1
|
Perera K, Ghumman M, Sorkhdini P, Norbrun C, Negash S, Zhou Y, Menon JU. Citrus pectin-coated inhalable PLGA nanoparticles for treatment of pulmonary fibrosis. J Mater Chem B 2025; 13:3325-3339. [PMID: 39918485 PMCID: PMC11804936 DOI: 10.1039/d4tb01682c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial disorder of the respiratory system that can be debilitating as it progresses and has experienced a slow rise in incidence in past years. Treatment is complicated by the complex aetiology of the disease and the off-target effects of the two FDA-approved therapeutics available on the market: pirfenidone and nintedanib. In this work, we propose a multipurpose nanoparticle system consisting of poly(lactic-co-glycolic) acid polymer (PLGA) and a coating of citrus pectin (CP) for galectin-3 targeting and anti-fibrotic therapy. Pectin from citrus peels has been observed to have anti-fibrotic activity in a range of fibrotic tissues, causing a decrease in the expression and activity of galectin-3: a key, upregulated marker of fibrosis. We show that the CP-PLGA nanoparticles (NPs) have an average diameter of 340.5 ± 10.6 nm, compatible with inhalation and retention in the deep lung, and that CP constitutes, on average, 40.3% of the final CP-PLGA formulation. The NPs are well-tolerated by MRC-5 lung fibroblasts up to 2 mg mL-1. We demonstrate the NPs' ability to target transforming growth factor β (TGFβ)-treated fibrotic MRC-5 cells in a specific, dose-dependent manner, saturating at approx. 250 μg mL-1in vitro, and that our NPs have potent anti-fibrotic activity in vivo in particular, reversing bleomycin-induced fibrosis in mouse lungs, accompanied by marked reduction in profibrotic markers including collagen 1, fibronectin, α-smooth muscle actin, β-catenin and galectin-3. In all, we present an inherently therapeutic inhalable nanocarrier for galectin-3 targeting and anti-fibrotic therapy. We envision this carrier to be doubly effective against fibrotic lung tissue when combined with an encapsulated anti-fibrotic drug, improving overall/total therapeutic efficacy and patient compliance via the reduction of off-target effects and additive therapeutic effects.
Collapse
Affiliation(s)
- Kalindu Perera
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Moez Ghumman
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, USA
| | - Carmelissa Norbrun
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, USA
| | - Seraphina Negash
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
- Department of Chemical Engineering, College of Engineering, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
2
|
Ma X, Poma A. Clinical translation and envisioned impact of nanotech for infection control: Economy, government policy and public awareness. NANOTECHNOLOGY TOOLS FOR INFECTION CONTROL 2025:299-392. [DOI: 10.1016/b978-0-12-823994-0.00004-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Bala Subramaniyan S, Veerappan A. Lectins as the prominent potential to deliver bioactive metal nanoparticles by recognizing cell surface glycans. Heliyon 2024; 10:e29394. [PMID: 38638961 PMCID: PMC11024627 DOI: 10.1016/j.heliyon.2024.e29394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Lectins are renowned for recognizing specific carbohydrates, but there is evidence that they can bind to other endogenous ligands. Therefore, lectin can be used as a carrier to recognize glycoconjugates on the cell surface. The anticancer, antibacterial, and immunomodulatory properties of some lectins are established. Metal nanoparticles (MNPs) have been used in various fields recently, but their documented toxicity has raised questions about their suitability for biomedical uses. The advantages of MNPs can be realized if we deliver the NPs to the site of action; as a result, NPs may achieve greater therapeutic efficiency at lower doses with less toxicity. The use of carbohydrate specificity by lectin MNPs conjugates for diagnostics and therapeutics was addressed. The review summarised the multidimensional application of lectins and described their potential for delivery of MNPs in future drug development.
Collapse
Affiliation(s)
- Siva Bala Subramaniyan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Anbazhagan Veerappan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| |
Collapse
|
4
|
Sobhani-Nasab A, Banafshe HR, Atapour A, Khaksary Mahabady M, Akbari M, Daraei A, Mansoori Y, Moradi Hasan-Abad A. The use of nanoparticles in the treatment of infectious diseases and cancer, dental applications and tissue regeneration: a review. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 5:1330007. [PMID: 38323112 PMCID: PMC10844477 DOI: 10.3389/fmedt.2023.1330007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024] Open
Abstract
The emergence of nanotechnology as a field of study can be traced back to the 1980s, at which point the means to artificially produce, control, and observe matter on a nanometer level was made viable. Recent advancements in technology have enabled us to extend our reach to the nanoscale, which has presented an unparalleled opportunity to directly target biomolecular interactions. As a result of these developments, there is a drive to arise intelligent nanostructures capable of overcoming the obstacles that have impeded the progress of conventional pharmacological methodologies. After four decades, the gradual amalgamation of bio- and nanotechnologies is initiating a revolution in the realm of disease detection, treatment, and monitoring, as well as unsolved medical predicaments. Although a significant portion of research in the field is still confined to laboratories, the initial application of nanotechnology as treatments, vaccines, pharmaceuticals, and diagnostic equipment has now obtained endorsement for commercialization and clinical practice. The current issue presents an overview of the latest progress in nanomedical strategies towards alleviating antibiotic resistance, diagnosing and treating cancer, addressing neurodegenerative disorders, and an array of applications, encompassing dentistry and tuberculosis treatment. The current investigation also scrutinizes the deployment of sophisticated smart nanostructured materials in fields of application such as regenerative medicine, as well as the management of targeted and sustained release of pharmaceuticals and therapeutic interventions. The aforementioned concept exhibits the potential for revolutionary advancements within the field of immunotherapy, as it introduces the utilization of implanted vaccine technology to consistently regulate and augment immune functions. Concurrently with the endeavor to attain the advantages of nanomedical intervention, it is essential to enhance the unceasing emphasis on nanotoxicological research and the regulation of nanomedications' safety. This initiative is crucial in achieving the advancement in medicine that currently lies within our reach.
Collapse
Affiliation(s)
- Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akbari
- Department of Surgery, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Ramachandran S, Prakash P, Mohtar N, Kumar KS, Parumasivam T. Review of inhalable nanoparticles for the pulmonary delivery of anti-tuberculosis drugs. Pharm Dev Technol 2023; 28:978-991. [PMID: 37937865 DOI: 10.1080/10837450.2023.2279691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/05/2023] [Indexed: 11/09/2023]
Abstract
Tuberculosis is an airborne disease caused by the pathogen, Mycobacterium tuberculosis, which predominantly affects the lungs. World Health Organization (WHO) has reported that about 85% of TB patients are cured with the existing 6-month antibiotic regimen. However, the lengthy oral administration of high-dose anti-TB drugs is associated with significant side effects and leads to drug resistance cases. Alternatively, reformulating existing anti-tubercular drugs into inhalable nanoparticulate systems is a promising strategy to overcome the challenges associated with oral treatment as they could enhance drug retention in the pulmonary region to achieve an optimal drug concentration in the infected lungs. Hence, this review provides an overview of the literature on inhalable nano-formulations for the delivery of anti-TB drugs, including their formulation techniques and preclinical evaluations between the years 2000 and 2020, gathered from electronic journals via online search engines such as Google Scholar and PubMed. Previous in vitro and in vivo studies highlighted that the nano-size, low toxicity, and high efficacy were among the factors influencing the fate of nanoparticulate system upon deposition in the lungs. Although many preclinical studies have shown that inhalable nanoparticles increased therapeutic efficacy and minimised adverse drug reactions when delivered through the pulmonary route, none of them has progressed into clinical trials to date. This could be attributed to the high cost of inhaled regimes due to the expensive production and characterisation of the nanoparticles as well as the need for an inhalation device as compared to the oral treatment. Another barrier could be the lack of medical acceptance due to insufficient number of trained staff to educate the patients on the correct usage of the inhalation device. Hence, these barriers should be addressed satisfactorily to make the inhaled nanoparticles regimen a reality for the treatment of TB.
Collapse
Affiliation(s)
- Sowmya Ramachandran
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Priyanka Prakash
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - K Sudesh Kumar
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
6
|
Rather I, Shafiq N, Shukla J, Kaur G, Pandey S, Bhandari RK, Pandey AK, Mittal BR, Khuller GK, Sharma N, Malhotra S. Bio-evaluation of poly(lactic-co-glycolic) acid nanoparticles loaded with radiolabelled rifampicin. Br J Clin Pharmacol 2023; 89:3702-3714. [PMID: 37553758 DOI: 10.1111/bcp.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
AIMS The poly(lactic-co-glycolic) acid (PLGA) nanoparticles of tubercular drugs have been demonstrated to have a sustained release profile over 7 days. There is no information on the location or mode of release of these nanoparticles in living systems. Therefore, we have planned the study to explore the pharmacokinetics and biodistribution of PLGA rifampicin nanoparticles in healthy human volunteers. We aim to study the distribution pattern of PLGA-loaded nano-formulation of radiolabelled rifampicin in humans. METHODS Rifampicin was labelled with 99m Tc by indirect method and nanoparticles were prepared by a single emulsion evaporation method. To investigate the pharmacokinetics and biodistribution of nanoparticles, a single dose of 450 mg of rifampicin was administered orally to healthy human volunteers divided into two different groups. RESULTS Following a single oral dosage of the rifampicin nanoformulation, the pharmacokinetic (PK) parameters were significantly different between the nanoparticle and conventional groups: area under the concentration-time curve (AUC = 113.8 vs. 58.6; P < .001), mean residence time (MRT = 16.2 vs. 5.8; P < .01) and elimination rate constant (Ke = 0.04 vs. 0.10; P < .05). Also, Single-photon emission computed tomography/computed tomography (SPECT/CT) images revealed biodistribution of nanoparticles in the distal portions of the intestine, which is consistent with our dosimetry analysis. CONCLUSIONS Significant difference in PK parameters and biodistribution of nanoparticles in spleen and lymph nodes with maximum deposition were observed in the large intestine. The nanoparticle distribution pattern may be advantageous for the treatment of intestinal or lymph node tuberculosis (TB) and has the potential to result in a lower dose of rifampicin nanoformulation for the treatment of pulmonary TB.
Collapse
Affiliation(s)
- Imran Rather
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Nusrat Shafiq
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Jaya Shukla
- Department of Nuclear Medicine, PGIMER, Chandigarh, India
| | - Gurvinder Kaur
- Department of Nuclear Medicine, PGIMER, Chandigarh, India
| | - Somit Pandey
- Department of Nuclear Medicine, PGIMER, Chandigarh, India
| | | | | | - B R Mittal
- Department of Nuclear Medicine, PGIMER, Chandigarh, India
| | - G K Khuller
- Department of Biochemistry, PGIMER, Chandigarh, India
| | - Navneet Sharma
- Department of General Medicine, PGIMER, Chandigarh, India
| | | |
Collapse
|
7
|
Ahalwat S, Bhatt DC, Rohilla S, Jogpal V, Sharma K, Virmani T, Kumar G, Alhalmi A, Alqahtani AS, Noman OM, Almoiliqy M. Mannose-Functionalized Isoniazid-Loaded Nanostructured Lipid Carriers for Pulmonary Delivery: In Vitro Prospects and In Vivo Therapeutic Efficacy Assessment. Pharmaceuticals (Basel) 2023; 16:1108. [PMID: 37631023 PMCID: PMC10458796 DOI: 10.3390/ph16081108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Resistance to isoniazid (INH) is common and increases the possibility of acquiring multidrug-resistant tuberculosis. For this study, isoniazid-loaded nanostructured lipid carriers (INH-NLCs) were developed and effectively functionalized with mannose (Man) to enhance the residence time of the drug within the lungs via specific delivery and increase the therapeutic efficacy of the formulation. The mannose-functionalized isoniazid-loaded nanostructured lipid carrier (Man-INH-NLC) formulation was evaluated with respect to various formulation parameters, namely, encapsulation efficiency (EE), drug loading (DL), average particle size (PS), zeta potential (ZP), polydispersity index (PDI), in vitro drug release (DR), and release kinetics. The in vitro inhalation behavior of the developed formulation after nebulization was investigated using an Andersen cascade impactor via the estimation of the mass median aerosolized diameter (MMAD) and geometric aerodynamic diameter (GAD) and subsequently found to be suitable for effective lung delivery. An in vivo pharmacokinetic study was carried out in a guinea pig animal model, and it was demonstrated that Man-INH-NLC has a longer residence time in the lungs with improved pharmacokinetics when compared with unfunctionalized INH-NLC, indicating the enhanced therapeutic efficacy of the Man-INH-NLC formulation. Histopathological analysis led us to determine that the extent of tissue damage was more severe in the case of the pure drug solution of isoniazid compared to the Man-INH-NLC formulation after nebulization. Thus, the nebulization of Man-INH-NLC was found to be safe, forming a sound basis for enhancing the therapeutic efficacy of the drug for improved management in the treatment of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Shaveta Ahalwat
- School of Medical and Allied Sciences, G. D. Goenka University, Gurugram 122103, India; (V.J.); (K.S.)
| | - Dinesh Chandra Bhatt
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India;
| | - Surbhi Rohilla
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India;
| | - Vikas Jogpal
- School of Medical and Allied Sciences, G. D. Goenka University, Gurugram 122103, India; (V.J.); (K.S.)
| | - Kirti Sharma
- School of Medical and Allied Sciences, G. D. Goenka University, Gurugram 122103, India; (V.J.); (K.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, India; (T.V.); (G.K.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, India; (T.V.); (G.K.)
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.S.A.); (O.M.N.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.S.A.); (O.M.N.)
| | - Marwan Almoiliqy
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
8
|
Thiruvengadam R, Venkidasamy B, Samynathan R, Govindasamy R, Thiruvengadam M, Kim JH. Association of nanoparticles and Nrf2 with various oxidative stress-mediated diseases. Chem Biol Interact 2023; 380:110535. [PMID: 37187268 DOI: 10.1016/j.cbi.2023.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regultes the cellular antioxidant defense system at the posttranscriptional level. During oxidative stress, Nrf2 is released from its negative regulator Kelch-like ECH-associated protein 1 (Keap1) and binds to antioxidant response element (ARE) to transcribe antioxidative metabolizing/detoxifying genes. Various transcription factors like aryl hydrocarbon receptor (AhR) and nuclear factor kappa light chain enhancer of activated B cells (NF-kB) and epigenetic modification including DNA methylation and histone methylation might also regulate the expression of Nrf2. Despite its protective role, Keap1/Nrf2/ARE signaling is considered as a pharmacological target due to its involvement in various pathophysiological conditions such as diabetes, cardiovascular disease, cancer, neurodegenerative diseases, hepatotoxicity and kidney disorders. Recently, nanomaterials have received a lot of attention due to their unique physiochemical properties and are also used in various biological applications, for example, biosensors, drug delivery systems, cancer therapy, etc. In this review, we will be discussing the functions of nanoparticles and Nrf2 as a combined therapy or sensitizing agent and their significance in various diseases such as diabetes, cancer and oxidative stress-mediated diseases.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Rajakumar Govindasamy
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
9
|
Biswas B, Kumar Misra T, Ray D, Majumder T, Kanti Bandyopadhyay T, Kumar Bhowmick T. Current Therapeutic Delivery Approaches Using Nanocarriers for the Treatment of Tuberculosis Disease. Int J Pharm 2023; 640:123018. [PMID: 37149113 DOI: 10.1016/j.ijpharm.2023.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Tuberculosis is a major health issue globally and a leading cause of death due to the infective microorganism Mycobacterium tuberculosis. Treatment of drug resistance tuberculosis requires longer treatment with multiple daily doses of drugs. Unfortunately, these drugs are often associated with poor patient compliance. In this situation, a need has been felt for the less toxic, shorter, and more effective treatment of the infected tuberculosis patients. Current research to develop novel anti-tubercular drugs shows hope for better management of the disease. Research on drug targeting and precise delivery of the old anti-tubercular drugs with the help of nanotechnology is promising for effective treatment. This review has discussed the status currently available treatments for tuberculosis patients infected with Mycobacterium alone or in comorbid conditions like diabetes, HIV and cancer. This review also highlighted the challenges in the current treatment and research on the novel anti-tubercular drugs to prevent multi-drug-resistant tuberculosis. It presents the research highlights on the targeted delivery of anti-tubercular drugs using different nanocarriers for preventing multi-drug resistant tuberculosis. Report has shown the importance and development of the research on nanocarriers mediated anti-tubercular delivery of the drugs to overcome the current challenges in tuberculosis treatment.
Collapse
Affiliation(s)
- Bhabatush Biswas
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura - 799046, India
| | - Tarun Kumar Misra
- Department of Chemistry, National Institute of Technology Agartala, West Tripura - 799046, India
| | - Debasish Ray
- Agartala Govt. Medical College, Agartala, 799006, Tripura - 799006, India
| | - Tapan Majumder
- Agartala Govt. Medical College, Agartala, 799006, Tripura - 799006, India
| | - Tarun Kanti Bandyopadhyay
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura - 799046, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura - 799046, India.
| |
Collapse
|
10
|
Chopra H, Mohanta YK, Rauta PR, Ahmed R, Mahanta S, Mishra PK, Panda P, Rabaan AA, Alshehri AA, Othman B, Alshahrani MA, Alqahtani AS, AL Basha BA, Dhama K. An Insight into Advances in Developing Nanotechnology Based Therapeutics, Drug Delivery, Diagnostics and Vaccines: Multidimensional Applications in Tuberculosis Disease Management. Pharmaceuticals (Basel) 2023; 16:581. [PMID: 37111338 PMCID: PMC10145450 DOI: 10.3390/ph16040581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberculosis (TB), one of the deadliest contagious diseases, is a major concern worldwide. Long-term treatment, a high pill burden, limited compliance, and strict administration schedules are all variables that contribute to the development of MDR and XDR tuberculosis patients. The rise of multidrug-resistant strains and a scarcity of anti-TB medications pose a threat to TB control in the future. As a result, a strong and effective system is required to overcome technological limitations and improve the efficacy of therapeutic medications, which is still a huge problem for pharmacological technology. Nanotechnology offers an interesting opportunity for accurate identification of mycobacterial strains and improved medication treatment possibilities for tuberculosis. Nano medicine in tuberculosis is an emerging research field that provides the possibility of efficient medication delivery using nanoparticles and a decrease in drug dosages and adverse effects to boost patient compliance with therapy and recovery. Due to their fascinating characteristics, this strategy is useful in overcoming the abnormalities associated with traditional therapy and leads to some optimization of the therapeutic impact. It also decreases the dosing frequency and eliminates the problem of low compliance. To develop modern diagnosis techniques, upgraded treatment, and possible prevention of tuberculosis, the nanoparticle-based tests have demonstrated considerable advances. The literature search was conducted using Scopus, PubMed, Google Scholar, and Elsevier databases only. This article examines the possibility of employing nanotechnology for TB diagnosis, nanotechnology-based medicine delivery systems, and prevention for the successful elimination of TB illnesses.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Yugal Kishore Mohanta
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
| | | | - Ramzan Ahmed
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati 781008, Assam, India
| | | | - Paramjot Panda
- School of Biological Sciences, AIPH University, Bhubaneswar 754001, Odisha, India
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha 65779, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Baneen Ali AL Basha
- Laboratory Department, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|
11
|
Fei Q, Bentley I, Ghadiali SN, Englert JA. Pulmonary drug delivery for acute respiratory distress syndrome. Pulm Pharmacol Ther 2023; 79:102196. [PMID: 36682407 PMCID: PMC9851918 DOI: 10.1016/j.pupt.2023.102196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening condition that causes respiratory failure. Despite numerous clinical trials, there are no molecularly targeted pharmacologic therapies to prevent or treat ARDS. Drug delivery during ARDS is challenging due to the heterogenous nature of lung injury and occlusion of lung units by edema fluid and inflammation. Pulmonary drug delivery during ARDS offers several potential advantages including limiting the off-target and off-organ effects and directly targeting the damaged and inflamed lung regions. In this review we summarize recent ARDS clinical trials using both systemic and pulmonary drug delivery. We then discuss the advantages of pulmonary drug delivery and potential challenges to its implementation. Finally, we discuss the use of nanoparticle drug delivery and surfactant-based drug carriers as potential strategies for delivering therapeutics to the injured lung in ARDS.
Collapse
Affiliation(s)
- Qinqin Fei
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biomedical Engineering, The Ohio State University, 140West 19th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ian Bentley
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, 140West 19th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
A Novel Preparation Technique for Human Nasal Respiratory Mucosa to Disclose Its Glycosylation Pattern for Bioadhesive Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15030973. [PMID: 36986834 PMCID: PMC10052101 DOI: 10.3390/pharmaceutics15030973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
To shed some light on glycotargeting as a potential strategy for nasal drug delivery, a reliable preparation method for human nasal mucosa samples and a tool to investigate the carbohydrate building blocks of the glycocalyx of the respiratory epithelium are required. Applying a simple experimental setup in a 96-well plate format together with a panel of six fluorescein-labeled lectins with different carbohydrate specificities allowed for the detection and quantification of accessible carbohydrates in the mucosa. As confirmed by binding experiments at 4 °C, both quantitatively by fluorimetry and qualitatively by microscopy, the binding of wheat germ agglutinin exceeded that of the others by 150% on average, indicating a high content of N-acetyl-D-glucosamine and sialic acid. Providing energy by raising the temperature to 37 °C revealed uptake of the carbohydrate-bound lectin into the cell. Moreover, repeated washing steps during the assay gave a slight hint as to the influence of mucus renewal on bioadhesive drug delivery. All in all, the experimental setup reported here for the first time is not only a suitable approach to estimating the basics and potential of nasal lectin-mediated drug delivery but also meets the needs for answering a broad variety of scientific questions involving the use of ex vivo tissue samples.
Collapse
|
13
|
Dal NJK, Schäfer G, Thompson AM, Schmitt S, Redinger N, Alonso-Rodriguez N, Johann K, Ojong J, Wohlmann J, Best A, Koynov K, Zentel R, Schaible UE, Griffiths G, Barz M, Fenaroli F. Π-Π interactions stabilize PeptoMicelle-based formulations of Pretomanid derivatives leading to promising therapy against tuberculosis in zebrafish and mouse models. J Control Release 2023; 354:851-868. [PMID: 36681282 DOI: 10.1016/j.jconrel.2023.01.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 01/23/2023]
Abstract
Tuberculosis is the deadliest bacterial disease globally, threatening the lives of millions every year. New antibiotic therapies that can shorten the duration of treatment, improve cure rates, and impede the development of drug resistance are desperately needed. Here, we used polymeric micelles to encapsulate four second-generation derivatives of the antitubercular drug pretomanid that had previously displayed much better in vivo activity against Mycobacterium tuberculosis than pretomanid itself. Because these compounds were relatively hydrophobic and had limited bioavailability, we expected that their micellar formulations would overcome these limitations, reduce toxicities, and improve therapeutic outcomes. The polymeric micelles were based on polypept(o)ides (PeptoMicelles) and were stabilized in their hydrophobic core by π-π interactions, allowing the efficient encapsulation of aromatic pretomanid derivatives. The stability of these π-π-stabilized PeptoMicelles was demonstrated in water, blood plasma, and lung surfactant by fluorescence cross-correlation spectroscopy and was further supported by prolonged circulation times of several days in the vasculature of zebrafish larvae. The most efficacious PeptoMicelle formulation tested in the zebrafish larvae infection model almost completely eradicated the bacteria at non-toxic doses. This lead formulation was further assessed against Mycobacterium tuberculosis in the susceptible C3HeB/FeJ mouse model, which develops human-like necrotic granulomas. Following intravenous administration, the drug-loaded PeptoMicelles significantly reduced bacterial burden and inflammatory responses in the lungs and spleens of infected mice.
Collapse
Affiliation(s)
- Nils-Jørgen K Dal
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Gabriela Schäfer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany; Leiden Academic Center for Drug Research (LACDR), Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Sascha Schmitt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Natalja Redinger
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Program Area Infections, Div. Cellular Microbiology; University of Lübeck, Immunochemistry and Biochemical Microbiology, & German Center for Infection Research, partner site Hamburg-Lübeck - Borstel - Riems, 23845 Borstel, Germany
| | | | - Kerstin Johann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jessica Ojong
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Program Area Infections, Div. Cellular Microbiology; University of Lübeck, Immunochemistry and Biochemical Microbiology, & German Center for Infection Research, partner site Hamburg-Lübeck - Borstel - Riems, 23845 Borstel, Germany
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Andreas Best
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ulrich E Schaible
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Program Area Infections, Div. Cellular Microbiology; University of Lübeck, Immunochemistry and Biochemical Microbiology, & German Center for Infection Research, partner site Hamburg-Lübeck - Borstel - Riems, 23845 Borstel, Germany
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Matthias Barz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany; Leiden Academic Center for Drug Research (LACDR), Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| | - Federico Fenaroli
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway; Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway.
| |
Collapse
|
14
|
Usharani N, Kanth SV, Saravanan N. Current nanotechnological strategies using lipids, carbohydrates, proteins and metal conjugates-based carrier systems for diagnosis and treatment of tuberculosis - A review. Int J Biol Macromol 2023; 227:262-272. [PMID: 36521715 DOI: 10.1016/j.ijbiomac.2022.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Tuberculosis is a fatal disease caused by Mycobacterium tuberculosis with highest morbidity and mortality every year. The evolution of anti-TB drugs is promising in controlling and treating TB. Yet, the drug response varies depending on the bacterial load and host immunological profiles. The prolonged anti-TB treatment regimen and high pill burden leads to poor adherence to treatment and acquired drug resistance. In the clinical arena, sustainable nanotechnology improves the targeted strategies leading to enhance therapeutic recovery with minimum treatment duration and virtuous drug adherence. Determinants of nanosystems are the size, nature, formulation techniques, stable dosing patterns, bioavailability and toxicity. In the treatment of chronic illness, nanomedicines inclusive of biological macromolecules such as lipids, peptides, and nucleic acids occur to be a successive alternative to synthetic carriers. Most biological nanomaterials possess antimicrobial properties with other intrinsic characteristics. Recently, the pulmonary delivery of anti-TB drugs through polymeric nanocarrier systems is shown to be effective in achieving optimal drug levels in lungs for longer duration, enhanced tissue permeation and sustained systemic clearance. This thematic review provides a holistic insight into the nanodelivery systems pertinent to the therapeutic applications in pulmonary tuberculosis describing the choice of carriers, optimized process, metabolic action and excretion processes.
Collapse
Affiliation(s)
- Nagarajan Usharani
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Swarna Vinodh Kanth
- Centre for Human and Organizational Resources Development, CSIR-Central Leather Research Institute, Chennai, India
| | - Natarajan Saravanan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, India.
| |
Collapse
|
15
|
Brar B, Marwaha S, Poonia AK, Koul B, Kajla S, Rajput VD. Nanotechnology: a contemporary therapeutic approach in combating infections from multidrug-resistant bacteria. Arch Microbiol 2023; 205:62. [PMID: 36629918 DOI: 10.1007/s00203-023-03404-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
In the 20th century, the discovery of antibiotics played an essential role in the fight against infectious diseases, including meningitis, typhoid fever, pneumonia and Mycobacterium tuberculosis. The development of multidrug resistance in microflora due to improper antibiotic use created significant public health issues. Antibiotic resistance has increased at an alarming rate in the past few decades. Multidrug-resistant bacteria (superbugs) such as methicillin-resistant Staphylococcus aureus (MRSA) as well as drug-resistant tuberculosis pose serious health implications. Despite the continuous increase in resistant microbes, the discovery of novel antibiotics is constrained by the cost and complexities of discovery of drugs. The nanotechnology has given new hope in combating this problem. In the present review, recent developments in therapeutics utilizing nanotechnology for novel antimicrobial drug development are discussed. The nanoparticles of silver, gold and zinc oxide have proved to be efficient antimicrobial agents against multidrug-resistant Klebsiella, Pseudomonas, Escherichia Coli and MRSA. Using nanostructures as carriers for antimicrobial agents provides better bioavailability, less chances of sub-therapeutic drug accumulation and less drug-related toxicity. Nanophotothermal therapy using fullerene and antibody functionalized nanostructures are other strategies that can prove to be helpful.
Collapse
Affiliation(s)
- Basanti Brar
- HABITAT, Genome Improvement Primary Producer Company Ltd. Centre of Biofertilizer Production and Technology, HAU, Hisar, 125004, India
| | - Sumnil Marwaha
- ICAR-National Research Centre On Camel, Bikaner, 334001, Rajasthan, India
| | - Anil Kumar Poonia
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India. .,Department of Molecular Biology &Biotechnology, CCSHAU, Hisar, 125004, Haryana, India.
| | - Bhupendra Koul
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Subhash Kajla
- Department of Molecular Biology &Biotechnology, CCSHAU, Hisar, 125004, Haryana, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia.
| |
Collapse
|
16
|
da Silva Filho PM, Paz IA, Nascimento NRFD, Abreu DS, Lopes LGDF, Sousa EHS, Longhinotti E. Nitroprusside─Expanding the Potential Use of an Old Drug Using Nanoparticles. Mol Pharm 2023; 20:6-22. [PMID: 36350781 DOI: 10.1021/acs.molpharmaceut.2c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For more than 70 years, sodium nitroprusside (SNP) has been used to treat severe hypertension in hospital emergency settings. During this time, a few other clinical uses have also emerged such as in the treatment of acute heart failure as well as improving mitral incompetence and in the intra- and perioperative management during heart surgery. This drug functions by releasing nitric oxide (NO), which modulates several biological processes with many potential therapeutic applications. However, this small molecule has a short lifetime, and it has been administered through the use of NO donor molecules such as SNP. On the other hand, SNP also has some setbacks such as the release of cyanide ions, high water solubility, and very fast NO release kinetics. Currently, there are many drug delivery strategies that can be applied to overcome many of these limitations, providing novel opportunities for the use of old drugs, including SNP. This Perspective describes some nitroprusside properties and highlights new potential therapeutic uses arising from the use of drug delivery systems, mainly silica-based nanoparticles. There is a series of great opportunities to further explore SNP in many medical issues as reviewed, which deserves a closer look by the scientific community.
Collapse
Affiliation(s)
- Pedro Martins da Silva Filho
- Laboratório de Métodos de Análises e Modificação de Materiais (LABMA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60440-900, Fortaleza, Ceará, Brazil.,Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza, Ceará, Brazil
| | - Iury Araújo Paz
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, 60714-110, Fortaleza, Ceará, Brazil
| | | | - Dieric S Abreu
- Laboratory of Materials & Devices (Lab MaDe), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60440-900, Fortaleza, Ceará, Brazil
| | - Luiz Gonzaga de França Lopes
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza, Ceará, Brazil
| | - Eduardo Henrique Silva Sousa
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza, Ceará, Brazil
| | - Elisane Longhinotti
- Laboratório de Métodos de Análises e Modificação de Materiais (LABMA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60440-900, Fortaleza, Ceará, Brazil.,Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza, Ceará, Brazil
| |
Collapse
|
17
|
Zegarra-Urquia CL, Santiago J, Bumgardner JD, Goroncy AK, Vega-Baudrit J, Hernández-Escobar CA, Zaragoza-Contreras EA. Characterization of isoniazid incorporation into chitosan-poly(aspartic acid) nanoparticles. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2145287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Julio Santiago
- Departamento de Química Orgánica, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Joel D. Bumgardner
- Biomedical Engineering, The University of Memphis, Memphis, Tennessee, USA
| | | | - José Vega-Baudrit
- Centro Nacional de Alta Tecnología “Dr. Franklin Chang Díaz”, Laboratorio Nacional de Nanotecnología (LANOTEC), San José, Costa Rica
- POLIUNA, Escuela de Química, Universidad Nacional, Heredia, Costa Rica
| | - Claudia A. Hernández-Escobar
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, Complejo Industrial Chihuahua, Chihuahua, Mexico
| | - E. Armando Zaragoza-Contreras
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, Complejo Industrial Chihuahua, Chihuahua, Mexico
| |
Collapse
|
18
|
Hädrich G, Vaz GR, Bidone J, Yurgel VC, Teixeira HF, Gonçalves Dal Bó A, da Silva Pinto L, Hort MA, Ramos DF, Junior ASV, Almeida da Silva PE, Dora CL. Development of a Novel Lipid-Based Nanosystem Functionalized with WGA for Enhanced Intracellular Drug Delivery. Pharmaceutics 2022; 14:2022. [PMID: 36297456 PMCID: PMC9611000 DOI: 10.3390/pharmaceutics14102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Despite a considerable number of new antibiotics under going clinical trials, treatment of intracellular pathogens still represents a major pharmaceutical challenge. The use of lipid nanocarriers provides several advantages such as protection from compound degradation, increased bioavailability, and controlled and targeted drug release. Wheat germ agglutinin (WGA) is known to have its receptors on the alveolar epithelium and increase phagocytosis. The present study aimed to produce nanostructured lipid carriers with novel glycosylated amphiphilic employed to attach WGA on the surface of the nanocarriers to improve intracellular drug delivery. High-pressure homogenization was employed to prepare the lipid nanocarriers. In vitro, high-content analysis and flow cytometry assay was employed to study the increased uptake by macrophages when the nanocarriers were grafted with WGA. A lipid nanocarrier with surface-functionalized WGA protein (~200 nm, PDI > 0.3) was successfully produced and characterized. The system was loaded with a lipophilic model compound (quercetin; QU), demonstrating the ability to encapsulate a high amount of compound and release it in a controlled manner. The nanocarrier surface functionalization with the WGA protein increased the phagocytosis by macrophages. The system proposed here has characteristics to be further explored to treat intracellular pathogens.
Collapse
Affiliation(s)
- Gabriela Hädrich
- Department of Pharmaceutical Technology and Biopharmacy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Gustavo Richter Vaz
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Juliana Bidone
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas 96010-610, Brazil
| | - Virginia Campello Yurgel
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Helder Ferreira Teixeira
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Alexandre Gonçalves Dal Bó
- Graduate Program in Science and Materials Engineering, University of the Extreme South of Santa Catarina, Criciúma 88806-000, Brazil
| | - Luciano da Silva Pinto
- Graduate Program in Biotechnology, Campus Capão do Leão, Federal University of Pelotas, Pelotas 96010-610, Brazil
| | - Mariana Appel Hort
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Daniela Fernandes Ramos
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | | | | | - Cristiana Lima Dora
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| |
Collapse
|
19
|
Ko CN, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnology 2022; 20:380. [PMID: 35986268 PMCID: PMC9388998 DOI: 10.1186/s12951-022-01582-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.
Collapse
|
20
|
Cai D, Gao W, Li Z, Zhang Y, Xiao L, Xiao Y. Current Development of Nano-Drug Delivery to Target Macrophages. Biomedicines 2022; 10:1203. [PMID: 35625939 PMCID: PMC9139084 DOI: 10.3390/biomedicines10051203] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are the most important innate immune cells that participate in various inflammation-related diseases. Therefore, macrophage-related pathological processes are essential targets in the diagnosis and treatment of diseases. Since nanoparticles (NPs) can be preferentially taken up by macrophages, NPs have attracted most attention for specific macrophage-targeting. In this review, the interactions between NPs and the immune system are introduced to help understand the pharmacokinetics and biodistribution of NPs in immune cells. The current design and strategy of NPs modification for specific macrophage-targeting are investigated and summarized.
Collapse
Affiliation(s)
- Donglin Cai
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Wendong Gao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
| | - Zhelun Li
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Yin Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| |
Collapse
|
21
|
Bhattacharjee S. Craft of Co-encapsulation in Nanomedicine: A Struggle To Achieve Synergy through Reciprocity. ACS Pharmacol Transl Sci 2022; 5:278-298. [PMID: 35592431 PMCID: PMC9112416 DOI: 10.1021/acsptsci.2c00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/19/2022]
Abstract
Achieving synergism, often by combination therapy via codelivery of chemotherapeutic agents, remains the mainstay of treating multidrug-resistance cases in cancer and microbial strains. With a typical core-shell architecture and surface functionalization to ensure facilitated targeting of tissues, nanocarriers are emerging as a promising platform toward gaining such synergism. Co-encapsulation of disparate theranostic agents in nanocarriers-from chemotherapeutic molecules to imaging or photothermal modalities-can not only address the issue of protecting the labile drug payload from a hostile biochemical environment but may also ensure optimized drug release as a mainstay of synergistic effect. However, the fate of co-encapsulated molecules, influenced by temporospatial proximity, remains unpredictable and marred with events with deleterious impact on therapeutic efficacy, including molecular rearrangement, aggregation, and denaturation. Thus, more than just an art of confining multiple therapeutics into a 3D nanoscale space, a co-encapsulated nanocarrier, while aiming for synergism, should strive toward achieving a harmonious cohabitation of the encapsulated molecules that, despite proximity and opportunities for interaction, remain innocuous toward each other and ensure molecular integrity. This account will inspect the current progress in co-encapsulation in nanocarriers and distill out the key points toward accomplishing such synergism through reciprocity.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
22
|
Knudsen Dal NJ, Speth M, Johann K, Barz M, Beauvineau C, Wohlmann J, Fenaroli F, Gicquel B, Griffiths G, Alonso-Rodriguez N. The zebrafish embryo as an in vivo model for screening nanoparticle-formulated lipophilic anti-tuberculosis compounds. Dis Model Mech 2022; 15:dmm049147. [PMID: 34842273 PMCID: PMC8807572 DOI: 10.1242/dmm.049147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022] Open
Abstract
With the increasing emergence of drug-resistant Mycobacterium tuberculosis strains, new and effective antibiotics against tuberculosis (TB) are urgently needed. However, the high frequency of poorly water-soluble compounds among hits in high-throughput drug screening campaigns is a major obstacle in drug discovery. Moreover, in vivo testing using conventional animal TB models, such as mice, is time consuming and costly, and represents a major bottleneck in lead compound discovery and development. Here, we report the use of the zebrafish embryo TB model for evaluating the in vivo toxicity and efficacy of five poorly water-soluble nitronaphthofuran derivatives, which were recently identified as possessing anti-TB activity in vitro. To aid solubilization, compounds were formulated in biocompatible polymeric micelles (PMs). Three of the five PM-formulated nitronaphthofuran derivatives showed low toxicity in vivo, significantly reduced bacterial burden and improved survival in infected zebrafish embryos. We propose the zebrafish embryo TB-model as a quick and sensitive tool for evaluating the in vivo toxicity and efficacy of new anti-TB compounds during early stages of drug development. Thus, this model is well suited for pinpointing promising compounds for further development.
Collapse
Affiliation(s)
- Nils-Jørgen Knudsen Dal
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Martin Speth
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Kerstin Johann
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Matthias Barz
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Center for Drug Research (LACDR), Leiden University, 2333 Leiden, The Netherlands
| | - Claire Beauvineau
- Chemical Library Institut Curie/CNRS, CNRS UMR9187, INSERM U1196 and CNRS UMR3666, INSERM U1193, Université Paris-Saclay, F-91405 Orsay, France
| | - Jens Wohlmann
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Federico Fenaroli
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Dep Génomes and Génétique, Institute Pasteur, 75015 Paris, France
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, 518054 Shenzhen, China
| | - Gareth Griffiths
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Noelia Alonso-Rodriguez
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
23
|
Wang Z, Liu X, Duan Y, Huang Y. Infection microenvironment-related antibacterial nanotherapeutic strategies. Biomaterials 2021; 280:121249. [PMID: 34801252 DOI: 10.1016/j.biomaterials.2021.121249] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The emergence and spread of antibiotic resistance is one of the biggest challenges in public health. There is an urgent need to discover novel agents against the occurrence of multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. The drug-resistant pathogens are able to grow and persist in infected sites, including biofilms, phagosomes, or phagolysosomes, which are more difficult to eradicate than planktonic ones and also foster the development of drug resistance. For years, various nano-antibacterial agents have been developed in the forms of antibiotic nanocarriers. Inorganic nanoparticles with intrinsic antibacterial activity and inert nanoparticles assisted by external stimuli, including heat, photon, magnetism, or sound, have also been discovered. Many of these strategies are designed to target the unique microenvironment of bacterial infections, which have shown potent antibacterial effects in vitro and in vivo. This review summarizes ongoing efforts on antibacterial nanotherapeutic strategies related to bacterial infection microenvironments, including targeted antibacterial therapy and responsive antibiotic delivery systems. Several grand challenges and future directions for the development and translation of effective nano-antibacterial agents are also discussed. The development of innovative nano-antibacterial agents could provide powerful weapons against drug-resistant bacteria in systemic or local bacterial infections in the foreseeable future.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Xingyun Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan, 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| |
Collapse
|
24
|
Tammam SN, El Safy S, Ramadan S, Arjune S, Krakor E, Mathur S. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. J Control Release 2021; 337:258-284. [PMID: 34293319 PMCID: PMC8289726 DOI: 10.1016/j.jconrel.2021.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has taken the world by surprise. To date, a worldwide approved treatment remains lacking and hence in the context of rapid viral spread and the growing need for rapid action, drug repurposing has emerged as one of the frontline strategies in the battle against SARS-CoV2. Repurposed drugs currently being evaluated against COVID-19 either tackle the replication and spread of SARS-CoV2 or they aim at controlling hyper-inflammation and the rampaged immune response in severe disease. In both cases, the target for such drugs resides in the lungs, at least during the period where treatment could still provide substantial clinical benefit to the patient. Yet, most of these drugs are administered systemically, questioning the percentage of administered drug that actually reaches the lung and as a consequence, the distribution of the remainder of the dose to off target sites. Inhalation therapy should allow higher concentrations of the drug in the lungs and lower concentrations systemically, hence providing a stronger, more localized action, with reduced adverse effects. Therefore, the nano-reformulation of the repurposed drugs for inhalation is a promising approach for targeted drug delivery to lungs. In this review, we critically analyze, what nanomedicine could and ought to do in the battle against SARS-CoV2. We start by a brief description of SARS-CoV2 structure and pathogenicity and move on to discuss the current limitations of repurposed antiviral and immune-modulating drugs that are being clinically investigated against COVID-19. This account focuses on how nanomedicine could address limitations of current therapeutics, enhancing the efficacy, specificity and safety of such drugs. With the appearance of new variants of SARS-CoV2 and the potential implication on the efficacy of vaccines and diagnostics, the presence of an effective therapeutic solution is inevitable and could be potentially achieved via nano-reformulation. The presence of an inhaled nano-platform capable of delivering antiviral or immunomodulatory drugs should be available as part of the repertoire in the fight against current and future outbreaks.
Collapse
Affiliation(s)
- Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt.
| | - Sara El Safy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Shahenda Ramadan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eva Krakor
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
25
|
Pal S, Soni V, Kumar S, Jha SK, Medatwal N, Rana K, Yadav P, Mehta D, Jain D, Sharma P, Kar R, Srivastava A, Patil VS, Dasgupta U, Nandicoori VK, Bajaj A. A hydrogel-based implantable multidrug antitubercular formulation outperforms oral delivery. NANOSCALE 2021; 13:13225-13230. [PMID: 34477730 DOI: 10.1039/d0nr08806d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a non-immunogenic, injectable, low molecular weight, amphiphilic hydrogel-based drug delivery system (TB-Gel) that can entrap a cocktail of four front-line antitubercular drugs, isoniazid, rifampicin, pyrazinamide, and ethambutol. We showed that TB-Gel is more effective than oral delivery of the combination of four drugs in reducing the mycobacterial infection in mice. Results show that half the dose of chemotherapeutic drugs is sufficient to achieve a comparable therapeutic effect to that of oral delivery.
Collapse
Affiliation(s)
- Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jarai BM, Stillman Z, Bomb K, Kloxin AM, Fromen CA. Biomaterials-Based Opportunities to Engineer the Pulmonary Host Immune Response in COVID-19. ACS Biomater Sci Eng 2021; 7:1742-1764. [PMID: 33356134 PMCID: PMC7784663 DOI: 10.1021/acsbiomaterials.0c01287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic caused by the global spread of the SARS-CoV-2 virus has led to a staggering number of deaths worldwide and significantly increased burden on healthcare as nations scramble to find mitigation strategies. While significant progress has been made in COVID-19 diagnostics and therapeutics, effective prevention and treatment options remain scarce. Because of the potential for the SARS-CoV-2 infections to cause systemic inflammation and multiple organ failure, it is imperative for the scientific community to evaluate therapeutic options aimed at modulating the causative host immune responses to prevent subsequent systemic complications. Harnessing decades of expertise in the use of natural and synthetic materials for biomedical applications, the biomaterials community has the potential to play an especially instrumental role in developing new strategies or repurposing existing tools to prevent or treat complications resulting from the COVID-19 pathology. Leveraging microparticle- and nanoparticle-based technology, especially in pulmonary delivery, biomaterials have demonstrated the ability to effectively modulate inflammation and may be well-suited for resolving SARS-CoV-2-induced effects. Here, we provide an overview of the SARS-CoV-2 virus infection and highlight current understanding of the host's pulmonary immune response and its contributions to disease severity and systemic inflammation. Comparing to frontline COVID-19 therapeutic options, we highlight the most significant untapped opportunities in immune engineering of the host response using biomaterials and particle technology, which have the potential to improve outcomes for COVID-19 patients, and identify areas needed for future investigations. We hope that this work will prompt preclinical and clinical investigations of promising biomaterials-based treatments to introduce new options for COVID-19 patients.
Collapse
Affiliation(s)
- Bader M. Jarai
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Zachary Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Kartik Bomb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
27
|
Gkartziou F, Giormezis N, Spiliopoulou I, Antimisiaris SG. Nanobiosystems for Antimicrobial Drug-Resistant Infections. NANOMATERIALS 2021; 11:nano11051075. [PMID: 33922004 PMCID: PMC8143556 DOI: 10.3390/nano11051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
The worldwide increased bacterial resistance toward antimicrobial therapeutics has led investigators to search for new therapeutic options. Some of the options currently exploited to treat drug-resistant infections include drug-associated nanosystems. Additionally, the use of bacteriophages alone or in combination with drugs has been recently revisited; some studies utilizing nanosystems for bacteriophage delivery have been already reported. In this review article, we focus on nine pathogens that are the leading antimicrobial drug-resistant organisms, causing difficult-to-treat infections. For each organism, the bacteriophages and nanosystems developed or used in the last 20 years as potential treatments of pathogen-related infections are discussed. Summarizing conclusions and future perspectives related with the potential of such nano-antimicrobials for the treatment of persistent infections are finally highlighted.
Collapse
Affiliation(s)
- Foteini Gkartziou
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
| | - Nikolaos Giormezis
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Iris Spiliopoulou
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| | - Sophia G. Antimisiaris
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| |
Collapse
|
28
|
Sharma A, De Rosa M, Singla N, Singh G, Barnwal RP, Pandey A. Tuberculosis: An Overview of the Immunogenic Response, Disease Progression, and Medicinal Chemistry Efforts in the Last Decade toward the Development of Potential Drugs for Extensively Drug-Resistant Tuberculosis Strains. J Med Chem 2021; 64:4359-4395. [PMID: 33826327 DOI: 10.1021/acs.jmedchem.0c01833] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) is a slow growing, potentially debilitating disease that has plagued humanity for centuries and has claimed numerous lives across the globe. Concerted efforts by researchers have culminated in the development of various strategies to combat this malady. This review aims to raise awareness of the rapidly increasing incidences of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis, highlighting the significant modifications that were introduced in the TB treatment regimen over the past decade. A description of the role of pathogen-host immune mechanisms together with strategies for prevention of the disease is discussed. The struggle to develop novel drug therapies has continued in an effort to reduce the treatment duration, improve patient compliance and outcomes, and circumvent TB resistance mechanisms. Herein, we give an overview of the extensive medicinal chemistry efforts made during the past decade toward the discovery of new chemotypes, which are potentially active against TB-resistant strains.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India.,UIPS, Panjab University, Chandigarh 160014, India
| | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- UIPS, Panjab University, Chandigarh 160014, India
| | - Ravi P Barnwal
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
29
|
Shah S, Ghetiya R, Soniwala M, Chavda J. Development and Optimization of Inhalable Levofloxacin Nanoparticles for The Treatment of Tuberculosis. Curr Drug Deliv 2020; 18:779-793. [PMID: 33155907 DOI: 10.2174/1567201817999201103194626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/08/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Levofloxacin has been recommended by the WHO for the treatment of pulmonary tuberculosis and inhalable delivery of levofloxacin can be advantageous over conventional delivery. OBJECTIVE This study aimed to develop and optimize inhalable levofloxacin Loaded Chitosan Nanoparticles (LCN). The objective was to achieve the mean particle size of LCN less than 300nm, sustain the drug release up to 24 h, and achieve MMAD of LCN of less than 5μm. METHODS LCN were prepared by ionic gelation of chitosan with sodium tripolyphosphate (STPP) and subsequent lyophilization. A Plackett Burman screening design, 32 full factorial design, and overlay plots were sequentially employed to optimize the formulation. The mean particle size, % entrapment efficiency, in vitro drug release, and minimum inhibitory concentration were all evaluated. RESULTS The Pareto chart from the Placket Burman screening design revealed that the concentrations of chitosan and STPP was found to be significant (p < 0.05). Further analysis by 32 full factorial design revealed that F-ratio for each model generated was found to be greater than the theoretical value (p < 0.05), confirming the significance of each model. CONCLUSION The optimized formulation showed a mean particle size of 171.5 nm, sustained the drug release up to 24 h in simulated lung fluid, and revealed MMAD of 3.18 μm, which can confirm delivery of the drug to the deep lung region. However, further in vivo studies are required to design a suitable dosage regimen and establish the fate of nanoparticles for safe and efficacious delivery of the drug.
Collapse
Affiliation(s)
- Sunny Shah
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | - Rohit Ghetiya
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | | | - Jayant Chavda
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| |
Collapse
|
30
|
Pulmonary route of administration is instrumental in developing therapeutic interventions against respiratory diseases. Saudi Pharm J 2020; 28:1655-1665. [PMID: 33424258 PMCID: PMC7783104 DOI: 10.1016/j.jsps.2020.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary route of drug delivery has drawn significant attention due to the limitations associated with conventional routes and available treatment options. Drugs administered through pulmonary route has been an important research area that focuses on to developing effective therapeutic interventions for asthma, chronic obstructive pulmonary disease, tuberculosis, lung cancer etc. The intravenous route has been a natural route of delivery of proteins and peptides but associated with several issues including high cost, needle-phobia, pain, sterility issues etc. These issues might be addressed by the pulmonary administration of macromolecules to achieving an effective delivery and efficacious therapeutic impact. Efforts have been made to develop novel drug delivery systems (NDDS) such as nanoparticles, microparticles, liposomes and their engineered versions, polymerosomes, micelles etc to achieving targeted and sustained delivery of drug(s) through pulmonary route. Further, novel approaches such as polymer-drug conjugates, mucoadhesive particles and mucus penetrating particles have attracted significant attention due to their unique features for an effective delivery of drugs. Also, use of semi flourinated alkanes is in use for improvising the pulmonary delivery of lipophilic drugs. Present review focuses on to unravel the mechanism of pulmonary absorption of drugs for major pulmonary diseases. It summarizes the development of interventional approaches using various particulate and vesicular drug delivery systems. In essence, the orchestrated attempt presents an inflammatory narrative on the advancements in the field of pulmonary drug delivery.
Collapse
|
31
|
Sharma D, Sharma S, Sharma J. Potential strategies for the management of drug-resistant tuberculosis. J Glob Antimicrob Resist 2020; 22:210-214. [PMID: 32169684 DOI: 10.1016/j.jgar.2020.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/18/2019] [Accepted: 02/26/2020] [Indexed: 12/30/2022] Open
Abstract
In the current scenario, the emergence of drug resistance in Mycobacterium tuberculosis is the consequence of the failure of conventional diagnostic and treatment approaches. To combat this global emergence of drug resistance, alternative approaches such as pathogen-centric (use of repurposed drugs, novel analogues of existing anti-TB drugs and novel compounds with a different mechanism of action), host-centric (immunomodulatory agents, therapeutic vaccines, immune and cellular therapies) and nano-based drug/vaccine delivery should be used singly or in combination. Diverse types of nano-carriers have assessed as auspicious diagnostic and drug delivery systems. In this focused review, we have suggested a long-term solution for combating antimicrobial resistance and also an attractive means to increase patient compliance and reduce treatment duration.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Sandeep Sharma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medical Laboratory Sciences, Division of Research and Development, Lovely Professional University, Phagwara, Punjab 144411, India
| | | |
Collapse
|
32
|
Naqvi S, Panghal A, Flora SJS. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Front Neurosci 2020; 14:494. [PMID: 32581676 PMCID: PMC7297271 DOI: 10.3389/fnins.2020.00494] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) disorders especially neurodegenerative disorders are the major challenge for public health and demand the great attention of researchers to protect people against them. In past few decades, different treatment strategies have been adopted, but their therapeutic efficacy are not enough and have only shown partial mitigation of symptoms. Blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BSCFB) guard the CNS from harmful substances and pose as the major challenges in delivering drugs into CNS for treatment of CNS complications such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), stroke, epilepsy, brain tumors, multiple sclerosis (MS), and encephalitis, etc. Nanotechnology has come out as an exciting and promising new platform of treating neurological disorders and has shown great potential to overcome problems related to the conventional treatment approaches. Molecules can be nanoengineered to carry out multiple specific functions such as to cross the BBB, target specific cell or signaling pathway, respond to endogenous stimuli, and act as a vehicle for gene delivery, support nerve regeneration and cell survival. In present review, the role of nanocarrier systems such as liposomes, micelles, solid lipid nanoparticles (SLNPs), dendrimers, and nanoemulsions for delivery of various neurotherapeutic agents has been discussed, besides this, their mechanism of action, and nanoformulation of different neuroprotective agents like curcumin, edaravone, nerve growth factors in CNS disorders like Alzheimer’s, Parkinsonism, epilepsy, stroke, and brain tumors has been reviewed.
Collapse
Affiliation(s)
- Saba Naqvi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Archna Panghal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S J S Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
33
|
Shah SR, Prajapati HR, Sheth DB, Gondaliya EM, Vyas AJ, Soniwala MM, Chavda JR. Pharmacokinetics and in vivo distribution of optimized PLGA nanoparticles for pulmonary delivery of levofloxacin. ACTA ACUST UNITED AC 2020; 72:1026-1037. [PMID: 32337714 DOI: 10.1111/jphp.13275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/21/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The aim of this study was to develop and optimize levofloxacin loaded PLGA nanoparticles (LN) for pulmonary delivery employing screening and experimental design and evaluate their in-vitro and in-vivo performance. The objective was to achieve Mass Median Aerodynamic Diameter (MMAD) of LN of less than 5μm, sustain the drug release up to 120 h and a higher AUC/MIC at the site of action. METHODS LN were prepared by modified emulsion solvent evaporation technique employing high speed homogenization, probe sonication and subsequent lyophilization. KEY FINDINGS The Pareto chart from Placket Burman screening design revealed that homogenization speed and amount of PLGA were found to be significant (P < 0.05). Further analysis by 3 full-factorial design revealed that F-ratio was found to be far greater than the theoretical value (P < 0.05) for each regression model. CONCLUSION The optimized formulation with desirability value 0.9612 showed mean particle size of 146 nm, MMAD of 4.40 μm and sustained the drug release up to 120 h in simulated lung fluid. Augmentation in Cmax (1.71-fold), AUC 0-∞ (5.46-fold), Mean Residence Time (6.64-fold) and AUC/MIC (6.21-fold) of LN through pulmonary route was found to significantly higher (P < 0.05) than levofloxacin (p. o.).
Collapse
Affiliation(s)
- Sunny R Shah
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | - Hani R Prajapati
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | - Devang B Sheth
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | - Ekta M Gondaliya
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | - Amit J Vyas
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | | | - Jayant R Chavda
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| |
Collapse
|
34
|
Minakshi P, Ghosh M, Brar B, Kumar R, Lambe UP, Ranjan K, Manoj J, Prasad G. Nano-antimicrobials: A New Paradigm for Combating Mycobacterial Resistance. Curr Pharm Des 2020; 25:1554-1579. [PMID: 31218956 DOI: 10.2174/1381612825666190620094041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mycobacterium group contains several pathogenic bacteria including M. tuberculosis where the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) is alarming for human and animal health around the world. The condition has further aggravated due to the speed of discovery of the newer drugs has been outpaced by the rate of resistance developed in microorganisms, thus requiring alternative combat strategies. For this purpose, nano-antimicrobials have emerged as a potential option. OBJECTIVE The current review is focused on providing a detailed account of nanocarriers like liposome, micelles, dendrimers, solid lipid NPs, niosomes, polymeric nanoparticles, nano-suspensions, nano-emulsion, mesoporous silica and alginate-based drug delivery systems along with the recent updates on developments regarding nanoparticle-based therapeutics, vaccines and diagnostic methods developed or under pipeline with their potential benefits and limitations to combat mycobacterial diseases for their successful eradication from the world in future. RESULTS Distinct morphology and the underlying mechanism of pathogenesis and resistance development in this group of organisms urge improved and novel methods for the early and efficient diagnosis, treatment and vaccination to eradicate the disease. Recent developments in nanotechnology have the potential to meet both the aspects: nano-materials are proven components of several efficient targeted drug delivery systems and the typical physicochemical properties of several nano-formulations have shown to possess distinct bacteriocidal properties. Along with the therapeutic aspects, nano-vaccines and theranostic applications of nano-formulations have grown in popularity in recent times as an effective alternative means to combat different microbial superbugs. CONCLUSION Nanomedicine holds a bright prospect to perform a key role in global tuberculosis elimination program.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | - Mayukh Ghosh
- Department of Veterinary Biochemistry, Ranchi Veterinary College, Birsa Agricultural University, Ranchi-834 006, Jharkhand, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | - Rajesh Kumar
- Department of Veterinary Physiology, COVAS, KVASU, Pookode, Wayanad- 673576, Kerala, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | | | - Jinu Manoj
- RVDEC Mahendergarh, LUVAS, Haryana, India
| | - Gaya Prasad
- SVP University of Agriculture and Technology, Meerut, India
| |
Collapse
|
35
|
Antitubercular nanocarrier monotherapy: Study of In Vivo efficacy and pharmacokinetics for rifampicin. J Control Release 2020; 321:312-323. [PMID: 32067995 DOI: 10.1016/j.jconrel.2020.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 02/08/2023]
Abstract
Tuberculosis represents a major global health problem for which improved approaches are needed to shorten the course of treatment and to combat the emergence of resistant strains. The development of effective and safe nanobead-based interventions can be particularly relevant for increasing the concentrations of antitubercular agents within the infected site and reducing the concentrations in the general circulation, thereby avoiding off-target toxic effects. In this work, rifampicin, a first-line antitubercular agent, was encapsulated into biocompatible and biodegradable polyester-based nanoparticles. In a well-established BALB/c mouse model of pulmonary tuberculosis, the nanoparticles provided improved pharmacokinetics and pharmacodynamics. The nanoparticles were well tolerated and much more efficient than an equivalent amount of free rifampicin.
Collapse
|
36
|
New potential drug leads against MDR-MTB: A short review. Bioorg Chem 2019; 95:103534. [PMID: 31884135 DOI: 10.1016/j.bioorg.2019.103534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022]
Abstract
Multidrug resistant Mycobacterium tuberculosis (MDR-MTB) infections have created a critical health problem globally. The appalling rise in drug resistance to all the current therapeutics has triggered the need for identifying new antimycobacterial agents effective against multidrug-resistant Mycobacterium tuberculosis. Structurally unique chemical entities with new mode of action will be required to combat this pressing issue. This review gives an overview of the structures and outlines on various aspects of in vitro pharmacological activities of new antimycobacterial agents, mechanism of action and brief structure activity relationships in the perspective of drug discovery and development. This review also summarizes on recent reports of new antimycobacterial agents.
Collapse
|
37
|
Lectin coupled liposomes for pulmonary delivery of salbutamol sulphate for better management of asthma: Formulation development using QbD approach. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Öztürk AA, Yenilmez E, Özarda MG. Clarithromycin-Loaded Poly (Lactic- co-glycolic Acid) (PLGA) Nanoparticles for Oral Administration: Effect of Polymer Molecular Weight and Surface Modification with Chitosan on Formulation, Nanoparticle Characterization and Antibacterial Effects. Polymers (Basel) 2019; 11:E1632. [PMID: 31600969 PMCID: PMC6835525 DOI: 10.3390/polym11101632] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 01/26/2023] Open
Abstract
Clarithromycin (CLR) is a member of the macrolide antibiotic group. CLR has low systemic oral bioavailability and is a drug of class II of the Biopharmaceutical Classification System. In many studies, using nanoparticles (NPs) as a drug delivery system has been shown to increase the effectiveness and bioavailability of active drug substances. This study describes the development and evaluation of poly (lactic-co-glycolic acid) (PLGA) NPs and chitosan (CS)-coated PLGA NPs for oral delivery of CLR. NPs were obtained by nanoprecipitation technique and characterized in detail, and the effect of three molecular weights (Mw1: 7.000-17.000, Mw2: 38.000-54.000, Mw3: 50.000-190.000) of PLGA and CS coating on particle size (PS), zeta potential (ZP), entrapment efficiency (EE%), and release properties etc. were elucidated. Gastrointestinal stability and cryoprotectant effect tests were performed on the NPs. The PS of the prepared NPs were in the range of 178 to 578 nm and they were affected by the Mw and CS coating. In surface-modified formulations with CS, the ZP of the NPs increased significantly to positive values. EE% varied from 62% to 85%, depending upon the Mw and CS coating. In vitro release studies of CLR-loaded NPs showed an extended release up to 144 h. Peppas-Sahlin and Weibull kinetic model was found to fit best for CLR release from NPs. By the broth microdilution test method, the antibacterial activity of the formulations was determined on Staphylococcus aureus (ATCC 25923), Listeria monocytogenes (ATCC 1911), and Klebsiella pneumoniae (ATCC 700603). The structures of the formulations were clarified by thermal (DSC), FT-IR, and 1H-NMR analysis. The results showed that PS, ZP, EE%, and dissolution rates of NPs were directly related to the Mw of PLGA and CS coating.
Collapse
Affiliation(s)
- A Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Evrim Yenilmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Mustafa Güçlü Özarda
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| |
Collapse
|
39
|
De Maio F, Palmieri V, De Spirito M, Delogu G, Papi M. Carbon nanomaterials: a new way against tuberculosis. Expert Rev Med Devices 2019; 16:863-875. [PMID: 31550943 DOI: 10.1080/17434440.2019.1671820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Tuberculosis (TB) remains one of the most alarming worldwide infectious diseases primarily in low-income countries, where the infection shows a higher and unvaried prevalence. In the last years, the emergence and spread of Mycobacterium tuberculosis (Mtb) strains resistant to first-line anti-TB drugs are the cause of major concern and prompted the implementation of new treatments, including the development of new drugs and the repurposing of old ones. Areas covered: In this review, we discuss solutions against TB based on nanomaterials (NMTs), alone or combined with current anti-TB drugs. We will summarize drug delivery platforms tested in in vivo or in vitro models and their activity against mycobacteria. We will describe how the new nanotechnologies based on carbon nanomaterials, like carbon nanotubes and graphene oxide are now facing the panorama of the medical fight against TB. Expert opinion: We foresee that in the next decade carbon nanomaterials will be at the forefront in fighting emerging antibiotic-resistant Mtb strains by shortening treatment periods, reducing adverse effects and mitigating antibiotic use. However, toxicity and biodegradation studies should be done prior to the clinical translation of carbon nanomaterials.
Collapse
Affiliation(s)
- Flavio De Maio
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Giovanni Delogu
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| |
Collapse
|
40
|
Abdelghany S, Parumasivam T, Pang A, Roediger B, Tang P, Jahn K, Britton WJ, Chan HK. Alginate modified-PLGA nanoparticles entrapping amikacin and moxifloxacin as a novel host-directed therapy for multidrug-resistant tuberculosis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Al-Ghafli H, Al-Hajoj S. Clinical Management of Drug-resistant Mycobacterium tuberculosis Strains: Pathogen-targeted Versus Host-directed Treatment Approaches. Curr Pharm Biotechnol 2019; 20:272-284. [DOI: 10.2174/1389201019666180731120544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/19/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
Background:
Despite exerted efforts to control and treat Mycobacterium tuberculosis (MTB)
strains, Tuberculosis (TB) remains a public health menace. The emergence of complex drug-resistant profiles,
such as multi-drug resistant and extensively drug-resistant MTB strains, emphasizes the need for
early diagnosis of resistant cases, shorter treatment options, and effective medical interventions.
Objective:
Solutions for better clinical management of drug-resistant cases are either pathogencentered
(novel chemotherapy agents) or host-directed approaches (modulating host immune response
to prevent MTB invasion and pathogenesis).
Results:
Despite the overall potentiality of several chemotherapy agents, it is feared that their effectiveness
could be challenged by sequential pathogen adaptation tactics. On the contrary, host-directed
therapy options might offer a long-term conceivable solution.
Conclusion:
This review discusses the main suggestions proposed so far to resolve the clinical challenges
associated with drug resistance, in the context of TB. These suggestions include novel drug delivery approaches
that could optimize treatment outcome and increase patients’ compliance to the treatment.
Collapse
Affiliation(s)
- Hawra Al-Ghafli
- Department of Infections and Immunity, King Faisal Specialist Hospital and Research Center, P.O. Box. 3354 Riyadh 11211 MBC:03, Riyadh, Saudi Arabia
| | - Sahal Al-Hajoj
- Department of Infections and Immunity, King Faisal Specialist Hospital and Research Center, P.O. Box. 3354 Riyadh 11211 MBC:03, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Ragusa J, Gonzalez D, Li S, Noriega S, Skotak M, Larsen G. Glucosamine/L-lactide copolymers as potential carriers for the development of a sustained rifampicin release system using Mycobacterium smegmatis as a tuberculosis model. Heliyon 2019; 5:e01539. [PMID: 31183418 PMCID: PMC6488545 DOI: 10.1016/j.heliyon.2019.e01539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 01/09/2023] Open
Abstract
The present study aims at developing a new, ultrafine particle-based efficient antibiotic delivery system for the treatment of tuberculosis. The carrier material to make the rifampicin (RIF)-loaded particles is a low molecular weight star-shaped polymer produced from glucosamine (core building unit) and L-lactide (GluN-LLA). Particles were made via electrohydrodynamic atomization. Prolonged release (for up to 14 days) of RIF from these particles is reported. Drug release data fits the Korsmeyer-Peppas equation, which suggests the occurrence of a modified diffusion-controlled RIF release mechanism in vitro and is also supported by differential scanning calorimetry and drug leaching tests. Cytotoxicity tests on Mycobacterium smegmatis showed that antibiotic-free GluN-LLA and polylactides (PLA) particles (reference materials) did not show any significant anti-bacterial activity. The minimum inhibitory concentration and minimum bactericidal concentration values obtained for RIF-loaded particles showed 2- to 4-fold improvements in the anti-bacterial activity relative to the free drug. Cytotoxicity tests on macrophages indicated that cell death correlates with an increase of particle concentration but is not significantly affected by material type or particle size. Confocal microscopy was used to track internalization and localization of particles in the macrophages. The uptake of GluN-LLA particles is higher than those of their PLA counterparts. In addition, after phagocytosis, the GluN-LLA particles stayed in the cytoplasm and showed favorable long-term drug release behavior, which facilitated the killing of intracellular bacteria when compared to free RIF. The present studies suggest that these drug carrier materials are potentially very attractive candidates for the development of high-payload, sustained-release antibiotic/resorbable polymer particle systems for treating bacterial lung infections.
Collapse
Affiliation(s)
- Jorge Ragusa
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| | - Daniela Gonzalez
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| | - Sumin Li
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA
| | - Sandra Noriega
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA
| | - Maciej Skotak
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| | - Gustavo Larsen
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| |
Collapse
|
43
|
Machelart A, Salzano G, Li X, Demars A, Debrie AS, Menendez-Miranda M, Pancani E, Jouny S, Hoffmann E, Deboosere N, Belhaouane I, Rouanet C, Simar S, Talahari S, Giannini V, Villemagne B, Flipo M, Brosch R, Nesslany F, Deprez B, Muraille E, Locht C, Baulard AR, Willand N, Majlessi L, Gref R, Brodin P. Intrinsic Antibacterial Activity of Nanoparticles Made of β-Cyclodextrins Potentiates Their Effect as Drug Nanocarriers against Tuberculosis. ACS NANO 2019; 13:3992-4007. [PMID: 30822386 PMCID: PMC6718168 DOI: 10.1021/acsnano.8b07902] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/01/2019] [Indexed: 05/23/2023]
Abstract
Multi-drug-resistant tuberculosis (TB) is a major public health problem, concerning about half a million cases each year. Patients hardly adhere to the current strict treatment consisting of more than 10 000 tablets over a 2-year period. There is a clear need for efficient and better formulated medications. We have previously shown that nanoparticles made of cross-linked poly-β-cyclodextrins (pβCD) are efficient vehicles for pulmonary delivery of powerful combinations of anti-TB drugs. Here, we report that in addition to being efficient drug carriers, pβCD nanoparticles are endowed with intrinsic antibacterial properties. Empty pβCD nanoparticles are able to impair Mycobacterium tuberculosis (Mtb) establishment after pulmonary administration in mice. pβCD hamper colonization of macrophages by Mtb by interfering with lipid rafts, without inducing toxicity. Moreover, pβCD provoke macrophage apoptosis, leading to depletion of infected cells, thus creating a lung microenvironment detrimental to Mtb persistence. Taken together, our results suggest that pβCD nanoparticles loaded or not with antibiotics have an antibacterial action on their own and could be used as a carrier in drug regimen formulations effective against TB.
Collapse
Affiliation(s)
- Arnaud Machelart
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Giuseppina Salzano
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Xue Li
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Aurore Demars
- Research
Unit in Microorganisms Biology (URBM), Laboratory of Immunology and
Microbiology, Université de Namur, Narilis, B-5000 Namur, Belgium
| | - Anne-Sophie Debrie
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Mario Menendez-Miranda
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Elisabetta Pancani
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Samuel Jouny
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Eik Hoffmann
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nathalie Deboosere
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Imène Belhaouane
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Carine Rouanet
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sophie Simar
- Université
de Lille, Institut Pasteur de Lille, EA 4483, F-59000 Lille, France
| | - Smaïl Talahari
- Université
de Lille, Institut Pasteur de Lille, EA 4483, F-59000 Lille, France
| | - Valerie Giannini
- Institut
Pasteur, Unit for Integrated
Mycobacterial Pathogenomics, Paris, CNRS
UMR 3525, 25 Rue du Dr. Roux, F-75015 Paris, France
| | - Baptiste Villemagne
- Université
de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Marion Flipo
- Université
de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Roland Brosch
- Institut
Pasteur, Unit for Integrated
Mycobacterial Pathogenomics, Paris, CNRS
UMR 3525, 25 Rue du Dr. Roux, F-75015 Paris, France
| | - Fabrice Nesslany
- Université
de Lille, Institut Pasteur de Lille, EA 4483, F-59000 Lille, France
| | - Benoit Deprez
- Université
de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Eric Muraille
- Research
Unit in Microorganisms Biology (URBM), Laboratory of Immunology and
Microbiology, Université de Namur, Narilis, B-5000 Namur, Belgium
- Laboratory
of Parasitology, Faculty of Medicine, Université
Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Camille Locht
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Alain R. Baulard
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nicolas Willand
- Université
de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Laleh Majlessi
- Institut
Pasteur, Unit for Integrated
Mycobacterial Pathogenomics, Paris, CNRS
UMR 3525, 25 Rue du Dr. Roux, F-75015 Paris, France
| | - Ruxandra Gref
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Priscille Brodin
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
44
|
Ghosh S, Ghosh S, Sil PC. Role of nanostructures in improvising oral medicine. Toxicol Rep 2019; 6:358-368. [PMID: 31080743 PMCID: PMC6502743 DOI: 10.1016/j.toxrep.2019.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/14/2019] [Indexed: 12/18/2022] Open
Abstract
The most preferable mode of drugs administration is via the oral route but physiological barriers such as pH, enzymatic degradation etc. limit the absolute use of this route. Herein lies the importance of nanotechnology having a wide range of applications in the field of nano-medicine, particularly in drug delivery systems. The exclusive properties particularly small size and high surface area (which can be modified as required), exhibited by these nanoparticlesrender these structures more suitable for the purpose of drug delivery. Various nanostructures, like liposomes, dendrimers, mesoporous silica nanoparticles, etc. have been designed for the said purpose. These nanostructures have several advantages over traditional administration of medicine. Apart from overcoming the pharmacokinetic and pharmacodynamics limitations of many potential therapeutic molecules, they may also be useful for advanced drug delivery purposes like targeted drug delivery, controlled release, enhanced permeability and retention (EPR) effect. In this review, we attempt to describe an up-to-date knowledge on various strategically devised nanostructures to overcome the problems related to oral drug administration.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- AD, Alzheimer’s disease
- AMCNS, cationic niosome-based azithromycin delivery systems
- AP, acetylpuerarin
- AT1R, angiotensin II receptor type 1
- AmB, amphotericin B
- BCRP, breast cancer resistance protein
- CNL, conventional lipid nanoparticles
- CSC, core shell corona nanolipoparticles
- DCK, N-deoxycholyl-l-lysyl-methylester
- DDS, drug delivery system
- DM, diabetes mellitus
- DOX, doxorubicin
- Drug delivery system
- EPR, enhanced permeability and retention effect
- FRET, Foster resonance energy transfer
- GI, gastrointestinal
- GMO, glyceryl monoolein
- IBD, inflammatory bowel disease
- LG, Lakshadi Guggul
- LNC, Lipid Nanocapsule
- MFS, Miltefosine
- MNBNC, Micronucleated Binucleated Cells
- MSN, mesoporous silica nanoparticle
- MTX, methotrexate
- NP, nanoparticle
- NPC, nanoparticulate carriers
- NSAID, non-steroidal anti-inflammatory drug
- Nanostructures
- OA, osteoarthritis
- OXA, oxaliplatin
- Oral medicine
- PAMAM, poly (amidoamine)
- PD, Parkinson’s disease
- PEG, polyethylene glycol
- PIP, 1-piperoylpiperidine
- PLGA, polylactic-co-glycolic acid
- PNL, PEGylated lipid nanoparticles
- PZQ, praziquantel
- SLN, solid lipid nanoparticle
- SMA, styrene maleic acid
- SMEDD, self microemulsifying drug delivery system
- TB, tuberculosis
- TNBS, trinitrobenzenesulphonic acid
- TPGS, tocopheryl polyethylene glycol succinate
- Tmf, tamoxifen
- WGA, wheat germ agglutinin
- pSi, porous silicon
- pSiO, porous silica oxide
Collapse
Affiliation(s)
| | | | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta, 700054, West Bengal, India
| |
Collapse
|
45
|
Pathak YV. Targeted Delivery of Surface-Modified Nanoparticles: Modulation of Inflammation for Acute Lung Injury. SURFACE MODIFICATION OF NANOPARTICLES FOR TARGETED DRUG DELIVERY 2019. [PMCID: PMC7123653 DOI: 10.1007/978-3-030-06115-9_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nanocarriers have been widely employed in the diagnosis and treatment of various diseases. The drug release kinetics and pharmacodynamics could be adjusted by changing the materials, designs, and physicochemical properties of the carriers. Furthermore, the carrier surface could be modified to minimize the particle clearance, increase the circulation duration, escape the biological protective mechanisms, penetrate through physical barriers, and prolong the residence of the drug at the target site. Among lung diseases, acute lung injury has been considered life-threatening with approximately 190,000 cases and 74,500 deaths per year in the USA. Numerous researches have reported the efficacy of drug-encapsulated nanoparticles in the treatment of acute lung injury. The use of nanoparticles could help minimize the effect of airway defenses in the lung, thus provides a prolonged retention, sustained drug release, and targeted delivery to the lung tissues. Meanwhile, the toxicity of nanoparticles in the lungs needs to be investigated thoroughly to alleviate the safety concerns. In this chapter, we discuss the targeted pulmonary delivery of surface-modified nanocarriers to efficiently treat acute lung injury.
Collapse
Affiliation(s)
- Yashwant V Pathak
- grid.170693.a0000 0001 2353 285XCollege of Pharmacy, University of South Florida, Tampa, FL USA
| |
Collapse
|
46
|
Hussain A, Singh S, Das SS, Anjireddy K, Karpagam S, Shakeel F. Nanomedicines as Drug Delivery Carriers of Anti-Tubercular Drugs: From Pathogenesis to Infection Control. Curr Drug Deliv 2019; 16:400-429. [PMID: 30714523 PMCID: PMC6637229 DOI: 10.2174/1567201816666190201144815] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 11/22/2022]
Abstract
In spite of advances in tuberculosis (TB) chemotherapy, TB is still airborne deadly disorder as a major issue of health concern worldwide today. Extensive researches have been focused to develop novel drug delivery systems to shorten the lengthy therapy approaches, prevention of relapses, reducing dose-related toxicities and to rectify technologically related drawbacks of anti-tubercular drugs. Moreover, the rapid emergence of drug resistance, poor patient compliance due to negative therapeutic outcomes and intracellular survival of Mycobacterium highlighted to develop carrier with optimum effectiveness of the anti-tubercular drugs. This could be achieved by targeting and concentrating the drug on the infection reservoir of Mycobacterium. In this article, we briefly compiled the general aspects of Mycobacterium pathogenesis, disease treatment along with progressive updates in novel drug delivery carrier system to enhance therapeutic effects of drug and the high level of patient compliance. Recently developed several vaccines might be shortly available as reported by WHO.
Collapse
Affiliation(s)
| | | | | | | | | | - Faiyaz Shakeel
- Address correspondence to this author at the Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Tel: +966-14673139; E-mail:
| |
Collapse
|
47
|
Mehnath S, Ayisha Sithika MA, Arjama M, Rajan M, Amarnath Praphakar R, Jeyaraj M. Sericin-chitosan doped maleate gellan gum nanocomposites for effective cell damage in Mycobacterium tuberculosis. Int J Biol Macromol 2018; 122:174-184. [PMID: 30393136 DOI: 10.1016/j.ijbiomac.2018.10.167] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/13/2018] [Accepted: 10/24/2018] [Indexed: 01/22/2023]
Abstract
Polysaccharides are increasingly used as biodegradable nanocarrier to selectively deliver therapeutic agents to specific cells. In this study, maleate gellan gum (MA-GG) formed by addition of free radical polymerizable groups, which can be polymerized presence of acetone to design biodegradable three-dimensional networks, were synthesized by esterification. Natural silk sericin was grafted over the maleate gellan gum surface. Maleate Gellan Gum- Silk Sericin-Chitosan (MA-GG-SS-CS) nanocomposites loaded with rifampicin (RF) and pyrazinamide (PZA) to overcome the problems associated with Tuberculosis (TB) therapy. The pH responsive behavior of gellan gum nanocomposites was reposed by silk sericin and exhibited sustained release of 79% RF and 82% PZA for 120 h at pH 4.0. The designed formulations shows higher antimycobacterial activity and rapid delivery of drugs at TB infected macrophage. Nanomaterial effectively aggregated and internalized into the bacterial cells and MH-S cells. Dual drug release inside the cells makes damage in the cell membrane. Green nanocomposites studies pave the way for important use of macromolecules in pulmonary delivery TB drugs.
Collapse
Affiliation(s)
- Sivaraj Mehnath
- University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | | | - Mukherjee Arjama
- University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | | | | | | |
Collapse
|
48
|
Walvekar P, Gannimani R, Govender T. Combination drug therapy via nanocarriers against infectious diseases. Eur J Pharm Sci 2018; 127:121-141. [PMID: 30342173 DOI: 10.1016/j.ejps.2018.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/16/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022]
Abstract
Current drug therapy against infections is threatening to become obsolete due to the poor physical, chemical, biological and pharmacokinetic properties of drugs, followed by high risk of acquiring resistance. Taking into account the significant benefits of nanotechnology, nano-based delivery of anti-infectious agents is emerging as a potential approach to combat several lethal infections. Co-delivery of multiple anti-infectious agents in a single nano-based system is beginning to show significant advantages over mono-therapy, such as synergism, enhanced anti-microbial activity, broad anti-microbial spectrum, reduced resistance development, and improved and cost-effective treatment. The current review provides a detailed update on the status of various lipid and polymer based nano-systems used to co-deliver multiple anti-infectious agents against bacterial, HIV and malarial infections. It also identifies current key challenges and suggests strategies to overcome them, thus guiding formulation scientists to further optimize nano-based co-drug delivery as an approach to fight infections effectively.
Collapse
Affiliation(s)
- Pavan Walvekar
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Ramesh Gannimani
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
49
|
Montgomery SA, Young EF, Durham PG, Zulauf KE, Rank L, Miller BK, Hayden JD, Lin FC, Welch JT, Hickey AJ, Braunstein M. Efficacy of pyrazinoic acid dry powder aerosols in resolving necrotic and non-necrotic granulomas in a guinea pig model of tuberculosis. PLoS One 2018; 13:e0204495. [PMID: 30261007 PMCID: PMC6160074 DOI: 10.1371/journal.pone.0204495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
New therapeutic strategies are needed to treat drug resistant tuberculosis (TB) and to improve treatment for drug sensitive TB. Pyrazinamide (PZA) is a critical component of current first-line TB therapy. However, the rise in PZA-resistant TB cases jeopardizes the future utility of PZA. To address this problem, we used the guinea pig model of TB and tested the efficacy of an inhaled dry powder combination, referred to as Pyrazinoic acid/ester Dry Powder (PDP), which is comprised of pyrazinoic acid (POA), the active moiety of PZA, and pyrazinoic acid ester (PAE), which is a PZA analog. Both POA and PAE have the advantage of being able to act on PZA-resistant Mycobacterium tuberculosis. When used in combination with oral rifampicin (R), inhaled PDP had striking effects on tissue pathology. Effects were observed in lungs, the site of delivery, but also in the spleen and liver indicating both local and systemic effects of inhaled PDP. Tissue granulomas that harbor M. tuberculosis in a persistent state are a hallmark of TB and they pose a challenge for therapy. Compared to other treatments, which preferentially cleared non-necrotic granulomas, R+PDP reduced necrotic granulomas more effectively. The increased ability of R+PDP to act on more recalcitrant necrotic granulomas suggests a novel mechanism of action. The results presented in this report reveal the potential for developing therapies involving POA that are optimized to target necrotic as well as non-necrotic granulomas as a means of achieving more complete sterilization of M. tuberculosis bacilli and preventing disease relapse when therapy ends.
Collapse
MESH Headings
- Aerosols
- Animals
- Antitubercular Agents/administration & dosage
- Antitubercular Agents/pharmacokinetics
- Bacterial Load
- Disease Models, Animal
- Drug Therapy, Combination
- Dry Powder Inhalers
- Granuloma, Respiratory Tract/drug therapy
- Granuloma, Respiratory Tract/microbiology
- Granuloma, Respiratory Tract/pathology
- Guinea Pigs
- Male
- Mycobacterium tuberculosis/drug effects
- Necrosis
- Pyrazinamide/administration & dosage
- Pyrazinamide/analogs & derivatives
- Pyrazinamide/pharmacokinetics
- Respiratory Tract Absorption
- Rifampin/administration & dosage
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/pathology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ellen F. Young
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Phillip G. Durham
- RTI International, Research Triangle Park, North Carolina, United States of America
| | - Katelyn E. Zulauf
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Laura Rank
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brittany K. Miller
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jennifer D. Hayden
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Feng-Chang Lin
- Department of Biostatistics and North Carolina Translational and Clinical Sciences Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - John T. Welch
- Department of Chemistry, University at Albany, Albany, New York, United States of America
| | - Anthony J. Hickey
- RTI International, Research Triangle Park, North Carolina, United States of America
| | - Miriam Braunstein
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
50
|
Breitenbach Barroso Coelho LC, Marcelino Dos Santos Silva P, Felix de Oliveira W, de Moura MC, Viana Pontual E, Soares Gomes F, Guedes Paiva PM, Napoleão TH, Dos Santos Correia MT. Lectins as antimicrobial agents. J Appl Microbiol 2018; 125:1238-1252. [PMID: 30053345 DOI: 10.1111/jam.14055] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/23/2018] [Accepted: 07/15/2018] [Indexed: 12/24/2022]
Abstract
The resistance of micro-organisms to antimicrobial agents has been a challenge to treat animal and human infections, and for environmental control. Lectins are natural proteins and some are potent antimicrobials through binding to carbohydrates on microbial surfaces. Oligomerization state of lectins can influence their biological activity and maximum binding capacity; the association among lectin polypeptide chains can alter the carbohydrate-lectin binding dissociation rate constants. Antimicrobial mechanisms of lectins include the pore formation ability, followed by changes in the cell permeability and latter, indicates interactions with the bacterial cell wall components. In addition, the antifungal activity of lectins is associated with the chitin-binding property, resulting in the disintegration of the cell wall or the arrest of de novo synthesis from the cell wall during fungal development or division. Quorum sensing is a cell-to-cell communication process that allows interspecies and interkingdom signalling which coordinate virulence genes; antiquorum-sensing therapies are described for animal and plant lectins. This review article, among other approaches, evaluates lectins as antimicrobials.
Collapse
Affiliation(s)
| | | | - W Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - M C de Moura
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - E Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - F Soares Gomes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Brazil
| | - P M Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - T H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - M T Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|