1
|
Nakagawa Y, Fujii M, Ito N, Ojika M, Akase D, Aida M, Kinoshita T, Sakurai Y, Yasuda J, Igarashi Y, Ito Y. Molecular basis of N-glycan recognition by pradimicin a and its potential as a SARS-CoV-2 entry inhibitor. Bioorg Med Chem 2024; 105:117732. [PMID: 38643719 DOI: 10.1016/j.bmc.2024.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Virus entry inhibitors are emerging as an attractive class of therapeutics for the suppression of viral transmission. Naturally occurring pradimicin A (PRM-A) has received particular attention as the first-in-class entry inhibitor that targets N-glycans present on viral surface. Despite the uniqueness of its glycan-targeted antiviral activity, there is still limited knowledge regarding how PRM-A binds to viral N-glycans. Therefore, in this study, we performed binding analysis of PRM-A with synthetic oligosaccharides that reflect the structural motifs characteristic of viral N-glycans. Binding assays and molecular modeling collectively suggest that PRM-A preferentially binds to branched oligomannose motifs of N-glycans via simultaneous recognition of two mannose residues at the non-reducing ends. We also demonstrated, for the first time, that PRM-A can effectively inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vitro. Significantly, the anti-SARS-CoV-2 effect of PRM-A is attenuated in the presence of the synthetic branched oligomannose, suggesting that the inhibition of SARS-CoV-2 infection is due to the interaction of PRM-A with the branched oligomannose-containing N-glycans. These data provide essential information needed to understand the antiviral mechanism of PRM-A and suggest that PRM-A could serve as a candidate SARS-CoV-2 entry inhibitor targeting N-glycans.
Collapse
Affiliation(s)
- Yu Nakagawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Masato Fujii
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nanaka Ito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Dai Akase
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Office of Research and Academia-Government-Community Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Takaaki Kinoshita
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuteru Sakurai
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Dashti Y, Errington J. Chemistry and biology of specialized metabolites produced by Actinomadura. Nat Prod Rep 2024; 41:370-401. [PMID: 38099919 PMCID: PMC10951976 DOI: 10.1039/d3np00047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 03/21/2024]
Abstract
Covering: up to the end of 2022In recent years rare Actinobacteria have become increasingly recognised as a rich source of novel bioactive metabolites. Actinomadura are Gram-positive bacteria that occupy a wide range of ecological niches. This review highlights about 230 secondary metabolites produced by Actinomadura spp., reported until the end of 2022, including their bioactivities and selected biosynthetic pathways. Notably, the bioactive compounds produced by Actinomadura spp. demonstrate a wide range of activities, including antimicrobial, antitumor and anticoccidial effects, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| | - Jeff Errington
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| |
Collapse
|
3
|
Tasker S, Addie DD, Egberink H, Hofmann-Lehmann R, Hosie MJ, Truyen U, Belák S, Boucraut-Baralon C, Frymus T, Lloret A, Marsilio F, Pennisi MG, Thiry E, Möstl K, Hartmann K. Feline Infectious Peritonitis: European Advisory Board on Cat Diseases Guidelines. Viruses 2023; 15:1847. [PMID: 37766254 PMCID: PMC10535984 DOI: 10.3390/v15091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Feline coronavirus (FCoV) is a ubiquitous RNA virus of cats, which is transmitted faeco-orally. In these guidelines, the European Advisory Board on Cat Diseases (ABCD) presents a comprehensive review of feline infectious peritonitis (FIP). FCoV is primarily an enteric virus and most infections do not cause clinical signs, or result in only enteritis, but a small proportion of FCoV-infected cats develop FIP. The pathology in FIP comprises a perivascular phlebitis that can affect any organ. Cats under two years old are most frequently affected by FIP. Most cats present with fever, anorexia, and weight loss; many have effusions, and some have ocular and/or neurological signs. Making a diagnosis is complex and ABCD FIP Diagnostic Approach Tools are available to aid veterinarians. Sampling an effusion, when present, for cytology, biochemistry, and FCoV RNA or FCoV antigen detection is very useful diagnostically. In the absence of an effusion, fine-needle aspirates from affected organs for cytology and FCoV RNA or FCoV antigen detection are helpful. Definitive diagnosis usually requires histopathology with FCoV antigen detection. Antiviral treatments now enable recovery in many cases from this previously fatal disease; nucleoside analogues (e.g., oral GS-441524) are very effective, although they are not available in all countries.
Collapse
Affiliation(s)
- Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Diane D. Addie
- Independent Researcher, 64000 Pyrénées Aquitaine, France;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università Degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| |
Collapse
|
4
|
Bioactive Compounds from Elderberry: Extraction, Health Benefits, and Food Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10112288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elderberries are appreciated for their antioxidant properties. Sambucus nigra L. is an extremely abundant plant in the wild flora of Romania, but it is underutilized. Elderberry is used in modern and traditional medicine due to the complex chemical composition of the fruit. The content of phenolic compounds is high (516–8974 mg/100 g DW), of which the most abundant are anthocyanins. Phenolic compounds are known for their beneficial effects on the body. Numerous studies have demonstrated the antioxidant capacity, antibacterial, antiviral, antidiabetic, and anticancer properties of the fruit. It is considered that most of the therapeutic properties of elderberries can be correlated with the antioxidant activity they have. S. nigra fruits are also used in the food industry. Some studies have shown that the therapeutic properties of elderberries can also be found in the products obtained from them. Therefore, this review aimed to describe the chemical composition of elderberries and products obtained from them, the positive effects on the body, and the methods by which the bioactive compounds can be extracted from the fruits and analyzed. This manuscript is useful for extraction optimization and characterization in order to valorize new functional foods, food supplements, and also in new pharmaceutical products.
Collapse
|
5
|
Nakagawa Y, Oya Y, Ojika M, Igarashi Y, Ito Y. Chemical modification of pradimicin A to suppress aggregation without impairing D-mannose-binding and antifungal activities. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Parva N, Omid S, Sadegh AJ, Mohammad HA, Mehrdad K. Antiviral Activity of Medicinal Plants against Human Coronavirus: a systematic scoping review of and experimentations. J TRADIT CHIN MED 2022; 42:332-343. [PMID: 35610002 PMCID: PMC9924666 DOI: 10.19852/j.cnki.jtcm.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To investigate the and studies of natural compounds and medicinal plants with anti-coronavirus activity. METHODS A systematic review was performed based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Animal Research: Reporting of experiments guidelines to find data for medicinal plants and natural products effective against human coronaviruses in or studies. Studies published up to September 6, 2020 were included. Studies ( or ) reporting the effect of medicinal plants and natural products or their derivatives on human coronavirus were included RESULTS: Promising anti-coronavirus effects are seen with different herbal compounds like some diterpenoids, sesquiterpenoids, and three compounds in tea with 3CLpro inhibiting effect of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV); Hirsutenone, Six cinnamic amides and bavachinin are PLpro inhibitors and Tanshinones are active on both 3CLpro and PLpro. Some flavonoid compounds of Citrus fruits act on Immun-oregulation and target angiotensin-converting enzyme 2 which is used by SARS-COV for entry. Virus helicase is possibly inhibited by two compounds myricetin and scutellarein. CONCLUSION This review shows that complementary medicine have the potential for new drug discovery against coronavirus. Further research is needed before definitive conclusions can be made concerning the safety and efficacy of the use of these medicinal plants.
Collapse
Affiliation(s)
- Namiranian Parva
- 1 Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadatpour Omid
- 2 Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azimzadeh Jamalkandi Sadegh
- 3 Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Ayati Mohammad
- 1 Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Karimi Mehrdad
- 1 Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Nabi-Afjadi M, Heydari M, Zalpoor H, Arman I, Sadoughi A, Sahami P, Aghazadeh S. Lectins and lectibodies: potential promising antiviral agents. Cell Mol Biol Lett 2022; 27:37. [PMID: 35562647 PMCID: PMC9100318 DOI: 10.1186/s11658-022-00338-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
In nature, lectins are widely dispersed proteins that selectively recognize and bind to carbohydrates and glycoconjugates via reversible bonds at specific binding sites. Many viral diseases have been treated with lectins due to their wide range of structures, specificity for carbohydrates, and ability to bind carbohydrates. Through hemagglutination assays, these proteins can be detected interacting with various carbohydrates on the surface of cells and viral envelopes. This review discusses the most robust lectins and their rationally engineered versions, such as lectibodies, as antiviral proteins. Fusion of lectin and antibody’s crystallizable fragment (Fc) of immunoglobulin G (IgG) produces a molecule called a “lectibody” that can act as a carbohydrate-targeting antibody. Lectibodies can not only bind to the surface glycoproteins via their lectins and neutralize and clear viruses or infected cells by viruses but also perform Fc-mediated antibody effector functions. These functions include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cell-mediated phagocytosis (ADCP). In addition to entering host cells, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein S1 binds to angiotensin-converting enzyme 2 (ACE2) and downregulates it and type I interferons in a way that may lead to lung disease. The SARS-CoV-2 spike protein S1 and human immunodeficiency virus (HIV) envelope are heavily glycosylated, which could make them a major target for developing vaccines, diagnostic tests, and therapeutic drugs. Lectibodies can lead to neutralization and clearance of viruses and cells infected by viruses by binding to glycans located on the envelope surface (e.g., the heavily glycosylated SARS-CoV-2 spike protein).
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Morteza Heydari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,American Association of Kidney Patients, Tampa, FL, USA
| | - Ibrahim Arman
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Arezoo Sadoughi
- Department of Immunology, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parisa Sahami
- Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Safiyeh Aghazadeh
- Division of Biochemistry, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, 5756151818, Iran.
| |
Collapse
|
8
|
Ahmed MN, Jahan R, Nissapatorn V, Wilairatana P, Rahmatullah M. Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomed Pharmacother 2022; 146:112507. [PMID: 34891122 PMCID: PMC8648558 DOI: 10.1016/j.biopha.2021.112507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lectins or clusters of carbohydrate-binding proteins of non-immune origin are distributed chiefly in the Plantae. Lectins have potent anti-infectivity properties for several RNA viruses including SARS-CoV-2. The primary purpose of this review is to review the ability of lectins mediated potential biotherapeutic and bioprophylactic strategy against coronavirus causing COVID-19. Lectins have binding affinity to the glycans of SARS-COV-2 Spike glycoprotein that has N-glycosylation sites. Apart from this, the complement lectin pathway is a "first line host defense" against the viral infection that is activated by mannose-binding lectins. Mannose-binding lectins deficiency in serum influences innate immunity of the host and facilitates infectious diseases including COVID-19. Our accumulated evidence obtained from scientific databases particularly PubMed and Google Scholar databases indicate that mannose-specific/mannose-binding lectins (MBL) have potent efficacies like anti-infectivity, complement cascade induction, immunoadjuvants, DC-SIGN antagonists, or glycomimetic approach, which can prove useful in the strategy of COVID-19 combat along with the glycobiological aspects of SARS-CoV-2 infections and antiviral immunity. For example, plant-derived mannose-specific lectins BanLac, FRIL, Lentil, and GRFT from red algae can inhibit and neutralize SARS-CoV-2 infectivity, as confirmed with in-vitro, in-vivo, and in-silico assessments. Furthermore, Bangladesh has a noteworthy resource of antiviral medicinal plants as well as plant lectins. Intensifying research on the antiviral plant lectins, adopting a glyco-biotechnological approach, and with deeper insights into the "glycovirological" aspects may result in the designing of alternative and potent blueprints against the 21st century's biological pandemic of SARS-CoV-2 causing COVID-19.
Collapse
Affiliation(s)
- Md Nasir Ahmed
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh; Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhaka, Bangladesh.
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.
| |
Collapse
|
9
|
Miyanishi W, Ojika M, Akase D, Aida M, Igarashi Y, Ito Y, Nakagawa Y. d-Mannose binding, aggregation property, and antifungal activity of amide derivatives of pradimicin A. Bioorg Med Chem 2022; 55:116590. [PMID: 34973516 DOI: 10.1016/j.bmc.2021.116590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
Pradimicin A (PRM-A) and its derivatives comprise a unique family of antibiotics that show antifungal, antiviral, and antiparasitic activities through binding to d-mannose (Man)-containing glycans of pathogenic species. Despite their great potential as drug leads with an exceptional antipathogenic action, therapeutic application of PRMs has been severely limited by their tendency to form water-insoluble aggregates. Recently, we found that attachment of 2-aminoethanol to the carboxy group of PRM-A via amide linkage significantly suppressed the aggregation. Here, we prepared additional amide derivatives (2-8) of PRM-A to examine the possibility that the amide formation of PRM-A could suppress its aggregation propensity. Sedimentation assay and isothermal titration calorimetry experiment confirmed that all amide derivatives can bind Man without significant aggregation. Among them, hydroxamic acid derivative (4) showed the most potent Man-binding activity, which was suggested to be derived from the anion formation of the hydroxamic acid moiety by molecular modeling. Derivative 4 also exhibited significant antifungal activity comparable to that of PRM-A. These results collectively indicate that amide formation of PRM-A is the promising strategy to develop less aggregative derivatives, and 4 could serve as a lead compound for exploring the therapeutic application of PRM-A.
Collapse
Affiliation(s)
- Wataru Miyanishi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Dai Akase
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Office of Research and Academia-Government-Community Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
10
|
Martin BR, Richardson J. An exploratory review of Potential Adjunct Therapies for the Treatment of Coronavirus Infections. J Chiropr Med 2021; 20:199-217. [PMID: 34924893 PMCID: PMC8664662 DOI: 10.1016/j.jcm.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 10/31/2022] Open
Abstract
Objective The purpose of this exploratory review c, including vitamin D, zinc, vitamin A, elderberry (S nigra), garlic (A sativum), licorice (G glabra), stinging nettle (U dioica), N-acetylcysteine, quercetin and selenium as potential adjunct therapies for the treatment of coronavirus infections. Methods A search of PubMed was performed for articles published from 2005 to 2021. Key words searched were zinc, vitamin A, vitamin D, Sambucus nigra, Allium sativum, Glycyrrhiza glabra, Urtica dioica, N-Acetylcysteine, quercetin, selenium and coronavirus. Results There were 47 articles selected for this review. Findings included that vitamin D, zinc, vitamin A, S nigra, A sativum, G glabra, U dioica, N-acetylcysteine, quercetin and selenium have been shown to produce anti-inflammatory, immunostimulatory or antiviral effects that may enhance the actions of standard therapeutics for the treatment of CoV infections. We found only research articles related to the effects of vitamin D, zinc, G glabra, quercetin and selenium against COVID-19. Conclusion We identified non-pharmaceutical supplements (Vitamin D, zinc, vitamin A, S nigra, A sativum, G glabra and U dioica) which may have potential to provide support for those with coronavirus infections. However, rigorous clinical studies need to be performed before any clinical recommendations can be made at this time.
Collapse
Affiliation(s)
- Brett R Martin
- National University of Health Sciences Basic Science Department, Pinellas Park, Fl, USA
| | | |
Collapse
|
11
|
Wu Y, Wang M, Yin H, Ming S, Li X, Jiang G, Liu Y, Wang P, Zhou G, Liu L, Gong S, Zhou H, Shan H, Huang X. TREM-2 is a sensor and activator of T cell response in SARS-CoV-2 infection. SCIENCE ADVANCES 2021; 7:eabi6802. [PMID: 34878838 PMCID: PMC8654301 DOI: 10.1126/sciadv.abi6802] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Limited understanding of T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impeded vaccine development and drug discovery for coronavirus disease 2019 (COVID-19). We found that triggering receptor expressed on myeloid cells 2 (TREM-2) was induced in T cells in the blood and lungs of patients with COVID-19. After binding to SARS-CoV-2 membrane (M) protein through its immunoglobulin domain, TREM-2 then activated the CD3ζ/ZAP70 complex, leading to STAT1 phosphorylation and T-bet transcription. In vitro stimulation with M protein-reconstituted pseudovirus or recombinant M protein, and TREM-2 promoted the T helper cell 1 (TH1) cytokines interferon-γ and tumor necrosis factor. In vivo infection of CD4–TREM-2 conditional knockout mice with murine coronavirus mouse hepatitis virus A-59 showed that intrinsic TREM-2 in T cells enhanced TH1 response and viral clearance, thus aggravating lung destruction. These findings demonstrate a previously unidentified role for TREM-2 in SARS-CoV-2 infection, and suggest potential strategies for drug discovery and clinical management of COVID-19.
Collapse
Affiliation(s)
- Yongjian Wu
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province 519000, China
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province 510623, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong Province 511518, China
| | - Manni Wang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Huan Yin
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Siqi Ming
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Xingyu Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Ye Liu
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Peihui Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, China
| | - Guangde Zhou
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Lei Liu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province 510623, China
| | - Haibo Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong Province 511518, China
| | - Hong Shan
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province 519000, China
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province 519000, China
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province 510623, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong Province 511518, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
- Corresponding author.
| |
Collapse
|
12
|
Delaplace M, Huet H, Gambino A, Le Poder S. Feline Coronavirus Antivirals: A Review. Pathogens 2021; 10:1150. [PMID: 34578182 PMCID: PMC8469112 DOI: 10.3390/pathogens10091150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Feline coronaviruses (FCoV) are common viral pathogens of cats. They usually induce asymptomatic infections but some FCoV strains, named Feline Infectious Peritonitis Viruses (FIPV) lead to a systematic fatal disease, the feline infectious peritonitis (FIP). While no treatments are approved as of yet, numerous studies have been explored with the hope to develop therapeutic compounds. In recent years, two novel molecules (GS-441524 and GC376) have raised hopes given the encouraging results, but some concerns about the use of these molecules persist, such as the fear of the emergence of viral escape mutants or the difficult tissue distribution of these antivirals in certain affected organs. This review will summarize current findings and leads in the development of antiviral therapy against FCoV both in vitro and in vivo, with the description of their mechanisms of action when known. It highlights the molecules, which could have a broader effect on different coronaviruses. In the context of the SARS-CoV-2 pandemic, the development of antivirals is an urgent need and FIP could be a valuable model to help this research area.
Collapse
Affiliation(s)
| | | | | | - Sophie Le Poder
- 1UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d’Alfort, Maisons-Alfort, 94704 Paris, France; (M.D.); (H.H.); (A.G.)
| |
Collapse
|
13
|
Persoons L, Vanderlinden E, Vangeel L, Wang X, Do NDT, Foo SYC, Leyssen P, Neyts J, Jochmans D, Schols D, De Jonghe S. Broad spectrum anti-coronavirus activity of a series of anti-malaria quinoline analogues. Antiviral Res 2021; 193:105127. [PMID: 34217752 PMCID: PMC8247284 DOI: 10.1016/j.antiviral.2021.105127] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 01/18/2023]
Abstract
In this study, a series of 10 quinoline analogues was evaluated for their in vitro antiviral activity against a panel of alpha- and beta-coronaviruses, including the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2), as well as the human coronaviruses (HCoV) 229E and OC43. Chloroquine and hydroxychloroquine were the most potent with antiviral EC50 values in the range of 0.12-12 μM. Chloroquine displayed the most favorable selectivity index (i.e. ratio cytotoxic versus antiviral concentration), being 165 for HCoV-OC43 in HEL cells. Potent anti-coronavirus activity was also observed with amodiaquine, ferroquine and mefloquine, although this was associated with substantial cytotoxicity for mefloquine. Primaquine, quinidine, quinine and tafenoquine only blocked coronavirus replication at higher concentrations, while piperaquine completely lacked antiviral and cytotoxic effects. A time-of-addition experiment in HCoV-229E-infected HEL cells revealed that chloroquine interferes with viral entry at a post-attachment stage. Using confocal microscopy, no viral RNA synthesis could be detected upon treatment of SARS-CoV-2-infected cells with chloroquine. The inhibition of SARS-CoV-2 replication by chloroquine and hydroxychloroquine coincided with an inhibitory effect on the autophagy pathway as visualized by a dose-dependent increase in LC3-positive puncta. The latter effect was less pronounced or even absent with the other quinolines. In summary, we showed that several quinoline analogues, including chloroquine, hydroxychloroquine, amodiaquine, ferroquine and mefloquine, exhibit broad anti-coronavirus activity in vitro.
Collapse
Affiliation(s)
- Leentje Persoons
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Leuven, Belgium
| | - Evelien Vanderlinden
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Leuven, Belgium.
| | - Laura Vangeel
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Leuven, Belgium
| | - Xinyu Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Leuven, Belgium
| | - Nguyen Dan Thuc Do
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Leuven, Belgium
| | - Shi-Yan Caroline Foo
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Leuven, Belgium
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Leuven, Belgium
| |
Collapse
|
14
|
Man-Specific Lectins from Plants, Fungi, Algae and Cyanobacteria, as Potential Blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) Coronaviruses: Biomedical Perspectives. Cells 2021; 10:cells10071619. [PMID: 34203435 PMCID: PMC8305077 DOI: 10.3390/cells10071619] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Betacoronaviruses, responsible for the “Severe Acute Respiratory Syndrome” (SARS) and the “Middle East Respiratory Syndrome” (MERS), use the spikes protruding from the virion envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain receptor binding domains (RBD), allowing the specific recognition of either the dipeptidyl peptidase CD23 (MERS-CoV) or the angiotensin-converting enzyme ACE2 (SARS-Cov, SARS-CoV-2) host cell receptors. The heavily glycosylated S protein includes both complex and high-mannose type N-glycans that are well exposed at the surface of the spikes. A detailed analysis of the carbohydrate-binding specificity of mannose-binding lectins from plants, algae, fungi, and bacteria, revealed that, depending on their origin, they preferentially recognize either complex type N-glycans, or high-mannose type N-glycans. Since both complex and high-mannose glycans substantially decorate the S proteins, mannose-specific lectins are potentially useful glycan probes for targeting the SARS-CoV, MERS-CoV, and SARS-CoV-2 virions. Mannose-binding legume lectins, like pea lectin, and monocot mannose-binding lectins, like snowdrop lectin or the algal lectin griffithsin, which specifically recognize complex N-glycans and high-mannose glycans, respectively, are particularly adapted for targeting coronaviruses. The biomedical prospects of targeting coronaviruses with mannose-specific lectins are wide-ranging including detection, immobilization, prevention, and control of coronavirus infection.
Collapse
|
15
|
Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Bezerra de Almeida E, Sharma SK, Bulgakov VP, Arroo RRJ, Malik S. A Brief Overview of Potential Treatments for Viral Diseases Using Natural Plant Compounds: The Case of SARS-Cov. Molecules 2021; 26:molecules26133868. [PMID: 34202844 PMCID: PMC8270261 DOI: 10.3390/molecules26133868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.
Collapse
Affiliation(s)
- Rambod Abiri
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
| | - Hazandy Abdul-Hamid
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Oksana Sytar
- Educational and Scientific Center “Institute of Biology and Medicine”, Department of Plant Biology, Taras Shevchenko National University of Kyiv, Volodymyrska 60, 01033 Kyiv, Ukraine;
- Department of Plant Physiology, Slovak University of Agriculture Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran;
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran
| | - Eduardo Bezerra de Almeida
- Biological and Health Sciences Centre, Laboratory of Botanical Studies, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil;
| | - Surender K. Sharma
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | - Victor P. Bulgakov
- Department of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Sonia Malik
- Health Sciences Graduate Program, Biological & Health Sciences Centre, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orléans, 1 Rue de Chartres-BP 6759, 45067 Orleans, France
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| |
Collapse
|
16
|
Nascimento da Silva LC, Mendonça JSP, de Oliveira WF, Batista KLR, Zagmignan A, Viana IFT, Dos Santos Correia MT. Exploring lectin-glycan interactions to combat COVID-19: Lessons acquired from other enveloped viruses. Glycobiology 2021; 31:358-371. [PMID: 33094324 PMCID: PMC7665446 DOI: 10.1093/glycob/cwaa099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/30/2020] [Accepted: 09/26/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of a new human coronavirus (SARS-CoV-2) has imposed great pressure on the health system worldwide. The presence of glycoproteins on the viral envelope opens a wide range of possibilities for application of lectins to address some urgent problems involved in this pandemic. In this work, we discuss the potential contributions of lectins from non-mammalian sources in the development of several fields associated with viral infections, most notably COVID-19. We review the literature on the use of non-mammalian lectins as a therapeutic approach against members of the Coronaviridae family, including recent advances in strategies of protein engineering to improve their efficacy. The applications of lectins as adjuvants for antiviral vaccines are also discussed. Finally, we present some emerging strategies employing lectins for the development of biosensors, microarrays, immunoassays and tools for purification of viruses from whole blood. Altogether, the data compiled in this review highlights the importance of structural studies aiming to improve our knowledge about the basis of glycan recognition by lectins and its repercussions in several fields, providing potential solutions for complex aspects that are emerging from different health challenges.
Collapse
Affiliation(s)
- Luís Cláudio Nascimento da Silva
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil.,Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Juliana Silva Pereira Mendonça
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50.670-901, Brazil
| | - Karla Lílian Rodrigues Batista
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Adrielle Zagmignan
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | | |
Collapse
|
17
|
Alam MA, Parra-Saldivar R, Bilal M, Afroze CA, Ahmed MN, Iqbal HM, Xu J. Algae-Derived Bioactive Molecules for the Potential Treatment of SARS-CoV-2. Molecules 2021; 26:2134. [PMID: 33917694 PMCID: PMC8068085 DOI: 10.3390/molecules26082134] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
The recently emerged COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has adversely affected the whole world. As a significant public health threat, it has spread worldwide. Scientists and global health experts are collaborating to find and execute speedy diagnostics, robust and highly effective vaccines, and therapeutic techniques to tackle COVID-19. The ocean is an immense source of biologically active molecules and/or compounds with antiviral-associated biopharmaceutical and immunostimulatory attributes. Some specific algae-derived molecules can be used to produce antibodies and vaccines to treat the COVID-19 disease. Algae have successfully synthesized several metabolites as natural defense compounds that enable them to survive under extreme environments. Several algae-derived bioactive molecules and/or compounds can be used against many diseases, including microbial and viral infections. Moreover, some algae species can also improve immunity and suppress human viral activity. Therefore, they may be recommended for use as a preventive remedy against COVID-19. Considering the above critiques and unique attributes, herein, we aimed to systematically assess algae-derived, biologically active molecules that could be used against this disease by looking at their natural sources, mechanisms of action, and prior pharmacological uses. This review also serves as a starting point for this research area to accelerate the establishment of anti-SARS-CoV-2 bioproducts.
Collapse
Affiliation(s)
- Md. Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Chowdhury Alfi Afroze
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh;
| | - Md. Nasir Ahmed
- Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhaka 1209, Bangladesh;
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
18
|
In Vitro Characterization of the Carbohydrate-Binding Agents HHA, GNA, and UDA as Inhibitors of Influenza A and B Virus Replication. Antimicrob Agents Chemother 2021; 65:AAC.01732-20. [PMID: 33288640 DOI: 10.1128/aac.01732-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/02/2020] [Indexed: 12/30/2022] Open
Abstract
Here, we report on the anti-influenza virus activity of the mannose-binding agents Hippeastrum hybrid agglutinin (HHA) and Galanthus nivalis agglutinin (GNA) and the (N-acetylglucosamine) n -specific Urtica dioica agglutinin (UDA). These carbohydrate-binding agents (CBA) strongly inhibited various influenza A(H1N1), A(H3N2), and B viruses in vitro, with 50% effective concentration values ranging from 0.016 to 83 nM, generating selectivity indexes up to 125,000. Somewhat less activity was observed against A/Puerto Rico/8/34 and an A(H1N1)pdm09 strain. In time-of-addition experiments, these CBA lost their inhibitory activity when added 30 min postinfection (p.i.). Interference with virus entry processes was also evident from strong inhibition of virus-induced hemolysis at low pH. However, a direct effect on acid-induced refolding of the viral hemagglutinin (HA) was excluded by the tryptic digestion assay. Instead, HHA treatment of HA-expressing cells led to a significant reduction of plasma membrane mobility. Crosslinking of membrane glycoproteins, through interaction with HA, could also explain the inhibitory effect on the release of newly formed virions when HHA was added at 6 h p.i. These CBA presumably interact with one or more N-glycans on the globular head of HA, since their absence led to reduced activity against mutant influenza B viruses and HHA-resistant A(H1N1) viruses. The latter condition emerged only after 33 cell culture passages in the continuous presence of HHA, and the A(H3N2) virus retained full sensitivity even after 50 passages. Thus, these CBA qualify as potent inhibitors of influenza A and B viruses in vitro with a pleiotropic mechanism of action and a high barrier for viral resistance.
Collapse
|
19
|
Sargin SA. Potential anti-influenza effective plants used in Turkish folk medicine: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113319. [PMID: 32882361 PMCID: PMC7458060 DOI: 10.1016/j.jep.2020.113319] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Due to the outbreaks such as SARS, bird flu and swine flu, which we frequently encounter in our century, we need fast solutions with no side effects today more than ever. Due to having vast ethnomedical experience and the richest flora (34% endemic) of Europe and the Middle East, Turkey has a high potential for research on this topic. Plants that locals have been using for centuries for the prevention and treatment of influenza can offer effective alternatives to combat this problem. In this context, 224 herbal taxa belonging to 45 families were identified among the selected 81 studies conducted in the seven regions of Turkey. However, only 35 (15.6%) of them were found to be subjected to worldwide in vitro and in vivo research conducted on anti-influenza activity. Quercetin and chlorogenic acid, the effectiveness of which has been proven many times in this context, have been recorded as the most common (7.1%) active ingredients among the other 56 active substances identified. AIM OF THE STUDY This study has been carried out to reveal the inventory of plant species that have been used in flu treatment for centuries in Turkish folk medicine, which could be used in the treatment of flu or flu-like pandemics, such as COVID 19, that humanity has been suffering with, and also compare them with experimental studies in the literature. MATERIALS AND METHODS The investigation was conducted in two stages on the subject above by using electronic databases, such as Web of Science, Scopus, ScienceDirect, ProQuest, Medline, Cochrane Library, EBSCO, HighWire Press, PubMed and Google Scholar. The results of both scans are presented in separate tables, together with their regional comparative analysis. RESULTS Data obtained on taxa are presented in a table, including anti-influenza mechanism of actions and the active substances. Rosa canina (58.7%) and Mentha x piperita (22.2%) were identified as the most common plants used in Turkey. Also, Sambucus nigra (11.6%), Olea europaea (9.3%), Eucalyptus spp., Melissa officinalis, and Origanum vulgare (7.0%) emerged as the most investigated taxa. CONCLUSION This is the first nationwide ethnomedical screening work conducted on flu treatment with plants in Turkey. Thirty-nine plants have been confirmed in the recent experimental anti-influenza research, which strongly shows that these plants are a rich pharmacological source. Also, with 189 (84.4%) taxa, detections that have not been investigated yet, they are an essential resource for both national and international pharmacological researchers in terms of new natural medicine searches. Considering that the production of antimalarial drugs and their successful use against COVID-19 has begun, this correlation was actually a positive and remarkable piece of data, since there are 15 plants, including Centaurea drabifolia subsp. Phlocosa (an endemic taxon), that were found to be used in the treatment of both flu and malaria.
Collapse
Affiliation(s)
- Seyid Ahmet Sargin
- Alanya Alaaddin Keykubat University, Faculty of Education, 07400, Alanya, Antalya, Turkey.
| |
Collapse
|
20
|
Bhattacharya R, Dev K, Sourirajan A. Antiviral activity of bioactive phytocompounds against coronavirus: An update. J Virol Methods 2021; 290:114070. [PMID: 33497729 PMCID: PMC7826042 DOI: 10.1016/j.jviromet.2021.114070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/25/2020] [Accepted: 01/16/2021] [Indexed: 12/28/2022]
Abstract
Viral infections are one of the main cause of diseases worldwide due to the rising trends of migration, urbanization and global mobility of humans. The outbreak of corona virus diseases caused by SARS-CoV (year 2003), MERS-CoV (year 2012) and SARS-CoV-2 (year 2019) raised global health concerns. The side effects associated with the conventional drugs and increase in cases of anti-microbial resistance have led the researchers to switch to natural sources, especially plants, as they have immense potential to be used as antiviral agents. The aim of the article is to summarize the evidences of the bioactive phytocompounds from different plants as an effective alternative for the treatment of infections caused by coronaviruses. However, the use of most plant compounds succumbs to limitations due to lack of experimental evidences and safety studies. Therefore, further research and studies are required to validate their therapeutic uses for wide application of plant-based medicine, including anti-virals.
Collapse
Affiliation(s)
- Riya Bhattacharya
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India.
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India.
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India.
| |
Collapse
|
21
|
Lokhande KB, Apte GR, Shrivastava A, Singh A, Pal JK, K Venkateswara Swamy, Gupta RK. Sensing the interactions between carbohydrate-binding agents and N-linked glycans of SARS-CoV-2 spike glycoprotein using molecular docking and simulation studies. J Biomol Struct Dyn 2020; 40:3880-3898. [PMID: 33292056 PMCID: PMC7745641 DOI: 10.1080/07391102.2020.1851303] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A recent surge in finding new candidate vaccines and potential antivirals to tackle atypical pneumonia triggered by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) needs new and unexplored approaches in solving this global pandemic. The homotrimeric transmembrane spike (S) glycoprotein of coronaviruses which facilitates virus entry into the host cells is covered with N-linked glycans having oligomannose and complex sugars. These glycans provide a unique opportunity for their targeting via carbohydrate-binding agents (CBAs) which have shown their antiviral potential against coronaviruses and enveloped viruses. However, CBA-ligand interaction is not fully explored in developing novel carbohydrate-binding-based antivirals due to associated unfavorable responses with CBAs. CBAs possess unique carbohydrate-binding specificity, therefore, CBAs like mannose-specific plant lectins/lectin-like mimic Pradimicin-A (PRM-A) can be used for targeting N-linked glycans of S glycoproteins. Here, we report studies on the binding and stability of lectins (NPA, UDA, GRFT, CV-N and wild-type and mutant BanLec) and PRM-A with the S glycoprotein glycans via docking and MD simulation. MM/GBSA calculations were also performed for docked complexes. Interestingly, stable BanLec mutant (H84T) also showed similar docking affinity and interactions as compared to wild-type BanLec, thus, confirming that uncoupling the mitogenic activity did not alter the lectin binding activity of BanLec. The stability of the docked complexes, i.e. PRM-A and lectins with SARS-CoV-2 S glycoprotein showed favorable intermolecular hydrogen-bond formation during the 100 ns MD simulation. Taking these together, our predicted in silico results will be helpful in the design and development of novel CBA-based antivirals for the SARS-CoV-2 neutralization.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Girish R Apte
- Protein Biochemistry Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune Maharashtra, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar University, G.B. Nagar, Uttar Pradesh, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar University, G.B. Nagar, Uttar Pradesh, India
| | - Jayanta K Pal
- Protein Biochemistry Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune Maharashtra, India
| | - K Venkateswara Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rajesh Kumar Gupta
- Protein Biochemistry Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune Maharashtra, India
| |
Collapse
|
22
|
Alavi M, Asare-Addo K, Nokhodchi A. Lectin Protein as a Promising Component to Functionalize Micelles, Liposomes and Lipid NPs against Coronavirus. Biomedicines 2020; 8:E580. [PMID: 33297444 PMCID: PMC7762367 DOI: 10.3390/biomedicines8120580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of a novel strain coronavirus as the causative agent of COVID-19 pneumonia, first identified in Wuhan, China in December 2019, has resulted in considerable focus on virulence abilities of coronavirus. Lectins are natural proteins with the ability to bind specific carbohydrates related to various microorganisms, including viruses, bacteria, fungi and parasites. Lectins have the ability to agglutinate and neutralize these pathogeneses. The delivery of the encapsulated antiviral agents or vaccines across the cell membrane can be possible by functionalized micellar and liposomal formulations. In this mini-review, recent advances and challenges related to important lectins with inhibition activities against coronaviruses are presented to obtain a novel viewpoint of microformulations or nanoformulations by micellar and liposomal cell-binding carriers.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Faculty of Science, Razi University, Kermanshah 67146, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
| | - Ali Nokhodchi
- Pharmaceuics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| |
Collapse
|
23
|
Fadaka AO, Aruleba RT, Sibuyi NRS, Klein A, Madiehe AM, Meyer M. Inhibitory potential of repurposed drugs against the SARS-CoV-2 main protease: a computational-aided approach. J Biomol Struct Dyn 2020; 40:3416-3427. [PMID: 33200673 PMCID: PMC7682381 DOI: 10.1080/07391102.2020.1847197] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The exponential increase in cases and mortality of coronavirus disease (COVID-19) has called for a need to develop drugs to treat this infection. Using in silico and molecular docking approaches, this study investigated the inhibitory effects of Pradimicin A, Lamivudine, Plerixafor and Lopinavir against SARS-CoV-2 Mpro. ADME/Tox of the ligands, pharmacophore hypothesis of the co-crystalized ligand and the receptor, and docking studies were carried out on different modules of Schrodinger (2019-4) Maestro v12.2. Among the ligands subjected to ADME/Tox by QikProp, Lamivudine demonstrated drug-like physico-chemical properties. A total of five pharmacophore binding sites (A3, A4, R9, R10, and R11) were predicted from the co-crystalized ligand and the binding cavity of the SARS-CoV-2 Mpro. The docking result showed that Lopinavir and Lamivudine bind with a higher affinity and lower free energy than the standard ligand having a glide score of -9.2 kcal/mol and -5.3 kcal/mol, respectively. Plerixafor and Pradimicin A have a glide score of -3.7 kcal/mol and -2.4 kcal/mol, respectively, which is lower than the co-crystallized ligand with a glide score of -5.3 kcal/mol. Molecular dynamics confirmed that the ligands maintained their interaction with the protein with lower RMSD fluctuations over the trajectory period of 100 nsecs and that GLU166 residue is pivotal for binding. On the whole, present study specifies the repurposing aptitude of these molecules as inhibitors of SARS-CoV-2 Mpro with higher binding scores and forms energetically stable complexes with Mpro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashwil Klein
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.,Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
24
|
Zheng X, Li L. Potential Therapeutic Options for COVID-19. INFECTIOUS MICROBES & DISEASES 2020; 2:89-95. [PMID: 38630098 PMCID: PMC8529694 DOI: 10.1097/im9.0000000000000033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 01/08/2023]
Abstract
The recently emerged coronavirus disease 2019 (COVID-19) has rapidly evolved into a pandemic with over 10 million infections and over 500 thousand deaths. There are currently no effective therapies or vaccines available to protect against this coronavirus infection. In this review, we discuss potential therapeutic options for COVID-19 based on the available information from previous research on severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). Substantial efforts are underway to discover new therapeutic agents for COVID-19, including the repurposing of existing agents and the development of novel agents that specifically target SARS-coronavirus 2 (SARS-CoV-2) or host factors. Through the screening of compound libraries, various classes of drugs, such as ribavirin, remdesivir, lopinavir/ritonavir, and hydroxychloroquine have been identified as potential therapeutic candidates against COVID-19. Novel antiviral drugs for SARS-coronavirus 2 are being developed to target viral enzymes or functional proteins, as well as host factors or cell signaling pathways.
Collapse
|
25
|
Almeida LCD, Bauermeister A, Rezende-Teixeira P, Santos EAD, Moraes LABD, Machado-Neto JA, Costa-Lotufo LV. Pradimicin-IRD exhibits antineoplastic effects by inducing DNA damage in colon cancer cells. Biochem Pharmacol 2019; 168:38-47. [PMID: 31228463 DOI: 10.1016/j.bcp.2019.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
DNA-damaging agents are widely used in cancer therapy; however, their use is limited by dose-related toxicities, as well as the development of drug resistance. Drug discovery is essential to overcome these limitations and offer novel therapeutic options. In a previous study by our research group, pradimicin-IRD-a new polycyclic antibiotic produced by the actinobacteria Amycolatopsis sp.-displayed antimicrobial and potential anticancer activities. In the present study, cytotoxic activity was further confirmed in a panel of five colon cancer, including those with mutation in TP53 and KRAS, the most common ones observed in cancer colon patients. While all tested colon cancer cells were sensitive to pradimicin-IRD treatment with IC50 in micromolar range, non-tumor fibroblasts were significantly less sensitive (p < 0.05). The cellular and molecular mechanism of action of pradimicin-IRD was then investigated in the colorectal cancer cell line HCT 116. Pradimicin-IRD presented antitumor effects occurring after at least 6 h of exposure. Pradimicin-IRD induced statistically significant DNA damage (γH2AX and p21), apoptosis (PARP1 and caspase 3 cleavage) and cell cycle arrest (reduced Rb phosphorylation, cyclin A and cyclin B expression) markers. In accordance with these results, pradimicin-IRD increased cell populations in the subG1 and G0/G1 phases of the cell cycle. Additionally, mass spectrometry analysis indicated that pradimicin-IRD interacted with the DNA double strand. In summary, pradimicin-IRD exhibits multiple antineoplastic activities-including DNA damage, cell cycle arrest, reduction of clonal growth and apoptosis-in the HCT 116 cell line. Furthermore, pradimicin-IRD displays a TP53-independent regulation of p21 expression in HCT 116 TP53-/-, HT-29, SW480, and Caco-2 cells. This exploratory study identified novel targets for pradimicin-IRD and provided insights for its potential anticancer activity as a DNA-damaging agent.
Collapse
Affiliation(s)
- Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anelize Bauermeister
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Brazil
| | - Paula Rezende-Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Evelyne Alves Dos Santos
- Department of Cell Biology and Development, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
26
|
Glycan-dependent chikungunya viral infection divulged by antiviral activity of NAG specific chi-like lectin. Virology 2019; 526:91-98. [DOI: 10.1016/j.virol.2018.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022]
|
27
|
Bauermeister A, Calil FA, das C L Pinto F, Medeiros TCT, Almeida LC, Silva LJ, de Melo IS, Zucchi TD, Costa-Lotufo LV, Moraes LAB. Pradimicin-IRD from Amycolatopsis sp. IRD-009 and its antimicrobial and cytotoxic activities. Nat Prod Res 2018; 33:1713-1720. [PMID: 29451013 DOI: 10.1080/14786419.2018.1434639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new polycyclic antibiotic, pradimicin-IRD, was isolated from actinobacteria Amycolatopsis sp. IRD-009 recovered from soil of Brazilian rainforest undergoing restoration area. This molecule is the major compound produced in solid culture media. The new compound was detected by a focused method of precursor ion (high-performance liquid chromatography coupled to tandem mass spectrometer) developed previously to identify unusual aminoglycosyl sugar moieties. The compound was isolated and its structure was, therefore, elucidated by high-resolution mass spectrometry, and 1D and 2D nuclear magnetic resonance experiments. Pradimicin-IRD displayed potential antimicrobial activity against Streptococcus agalactiae (MIC 3.1 μg/mL), Pseudomonas aeruginosa (MIC 3.1 μg/mL) and Staphylococcus aureus (MIC 3.1 μg/mL), and also cytotoxicity against tumour and non-tumour cell lines with IC50 values ranging from 0.8 μM in HCT-116 colon carcinoma cells to 2.7 μM in MM 200 melanoma cells. Particularly, these biological properties are described for the first time for this chemical class.
Collapse
Affiliation(s)
- Anelize Bauermeister
- a Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Felipe A Calil
- a Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Francisco das C L Pinto
- b Departamento de Química Orgânica e Inorgânica , Universidade Federal do Ceará , Fortaleza , Brazil
| | - Talita C T Medeiros
- a Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Larissa C Almeida
- c Departamento de Farmacologia , Instituto de Ciências Biomédicas, Universidade de São Paulo , São Paulo , Brazil
| | - Leonardo J Silva
- d College of Agriculture "Luiz de Queiroz" , Universidade de São Paulo , Piracicaba , Brazil
| | - Itamar S de Melo
- e Laboratory of Environmental Microbiology , National Brazilian Research Corporation - EMBRAPA ENVIRONMENT , Jaguariuna , Brazil
| | - Tiago D Zucchi
- f Departamento de Pesquisa & Desenvolvimento , AGRIVALLE , Salto , Brazil
| | - Letícia V Costa-Lotufo
- c Departamento de Farmacologia , Instituto de Ciências Biomédicas, Universidade de São Paulo , São Paulo , Brazil
| | - Luiz A B Moraes
- a Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
28
|
Identification of N-linked glycosylation sites in the spike protein and their functional impact on the replication and infectivity of coronavirus infectious bronchitis virus in cell culture. Virology 2017; 513:65-74. [PMID: 29035787 PMCID: PMC7112133 DOI: 10.1016/j.virol.2017.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022]
Abstract
Spike (S) glycoprotein on the viral envelope is the main determinant of infectivity. The S protein of coronavirus infectious bronchitis virus (IBV) contains 29 putative asparagine(N)-linked glycosylation sites. These post-translational modifications may assist in protein folding and play important roles in the functionality of S protein. In this study, we used bioinformatics tools to predict N-linked glycosylation sites and to analyze their distribution in IBV strains and variants. Among these sites, 8 sites were confirmed in the S protein extracted from partially purified virus particles by proteomics approaches. N-D and N-Q substitutions at 13 predicted sites were introduced into an infectious clone system. The impact on S protein-mediated cell-cell fusion, viral recovery and infectivity was assessed, leading to the identification of sites essential for the functions of IBV S protein. Further characterization of these and other uncharacterized sites may reveal novel aspects of N-linked glycosylation in coronavirus replication and pathogenesis.
Collapse
|
29
|
Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res 2016; 133:1-8. [PMID: 27424494 PMCID: PMC7113895 DOI: 10.1016/j.antiviral.2016.07.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 01/15/2023]
Abstract
Highly pathogenic human coronaviruses associated with a severe respiratory syndrome, including Middle East respiratory syndrome coronavirus (MERS-CoV), have recently emerged. The MERS-CoV epidemic started in 2012 and is still ongoing, with a mortality rate of approximately 35%. No vaccine is available against MERS-CoV and therapeutic options for MERS-CoV infections are limited to palliative and supportive care. A search for specific antiviral treatments is urgently needed. Coronaviruses are enveloped viruses, with the spike proteins present on their surface responsible for virus entry into the target cell. Lectins are attractive anti-coronavirus candidates because of the highly glycosylated nature of the spike protein. We tested the antiviral effect of griffithsin (GRFT), a lectin isolated from the red marine alga Griffithsia sp. against MERS-CoV infection. Our results demonstrate that while displaying no significant cytotoxicity, griffithsin is a potent inhibitor of MERS-CoV infection. Griffithsin also inhibits entry into host cells of particles pseudotyped with the MERS-CoV spike protein, suggesting that griffithsin inhibits spike protein function during entry. Spike proteins have a dual function during entry, they mediate binding to the host cell surface and also the fusion of the viral envelope with host cell membrane. Time course experiments show that griffithsin inhibits MERS-CoV infection at the binding step. In conclusion, we identify griffithsin as a potent inhibitor of MERS-CoV infection at the entry step. We analyze the anti-MERS-CoV potential of the lectin griffithsin. Griffithsin inhibits MERS-CoV infection at the entry step. Griffithsin inhibits binding of MERS-CoV to the cell surface potentially by interacting with spike protein glycans.
Collapse
|
30
|
Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy. Arch Virol 2016; 161:1751-60. [PMID: 27068162 PMCID: PMC7087181 DOI: 10.1007/s00705-016-2855-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Abstract
Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.
Collapse
|
31
|
Napan K, Zhang S, Morgan W, Anderson T, Takemoto JY, Zhan J. Synergistic actions of tailoring enzymes in pradimicin biosynthesis. Chembiochem 2014; 15:2289-96. [PMID: 25155298 PMCID: PMC4214279 DOI: 10.1002/cbic.201402306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Indexed: 11/07/2022]
Abstract
Three key tailoring enzymes in pradimicin biosynthesis: PdmJ, PdmW, and PdmN, were investigated. PdmW was characterized as the C-6 hydroxylase by structural characterization of the corresponding product, 6-hydroxy-G-2A. The efficiencies of the C-5 and C-6 hydroxylations, catalyzed respectively by PdmJ and PdmW, were low when they were expressed individually with the early biosynthetic enzymes that form G-2A. When these two cytochrome P450 enzymes were co-expressed, a dihydroxylated product, 5,6-dihydroxy-G-2A, was efficiently produced, indicating that these two enzymes work synergistically in pradimicin biosynthesis. Heterologously expressed PdmN in Streptomyces coelicolor CH999 converted G-2A to JX137a by ligating a unit of D-alanine to the carboxyl group. PdmN has relaxed substrate specificity toward both amino acid donors and acceptors. Through combinatorial biosynthesis, a series of new pradimicin analogues were produced.
Collapse
Affiliation(s)
- Kandy Napan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, Fax: 435-797-1248
| | - Shuwei Zhang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, Fax: 435-797-1248
| | - Whitney Morgan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, Fax: 435-797-1248
| | - Thomas Anderson
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322
| | - Jon Y. Takemoto
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, Fax: 435-797-1248
| |
Collapse
|
32
|
Chen C, Zuckerman DM, Brantley S, Sharpe M, Childress K, Hoiczyk E, Pendleton AR. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet Res 2014; 10:24. [PMID: 24433341 PMCID: PMC3899428 DOI: 10.1186/1746-6148-10-24] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/10/2014] [Indexed: 11/25/2022] Open
Abstract
Background Infectious bronchitis virus (IBV) is a pathogenic chicken coronavirus. Currently, vaccination against IBV is only partially protective; therefore, better preventions and treatments are needed. Plants produce antimicrobial secondary compounds, which may be a source for novel anti-viral drugs. Non-cytotoxic, crude ethanol extracts of Rhodiola rosea roots, Nigella sativa seeds, and Sambucus nigra fruit were tested for anti-IBV activity, since these safe, widely used plant tissues contain polyphenol derivatives that inhibit other viruses. Results Dose–response cytotoxicity curves on Vero cells using trypan blue staining determined the highest non-cytotoxic concentrations of each plant extract. To screen for IBV inhibition, cells and virus were pretreated with extracts, followed by infection in the presence of extract. Viral cytopathic effect was assessed visually following an additional 24 h incubation with extract. Cells and supernatants were harvested separately and virus titers were quantified by plaque assay. Variations of this screening protocol determined the effects of a number of shortened S. nigra extract treatments. Finally, S. nigra extract-treated virions were visualized by transmission electron microscopy with negative staining. Virus titers from infected cells treated with R. rosea and N. sativa extracts were not substantially different from infected cells treated with solvent alone. However, treatment with S. nigra extracts reduced virus titers by four orders of magnitude at a multiplicity of infection (MOI) of 1 in a dose-responsive manner. Infection at a low MOI reduced viral titers by six orders of magnitude and pretreatment of virus was necessary, but not sufficient, for full virus inhibition. Electron microscopy of virions treated with S. nigra extract showed compromised envelopes and the presence of membrane vesicles, which suggested a mechanism of action. Conclusions These results demonstrate that S. nigra extract can inhibit IBV at an early point in infection, probably by rendering the virus non-infectious. They also suggest that future studies using S. nigra extract to treat or prevent IBV or other coronaviruses are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda R Pendleton
- Division of Natural Science and Mathematics, Oxford College of Emory University, Oxford, GA 30054, USA.
| |
Collapse
|
33
|
Peptides corresponding to the predicted heptad repeat 2 domain of the feline coronavirus spike protein are potent inhibitors of viral infection. PLoS One 2013; 8:e82081. [PMID: 24312629 PMCID: PMC3849439 DOI: 10.1371/journal.pone.0082081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/30/2013] [Indexed: 02/05/2023] Open
Abstract
Background Feline infectious peritonitis (FIP) is a lethal immune-mediated disease caused by feline coronavirus (FCoV). Currently, no therapy with proven efficacy is available. In searching for agents that may prove clinically effective against FCoV infection, five analogous overlapping peptides were designed and synthesized based on the putative heptad repeat 2 (HR2) sequence of the spike protein of FCoV, and the antiviral efficacy was evaluated. Methods Plaque reduction assay and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cytotoxicity assay were performed in this study. Peptides were selected using a plaque reduction assay to inhibit Feline coronavirus infection. Results The results demonstrated that peptide (FP5) at concentrations below 20 μM inhibited viral replication by up to 97%. The peptide (FP5) exhibiting the most effective antiviral effect was further combined with a known anti-viral agent, human interferon-α (IFN-α), and a significant synergistic antiviral effect was observed. Conclusion Our data suggest that the synthetic peptide FP5 could serve as a valuable addition to the current FIP prevention methods.
Collapse
|
34
|
Abstract
Lectins are proteins of non-immune origin that bind specific carbohydrates without chemical modification. Coupled with the emerging biological and pathological significance of carbohydrates, lectins have become extensively used as research tools in glycobiology. However, lectin-based drug development has been impeded by high manufacturing costs, low chemical stability, and the potential risk of initiating an unfavorable immune response. As alternatives to lectins, non-protein small molecules having carbohydrate-binding properties (lectin mimics) are currently attracting a great deal of attention because of their ease of preparation and chemical modification. Lectin mimics of synthetic origin are divided roughly into two groups, boronic acid-dependent and boronic acid-independent lectin mimics. This article outlines their representative architectures and carbohydrate-binding properties, and discusses their therapeutic potential by reviewing recent attempts to develop antiviral and antimicrobial agents using their architectures. We also focus on the naturally occurring lectin mimics, pradimicins and benanomicins. They are the only class of non-protein natural products having a C-type lectin-like ability to recognize d-mannopyranosides in the presence of Ca2 + ions. Their molecular basis of carbohydrate recognition and therapeutic potential are also discussed.
Collapse
Affiliation(s)
- Yu Nakagawa
- Synthetic Cellular Chemistry Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | | |
Collapse
|
35
|
Barnard DL, Kumaki Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol 2011; 6:615-631. [PMID: 21765859 DOI: 10.2217/fvl.11.33] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in early 2003 to cause a very severe acute respiratory syndrome, which eventually resulted in a 10% case-fatality rate. Owing to excellent public health measures that isolated focus cases and their contacts, and the use of supportive therapies, the epidemic was suppressed to the point that further cases have not appeared since 2005. However, despite intensive research since then (over 3500 publications), it remains an untreatable disease. The potential for re-emergence of the SARS-CoV or a similar virus with unknown but potentially serious consequences remains high. This is due in part to the extreme genetic variability of RNA viruses such as the coronaviruses, the many animal reservoirs that seem to be able host the SARS-CoV in which reassortment or recombination events could occur and the ability coronaviruses have to transmit relatively rapidly from species to species in a short period of time. Thus, it seems prudent to continue to explore and develop antiviral chemotherapies to treat SARS-CoV infections. To this end, the various efficacious anti-SARS-CoV therapies recently published from 2007 to 2010 are reviewed in this article. In addition, compounds that have been tested in various animal models and were found to reduce virus lung titers and/or were protective against death in lethal models of disease, or otherwise have been shown to ameliorate the effects of viral infection, are also reported.
Collapse
Affiliation(s)
- Dale L Barnard
- Utah State University, Institute for Antiviral Research, Department of Animal, Dairy & Veterinary Science, 5600 Old Main Hill, Logan, UT 84322, USA
| | | |
Collapse
|
36
|
Hsieh LE, Lin CN, Su BL, Jan TR, Chen CM, Wang CH, Lin DS, Lin CT, Chueh LL. Synergistic antiviral effect of Galanthus nivalis agglutinin and nelfinavir against feline coronavirus. Antiviral Res 2010; 88:25-30. [PMID: 20603153 PMCID: PMC7114315 DOI: 10.1016/j.antiviral.2010.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/11/2010] [Accepted: 06/28/2010] [Indexed: 11/17/2022]
Abstract
Feline infectious peritonitis (FIP) is a fatal disease in domestic and nondomestic felids caused by feline coronavirus (FCoV). Currently, no effective vaccine is available for the prevention of this disease. In searching for agents that may prove clinically effective against FCoV infection, 16 compounds were screened for their antiviral activity against a local FCoV strain in Felis catus whole fetus-4 cells. The results showed that Galanthus nivalis agglutinin (GNA) and nelfinavir effectively inhibited FCoV replication. When the amount of virus preinoculated into the test cells was increased to mimic the high viral load present in the target cells of FIP cats, GNA and nelfinavir by themselves lost their inhibitory effect. However, when the two agents were added together to FCoV-infected cells, a synergistic antiviral effect defined by complete blockage of viral replication was observed. These results suggest that the combined use of GNA and nelfinavir has therapeutic potential in the prophylaxis and treatment of cats with early-diagnosed FIP.
Collapse
Affiliation(s)
- Li-En Hsieh
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
François KO, Balzarini J. Potential of carbohydrate-binding agents as therapeutics against enveloped viruses. Med Res Rev 2010; 32:349-87. [PMID: 20577974 PMCID: PMC7168447 DOI: 10.1002/med.20216] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Twenty‐seven years after the discovery of HIV as the cause of AIDS more than 25 drugs directed against four different viral targets (i.e. reverse transcriptase, protease, integrase, envelope gp41) and one cellular target (i.e. CCR5 co‐receptor) are available for treatment. However, the search for an efficient vaccine is still ongoing. One of the main problems is the presence of a continuously evolving dense carbohydrate shield, consisting of N‐linked glycans that surrounds the virion and protects it against efficient recognition and persistent neutralization by the immune system. However, several lectins from the innate immune system specifically bind to these glycans in an attempt to process the virus antigens to provoke an immune response. Across a wide variety of different species in nature lectins can be found that can interact with the glycosylated envelope of HIV‐1 and can block the infection of susceptible cells by the virus. In this review, we will give an overview of the lectins from non‐mammalian origin that are endowed with antiviral properties and discuss the complex interactions between lectins of the innate immune system and HIV‐1. Also, attention will be given to different carbohydrate‐related modalities that can be exploited for antiviral chemotherapy. © 2010 Wiley Periodicals, Inc. Med Res Rev
Collapse
Affiliation(s)
- K O François
- Rega Institute for Medical Research, K. U. Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
38
|
O'Keefe BR, Giomarelli B, Barnard DL, Shenoy SR, Chan PKS, McMahon JB, Palmer KE, Barnett BW, Meyerholz DK, Wohlford-Lenane CL, McCray PB. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J Virol 2010; 84:2511-21. [PMID: 20032190 PMCID: PMC2820936 DOI: 10.1128/jvi.02322-09] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 12/11/2009] [Indexed: 12/19/2022] Open
Abstract
Viruses of the family Coronaviridae have recently emerged through zoonotic transmission to become serious human pathogens. The pathogenic agent responsible for severe acute respiratory syndrome (SARS), the SARS coronavirus (SARS-CoV), is a member of this large family of positive-strand RNA viruses that cause a spectrum of disease in humans, other mammals, and birds. Since the publicized outbreaks of SARS in China and Canada in 2002-2003, significant efforts successfully identified the causative agent, host cell receptor(s), and many of the pathogenic mechanisms underlying SARS. With this greater understanding of SARS-CoV biology, many researchers have sought to identify agents for the treatment of SARS. Here we report the utility of the potent antiviral protein griffithsin (GRFT) in the prevention of SARS-CoV infection both in vitro and in vivo. We also show that GRFT specifically binds to the SARS-CoV spike glycoprotein and inhibits viral entry. In addition, we report the activity of GRFT against a variety of additional coronaviruses that infect humans, other mammals, and birds. Finally, we show that GRFT treatment has a positive effect on morbidity and mortality in a lethal infection model using a mouse-adapted SARS-CoV and also specifically inhibits deleterious aspects of the host immunological response to SARS infection in mammals.
Collapse
Affiliation(s)
- Barry R. O'Keefe
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702, Utah State University, Logan, Utah, SAIC-Frederick, Frederick, Maryland 21702, Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China, James Graham Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, Owensboro Cancer Research Program, Owensboro, Kentucky 42303, Departments of Pathology, Pediatrics, Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Barbara Giomarelli
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702, Utah State University, Logan, Utah, SAIC-Frederick, Frederick, Maryland 21702, Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China, James Graham Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, Owensboro Cancer Research Program, Owensboro, Kentucky 42303, Departments of Pathology, Pediatrics, Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Dale L. Barnard
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702, Utah State University, Logan, Utah, SAIC-Frederick, Frederick, Maryland 21702, Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China, James Graham Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, Owensboro Cancer Research Program, Owensboro, Kentucky 42303, Departments of Pathology, Pediatrics, Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Shilpa R. Shenoy
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702, Utah State University, Logan, Utah, SAIC-Frederick, Frederick, Maryland 21702, Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China, James Graham Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, Owensboro Cancer Research Program, Owensboro, Kentucky 42303, Departments of Pathology, Pediatrics, Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Paul K. S. Chan
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702, Utah State University, Logan, Utah, SAIC-Frederick, Frederick, Maryland 21702, Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China, James Graham Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, Owensboro Cancer Research Program, Owensboro, Kentucky 42303, Departments of Pathology, Pediatrics, Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - James B. McMahon
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702, Utah State University, Logan, Utah, SAIC-Frederick, Frederick, Maryland 21702, Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China, James Graham Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, Owensboro Cancer Research Program, Owensboro, Kentucky 42303, Departments of Pathology, Pediatrics, Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Kenneth E. Palmer
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702, Utah State University, Logan, Utah, SAIC-Frederick, Frederick, Maryland 21702, Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China, James Graham Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, Owensboro Cancer Research Program, Owensboro, Kentucky 42303, Departments of Pathology, Pediatrics, Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Brian W. Barnett
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702, Utah State University, Logan, Utah, SAIC-Frederick, Frederick, Maryland 21702, Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China, James Graham Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, Owensboro Cancer Research Program, Owensboro, Kentucky 42303, Departments of Pathology, Pediatrics, Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - David K. Meyerholz
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702, Utah State University, Logan, Utah, SAIC-Frederick, Frederick, Maryland 21702, Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China, James Graham Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, Owensboro Cancer Research Program, Owensboro, Kentucky 42303, Departments of Pathology, Pediatrics, Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Christine L. Wohlford-Lenane
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702, Utah State University, Logan, Utah, SAIC-Frederick, Frederick, Maryland 21702, Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China, James Graham Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, Owensboro Cancer Research Program, Owensboro, Kentucky 42303, Departments of Pathology, Pediatrics, Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Paul B. McCray
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702, Utah State University, Logan, Utah, SAIC-Frederick, Frederick, Maryland 21702, Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China, James Graham Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, Owensboro Cancer Research Program, Owensboro, Kentucky 42303, Departments of Pathology, Pediatrics, Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
39
|
Trippier PC, McGuigan C, Balzarini J. Phenylboronic-Acid-Based Carbohydrate Binders as Antiviral Therapeutics: Monophenylboronic Acids. ACTA ACUST UNITED AC 2010; 20:249-57. [DOI: 10.3851/imp1632] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Background: The development of carbohydrate-binding agents as novel therapeutics for the inhibition of highly glycosylated enveloped viruses has generated much attention in recent literature. Possessing a potential dual mode of action by inhibiting virus entry and exposing the virion to neutralization by the host immune system upon the deletion of envelope glycans under drug pressure, these substances might provide a new direction in antiviral treatment. Phenylboronic acids are widely known to bind the cis-diol functionality of carbohydrate structures, thereby identifying themselves as potential lead structures. To date, few details have been disclosed of the structure–activity relationship of these substances in correlation to their antiviral activity. Methods: In this study, a compound library of a diverse range of ortho-, meta- and para- ring-substituted monophenylboronic acids and glutamine phenylboronic acid analogues was prepared, characterized and evaluated to probe antiviral activity versus a broad range of (enveloped) viruses. Results: The compounds described herein lack antiviral activity. They also did not show measurable binding to HIV type-1 (HIV-1) gp120, using surface plasmon resonance technology. However, of note is the general lack of toxicity, which suggests that further investigation of the compounds as potential therapeutics is needed. Conclusions: The monophenylboronic acids tested exhibited no antiviral activity as potential carbohydrate binders versus a broad range of enveloped and non-enveloped viruses. The compounds tested did not bind HIV-1 gp120, possibly because of their small size and lack of multivalency.
Collapse
Affiliation(s)
| | | | - Jan Balzarini
- Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
40
|
Day CW, Baric R, Cai SX, Frieman M, Kumaki Y, Morrey JD, Smee DF, Barnard DL. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology 2009; 395:210-22. [PMID: 19853271 PMCID: PMC2787736 DOI: 10.1016/j.virol.2009.09.023] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 06/26/2009] [Accepted: 09/16/2009] [Indexed: 12/17/2022]
Abstract
Severe acute respiratory syndrome (SARS) is a highly lethal emerging disease caused by coronavirus SARS-CoV. New lethal animal models for SARS were needed to facilitate antiviral research. We adapted and characterized a new strain of SARS-CoV (strain v2163) that was highly lethal in 5- to 6-week-old BALB/c mice. It had nine mutations affecting 10 amino acid residues. Strain v2163 increased IL-1alpha, IL-6, MIP-1alpha, MCP-1, and RANTES in mice, and high IL-6 expression correlated with mortality. The infection largely mimicked human disease, but lung pathology lacked hyaline membrane formation. In vitro efficacy against v2163 was shown with known inhibitors of SARS-CoV replication. In v2163-infected mice, Ampligen was fully protective, stinging nettle lectin (UDA) was partially protective, ribavirin was disputable and possibly exacerbated disease, and EP128533 was inactive. Ribavirin, UDA, and Ampligen decreased IL-6 expression. Strain v2163 provided a valuable model for anti-SARS research.
Collapse
Affiliation(s)
- Craig W Day
- Institute for Antiviral Research, Utah State University, UMC 5600, Logan, UT 84322-5600, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Recent antiviral strategies against human coronavirus-related respiratory illnesses. Curr Opin Pulm Med 2008; 14:248-53. [PMID: 18427249 DOI: 10.1097/mcp.0b013e3282f7646f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW The main purpose of this review is to summarize the current research (2006-2007) concerning the development of novel anticoronaviral strategies and compounds. RECENT FINDINGS Recent research led to the identification of several novel agents inhibiting coronaviral replication. The most promising compounds include carbohydrate-binding agents, neutralizing antibodies and drugs targeting a coronaviral envelope protein. SUMMARY Although initial outbreaks of coronavirus that causes severe acute respiratory syndrome (SARS-CoV) were controlled by public health measures, the development of vaccines and antiviral agents for SARS-CoV is essential for improving control and treatment of future outbreaks. Four years after the SARS-CoV epidemic, several compounds with an anticoronaviral activity have been identified.
Collapse
|
42
|
Current World Literature. Curr Opin Pulm Med 2008; 14:266-73. [DOI: 10.1097/mcp.0b013e3282ff8c19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Smee DF, Wandersee MK, Checketts MB, O'Keefe BR, Saucedo C, Boyd MR, Mishin VP, Gubareva LV. Influenza A (H1N1) virus resistance to cyanovirin-N arises naturally during adaptation to mice and by passage in cell culture in the presence of the inhibitor. Antivir Chem Chemother 2008; 18:317-27. [PMID: 18320936 DOI: 10.1177/095632020701800604] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Influenza A/New Caledonia/20/99 (H1N1) virus was studied for development of resistance to cyanovirin-N (CVN). CVN neutralizes virus infectivity by binding to specific high-mannose oligosaccharides on the viral haemagglutinin 1 (HA1) subunit. During virus adaptation to mice in the absence of CVN treatment the virus became resistant to CVN (CVN-MR virus), as did virus passaged in cell culture in the presence of CVN (CVN-R virus). The CVN-R virus possessed a single amino acid change at position 94a (Asn94aAsp) of HA1 that eliminated this glycosylation site. The CVN-MR virus at mouse passage 7 was a mixture of clones, consisting of a single mutation (Asp225Gly) and double mutations (Asn63Ser+Asp225Gly or Asn94a+Asp225Gly), eliminating glycosylation sites. CVN did not bind well to the CVN-R and CVN-MR viruses. Propagating these viruses in cells treated with 1 mM deoxymannojirimycin (dMJ, mannosidase inhibitor) increased sensitivity to CVN, suggesting that glycans attached at other sites on HA1 that typically are not high-mannosidic became so due to dMJ treatment. Further evaluation showed that the Asp225Gly mutant virus was sensitive to the inhibitor and did not kill mice or induce weight loss. The CVN-R virus was also avirulent to mice. The double-mutant CVN-MR viruses were resistant to CVN and caused deaths and severe weight loss in mice. CVN-R virus subjected to mouse adaptation acquired the 225 mutation and a lethal phenotype. Thus, the 225 mutation in the HA receptor-binding site in combination with a loss of glycan at Asn (63 or 94a) are important for mouse adaptation in this virus. The mutations reported here causing resistance to CVN are consistent with its known mode of action.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Utah State University, Logan, UT, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Leyssen P, De Clercq E, Neyts J. Molecular strategies to inhibit the replication of RNA viruses. Antiviral Res 2008; 78:9-25. [PMID: 18313769 PMCID: PMC7114363 DOI: 10.1016/j.antiviral.2008.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 12/24/2022]
Abstract
There are virtually no antiviral drugs available for the treatment of infections with RNA viruses. This is particularly worrisome since most of the highly pathogenic and emerging viruses are, and will likely continue to be, RNA viruses. These viruses can cause acute, severe illness, including severe respiratory disease, hemorrhagic fever and encephalitis, with a high case fatality rate. It is important to have potent and safe drugs at hand that can be used for the treatment or prophylaxis of such infections. Drugs approved for the treatment of RNA virus infections (other than HIV) are the influenza M2 channel inhibitors, amantadine and rimantadine; the influenza neuraminidase inhibitors, oseltamivir and zanamivir, and ribavirin for the treatment of infections with respiratory syncytial virus and hepatitis C virus. The molecular mechanism(s) by which ribavirin inhibits viral replication, such as depletion of intracellular GTP pools and induction of error catastrophe, may not readily allow the design of analogues that are more potent/selective than the parent drug. Highly pathogenic RNA viruses belong to a variety of virus families, each having a particular replication strategy, thus offering a wealth of potential targets to selectively inhibit viral replication. We here provide a non-exhaustive review of potential experimental strategies, using small molecules, to inhibit the replication of several RNA viruses. Other approaches, such as the use of interferon or other host-response modifiers, immune serum or neutralizing antibodies, are not addressed in this review.
Collapse
Affiliation(s)
| | | | - Johan Neyts
- Rega Institute for Medical Research, Catholic University Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|