme released from hemoglobin catabolism forms heme crystals. The antimalarial quinolines interfere with crystallization. Despite the completion of the Plasmodium genome, many 'gene gaps' exist in components of the metal pathways described in mammalian or yeast cells. Present evidence suggests that parasite bioavailable iron originates from a labile erythrocyte cytosolic pool rather than from abundant heme iron. Indeed the parasite has to make its own heme within two separate organelles, the mitochondrion and the apicomplast. Paradoxically, despite the abundance of iron within the erythrocyte, iron chelators are cytocidal to the Plasmodium parasite. Hemozoin has become a sensitive biomarker for laser desorption mass spectrometry detection of Plasmodium infection in both mice and humans.
Collapse
Affiliation(s)
- P F Scholl
- Department of Environmental Health Sciences, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
47
|
Pradines B, Orlandi-Pradines E, Henry M, Bogreau H, Fusai T, Mosnier J, Baret E, Durand C, Bouchiba H, Penhoat K, Rogier C. [Metallocenes and malaria: a new therapeutic approach]. ANNALES PHARMACEUTIQUES FRANÇAISES 2005; 63:284-94. [PMID: 16142129 DOI: 10.1016/s0003-4509(05)82293-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rapid development of significant resistance to antimalarial drugs has been a major force driving research to identify and develop new compounds. The use of synthetic organometallic complexes seems to be promising for treatment of malaria infections. Recent progress in identification and development of new drugs promises to lead to a much greater range of antimalarial agents. Organometallic complexes and metalloporphyrins have shown in vitro activity against Plasmodium falciparum. Ferroquine (ferrocenyl chloroquine) is more active than chloroquine against strains and isolates of P. falciparum and shows efficacy against murine parasites.
Collapse
Affiliation(s)
- B Pradines
- Unité de recherche en biologie et épidémiologie parasitaires, Institut de médecine tropicale du Service de Santé des Armées, Parc le Pharo, BP46, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Egan TJ, Ncokazi KK. Quinoline antimalarials decrease the rate of beta-hematin formation. J Inorg Biochem 2005; 99:1532-9. [PMID: 15927260 DOI: 10.1016/j.jinorgbio.2005.04.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/29/2005] [Accepted: 04/14/2005] [Indexed: 11/17/2022]
Abstract
The strength of inhibition of beta-hematin (synthetic hemozoin or malaria pigment) formation by the quinoline antimalarial drugs chloroquine, amodiaquine, quinidine and quinine has been investigated as a function of incubation time. In the assay used, beta-hematin formation was brought about using 4.5M acetate, pH 4.5 at 60 degrees C. Unreacted hematin was detected by formation of a spectroscopically distinct low spin pyridine complex. Although, these drugs inhibit beta-hematin formation when relatively short incubation times are used, it was found that beta-hematin eventually forms with longer incubation periods (<8h for chloroquine and >8h for quinine). This conclusion was supported by both infrared and X-ray powder diffraction observations. It was further found that the IC(50) for inhibition of beta-hematin formation increases markedly with increasing incubation times in the case of the 4-aminoquinolines chloroquine and amodiaquine. By contrast, in the presence of the quinoline methanols quinine and quinidine the IC(50) values increase much more slowly. This results in a partial reversal of the order of inhibition strengths at longer incubation times. Scanning electron microscopy indicates that beta-hematin crystals formed in the presence of chloroquine are more uniform in both size and shape than those formed in the absence of the drug, with the external morphology of these crystallites being markedly altered. The findings suggest that these drugs act by decreasing the rate of hemozoin formation, rather than irreversibly blocking its formation. This model can also explain the observation of a sigmoidal dependence of beta-hematin inhibition on drug concentration.
Collapse
Affiliation(s)
- Timothy J Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa.
| | | |
Collapse
|
49
|
Biot C, Taramelli D, Forfar-Bares I, Maciejewski LA, Boyce M, Nowogrocki G, Brocard JS, Basilico N, Olliaro P, Egan TJ. Insights into the mechanism of action of ferroquine. Relationship between physicochemical properties and antiplasmodial activity. Mol Pharm 2005; 2:185-93. [PMID: 15934779 DOI: 10.1021/mp0500061] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferroquine (FQ) is a 4-aminoquinoline antimalarial which contains a quinoline nucleus similar to chloroquine, but a novel ferrocenic group in its side chain. Previous work has demonstrated that this compound has excellent activity against malaria parasites, both in vitro and in vivo, with especially good activity against chloroquine-resistant parasites, but details of its mechanism of action have not previously been reported. In this study, we have investigated the physicochemical properties of FQ for comparison with chloroquine (CQ). Like CQ, FQ forms complexes with hematin in solution (log K = 4.95 +/- 0.05). FQ is an even stronger inhibitor of beta-hematin formation than CQ (IC(50) = 0.78 equiv relative to hematin for FQ vs 1.9 for CQ). These data suggest that the mechanism of action of FQ is likely to be similar to that of CQ and probably involves hematin as the drug target and inhibition of hemozoin formation. However, both the basicity and lipophilicity of FQ are significantly different from those of CQ. The lipophilicity of FQ and CQ are similar when protonated at the putative food vacuole pH of 5.2 (log D = -0.77 and -1.2 respectively), but differ markedly at pH 7.4 (log D = 2.95 and 0.85 respectively). In addition, the pK(a) values of FQ are lower (pK(a1) = 8.19 and pK(a2) = 6.99) than those of CQ (10.03 and 7.94, respectively). This suggests that there will be somewhat less vacuolar accumulation of FQ compared with CQ. Single crystal structure determination of FQ shows the presence of a strong internal hydrogen bond between the 4-amino group and the terminal N atom. This, together with the electron donating properties of the ferrocene moiety, probably explains the decreased pK(a). Interestingly, the decreased accumulation arising from the less basic behavior of this compound is partly compensated for by its stronger beta-hematin inhibition. Increased lipophilicity, differences in geometric and electronic structure, and changes in the N-N distances in FQ compared to CQ probably explain its activity against CQ-resistant parasites.
Collapse
Affiliation(s)
- Christophe Biot
- Laboratoire de Catalyse de Lille-UMR CNRS 8010, ENSCL, Bâtiment C7, Université des Sciences et Technologies, B.P. 90108, 59652, Villeneuve d'Ascq cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Frölich S, Schubert C, Bienzle U, Jenett-Siems K. In vitro antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus lupulus) and their interaction with haemin. J Antimicrob Chemother 2005; 55:883-7. [PMID: 15824094 DOI: 10.1093/jac/dki099] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES There is an urgent need to discover new antimalarials, due to the spread of chloroquine resistance and the limited number of available drugs. Chalcones are one of the classes of natural products that are known to possess antiplasmodial properties. Therefore, the in vitro antiplasmodial activity of the main hop chalcone xanthohumol and seven derivatives was evaluated. In addition, the influence of the compounds on glutathione (GSH)-dependent haemin degradation was analysed to determine its contribution to the antimalarial effect of chalcones. METHODS In vitro antiplasmodial activity was evaluated against the chloroquine-sensitive strain poW and the multiresistant clone Dd2 using a [(3)H]hypoxanthine-incorporation assay. Inhibition of GSH-dependent haemin degradation was analysed by a multiwell plate assay at 11 microM. RESULTS Of the eight compounds tested, four possessed activity with IC(50) values<25 microM against at least one of the two strains of Plasmodium falciparum. The main hop chalcone, xanthohumol, was most active with IC(50) values of 8.2+/-0.3 (poW) and 24.0 +/- 0.8 microM (Dd2). Three of these compounds were additionally active in the haemin-degradation assay. CONCLUSIONS The results demonstrate for the first time the ability of chalcone derivatives to interfere with the haemin-degradation process of P. falciparum. This effect might contribute to their antiplasmodial activity. Nevertheless, as one compound showed inhibition of P. falciparum without being able to interact with GSH-dependent haemin degradation, other modes of action must add to the observed antiparasitic activity of hop chalcones.
Collapse
Affiliation(s)
- Sonja Frölich
- Institut für Pharmazie (Pharmazeutische Biologie), Freie Universität Berlin, Königin-Luise-Str. 2-4, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|