1
|
Tang H, Zou X, Chen P, Wang Y, Gao S, Wang T, Xu Y, Ji SL. Broxyquinoline targets NLRP3 to inhibit inflammasome activation and alleviate NLRP3-associated inflammatory diseases. Int Immunopharmacol 2025; 156:114687. [PMID: 40253767 DOI: 10.1016/j.intimp.2025.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
The NLR family pyrin domain-containing 3 (NLRP3) inflammasome is responsible for various pathogenic and non-pathogenic damage signals and plays a critical role in host defense against pathogens and physiological damage. However, inflammasome activation and its subsequent effects also lead to a variety of inflammatory diseases. In this study, we identified broxyquinoline, an FDA-approved antimicrobial drug, as a effective NLRP3 inflammasome inhibitor. Broxyquinoline suppressed NLRP3 inflammasome-dependent interleukin-1β (IL-1β) release, but did not affect NLRC4 or AIM2 inflammasome activation. Mechanistically, broxyquinoline directly targets Arg165 of NLRP3 protein, thus preventing NEK7-NLRP3 interaction, NLRP3 oligomerization, and ASC speck formation, without affecting the NF-κB pathway. Consequently, broxyquinoline significantly attenuated the progression of monosodium urate (MSU)-induced peritonitis and myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE) in murine models. In conclusion, we demonstrated that broxyquinoline directly targets the NLRP3 protein to suppress the activation of NLRP3 inflammasome and provide a promising therapeutic agent for NLRP3 inflammasome-associated diseases.
Collapse
MESH Headings
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Animals
- Inflammasomes/metabolism
- Inflammasomes/antagonists & inhibitors
- Mice
- Peritonitis/drug therapy
- Peritonitis/chemically induced
- Peritonitis/immunology
- Mice, Inbred C57BL
- Humans
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Anti-Inflammatory Agents/therapeutic use
- Anti-Inflammatory Agents/pharmacology
- NIMA-Related Kinases/metabolism
- Interleukin-1beta/metabolism
- Female
- Uric Acid
Collapse
Affiliation(s)
- Huaiping Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xinxin Zou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Peipei Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yunshu Wang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Tingting Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Nanjing Neurology Clinical Medical Center, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| | - Sen-Lin Ji
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Verma S, Dangi RS, Rajak MK, Pal RK, Sundd M. The apo-acyl coenzyme A binding protein of Leishmania major forms a unique 'AXXA' motif mediated dimer. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141016. [PMID: 38615987 DOI: 10.1016/j.bbapap.2024.141016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Acyl-Coenzyme A binding domain containing proteins (ACBDs) are ubiquitous in nearly all eukaryotes. They can exist as a free protein, or a domain of a large, multidomain, multifunctional protein. Besides modularity, ACBDs also display multiplicity. The same organism may have multiple ACBDs, differing in sequence and organization. By virtue of this diversity, ACBDs perform functions ranging from transport, synthesis, trafficking, signal transduction, transcription, and gene regulation. In plants and some microorganisms, these ACBDs are designated ACBPs (acyl-CoA binding proteins). The simplest ACBD/ACBP is a small, ∼10 kDa, soluble protein, comprising the acyl-CoA binding (ACB) domain. Most of these small ACBDs exist as monomers, while a few show a tendency to oligomerize. In sync with those studies, we report the crystal structure of two ACBDs from Leishmania major, named ACBP103, and ACBP96 based on the number of residues present. Interestingly, ACBP103 crystallized as a monomer and a dimer under different crystallization conditions. Careful examination of the dimer disclosed an exposed 'AXXA' motif in the helix I of the two ACBP103 monomers, aligned in a head-to-tail arrangement in the dimer. Glutaraldehyde cross-linking studies confirm that apo-ACBP103 can self-associate in solution. Isothermal titration calorimetry studies further show that ACBP103 can bind ligands ranging from C8 - to C20-CoA, and the data could be best fit to a 'two sets of sites'/sequential binding site model. Taken together, our studies show that Leishmania major ACBP103 can self-associate in the apo-form through a unique dimerization motif, an interaction that may play an important role in its function.
Collapse
Affiliation(s)
- Shalini Verma
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Rohit Singh Dangi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Manoj Kumar Rajak
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Ravi Kant Pal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
3
|
Ali M, Xu C, Nawaz S, Ahmed AE, Hina Q, Li K. Anti-Cryptosporidial Drug-Discovery Challenges and Existing Therapeutic Avenues: A "One-Health" Concern. Life (Basel) 2024; 14:80. [PMID: 38255695 PMCID: PMC10820218 DOI: 10.3390/life14010080] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Cryptosporidiosis is the leading cause of life-threatening diarrheal infection, especially in infants. Oocysts contaminate the environment, and also, being a zoonotic disease, cryptosporidiosis is a threat to One Health. Nitazoxanide is the only FDA-approved drug, effective only in immunocompetent adults, and is not safe for infants. The absence of mitochondria and apicoplast, the presence of an electron-dense band (ED band), hindrances in its genetic and phenotypic manipulations, and its unique position inside the host cell are some challenges to the anti-cryptosporidial drug-discovery process. However, many compounds, including herbal products, have shown efficacy against Cryptosporidium during in vitro and in vivo trials. Still, the "drug of choice" against this protozoan parasite, especially in immunocompromised individuals and infants, has not yet been explored. The One-Health approach addresses this issue, focusing on the intersection of animal, human, and environmental health. The objective of this review is to provide knowledge about novel anti-cryptosporidial drug targets, available treatment options with associated limitations, and possible future shifts toward natural products to treat cryptosporidiosis. The current review is organized to address the treatment and prevention of cryptosporidiosis. An anti-cryptosporidial drug that is effective in immunocompromised individuals and infants is a necessity of our time.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Marquez-Gomez PL, Kruyer NS, Eisen SL, Torp LR, Howie RL, Jones EV, France S, Peralta-Yahya P. Discovery of 8-Hydroxyquinoline as a Histamine Receptor 2 Blocker Scaffold. ACS Synth Biol 2022; 11:2820-2828. [PMID: 35930594 PMCID: PMC9396701 DOI: 10.1021/acssynbio.2c00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Histamine receptor 2 (HRH2) activation in
the stomach
results in gastric acid secretion, and HRH2 blockers are
used for the treatment of peptidic ulcers and acid reflux. Over-the-counter
HRH2 blockers carry a five-membered aromatic heterocycle,
with two of them additionally carrying a tertiary amine that decomposes
to N-nitrosodimethylamine, a human carcinogen. To discover a novel
HRH2 blocker scaffold to serve in the development of next-generation
HRH2 blockers, we developed an HRH2-based sensor
in yeast by linking human HRH2 activation to cell luminescence.
We used the HRH2-based sensor to screen a 403-member anti-infection
chemical library and identified three HRH2 blockers, chlorquinaldol,
chloroxine, and broxyquinoline, all sharing an 8-hydroxyquinoline
scaffold, which is not found among known HRH2 antagonists.
Critically, we validate their HRH2-blocking ability in
mammalian cells. Molecular docking suggests that the HRH2 blockers bind the histamine binding pocket and structure–activity
data point toward these blockers acting as competitive antagonists.
Chloroxine and broxyquinoline are antimicrobials that can be found
in the gastrointestinal tract at concentrations that would block HRH2, thus likely modulating gastric acid secretion. Taken together,
this work demonstrates the utility of GPCR-based sensors for rapid
drug discovery applications, identifies a novel HRH2 blocker
scaffold, and provides further evidence that antimicrobials not only
target the human microbiota but also the human host.
Collapse
Affiliation(s)
- Paola L Marquez-Gomez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nicholas S Kruyer
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sara L Eisen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lily R Torp
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rebecca L Howie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Elizabeth V Jones
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stefan France
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pamela Peralta-Yahya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Khan SM, Garcia Hernandez A, Allaie IM, Grooms GM, Li K, Witola WH, Stec J. Activity of (1-benzyl-4-triazolyl)-indole-2-carboxamides against Toxoplasma gondii and Cryptosporidium parvum. Int J Parasitol Drugs Drug Resist 2022; 19:6-20. [PMID: 35462232 PMCID: PMC9046076 DOI: 10.1016/j.ijpddr.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
Parasitic diseases such as toxoplasmosis and cryptosporidiosis remain serious global health challenges, not only to humans but also to domestic animals and wildlife. With only limited treatment options available, Toxoplasma gondii and Cryptosporidium parvum (the causative agents of toxoplasmosis and cryptosporidiosis, respectively) constitute a substantial health threat especially to young children and immunocompromised individuals. Herein, we report the synthesis and biological evaluation of a series of novel (1-benzyl-4-triazolyl)-indole-2-carboxamides and related compounds that show efficacy against T. gondii and C. parvum. Closely related analogs 7c (JS-2-30) and 7e (JS-2-44) showed low micromolar activity with IC50 indices ranging between 2.95 μM and 7.63 μM against both T. gondii and C. parvum, whereas the compound representing (1-adamantyl)-4-phenyl-triazole, 11b (JS-2-41), showed very good activity with an IC50 of 1.94 μM, and good selectivity against T. gondii in vitro. Importantly, compounds JS-2-41 and JS-2-44 showed appreciable in vivo efficacy in decreasing the number of T. gondii cysts in the brains of Brown Norway rats. Together, these results indicate that (1-benzyl-4-triazolyl)-indole-2-carboxamides and (1-adamantyl)-4-phenyl-triazoles are potential hits for medicinal chemistry explorations in search for novel antiparasitic agents for effective treatment of cryptosporidiosis and toxoplasmosis.
Collapse
Affiliation(s)
- Shahbaz M Khan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL, 61802, USA
| | - Anolan Garcia Hernandez
- Chicago State University, College of Pharmacy, Department of Pharmaceutical Sciences, 9501 S. King Drive, Chicago, IL, 60628, USA
| | - Idrees Mehraj Allaie
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL, 61802, USA
| | - Gregory M Grooms
- Chicago State University, College of Pharmacy, Department of Pharmaceutical Sciences, 9501 S. King Drive, Chicago, IL, 60628, USA
| | - Kun Li
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL, 61802, USA; Institute of Traditional Chinese Veterinary Medicine, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - William H Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL, 61802, USA.
| | - Jozef Stec
- Chicago State University, College of Pharmacy, Department of Pharmaceutical Sciences, 9501 S. King Drive, Chicago, IL, 60628, USA; Marshall B. Ketchum University, College of Pharmacy, Department of Pharmaceutical Sciences, 2575 Yorba Linda Blvd., Fullerton, CA, 82831, USA.
| |
Collapse
|
6
|
Love MS, McNamara CW. Phenotypic screening techniques for Cryptosporidium drug discovery. Expert Opin Drug Discov 2020; 16:59-74. [PMID: 32892652 DOI: 10.1080/17460441.2020.1812577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Two landmark epidemiological studies identified Cryptosporidium spp. as a significant cause of diarrheal disease in pediatric populations in resource-limited countries. Notably, nitazoxanide is the only approved drug for treatment of cryptosporidiosis but shows limited efficacy. As a result, many drug discovery efforts have commenced to find improved treatments. The unique biology of Cryptosporidium presents challenges for traditional drug discovery methods, which has inspired new assay platforms to study parasite biology and drug screening. Areas covered: The authors review historical advancements in phenotypic-based assays and techniques for Cryptosporidium drug discovery, as well as recent advances that will define future drug discovery. The reliance on phenotypic-based screens and repositioning of phenotypic hits from other pathogens has quickly created a robust pipeline of potential cryptosporidiosis therapeutics. The latest advances involve new in vitro culture methods for oocyst generation, continuous culturing capabilities, and more physiologically relevant assays for testing compounds. Expert opinion: Previous phenotypic screening techniques have laid the groundwork for recent cryptosporidiosis drug discovery efforts. The resulting improved methodologies characterize compound activity, identify, and validate drug targets, and prioritize new compounds for drug development. The most recent improvements in phenotypic assays are poised to help advance compounds into clinical development.
Collapse
Affiliation(s)
- Melissa S Love
- Calibr, a division of The Scripps Research Institute , La Jolla, CA, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute , La Jolla, CA, USA
| |
Collapse
|
7
|
Charania R, Wade BE, McNair NN, Mead JR. Changes in the Microbiome of Cryptosporidium-Infected Mice Correlate to Differences in Susceptibility and Infection Levels. Microorganisms 2020; 8:microorganisms8060879. [PMID: 32532051 PMCID: PMC7356575 DOI: 10.3390/microorganisms8060879] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Cryptosporidium spp. are opportunistic protozoan parasites that infect epithelial cells of the small intestine, causing diarrheal illness in humans. Differences in severity may be due to the immunological status of the host, malnutrition or prior exposure but may also be due to differences in the host gut flora. We examined changes in bacterial flora following antibiotic treatment to determine how cryptosporidial infections and gut integrity were affected by alterations in the microbiome. DNA was extracted from fecal and intestinal samples during peak infection. V4 region amplicons were generated and sequenced using 16sRNA on an Illumina MiSeq. Species evenness and richness were estimated using the Shannon diversity index. There was a significant decrease in anaerobes and overgrowth of Enterobacteriaceae in mice treated with cloxacillin. We also examined levels of short-chain fatty acids in fecal samples. There was a significant decrease in acetate, propionate, and butyrate in these same mice. Concurrent with the shift in bacterial infection was a significant increase in severity of cryptosporidial infection and increase in gut permeability. Treatment with other antibiotics significantly altered the microbiome but did not change the infection, suggesting that specific alterations in the host microbiome allow for more favorable growth of the parasite.
Collapse
Affiliation(s)
- Raheela Charania
- Department of Pediatrics, Emory University, Atlanta, GA 30033, USA; (R.C.); (B.E.W.); (N.N.M.)
| | - Brandy E. Wade
- Department of Pediatrics, Emory University, Atlanta, GA 30033, USA; (R.C.); (B.E.W.); (N.N.M.)
| | - Nina N. McNair
- Department of Pediatrics, Emory University, Atlanta, GA 30033, USA; (R.C.); (B.E.W.); (N.N.M.)
| | - Jan R. Mead
- Department of Pediatrics, Emory University, Atlanta, GA 30033, USA; (R.C.); (B.E.W.); (N.N.M.)
- Atlanta VA Medical Center, Decatur, GA 30022, USA
- Correspondence:
| |
Collapse
|
8
|
Zhou B, Fu Y, Zhang H, Wang X, Jin G, Xu J, Liu Q, Liu J. Functional characterization of acyl-CoA binding protein in Neospora caninum. Parasit Vectors 2020; 13:85. [PMID: 32070415 PMCID: PMC7029560 DOI: 10.1186/s13071-020-3967-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background Lipid metabolism is pivotal for the growth of apicomplexan parasites. Lipid synthesis requires bulk carbon skeleton acyl-CoAs, the transport of which depends on the acyl-CoA binding protein (ACBP). In Neospora caninum, the causative agent of neosporosis, the FASII pathway is required for growth and pathogenicity. However, little is known about the fatty acid transport mechanism in N. caninum. Methods We have identified a cytosolic acyl-CoA binding protein, with highly conserved amino acid residues and a typical acyl-CoA binding domain in N. caninum. The recombinant NcACBP protein was expressed to verify the binding activities of NcACBP in vitro, and the heterologous expression of NcACBP in Δacbp yeast in vivo. Lipid extraction from ΔNcACBP or the wild-type of N. caninum was analyzed by GC-MS or TLC. Furthermore, transcriptome analysis was performed to compare the gene expression in different strains. Results The NcACBP recombinant protein was able to specifically bind acyl-CoA esters in vitro. A yeast complementation assay showed that heterologous expression of NcACBP rescued the phenotypic defects in Δacbp yeast, indicating of the binding activity of NcACBP in vivo. The disruption of NcACBP did not perturb the parasite’s growth but enhanced its pathogenicity in mice. The lipidomic analysis showed that disruption of NcACBP caused no obvious changes in the overall abundance and turnover of fatty acids while knockout resulted in the accumulation of triacylglycerol. Transcriptional analysis of ACBP-deficient parasites revealed differentially expressed genes involved in a wide range of biological processes such as lipid metabolism, posttranslational modification, and membrane biogenesis. Conclusions Our study demonstrated that genetic ablation of NcACBP did not impair the survival and growth phenotype of N. caninum but enhanced its pathogenicity in mice. This deletion did not affect the overall fatty acid composition but modified the abundance of TAG. The loss of NcACBP resulted in global changes in the expression of multiple genes. This study provides a foundation for elucidating the molecular mechanism of lipid metabolism in N. caninum.
Collapse
Affiliation(s)
- Bingxin Zhou
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yong Fu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Heng Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xianmei Wang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Gaowei Jin
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jianhai Xu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China. .,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
9
|
Kumar A, Ghosh DK, Ranjan A. Mefloquine binding to human acyl-CoA binding protein leads to redox stress-mediated apoptotic death of human neuroblastoma cells. Neurotoxicology 2020; 77:169-180. [PMID: 31987860 DOI: 10.1016/j.neuro.2020.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Malaria is an infectious disease that is caused by different species of Plasmodium. Several antimalarial drugs are used to counter the spread and infectivity of Plasmodium species. However, humans are also vulnerable to many of the antimalarial drugs, including the quinoline-based drugs. In particular, the antimalarial mefloquine has been reported to show adverse neuropsychiatric effects in humans. Though mefloquine is known to be neurotoxic, the molecular mechanisms associated with this phenomenon are still obscure. In this study, we show that mefloquine binds to and inactivates the human acyl-CoA binding protein (hACBP), potentially inducing redox stress in human neuroblastoma cells (IMR-32). Mefloquine occupies the acyl-CoA binding pocket of hACBP by interacting with several of the critical acyl-CoA binding amino acids. This leads to the competitive inhibition of acyl-CoA(s) binding to hACBP and to the accumulation of lipid droplets inside the IMR-32 cells. The accumulation of cytosolic lipid globules and oxidative stress finally correlates with the apoptotic death of cells. Taken together, our study deciphers a mechanistic detail of how mefloquine leads to the death of human cells by perturbing the activity of hACBP and lipid homeostasis.
Collapse
Affiliation(s)
- Abhishek Kumar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, Telangana, India; Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, Telangana, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, Telangana, India.
| |
Collapse
|
10
|
Phopin K, Ruankham W, Prachayasittikul S, Prachayasittikul V, Tantimongcolwat T. Insight into the Molecular Interaction of Cloxyquin (5-chloro-8-hydroxyquinoline) with Bovine Serum Albumin: Biophysical Analysis and Computational Simulation. Int J Mol Sci 2019; 21:E249. [PMID: 31905871 PMCID: PMC6981711 DOI: 10.3390/ijms21010249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022] Open
Abstract
Cloxyquin is a potential therapeutic compound possessing various bioactivities, especially antibacterial, antifungal, cardioprotective, and pain relief activities. Herein, the interaction mechanism between cloxyquin and bovine serum albumin (BSA) has been elucidated in order to fulfill its pharmacokinetic and pharmacodynamic gaps essential for further development as a therapeutic drug. Multi-spectroscopic and biophysical model analysis suggested that cloxyquin interacts with BSA via a static process by ground-state complex formation. Its binding behavior emerged as a biphasic fashion with a moderate binding constant at the level of 104 M-1. Thermodynamic analysis and molecular docking simulation concurrently revealed that hydrophobic interaction is a major driving force for BSA-cloxyquin complexation. Binding of cloxyquin tends to slightly enlarge the monomeric size of BSA without a significant increase of aggregate fraction. Cloxyquin preferentially binds into the fatty acid binding site 5 (FA5) of the BSA via hydrophobic interaction amongst its quinoline scaffold and Phe550, Leu531, and Leu574 residues of BSA. The quinoline ring and hydroxyl moiety of cloxyquin also form the π-π interaction and the hydrogen bond with Phe506. Our data indicate a potential function of serum albumin as a carrier of cloxyquin in blood circulation.
Collapse
Affiliation(s)
- Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Waralee Ruankham
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
11
|
Fu Y, Cui X, Liu J, Zhang X, Zhang H, Yang C, Liu Q. Synergistic roles of acyl-CoA binding protein (ACBP1) and sterol carrier protein 2 (SCP2) in Toxoplasma
lipid metabolism. Cell Microbiol 2018; 21:e12970. [DOI: 10.1111/cmi.12970] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/13/2018] [Accepted: 10/21/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Yong Fu
- National Animal Protozoa Laboratory, College of Veterinary Medicine; China Agricultural University; Beijing China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Xia Cui
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning; Beijing Research Centre for Preventive Medicine; Beijing China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine; China Agricultural University; Beijing China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Xiao Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine; China Agricultural University; Beijing China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Heng Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine; China Agricultural University; Beijing China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Congshan Yang
- National Animal Protozoa Laboratory, College of Veterinary Medicine; China Agricultural University; Beijing China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine; China Agricultural University; Beijing China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine; China Agricultural University; Beijing China
| |
Collapse
|
12
|
Comprehensive Characterization of Toxoplasma Acyl Coenzyme A-Binding Protein TgACBP2 and Its Critical Role in Parasite Cardiolipin Metabolism. mBio 2018; 9:mBio.01597-18. [PMID: 30352931 PMCID: PMC6199492 DOI: 10.1128/mbio.01597-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is one of the most successful human parasites, infecting nearly one-third of the total world population. T. gondii tachyzoites residing within parasitophorous vacuoles (PVs) can acquire fatty acids both via salvage from host cells and via de novo synthesis pathways for membrane biogenesis. However, although fatty acid fluxes are known to exist in this parasite, how fatty acids flow through Toxoplasma lipid metabolic organelles, especially mitochondria, remains unknown. In this study, we demonstrated that Toxoplasma expresses an active ankyrin repeat containing protein TgACBP2 to coordinate cardiolipin metabolism. Specifically, HMA acquisition resulting from heterologous functional expression of MAF1 rescued growth and lipid metabolism defects in ACBP2-deficient type II parasites, manifesting the complementary role of host mitochondria in parasite cardiolipin metabolism. This work highlights the importance of TgACBP2 in parasite cardiolipin metabolism and provides evidence for metabolic association of host mitochondria with T. gondii. Acyl coenzyme A (CoA)-binding protein (ACBP) can bind acyl-CoAs with high specificity and affinity, thus playing multiple roles in cellular functions. Mitochondria of the apicomplexan parasite Toxoplasma gondii have emerged as key organelles for lipid metabolism and signaling transduction. However, the rationale for how this parasite utilizes acyl-CoA-binding protein to regulate mitochondrial lipid metabolism remains unclear. Here, we show that an ankyrin repeat-containing protein, TgACBP2, is localized to mitochondria and displays active acyl-CoA-binding activities. Dephosphorylation of TgACBP2 is associated with relocation from the plasma membrane to the mitochondria under conditions of regulation of environmental [K+]. Under high [K+] conditions, loss of ACBP2 induced mitochondrial dysfunction and apoptosis-like cell death. Disruption of ACBP2 caused growth and virulence defects in the type II strain but not in type I parasites. Interestingly, mitochondrial association factor-1 (MAF1)-mediated host mitochondrial association (HMA) restored the growth ability of ACBP2-deficient type II parasites. Lipidomics analysis indicated that ACBP2 plays key roles in the cardiolipin metabolism of type II parasites and that MAF1 expression complemented the lipid metabolism defects of ACBP2-deficient type II parasites. In addition, disruption of ACBP2 caused attenuated virulence of Prugniuad (Pru) parasites for mice. Taking the results collectively, these data indicate that ACBP2 is critical for the growth and virulence of type II parasites and for the growth of type I parasites under high [K+] conditions.
Collapse
|
13
|
Chen JJ, Rateb ME, Love MS, Xu Z, Yang D, Zhu X, Huang Y, Zhao LX, Jiang Y, Duan Y, McNamara CW, Shen B. Herbicidins from Streptomyces sp. CB01388 Showing Anti- Cryptosporidium Activity. JOURNAL OF NATURAL PRODUCTS 2018; 81:791-797. [PMID: 29469575 DOI: 10.1021/acs.jnatprod.7b00850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A high-content imaging assay was used to screen the fraction collection of the Natural Product Library at The Scripps Research Institute for inhibitors of Cryptosporidium parvum. A chemical investigation of one strain, Streptomyces sp. CB01388, resulted in the isolation of six herbicidins (1-6), one of which is new (herbicidin L, 1). Five of the six herbicidins (1-3, 5, 6) showed moderate inhibitory activity against C. parvum, with 1 and 6 comparable to the FDA-approved drug nitazoxanide, and 2-6 showed no toxicity to the host HCT-8 cells and human HEK293T and HepG2 cells. These findings highlight the herbicidin scaffold for anti- Cryptosporidium drug development.
Collapse
Affiliation(s)
- Jian-Jun Chen
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Mostafa E Rateb
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Melissa S Love
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Zhengren Xu
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Dong Yang
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410013 , People's Republic of China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
| | - Li-Xing Zhao
- Yunnan Institute of Microbiology , Yunnan University , Kunming , Yunnan 650091 , People's Republic of China
| | - Yi Jiang
- Yunnan Institute of Microbiology , Yunnan University , Kunming , Yunnan 650091 , People's Republic of China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410013 , People's Republic of China
| | - Case W McNamara
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Ben Shen
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Department of Molecular Medicine , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| |
Collapse
|
14
|
Eltahan R, Guo F, Zhang H, Xiang L, Zhu G. Discovery of ebselen as an inhibitor of Cryptosporidium parvum glucose-6-phosphate isomerase (CpGPI) by high-throughput screening of existing drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:43-49. [PMID: 29414105 PMCID: PMC6114080 DOI: 10.1016/j.ijpddr.2018.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 12/30/2022]
Abstract
Cryptosporidium parvum is a water-borne and food-borne apicomplexan pathogen. It is one of the top four diarrheal-causing pathogens in children under the age of five in developing countries, and an opportunistic pathogen in immunocompromised individuals. Unlike other apicomplexans, C. parvum lacks Kreb's cycle and cytochrome-based respiration, thus relying mainly on glycolysis to produce ATP. In this study, we characterized the primary biochemical features of the C. parvum glucose-6-phosphate isomerase (CpGPI) and determined its Michaelis constant towards fructose-6-phosphate (Km = 0.309 mM, Vmax = 31.72 nmol/μg/min). We also discovered that ebselen, an organoselenium drug, was a selective inhibitor of CpGPI by high-throughput screening of 1200 known drugs. Ebselen acted on CpGPI as an allosteric noncompetitive inhibitor (IC50 = 8.33 μM; Ki = 36.33 μM), while complete inhibition of CpGPI activity was not achieved. Ebselen could also inhibit the growth of C. parvum in vitro (EC50 = 165 μM) at concentrations nontoxic to host cells, albeit with a relatively small in vitro safety window of 4.2 (cytotoxicity TC50 on HCT-8 cells = 700 μM). Additionally, ebselen might also target other enzymes in the parasite, leading to the parasite growth reduction. Therefore, although ebselen is useful in studying the inhibition of CpGPI enzyme activity, further proof is needed to chemically and/or genetically validate CpGPI as a drug target. Cryptosporidium parvum possesses a single glucose-6-phosphate isomerase (CpGPI). CpGPI displays Michaelis-Menten kinetics towards fructose-6P (Km = 0.309 mM). The organoselenium ebselen is a CpGPI inhibitor identified from 1200 existing drugs. Ebselen displays allosteric noncompetitive inhibition on CpGPI (Ki = 36.33 μM). Ebeselen could inhibit the growth of C. parvum in vitro (EC50 = 165 μM).
Collapse
Affiliation(s)
- Rana Eltahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Lixin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA.
| |
Collapse
|
15
|
Yu X, Zhang H, Zhu G. Characterization of Host Cell Mutants Significantly Resistant to Cryptosporidium parvum Infection. J Eukaryot Microbiol 2017; 64:843-849. [PMID: 28432811 DOI: 10.1111/jeu.12419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 11/30/2022]
Abstract
Cryptosporidium parvum is a parasitic protist and a causative agent of mild-to-severe diarrheal diseases in humans and animals. Despite its globally recognized importance, knowledge on the mechanism of parasite invasion and molecular interactions between host cells and the parasite is limited. Here, we report the establishment of 43 mutant cell lines derived from HCT-8 cells by UV-induced mutagenesis and the characterization of three mutants with significantly reduced susceptibility to cryptosporidial infection. Based on qRT-PCR assay performed at 18 h postinfection time, the parasite loads could be reduced by ~45%, ~35%, and ~20% in mutants A05, B08, and B12, respectively (p < 0.001 in all three mutants vs. HCT-8 cells). The mutagenesis mainly affected the attachment of parasite in A05 (i.e. ~30% reduction, p < 0.001 vs. HCT-8), and intracellular development in B08 and B12. The three cell mutants may serve as valuable reagents to further investigate the mechanism of parasite invasion and intracellular development by identifying the gene mutations associated with the parasite attachment (A05) and intracellular development (B08 and B12).
Collapse
Affiliation(s)
- Xue Yu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, Texas, USA
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, Texas, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, Texas, USA
| |
Collapse
|
16
|
Love MS, Beasley FC, Jumani RS, Wright TM, Chatterjee AK, Huston CD, Schultz PG, McNamara CW. A high-throughput phenotypic screen identifies clofazimine as a potential treatment for cryptosporidiosis. PLoS Negl Trop Dis 2017; 11:e0005373. [PMID: 28158186 PMCID: PMC5310922 DOI: 10.1371/journal.pntd.0005373] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/15/2017] [Accepted: 01/30/2017] [Indexed: 11/19/2022] Open
Abstract
Cryptosporidiosis has emerged as a leading cause of non-viral diarrhea in children under five years of age in the developing world, yet the current standard of care to treat Cryptosporidium infections, nitazoxanide, demonstrates limited and immune-dependent efficacy. Given the lack of treatments with universal efficacy, drug discovery efforts against cryptosporidiosis are necessary to find therapeutics more efficacious than the standard of care. To date, cryptosporidiosis drug discovery efforts have been limited to a few targeted mechanisms in the parasite and whole cell phenotypic screens against small, focused collections of compounds. Using a previous screen as a basis, we initiated the largest known drug discovery effort to identify novel anticryptosporidial agents. A high-content imaging assay for inhibitors of Cryptosporidium parvum proliferation within a human intestinal epithelial cell line was miniaturized and automated to enable high-throughput phenotypic screening against a large, diverse library of small molecules. A screen of 78,942 compounds identified 12 anticryptosporidial hits with sub-micromolar activity, including clofazimine, an FDA-approved drug for the treatment of leprosy, which demonstrated potent and selective in vitro activity (EC50 = 15 nM) against C. parvum. Clofazimine also displayed activity against C. hominis-the other most clinically-relevant species of Cryptosporidium. Importantly, clofazimine is known to accumulate within epithelial cells of the small intestine, the primary site of Cryptosporidium infection. In a mouse model of acute cryptosporidiosis, a once daily dosage regimen for three consecutive days or a single high dose resulted in reduction of oocyst shedding below the limit detectable by flow cytometry. Recently, a target product profile (TPP) for an anticryptosporidial compound was proposed by Huston et al. and highlights the need for a short dosing regimen (< 7 days) and formulations for children < 2 years. Clofazimine has a long history of use and has demonstrated a good safety profile for a disease that requires chronic dosing for a period of time ranging 3-36 months. These results, taken with clofazimine's status as an FDA-approved drug with over four decades of use for the treatment of leprosy, support the continued investigation of clofazimine both as a new chemical tool for understanding cryptosporidium biology and a potential new treatment of cryptosporidiosis.
Collapse
Affiliation(s)
- Melissa S. Love
- California Institute for Biomedical Research, La Jolla, California, United States of America
| | - Federico C. Beasley
- California Institute for Biomedical Research, La Jolla, California, United States of America
| | - Rajiv S. Jumani
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Timothy M. Wright
- California Institute for Biomedical Research, La Jolla, California, United States of America
| | - Arnab K. Chatterjee
- California Institute for Biomedical Research, La Jolla, California, United States of America
| | - Christopher D. Huston
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Peter G. Schultz
- California Institute for Biomedical Research, La Jolla, California, United States of America
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Case W. McNamara
- California Institute for Biomedical Research, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Low-dimensional compounds containing bioactive ligands. Part VIII: DNA interaction, antimicrobial and antitumor activities of ionic 5,7-dihalo-8-quinolinolato palladium(II) complexes with K+ and Cs+ cations. J Inorg Biochem 2017; 167:80-88. [DOI: 10.1016/j.jinorgbio.2016.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/10/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022]
|
18
|
Chellan P, Sadler PJ, Land KM. Recent developments in drug discovery against the protozoal parasites Cryptosporidium and Toxoplasma. Bioorg Med Chem Lett 2017; 27:1491-1501. [PMID: 28242275 DOI: 10.1016/j.bmcl.2017.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/19/2022]
Abstract
Apicomplexan parasites cause some of the most devastating human diseases, including malaria, toxoplasmosis, and cryptosporidiosis. New drug discovery is imperative in light of increased resistance. In this digest article, we briefly explore some of the recent and promising developments in new drug discovery against two apicomplexan parasites, Cryptosporidium and Toxoplasma.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry, University of Warwick, Coventry, Warwickshire CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, Warwickshire CV4 7AL, UK
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States.
| |
Collapse
|
19
|
Soupene E, Kao J, Cheng DH, Wang D, Greninger AL, Knudsen GM, DeRisi JL, Kuypers FA. Association of NMT2 with the acyl-CoA carrier ACBD6 protects the N-myristoyltransferase reaction from palmitoyl-CoA. J Lipid Res 2016; 57:288-98. [PMID: 26621918 PMCID: PMC4727424 DOI: 10.1194/jlr.m065003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/13/2023] Open
Abstract
The covalent attachment of a 14-carbon aliphatic tail on a glycine residue of nascent translated peptide chains is catalyzed in human cells by two N-myristoyltransferase (NMT) enzymes using the rare myristoyl-CoA (C(14)-CoA) molecule as fatty acid donor. Although, NMT enzymes can only transfer a myristate group, they lack specificity for C(14)-CoA and can also bind the far more abundant palmitoyl-CoA (C(16)-CoA) molecule. We determined that the acyl-CoA binding protein, acyl-CoA binding domain (ACBD)6, stimulated the NMT reaction of NMT2. This stimulatory effect required interaction between ACBD6 and NMT2, and was enhanced by binding of ACBD6 to its ligand, C(18:2)-CoA. ACBD6 also interacted with the second human NMT enzyme, NMT1. The presence of ACBD6 prevented competition of the NMT reaction by C(16)-CoA. Mutants of ACBD6 that were either deficient in ligand binding to the N-terminal ACBD or unable to interact with NMT2 did not stimulate activity of NMT2, nor could they protect the enzyme from utilizing the competitor C(16)-CoA. These results indicate that ACBD6 can locally sequester C(16)-CoA and prevent its access to the enzyme binding site via interaction with NMT2. Thus, the ligand binding properties of the NMT/ACBD6 complex can explain how the NMT reaction can proceed in the presence of the very abundant competitive substrate, C(16)-CoA.
Collapse
Affiliation(s)
- Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA
| | - Joseph Kao
- Children's Hospital Oakland Research Institute, Oakland, CA
| | - Daniel H Cheng
- Children's Hospital Oakland Research Institute, Oakland, CA
| | - Derek Wang
- Children's Hospital Oakland Research Institute, Oakland, CA
| | - Alexander L Greninger
- Department of Biochemistry and Biophysics, University of California at San Francisco and Howard Hughes Medical Institute, San Francisco, CA
| | - Giselle M Knudsen
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California at San Francisco and Howard Hughes Medical Institute, San Francisco, CA
| | | |
Collapse
|
20
|
Cryptosporidium Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics. PLoS Pathog 2015; 11:e1005250. [PMID: 26562790 PMCID: PMC4642935 DOI: 10.1371/journal.ppat.1005250] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 10/06/2015] [Indexed: 12/27/2022] Open
Abstract
The apicomplexan, Cryptosporidium parvum, possesses a bacterial-type lactate dehydrogenase (CpLDH). This is considered to be an essential enzyme, as this parasite lacks the Krebs cycle and cytochrome-based respiration, and mainly–if not solely, relies on glycolysis to produce ATP. Here, we provide evidence that in extracellular parasites (e.g., sporozoites and merozoites), CpLDH is localized in the cytosol. However, it becomes associated with the parasitophorous vacuole membrane (PVM) during the intracellular developmental stages, suggesting involvement of the PVM in parasite energy metabolism. We characterized the biochemical features of CpLDH and observed that, at lower micromolar levels, the LDH inhibitors gossypol and FX11 could inhibit both CpLDH activity (Ki = 14.8 μM and 55.6 μM, respectively), as well as parasite growth in vitro (IC50 = 11.8 μM and 39.5 μM, respectively). These observations not only reveal a new function for the poorly understood PVM structure in hosting the intracellular development of C. parvum, but also suggest LDH as a potential target for developing therapeutics against this opportunistic pathogen, for which fully effective treatments are not yet available. Cryptosporidians are unique among the apicomplexans in regards to their parasitic life style (e.g., they are intracellular, but undergo extracytoplasmic development within a host membrane-derived structure termed parasitophorous vacuole membrane, PVM) and their metabolism (e.g., they are incapable of de novo nutrient synthesis and rely on glycolysis for the synthesis of ATP). We discovered that the Cryptosporidium parvum bacterial-type L-lactate dehydrogenase (CpLDH) enzyme is cytosolic during the parasite’s motile, extracellular, stages (sporozoites and merozoites), but becomes associated with the PVM during intracellular development, indicating the involvement of the PVM in lactate fermentation. We also observed that micromolar concentrations of the LDH inhibitors gossypol and FX11 inhibit both CpLDH activity and the growth of C. parvum in vitro, suggesting that CpLDH is a potential target for the development of anti-cryptosporidial therapeutics.
Collapse
|
21
|
Huston CD, Spangenberg T, Burrows J, Willis P, Wells TNC, van Voorhis W. A Proposed Target Product Profile and Developmental Cascade for New Cryptosporidiosis Treatments. PLoS Negl Trop Dis 2015; 9:e0003987. [PMID: 26447884 PMCID: PMC4598153 DOI: 10.1371/journal.pntd.0003987] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Christopher D. Huston
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| | | | | | - Paul Willis
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | - Wesley van Voorhis
- Medicines for Malaria Venture, Geneva, Switzerland
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
22
|
Soupene E, Wang D, Kuypers FA. Remodeling of host phosphatidylcholine by Chlamydia acyltransferase is regulated by acyl-CoA binding protein ACBD6 associated with lipid droplets. Microbiologyopen 2015; 4:235-251. [PMID: 25604091 PMCID: PMC4398506 DOI: 10.1002/mbo3.234] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022] Open
Abstract
The bacterial human pathogen Chlamydia trachomatis invades cells as an infectious elementary body (EB). The EB is internalized into a vacuole that is hidden from the host defense mechanism, and is modified to sustain the development of the replicative reticulate body (RB). Inside this parasitophorous compartment, called the inclusion, the pathogen survives supported by an active exchange of nutrients and proteins with the host cell. We show that host lipids are scavenged and modified into bacterial-specific lipids by the action of a shared human-bacterial acylation mechanism. The bacterial acylating enzymes for the essential lipids 1-acyl-sn-glycerol 3-phosphate and 1-acyl-sn-phosphatidylcholine were identified as CT453 and CT775, respectively. Bacterial CT775 was found to be associated with lipid droplets (LDs). During the development of C. trachomatis, the human acyl-CoA carrier hACBD6 was recruited to cytosolic LDs and translocated into the inclusion. hACBD6 protein modulated the activity of CT775 in an acyl-CoA dependent fashion and sustained the activity of the bacterial acyltransferase by buffering the concentration of acyl-CoAs. We propose that disruption of the binding activity of the acyl-CoA carrier might represent a new drug-target to prevent growth of C. trachomatis.
Collapse
Affiliation(s)
- Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, California USA
| | - Derek Wang
- Children's Hospital Oakland Research Institute, Oakland, California USA
| | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, California USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW To highlight new findings on the relevance of gastrointestinal protozoan infections to global public health in low-income and middle-income countries and suggest new large-scale interventions. RECENT FINDINGS New disease burden assessments and epidemiological studies highlight the role of the major intestinal protozoa as important etiologic disease agents in low-income and middle-income countries. Despite their prevalence and adverse health impact, such information has not yet translated to the implementation of large-scale interventions as exist for helminth infections and other neglected tropical diseases. There are also several key research and development questions that must be addressed for intestinal protozoan infections and the potential need for new tools, for example, drugs, diagnostics, and vaccines. Additional studies have identified new and emerging species of intestinal protozoa relevant to global public health such as Dientamoeba fragilis and Blastocystis hominis and how they too might emerge as important gastrointestinal pathogens in the coming years. SUMMARY New and emerging information on intestinal protozoa are reviewed with emphasis on aspects considered relevant to global health policymakers including prospects for scaling up interventions against intestinal protozoan infections in resource-poor countries.
Collapse
|
24
|
Checkley W, White AC, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM, Fayer R, Griffiths JK, Guerrant RL, Hedstrom L, Huston CD, Kotloff KL, Kang G, Mead JR, Miller M, Petri WA, Priest JW, Roos DS, Striepen B, Thompson RCA, Ward HD, Van Voorhis WA, Xiao L, Zhu G, Houpt ER. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. THE LANCET. INFECTIOUS DISEASES 2014; 15:85-94. [PMID: 25278220 DOI: 10.1016/s1473-3099(14)70772-8] [Citation(s) in RCA: 660] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cryptosporidium spp are well recognised as causes of diarrhoeal disease during waterborne epidemics and in immunocompromised hosts. Studies have also drawn attention to an underestimated global burden and suggest major gaps in optimum diagnosis, treatment, and immunisation. Cryptosporidiosis is increasingly identified as an important cause of morbidity and mortality worldwide. Studies in low-resource settings and high-income countries have confirmed the importance of cryptosporidium as a cause of diarrhoea and childhood malnutrition. Diagnostic tests for cryptosporidium infection are suboptimum, necessitating specialised tests that are often insensitive. Antigen-detection and PCR improve sensitivity, and multiplexed antigen detection and molecular assays are underused. Therapy has some effect in healthy hosts and no proven efficacy in patients with AIDS. Use of cryptosporidium genomes has helped to identify promising therapeutic targets, and drugs are in development, but methods to assess the efficacy in vitro and in animals are not well standardised. Partial immunity after exposure suggests the potential for successful vaccines, and several are in development; however, surrogates of protection are not well defined. Improved methods for propagation and genetic manipulation of the organism would be significant advances.
Collapse
Affiliation(s)
- William Checkley
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins University, Baltimore, MD, USA; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| | - A Clinton White
- Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Devan Jaganath
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Rachel M Chalmers
- National Cryptosporidium Reference Unit, Public Health Wales, Swansea, UK
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Ronald Fayer
- Environmental Microbial Food Safety Laboratory, USDA, Beltsville, MD, USA
| | - Jeffrey K Griffiths
- Department of Public Health and Community Medicine, Tufts University, Boston, MA, USA
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Lizbeth Hedstrom
- Department of Biology and Department of Chemistry, Brandeis University, Waltham, MA, USA
| | | | - Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Jan R Mead
- Department of Pediatrics, Emory University, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Mark Miller
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - R C Andrew Thompson
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Honorine D Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Boston, MA, USA
| | - Wesley A Van Voorhis
- Allergy and Infectious Diseases Division, Departments of Medicine, Global Health, and Microbiology, University of Washington, Seattle, WA, USA
| | - Lihua Xiao
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
25
|
A unique hexokinase in Cryptosporidium parvum, an apicomplexan pathogen lacking the Krebs cycle and oxidative phosphorylation. Protist 2014; 165:701-14. [PMID: 25216472 DOI: 10.1016/j.protis.2014.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 08/10/2014] [Accepted: 08/13/2014] [Indexed: 01/25/2023]
Abstract
Cryptosporidium parvum may cause virtually untreatable infections in AIDS patients, and is recently identified as one of the top four diarrheal pathogens in children in developing countries. Cryptosporidium differs from other apicomplexans (e.g., Plasmodium and Toxoplasma) by lacking many metabolic pathways including the Krebs cycle and cytochrome-based respiratory chain, thus relying mainly on glycolysis for ATP production. Here we report the molecular and biochemical characterizations of a hexokinase in C. parvum (CpHK). Our phylogenetic reconstructions indicated that apicomplexan hexokinases including CpHK were highly divergent from those of humans and animals (i.e., at the base of the eukaryotic clade). CpHK displays unique kinetic features that differ from those in mammals and Toxoplasma gondii (TgHK) in the preference towards various hexoses and its capacity to use ATP and other NTPs. CpHK also displays substrate inhibition by ATP. Moreover, 2-deoxy-D-glucose (2DG) could not only inhibit the CpHK activity, but also the parasite growth in vitro at concentrations nontoxic to host cells (IC(50) = 0.54 mM). While the exact action of 2-deoxy-D-glucose on the parasite is subject to further verification, our data suggest that CpHK and the glycolytic pathway may be explored for developing anti-cryptosporidial therapeutics.
Collapse
|
26
|
Validation of IMP dehydrogenase inhibitors in a mouse model of cryptosporidiosis. Antimicrob Agents Chemother 2013; 58:1603-14. [PMID: 24366728 DOI: 10.1128/aac.02075-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cryptosporidium parasites are a major cause of diarrhea and malnutrition in the developing world, a frequent cause of waterborne disease in the developed world, and a potential bioterrorism agent. Currently, available treatment is limited, and Cryptosporidium drug discovery remains largely unsuccessful. As a result, the pharmacokinetic properties required for in vivo efficacy have not been established. We have been engaged in a Cryptosporidium drug discovery program targeting IMP dehydrogenase (CpIMPDH). Here, we report the activity of eight potent and selective inhibitors of CpIMPDH in the interleukin-12 (IL-12) knockout mouse model, which mimics acute human cryptosporidiosis. Two compounds displayed significant antiparasitic activity, validating CpIMPDH as a drug target. The best compound, P131 (250 mg/kg of body weight/day), performed equivalently to paromomycin (2,000 mg/kg/day) when administered in a single dose and better than paromomycin when administered in three daily doses. One compound, A110, appeared to promote Cryptosporidium infection. The pharmacokinetic, uptake, and permeability properties of the eight compounds were measured. P131 had the lowest systemic distribution but accumulated to high concentrations within intestinal cells. A110 had the highest systemic distribution. These observations suggest that systemic distribution is not required, and may be a liability, for in vivo antiparasitic activity. Intriguingly, A110 caused specific alterations in fecal microbiota that were not observed with P131 or vehicle alone. Such changes may explain how A110 promotes parasitemia. Collectively, these observations suggest a blueprint for the development of anticryptosporidial therapy.
Collapse
|
27
|
Guo F, Zhang H, Fritzler JM, Rider SD, Xiang L, McNair NN, Mead JR, Zhu G. Amelioration of Cryptosporidium parvum infection in vitro and in vivo by targeting parasite fatty acyl-coenzyme A synthetases. J Infect Dis 2013; 209:1279-87. [PMID: 24273180 DOI: 10.1093/infdis/jit645] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cryptosporidium is emerging as 1 of the 4 leading diarrheal pathogens in children in developing countries. Its infections in patients with AIDS can be fatal, whereas fully effective treatments are unavailable. The major goal of this study is to explore parasite fatty acyl-coenzyme A synthetase (ACS) as a novel drug target. METHODS A colorimetric assay was developed to evaluate biochemical features and inhibitory kinetics of Cryptosporidium parvum ACSs using recombinant proteins. Anticryptosporidial efficacies of the ACS inhibitor triacsin C were evaluated both in vitro and in vivo. RESULTS Cryptosporidium ACSs displayed substrate preference toward long-chain fatty acids. The activity of parasite ACSs could be specifically inhibited by triacsin C with the inhibition constant Ki in the nanomolar range. Triacsin C was highly effective against C. parvum growth in vitro (median inhibitory concentration, 136 nmol/L). Most importantly, triacsin C effectively reduced parasite oocyst production up to 88.1% with no apparent toxicity when administered to Cryptosporidium-infected interleukin 12 knockout mice at 8-15 mg/kg/d for 1 week. CONCLUSIONS The findings of this study not only validated Cryptosporidium ACS (and related acyl-[acyl-carrier-protein]-ligases) as pharmacological targets but also indicate that triacsin C and analogues can be explored as potential new therapeutics against the virtually untreatable cryptosporidial infection in immunocompromised patients.
Collapse
Affiliation(s)
- Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Shahiduzzaman M, Daugschies A. Therapy and prevention of cryptosporidiosis in animals. Vet Parasitol 2012; 188:203-14. [DOI: 10.1016/j.vetpar.2012.03.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/26/2012] [Accepted: 03/28/2012] [Indexed: 11/16/2022]
|