1
|
Askari F, Kaur R. Candida glabrata: A Tale of Stealth and Endurance. ACS Infect Dis 2025; 11:4-20. [PMID: 39668745 DOI: 10.1021/acsinfecdis.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Candida (Nakaseomyces) glabrata, an opportunistic human fungal pathogen, causes mucosal and deep-seated infections in immunocompromised individuals. Recently designated as a high-priority fungal pathogen by the World Health Organization (WHO), C. glabrata exhibits low inherent susceptibility to azole antifungals. In addition, about 10% clinical isolates of C. glabrata display co-resistance to both azole and echinocandin drugs. Molecular mechanisms of antifungal resistance and virulence in C. glabrata are currently being delineated in-depth. This Review provides an overview of the epidemiology, biology, drug resistance, tools and host model systems for C. glabrata. Additionally, we discuss the immune evasion strategies that aid C. glabrata in establishing infections in the host. Overall, this Review aims to contribute to ongoing efforts to raise awareness of human pathogenic fungi, the growing threat of antifungal drug resistance and the unmet need for novel antifungal therapies, with an ultimate goal of improving clinical outcomes of affected individuals.
Collapse
Affiliation(s)
- Fizza Askari
- BRIC-Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| | - Rupinder Kaur
- BRIC-Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| |
Collapse
|
2
|
Huang SJ, Lv G, Song YH, Zhao JT, Liu JY, Wang LL, Xiang MJ. Antifungal susceptibility, molecular epidemiology, and clinical risk factors of Candida glabrata in intensive care unit in a Chinese Tertiary Hospital. Front Cell Infect Microbiol 2024; 14:1455145. [PMID: 39435186 PMCID: PMC11491434 DOI: 10.3389/fcimb.2024.1455145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Background The increasing incidence and high mortality rate of Candida glabrata infection in ICU patients is an important issue. Therefore, it is imperative to investigate the antifungal susceptibility profiles and epidemiological characteristics in local regions. Methods Herein, antifungal susceptibility testing was conducted to determine the minimum inhibitory concentrations (MICs) of eight antifungal drugs. Multilocus sequence typing (MLST) was used to study the strain genotype, geographical distribution, and susceptibility to antifungal agents among C. glabrata isolates. The mechanism of echinocandin resistance was explored by sequencing the FKS1 and FKS2 genes (encoding 1,3-β-D-glucan synthases) of echinocandin-resistant C. glabrata strains. Moreover, we further investigated the clinical manifestations and the various risk factors of patients infected with C. glabrata in the ICU. Results We selected 234 C. glabrata isolates from 234 patients in the ICU randomly for the follow-up study. Cross-resistance was found among the ICU C. glabrata isolates. Analysis using MLST showed that the genetic diversity among the C. glabrata isolates was low. Furthermore, sequence type showed no correlation with the antifungal resistance profiles, but was associated with geographical distribution. We also revealed novel mutations in FKS1 (S629P) and FKS2 (W1497stop) that mediated high-level echinocandin resistance (MIC >8 µg/mL). More than 14 days' stay in ICU (P=0.007), Acute Physiology and Chronic Health Evaluation II (APACHE-II) score (P=0.024), prior antifungal exposure (P=0.039) and lung disease (P=0.036) were significantly associated with antifungal resistant/non-wild-type C. glabrata infection. Conclusion Our study shed light on the antifungal susceptibility, molecular epidemiology, and clinical risk factors of C. glabrata in the ICU of a Chinese Tertiary Hospital. Importantly, we revealed the molecular mechanism of echinocandin resistance. These results highlight the significance of continued surveillance in ICUs and provide data support for the treatment of C. glabrata in clinics.
Collapse
Affiliation(s)
- Si-Jia Huang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geng Lv
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hui Song
- The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Tao Zhao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Yan Liu
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Ling Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Jie Xiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Bays DJ, Jenkins EN, Lyman M, Chiller T, Strong N, Ostrosky-Zeichner L, Hoenigl M, Pappas PG, Thompson III GR. Epidemiology of Invasive Candidiasis. Clin Epidemiol 2024; 16:549-566. [PMID: 39219747 PMCID: PMC11366240 DOI: 10.2147/clep.s459600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/15/2024] [Indexed: 09/04/2024] Open
Abstract
Invasive candidiasis (IC) is an increasingly prevalent, costly, and potentially fatal infection brought on by the opportunistic yeast, Candida. Previously, IC has predominantly been caused by C. albicans which is often drug susceptible. There has been a global trend towards decreasing rates of infection secondary to C. albicans and a rise in non-albicans species with a corresponding increase in drug resistance creating treatment challenges. With advances in management of malignancies, there has also been an increase in the population at risk from IC along with a corresponding increase in incidence of breakthrough IC infections. Additionally, the emergence of C. auris creates many challenges in management and prevention due to drug resistance and the organism's ability to transmit rapidly in the healthcare setting. While the development of novel antifungals is encouraging for future management, understanding the changing epidemiology of IC is a vital step in future management and prevention.
Collapse
Affiliation(s)
- Derek J Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Emily N Jenkins
- ASRT, Inc, Atlanta, GA, USA
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meghan Lyman
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tom Chiller
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nora Strong
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Clinical and Translational Fungal Working Group, University of California San Diego, La Jolla, CA, USA
| | - Peter G Pappas
- Division of Infectious Diseases, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George R Thompson III
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, CA, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
4
|
Ravi R, Reghukumar A, A V, Nair SS, N J, S I. Candida-Associated Renal Papillary Necrosis Following Severe COVID-19 Infection. JOURNAL OF BROWN HOSPITAL MEDICINE 2024; 3:94453. [PMID: 40026801 PMCID: PMC11864463 DOI: 10.56305/001c.94453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2025]
Abstract
Candida-associated renal papillary necrosis is rare. The few cases described previously were secondary to candidemia, especially in immunocompromised hosts. We describe two patients who presented with hydroureteronephrosis and were diagnosed with candida-associated renal papillary necrosis. Both patients had a history of severe COVID-19 infection within the past year and had been treated with immunosuppressants. Both patients underwent double J stenting and anti-fungal treatment with fluconazole. One patient recovered completely, while the other patient who had chronic kidney disease stage 4 at diagnosis progressed to dialysis-dependent renal failure later following an episode of bacterial sepsis. The incidence of candida-associated renal papillary necrosis may reflect the immunomodulatory effects of COVID-19, immunosuppressants, or a combination of both.
Collapse
Affiliation(s)
- Ranjani Ravi
- Nephrology Cosmopolitan Hospital, Thiruvananthapuram, Kerala, India
| | - Aravind Reghukumar
- Infectious Diseases Government Medical College Hospital, Thiruvananthapuram, Kerala, India
| | - Vimala A
- Nephrology Cosmopolitan Hospital, Thiruvananthapuram, Kerala, India
| | - Sreeja S Nair
- Nephrology Cosmopolitan Hospital, Thiruvananthapuram, Kerala, India
| | - Jinsi N
- Nephrology Cosmopolitan Hospital, Thiruvananthapuram, Kerala, India
| | - Indu S
- Department of Microbiology Cosmopolitan Hospital, Thiruvananthapuram, Kerala, India
| |
Collapse
|
5
|
Wang LL, Huang SJ, Zhao JT, Liu JY, Xiang MJ. Regulatory role of Mss11 in Candida glabrata virulence: adhesion and biofilm formation. Front Cell Infect Microbiol 2024; 13:1321094. [PMID: 38239503 PMCID: PMC10794409 DOI: 10.3389/fcimb.2023.1321094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Candida glabrata has emerged as a fungal pathogen with high infection and mortality rates, and its primary virulence factors are related to adhesion and biofilm formation. These virulence factors in C.glabrata are primarily mediated by epithelial adhesins (Epas), most of which are encoded in subtelomeric regions and regulated by subtelomeric silencing mechanisms. The transcription factor Mss11, known for its regulatory role in adhesion, biofilm formation, and filamentous growth in Saccharomyces cerevisiae and Candida albicans, has also been implicated in the expression of EPA6, suggesting its potential influence on C.glabrata virulence. The present study aims to determine the regulatory role of Mss11 in the virulence of C. glabrata. Methods In this work, a Δmss11 null mutant and its complemented strain were constructed from a C.glabrata standard strain. The impact of the transcription factor Mss11 on the virulence of C.glabrata was investigated through a series of phenotypic experiments, including the microbial adhesion to hydrocarbons (MATH) test, adherence assay, biofilm assay, scanning electron microscopy and Galleria mellonella virulence assay. Furthermore, transcriptome sequencing, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and chromatin immunoprecipitation sequencing (ChIP-seq) were employed to investigate the molecular mechanisms behind the regulation of Mss11. Results In C.glabrata, the loss of MSS11 led to a significant reduction in several virulence factors including cell surface hydrophobicity, epithelial cell adhesion, and biofilm formation. These observations were consistent with the decreased virulence of the Δmss11 mutant observed in the Galleria mellonella infection model. Further exploration demonstrated that Mss11 modulates C. glabrata virulence by regulating EPA1 and EPA6 expression. It binds to the upstream regions of EPA1 and EPA6, as well as the promoter regions of the subtelomeric silencing-related genes SIR4, RIF1, and RAP1, indicating the dual regulatory role of Mss11. Conclusion Mss11 plays a crucial role in C. glabrata adhesion and biofilm formation, and thus has a broad influence on virulence. This regulation is achieved by regulating the expression of EPA1 and EPA6 through both promoter-specific regulation and subtelomeric silencing.
Collapse
Affiliation(s)
- Lu-Ling Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si-Jia Huang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Tao Zhao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Yan Liu
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Jie Xiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Wang Y, Xu J, Ben Abid F, Salah H, Sundararaju S, Al Ismail K, Wang K, Sara Matthew L, Taj-Aldeen S, Ibrahim EB, Tang P, Perez-Lopez A, Tsui CKM. Population genomic analyses reveal high diversity, recombination and nosocomial transmission among Candida glabrata ( Nakaseomyces glabrata) isolates causing invasive infections. Microb Genom 2024; 10:001179. [PMID: 38226964 PMCID: PMC10868614 DOI: 10.1099/mgen.0.001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Candida glabrata is a commensal yeast of the gastrointestinal tract and skin of humans. However, it causes opportunistic infections in immunocompromised patients, and is the second most common Candida pathogen causing bloodstream infections. Although there are many studies on the epidemiology of C. glabrata infections, the fine- and large-scale geographical nature of C. glabrata remain incompletely understood. Here we investigated both the fine- and large-scale population structure of C. glabrata through genome sequencing of 80 clinical isolates obtained from six tertiary hospitals in Qatar and by comparing with global collections. Our fine-scale analyses revealed high genetic diversity within the Qatari population of C. glabrata and identified signatures of recombination, inbreeding and clonal expansion within and between hospitals, including evidence for nosocomial transmission among coronavirus disease 2019 (COVID-19) patients. In addition to signatures of recombination at the population level, both MATa and MATα alleles were detected in most hospitals, indicating the potential for sexual reproduction in clinical environments. Comparisons with global samples showed that the Qatari C. glabrata population was very similar to those from other parts of the world, consistent with the significant role of recent anthropogenic activities in shaping its population structure. Genome-wide association studies identified both known and novel genomic variants associated with reduced susceptibilities to fluconazole, 5-flucytosine and echinocandins. Together, our genomic analyses revealed the diversity, transmission patterns and antifungal drug resistance mechanisms of C. glabrata in Qatar as well as the relationships between Qatari isolates and those from other parts of the world.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Fatma Ben Abid
- Department of Medicine, Division of Infectious Diseases, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Communicable Disease Centre, Hamad Medical Corporation, Doha, Qatar
| | - Husam Salah
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | | | - Khalil Al Ismail
- Communicable Disease Centre, Hamad Medical Corporation, Doha, Qatar
| | - Kun Wang
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Saad Taj-Aldeen
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Emad B. Ibrahim
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Patrick Tang
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Andres Perez-Lopez
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Clement K. M. Tsui
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Infectious Diseases Research Laboratory, National Center for Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Rojas AE, Cárdenas LY, García MC, Pérez JE. Expression of ERG11, ERG3, MDR1 and CDR1 genes in Candida tropicalis. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:144-155. [PMID: 37721916 PMCID: PMC10575625 DOI: 10.7705/biomedica.6852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/09/2023] [Indexed: 09/20/2023]
Abstract
INTRODUCTION Drug resistance to azoles is a growing problem in the Candida genus. OBJECTIVE To analyze molecularly the genes responsible for fluconazole resistance in Candida tropicalis strains. MATERIALS AND METHODS Nineteen strains, with and without exposure to fluconazole, were selected for this study. The expression of MDR1, CDR1, ERG11, and ERG3 genes was analyzed in sensitive, dose-dependent sensitive, and resistant strains exposed to different concentrations of the antifungal drug. RESULTS MDR1, ERG11 and ERG3 genes were significantly overexpressed in the different sensitivity groups. CDR1 gene expression was not statistically significant among the studied groups. Seven of the eight fluconazole-resistant strains showed overexpression of one or more of the analyzed genes. In some dose-dependent sensitive strains, we found overexpression of CDR1, ERG11, and ERG3. CONCLUSION The frequency of overexpression of ERG11 and ERG3 genes indicates that they are related to resistance. However, the finding of dose-dependent resistant/sensitive strains without overexpression of these genes suggests that they are not exclusive to this phenomenon. More basic research is needed to study other potentially involved genes in the resistance mechanism to fluconazole.
Collapse
Affiliation(s)
- Ana Elisa Rojas
- Grupo de Investigación en Enfermedades Infecciosas - GINEI, Universidad Católica de Manizales, Manizales, Colombia..
| | - Leidy Yurany Cárdenas
- Grupo de Investigación en Enfermería - GRIEN, Universidad Católica de Manizales y Universidad de Caldas, Manizales, Colombia..
| | - María Camila García
- Grupo de Investigación en Enfermedades Infecciosas - GINEI, Universidad Católica de Manizales, Manizales, Colombia..
| | - Jorge Enrique Pérez
- Grupo de Investigación BIOSALUD, Universidad de Caldas, Manizales, Colombia..
| |
Collapse
|
8
|
Bilal H, Zhang D, Shafiq M, Khan MN, chen C, Khan S, Wang Q, Cai L, Islam R, Hu H, Zeng Y. Six-Year Retrospective Analysis of Epidemiology, Risk Factors, and Antifungal Susceptibilities of Candidiasis from a Tertiary Care Hospital in South China. Microbiol Spectr 2023; 11:e0070823. [PMID: 37310269 PMCID: PMC10434190 DOI: 10.1128/spectrum.00708-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023] Open
Abstract
Candidiasis is a life-threatening disease that increases mortality in critically ill patients. However, such epidemiological data are still lacking in underdeveloped regions of China. A retrospective analysis (2016 to 2021) was conducted in Meizhou People's Hospital, China to study the burden of candidiasis, particularly candidemia, and antifungal susceptibilities of the species among hospitalized patients. Of the 7,864 candidiasis cases, 461 (5.86%) were candidemia cases. Candida albicans (64.25%) was the most identified species, followed by C. tropicalis (12.61%), C. glabrata (10.79%), and C. parapsilosis (9.79%). In non-C. albicans (NCA) candidemia cases, the number of C. glabrata cases was higher (102/461, 22.37%) than C. tropicalis (64/461, 14.04%). Gastrointestinal pathology, respiratory dysfunctions, septic shock, and malignancies were common underlying comorbidities, respectively. A central venous catheter was an independent risk factor for both C. albicans and NCA candidemia. The mortality rate was not statistically significant for either C. albicans or NCA. Amphotericin B and 5-flucytosine were highly effective (98 to 100%), while azoles were least effective (67.74 to 95.66%). Candidemia cases caused by C. tropicalis and C. glabrata had significantly lower azole susceptibility than non-candidemia-causing isolates. This study provides valuable information for prescribers to choose the right empirical therapy, for researchers to explore different resistance mechanisms, and for health care managers to control candidiasis better. IMPORTANCE This study provides important information on the burden of candidiasis, particularly candidemia, and the antifungal susceptibility of Candida species among hospitalized patients in an underdeveloped region of China. First, the finding that azoles were least effective against Candida species causing candidemia is particularly noteworthy, as it suggests the possibility of resistance to this class of antifungal agents. This information can guide the choice of empirical therapy and help in the selection of appropriate antifungal agents for the treatment of candidemia, thereby reducing the risk of resistance development. Second, the study provides important information for researchers to explore different resistance mechanisms in Candida species. Finally, the study has important implications for health care managers in controlling the spread of candidiasis. The high prevalence of candidemia cases in the study highlights the need for appropriate infection control measures to prevent the spread of the disease.
Collapse
Affiliation(s)
- Hazrat Bilal
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dongxing Zhang
- Department of Dermatology, Meizhou Dongshan Hospital, Meizhou, Guangdong Province, China
- Department of Dermatology, Meizhou People’s Hospital, Meizhou, Guangdong Province, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Canhua chen
- Clinical Laboratory, Meizhou People's Hospital, Meizhou, Guangdong Province, China
| | - Sabir Khan
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qian Wang
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Medical-Surgical and Experimental Sciences, University of Sassari Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Italy
| | - Lin Cai
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Rehmat Islam
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Haibin Hu
- First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Yuebin Zeng
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
9
|
Ierano C, Percival M, Poole S, Mackie K, Rashidzada Z, Corallo C, Mcmahon JH, Morrissey CO, Duncan A. Echinocandin use in an Australian tertiary hospital: implications for antifungal stewardship. JOURNAL OF PHARMACY PRACTICE AND RESEARCH 2023. [DOI: 10.1002/jppr.1859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Erol Ç, Sarı N, Yanık-Yalçın T, Yeşilkaya A, Asena L, Gür-Güngör S, Kurt-Azap Ö. Ophthalmologic Examination and Echocardiography Should be the Essential Components of Candidemia Bundle. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2023; 5:40-48. [PMID: 38633906 PMCID: PMC10986693 DOI: 10.36519/idcm.2023.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 04/19/2024]
Abstract
Objective Candidemia is the most common form of invasive candidiasis, and it is associated with end-organ involvement, prolonged hospitalization, increased mortality, and higher healthcare costs. Candidemia can lead to metastatic heart and ocular infections. This study aimed to define the incidence, characteristics, and mortality of candidemia episodes and compare the data with our center's previous results. Materials and Methods In this single-center retrospective observational study, we enrolled 250 patients over 18 years diagnosed with candidemia between January 2015 and December 2020. We obtained patients' demographic, clinical, laboratory, and therapeutic data from medical records. An ophthalmologic examination and screening with echocardiography were carried out within the first week after candidemia diagnosis. Results There were 275 candidemia episodes from 250 patients. The incidence of candidemia was 2.8/1000 admissions and 5.68/ 10,000 inpatient days, higher than our previous results (1.23/1000 and 3.29/10,000). The median age was 65 (interquartile range [IQR]=52-75) years. Malignancies were the most frequent comorbidity (50%). The most common type was Candida albicans (n=115, 41.8%). Candida glabrata (n=61, 22.2%) was common, particularly in surgical patients, patients with malignancy, and critically ill patients. There was Infectious disease consultation in 93.3% (257) episodes.The ophthalmoscopic examination was made in 145 episodes (52.7%), and ophthalmitis was detected in 16 (11.0%). Echocardiography was performed in 139 (50.5%) episodes; one case had an endocarditis diagnosis. The 30-day mortality was 44.7% (n=123). Mortality rates in C. glabrata and Candida krusei infections were higher (54.1% and 66.7). The factors related to mortality were intensive care unit requirement (p=0.0001), chronic liver disease (p=0.005), corticosteroid usage (p=0.0001), previous antibiotic usage (p=0.013), multiple antibiotic usage ( p=0.020), and CVC related candidemia (p=0.010). Conclusion Because of the life-threatening complications such as endocarditis, increased mortality rates, and higher healthcare costs, systematic and comprehensive candidemia bundle applications would be effective strategies for providing an effective antifungal stewardship program.
Collapse
Affiliation(s)
- Çiğdem Erol
- Department of Infectious Diseases and Clinical Microbiology, Başkent University School of Medicine, Ankara, Turkey
| | - Nuran Sarı
- Department of Infectious Diseases and Clinical Microbiology, Başkent University School of Medicine, Ankara, Turkey
| | - Tuğba Yanık-Yalçın
- Department of Infectious Diseases and Clinical Microbiology, Başkent University School of Medicine, Ankara, Turkey
| | - Ayşegül Yeşilkaya
- Department of Infectious Diseases and Clinical Microbiology, Başkent İstanbul Hospital, İstanbul, Turkey
| | - Leyla Asena
- Department of Ophthalmology, Başkent University School of Medicine, Ankara, Turkey
| | - Sirel Gür-Güngör
- Department of Ophthalmology, Başkent University School of Medicine, Ankara, Turkey
| | - Özlem Kurt-Azap
- Department of Infectious Diseases and Clinical Microbiology, Başkent University School of Medicine, Ankara, Turkey
| |
Collapse
|
11
|
Bilal H, Shafiq M, Hou B, Islam R, Khan MN, Khan RU, Zeng Y. Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis. Virulence 2022; 13:1573-1589. [PMID: 36120738 PMCID: PMC9487756 DOI: 10.1080/21505594.2022.2123325] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/07/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
Antifungal resistance to Candida pathogens increases morbidity and mortality of immunosuppressive patients, an emerging crisis worldwide. Understanding the Candida prevalence and antifungal susceptibility pattern is necessary to control and treat candidiasis. We aimed to systematically analyse the susceptibility profiles of Candida species published in the last ten years (December 2011 to December 2021) from mainland China. The studies were collected from PubMed, Google Scholar, and Science Direct search engines. Out of 89 included studies, a total of 44,716 Candida isolates were collected, mainly comprising C. albicans (49.36%), C. tropicalis (21.89%), C. parapsilosis (13.92%), and C. glabrata (11.37%). The lowest susceptibility was detected for azole group; fluconazole susceptibilities against C. parapsilosis, C. albicans, C. glabrata, C. tropicalis, C. guilliermondii, C. pelliculosa, and C. auris were 93.25%, 91.6%, 79.4%, 77.95%, 76%, 50%, and 0% respectively. Amphotericin B and anidulafungin were the most susceptible drugs for all Candida species. Resistance to azole was mainly linked with mutations in ERG11, ERG3, ERG4, MRR1-2, MSH-2, and PDR-1 genes. Mutation in FKS-1 and FKS-2 in C. auris and C. glabrata causing resistance to echinocandins was stated in two studies. Gaps in the studies' characteristics were detected, such as 79.77%, 47.19 %, 26.97%, 7.86%, and 4.49% studies did not mention the mortality rates, age, gender, breakpoint reference guidelines, and fungal identification method, respectively. The current study demonstrates the overall antifungal susceptibility pattern of Candida species, gaps in surveillance studies and risk-reduction strategies that could be supportive in candidiasis therapy and for the researchers in their future studies.
Collapse
Affiliation(s)
- Hazrat Bilal
- Department of Dermatology, The second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Bing Hou
- Department of laboratory, Shantou Municipal Skin Hospital, Shantou, China
| | - Rehmat Islam
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rahat Ullah Khan
- Institute of Microbiology, Faculty of Veterinary and Animal Sciences Gomal University, Dera Ismail Khan, Pakistan
| | - Yuebin Zeng
- Department of Dermatology, The second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
12
|
Costa EMMDB, Maia CMDA, Vasconcelos PGS, Portela MB, Barboza CM, Cardoso AS, de Araújo Soares RM, dos Santos ALS. Influence of oral biofilm index, caries experience, and laboratory markers of disease progression on the oral carriage of Candida in HIV-infected and non-infected children: a cross-sectional study. Braz J Microbiol 2022; 53:1969-1977. [PMID: 36224461 PMCID: PMC9679062 DOI: 10.1007/s42770-022-00843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 10/03/2022] [Indexed: 01/13/2023] Open
Abstract
The present study aimed to compare the oral Candida rate between infected and uninfected children with the human immunodeficiency virus (HIV), as well as analyze the association between Candida spp. and predisposing factors of colonization, like oral biofilm index, caries experience, and laboratory markers of AIDS progression. A cross-sectional study was employed. Candida species were identified and quantified from saliva samples of 50 HIV-infected and 50 uninfected children. Biofilm index and decayed, missing, and filled teeth (dmft/DMFT) indices were assessed by oral clinical examinations. Additionally, CD4+ T lymphocyte count and viral load were obtained from medical records of the HIV-infected children. Candida species were cultured from 74% of the HIV-infected children and 46% of uninfected ones (p = 0.0076). Candida albicans and Candida parapsilosis were the most frequently isolated species in both studied groups. The isolation of Candida species was significantly higher in HIV-infected children with CD4 ≤ 15% (p = 0.0146); it had influence of mature oral biofilm and the caries index (dmft + DMFT ≥ 8) (p < 0.05) and was associated with the plasma viral load. The present data show that the HIV infection, oral biofilm index, caries experience, and laboratory markers of AIDS progression exert an influence on the prevalence of oral Candida in children.
Collapse
Affiliation(s)
| | | | | | - Maristela Barbosa Portela
- Departamento de Odontoclínica e Odontopediatria, Universidade Federal Fluminense, Niterói, RJ Brazil
| | - Caroliny Mello Barboza
- Departamento de Odontoclínica e Odontopediatria, Universidade Federal Fluminense, Niterói, RJ Brazil
| | - Abel Silveira Cardoso
- Departamento de Patologia e Diagnóstico Oral, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Rosangela Maria de Araújo Soares
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - André Luis Souza dos Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
- Rede Micologia RJ – Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ Brazil
| |
Collapse
|
13
|
Szarvas J, Rebelo AR, Bortolaia V, Leekitcharoenphon P, Schrøder Hansen D, Nielsen HL, Nørskov-Lauritsen N, Kemp M, Røder BL, Frimodt-Møller N, Søndergaard TS, Coia JE, Østergaard C, Westh H, Aarestrup FM. Danish Whole-Genome-Sequenced Candida albicans and Candida glabrata Samples Fit into Globally Prevalent Clades. J Fungi (Basel) 2021; 7:jof7110962. [PMID: 34829249 PMCID: PMC8622182 DOI: 10.3390/jof7110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Candida albicans and Candida glabrata are opportunistic fungal pathogens with increasing incidence worldwide and higher-than-expected prevalence in Denmark. We whole-genome sequenced yeast isolates collected from Danish Clinical Microbiology Laboratories to obtain an overview of the Candida population in the country. The majority of the 30 C. albicans isolates were found to belong to three globally prevalent clades, and, with one exception, the remaining isolates were also predicted to cluster with samples from other geographical locations. Similarly, most of the eight C. glabrata isolates were predicted to be prevalent subtypes. Antifungal susceptibility testing proved all C. albicans isolates to be susceptible to both azoles and echinocandins. Two C. glabrata isolates presented azole-resistant phenotypes, yet all were susceptible to echinocandins. There is no indication of causality between population structure and resistance phenotypes for either species.
Collapse
Affiliation(s)
- Judit Szarvas
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
- Correspondence:
| | - Ana Rita Rebelo
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | - Valeria Bortolaia
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | - Pimlapas Leekitcharoenphon
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | | | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, 9100 Aalborg, Denmark;
| | | | - Michael Kemp
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark;
| | - Bent Løwe Røder
- Department of Clinical Microbiology, Slagelse Hospital, 4200 Slagelse, Denmark;
| | | | | | - John Eugenio Coia
- Department of Clinical Microbiology, Sydvestjysk Hospital, 6700 Esbjerg, Denmark;
| | - Claus Østergaard
- Department of Clinical Microbiology, Vejle Hospital, 7100 Vejle, Denmark;
| | - Henrik Westh
- Department of Clinical Microbiology, Hvidovre Hospital, 2650 Hvidovre, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frank Møller Aarestrup
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| |
Collapse
|
14
|
Adam KM, Osthoff M, Lamoth F, Conen A, Erard V, Boggian K, Schreiber PW, Zimmerli S, Bochud PY, Neofytos D, Fleury M, Fankhauser H, Goldenberger D, Mühlethaler K, Riat A, Zbinden R, Kronenberg A, Quiblier C, Marchetti O, Khanna N. Trends of the Epidemiology of Candidemia in Switzerland: A 15-Year FUNGINOS Survey. Open Forum Infect Dis 2021; 8:ofab471. [PMID: 34660836 PMCID: PMC8514178 DOI: 10.1093/ofid/ofab471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background The increasing incidence of candidemia and emergence of drug-resistant Candida species are major concerns worldwide. Long-term surveillance studies are needed. Methods The Fungal Infection Network of Switzerland (FUNGINOS) conducted a 15-year (2004–2018), nationwide, epidemiological study of candidemia. Hospital-based incidence of candidemia, Candida species distribution, antifungal susceptibility, and consumption were stratified in 3 periods (2004–2008, 2009–2013, 2014–2018). Population-based incidence over the period 2009–2018 derived from the Swiss Antibiotic Resistance Surveillance System (ANRESIS). Results A total of 2273 Candida blood isolates were studied. Population and hospital-based annual incidence of candidemia increased from 2.96 to 4.20/100 000 inhabitants (P = .022) and 0.86 to 0.99/10 000 patient-days (P = .124), respectively. The proportion of Candida albicans decreased significantly from 60% to 53% (P = .0023), whereas Candida glabrata increased from 18% to 27% (P < .0001). Other non-albicans Candida species remained stable. Candida glabrata bloodstream infections occurred predominantly in the age group 18–40 and above 65 years. A higher proportional increase of C glabrata was recorded in wards (18% to 29%, P < .0001) versus intensive care units (19% to 24%, P = .22). According to Clinical and Laboratory Standards Institute, nonsusceptibility to fluconazole in C albicans was observed in 1% of isolates, and anidulafungin and micafungin nonsusceptibility was observed in 2% of C albicans and C glabrata. Fluconazole consumption, the most frequently used antifungal, remained stable, whereas use of mold-active triazoles and echinocandins increased significantly in the last decade (P < .0001). Conclusions Over the 15-year period, the incidence of candidemia increased. A species shift toward C glabrata was recently observed, concurring with increased consumption of mold-active triazoles.
Collapse
Affiliation(s)
- Kai-Manuel Adam
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland.,Department of Clinical Research, University Basel, Basel, Switzerland
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anna Conen
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital of Aarau, Aarau, Switzerland
| | - Véronique Erard
- Infectious Diseases Service, Department of Medicine, Cantonal Hospital, Fribourg, Switzerland
| | - Katia Boggian
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital, St. Gallen, Switzerland
| | - Peter W Schreiber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - Stefan Zimmerli
- Department of Infectious Diseases, Bern University Hospital, Bern, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Pierre-Yves Bochud
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dionysios Neofytos
- Infectious Diseases Service, University Hospital and University of Geneva, Geneva, Switzerland
| | - Mapi Fleury
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hans Fankhauser
- Institute of Laboratory Medicine, Cantonal Hospital of Aarau, Aarau, Switzerland
| | - Daniel Goldenberger
- Clinical Bacteriology and Mycology, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Konrad Mühlethaler
- Department of Infectious Diseases, Bern University Hospital, Bern, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Arnaud Riat
- Division of Laboratory Medicine, Laboratory of Bacteriology, University Hospital of Geneva, Geneva, Switzerland
| | - Reinhard Zbinden
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Andreas Kronenberg
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Chantal Quiblier
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Oscar Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Department of Medicine, Ensemble Hospitalier de la Côte, Morges, Switzerland
| | - Nina Khanna
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland.,Department of Clinical Research, University Basel, Basel, Switzerland
| | | |
Collapse
|
15
|
Arastehfar A, Marcet-Houben M, Daneshnia F, Taj-Aldeen S, Batra D, Lockhart S, Shor E, Gabaldón T, Perlin D. Comparative genomic analysis of clinical Candida glabrata isolates identifies multiple polymorphic loci that can improve existing multilocus sequence typing strategy. Stud Mycol 2021; 100:100133. [PMID: 34909054 PMCID: PMC8640552 DOI: 10.1016/j.simyco.2021.100133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Candida glabrata is the second leading cause of candidemia in many countries and is one of the most concerning yeast species of nosocomial importance due to its increasing rate of antifungal drug resistance and emerging multidrug-resistant isolates. Application of multilocus sequence typing (MLST) to clinical C. glabrata isolates revealed an association of certain sequence types (STs) with drug resistance and mortality. The current C. glabrata MLST scheme is based on single nucleotide polymorphisms (SNPs) at six loci and is therefore relatively laborious and costly. Furthermore, only a few high-quality C. glabrata reference genomes are available, limiting rapid analysis of clinical isolates by whole genome sequencing. In this study we provide long-read based assemblies for seven additional clinical strains belonging to three different STs and use this information to simplify the C. glabrata MLST scheme. Specifically, a comparison of these genomes identified highly polymorphic loci (HPL) defined by frequent insertions and deletions (indels), two of which proved to be highly resolutive for ST. When challenged with 53 additional isolates, a combination of TRP1 (a component of the current MLST scheme) with either of the two HPL fully recapitulated ST identification. Therefore, our comparative genomic analysis identified a new typing approach combining SNPs and indels and based on only two loci, thus significantly simplifying ST identification in C. glabrata. Because typing tools are instrumental in addressing numerous clinical and biological questions, our new MLST scheme can be used for high throughput typing of C. glabrata in clinical and research settings.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona 29, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - F. Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | | | - D. Batra
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - S.R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - E. Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Hackensack Meridian Health School of Medicine, Nutley, NJ, 07710, USA
| | - T. Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona 29, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Hackensack Meridian Health School of Medicine, Nutley, NJ, 07710, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Department of Microbiology and Immunology, Washington, DC, 20057, USA
| |
Collapse
|
16
|
Won EJ, Choi MJ, Kim MN, Yong D, Lee WG, Uh Y, Kim TS, Byeon SA, Lee SY, Kim SH, Shin JH. Fluconazole-Resistant Candida glabrata Bloodstream Isolates, South Korea, 2008-2018. Emerg Infect Dis 2021; 27:779-788. [PMID: 33624581 PMCID: PMC7920659 DOI: 10.3201/eid2703.203482] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Soulountsi V, Schizodimos T, Kotoulas SC. Deciphering the epidemiology of invasive candidiasis in the intensive care unit: is it possible? Infection 2021; 49:1107-1131. [PMID: 34132989 DOI: 10.1007/s15010-021-01640-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Invasive candidiasis (IC) has emerged in the last decades as an important cause of morbidity, mortality, and economic load in the intensive care unit (ICU). The epidemiology of IC is still a difficult and unsolved enigma for the literature. Accurate estimation of the true burden of IC is difficult due to variation in definitions and limitations inherent to available case-finding methodologies. Candidemia and intra-abdominal candidiasis (IAC) are the two predominant types of IC in ICU. During the last two decades, an increase in the incidence of candidemia has been constantly reported particularly in the expanding populations of elderly or immunosuppressed patents, with a parallel change in Candida species (spp.) distribution worldwide. Epidemiological shift in non-albicans spp. has reached worrisome trends. Recently, a novel, multidrug-resistant Candida spp., Candida auris, has globally emerged as a nosocomial pathogen causing a broad range of healthcare-associated invasive infections. Epidemiological profile of IAC remains imprecise. Though antifungal drugs are available for Candida infections, mortality rates continue to be high, estimated to be up to 50%. Increased use of fluconazole and echinocandins has been associated with the emergence of resistance to these drugs, which affects particularly C. albicans and C. glabrata. Crucial priorities for clinicians are to recognize the epidemiological trends of IC as well as the emergence of resistance to antifungal agents to improve diagnostic techniques and strategies, develop international surveillance networks and antifungal stewardship programmes for a better epidemiological control of IC.
Collapse
Affiliation(s)
- Vasiliki Soulountsi
- Department of Intensive Care Medicine, George Papanikolaou General Hospital, Thessaloniki, Greece.
| | - Theodoros Schizodimos
- Department of Intensive Care Medicine, George Papanikolaou General Hospital, Thessaloniki, Greece
| | | |
Collapse
|
18
|
Nishimoto AT, Sharma C, Rogers PD. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J Antimicrob Chemother 2021; 75:257-270. [PMID: 31603213 DOI: 10.1093/jac/dkz400] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is an opportunistic yeast and the major human fungal pathogen in the USA, as well as in many other regions of the world. Infections with C. albicans can range from superficial mucosal and dermatological infections to life-threatening infections of the bloodstream and vital organs. The azole antifungals remain an important mainstay treatment of candidiasis and therefore the investigation and understanding of the evolution, frequency and mechanisms of azole resistance are vital to improving treatment strategies against this organism. Here the organism C. albicans and the genetic changes and molecular bases underlying the currently known resistance mechanisms to the azole antifungal class are reviewed, including up-regulated expression of efflux pumps, changes in the expression and amino acid composition of the azole target Erg11 and alterations to the organism's typical sterol biosynthesis pathways. Additionally, we update what is known about activating mutations in the zinc cluster transcription factor (ZCF) genes regulating many of these resistance mechanisms and review azole import as a potential contributor to azole resistance. Lastly, investigations of azole tolerance in C. albicans and its implicated clinical significance are reviewed.
Collapse
Affiliation(s)
- Andrew T Nishimoto
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cheshta Sharma
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - P David Rogers
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
19
|
Bretagne S, Desnos-Ollivier M, Sitbon K, Lortholary O, Che D, Dromer F. No Impact of Fluconazole to Echinocandins Replacement as First-Line Therapy on the Epidemiology of Yeast Fungemia (Hospital-Driven Active Surveillance, 2004-2017, Paris, France). Front Med (Lausanne) 2021; 8:641965. [PMID: 33959624 PMCID: PMC8093410 DOI: 10.3389/fmed.2021.641965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Replacement of fluconazole by echinocandins as the first-line therapy for yeast-related fungemia could have an impact on both the mortality rate and the epidemiology of yeast species responsible for candidemia. We analyzed the individual clinical and microbiological data collected through the active surveillance program on yeast fungemia (YEASTS program, 2004-2016, Paris area, France) within 14 University Hospitals. The cohort included 3,092 patients [male:female ratio: 1.56; median age 61.0 years (IQR: 23.8)]. The mean mortality rate within 30 days was 38.5% (1,103/2,868) and significantly higher in intensive care units (690/1,358, 50.8%) than outside (413/1,510, 27.4%, p < 0.0001) without significant change over time. The yeast species distribution [Candida albicans (n = 1,614, 48.0%), Candida glabrata (n = 607, 18.1%), Candida parapsilosis (n = 390, 11.6%), Candida tropicalis (n = 299, 8.9%), Candida krusei (n = 96, 2.9%), rare species (n = 357, 10.6%)], minimal inhibitory concentration distribution, and the distribution between the patient populations (hematological malignancies, solid tumors, without malignancy) did not change either while the proportion of patients ≥60-years increased from 48.7% (91/187) in 2004 to 56.8% (133/234) in 2017 (p = 0.0002). Fluconazole as first-line therapy dramatically decreased (64.4% in 2004 to 27.7% in 2017, p < 0.0001) with a corresponding increase in echinocandins (11.6% in 2004 to 57.8% in 2017, p < 0.0001). Survival rates did not differ according to the first antifungal therapy. The progressive replacement of fluconazole by echinocandins as the first-line antifungal therapy was not associated with change in global mortality, regardless of species involved and antifungal susceptibility profiles. Other factors remain to be uncovered to improve the prognosis of yeast fungemia.
Collapse
Affiliation(s)
- Stéphane Bretagne
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France.,Laboratoire de Parasitologie-Mycologie, Hôpital Saint Louis, AP-HP, Paris, France.,Université de Paris, Paris, France
| | - Marie Desnos-Ollivier
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| | - Karine Sitbon
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| | - Olivier Lortholary
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France.,Université de Paris, Paris, France.,Service des Maladies Infectieuses et Tropicales, Centre d'Infectiologie Necker-Pasteur, Hôpital Necker-Enfants Malades, APHP, IHU Imagine, Paris, France
| | - Didier Che
- Santé publique France, Saint Maurice, France
| | - Françoise Dromer
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| | | |
Collapse
|
20
|
Batchelor R, Thomas C, Gardiner BJ, Lee SJ, Fleming S, Wei A, Coutsouvelis J, Ananda-Rajah M. When Azoles Cannot Be Used: The Clinical Effectiveness of Intermittent Liposomal Amphotericin Prophylaxis in Hematology Patients. Open Forum Infect Dis 2021; 8:ofab113. [PMID: 34337090 PMCID: PMC8318248 DOI: 10.1093/ofid/ofab113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022] Open
Abstract
Background Patients unable to take azoles are a neglected group lacking a standardized approach to antifungal prophylaxis. We evaluated the effectiveness and safety of intermittent liposomal amphotericin B (L-AMB) prophylaxis in a heterogenous group of hematology patients. Methods A retrospective cohort of all hematology patients who received a course of intravenous L-AMB, defined as 1 mg/kg thrice weekly from July 1, 2013 to June 30, 2018, were identified from pharmacy records. Outcomes included breakthrough-invasive fungal disease (BIFD), reasons for premature discontinuation, and acute kidney injury. Results There were 198 patients who received 273 courses of L-AMB prophylaxis. Using a conservative definition, the BIFD rate was 9.6% (n = 19 of 198) occurring either during L-AMB prophylaxis or up to 7 days from cessation in patients who received a course. Probable/proven BIFD occurred in 13 patients (6.6%, 13 of 198), including molds in 54% (n = 7) and non-albicans Candidemia in 46% (n = 6). Cumulative incidence of BIFD was highest in patients with acute myeloid leukemia (6.8%) followed by acute lymphoblastic leukemia (2.7%) and allogeneic stem cell transplantation (2.5%). The most common indication for L-AMB was chemotherapy, or anticancer drug-azole interactions (75% of courses) dominated by vincristine, or acute myeloid leukemia clinical trials, followed by gut absorption concerns (13%) and liver function abnormalities (8.8%). Acute kidney injury, using a modified international definition, complicated 27% of courses but was not clinically significant, accounting for only 3.3% (9 of 273) of discontinuations. Conclusions Our findings demonstrate a high rate of BIFD among patients receiving L-AMB prophylaxis. Pragmatic trials will help researchers find the optimal regimen of L-AMB prophylaxis for the many clinical scenarios in which azoles are unsuitable, especially as targeted anticancer drugs increase in use.
Collapse
Affiliation(s)
- R Batchelor
- Department of General Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - C Thomas
- Department of General Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - B J Gardiner
- Department of Infectious Diseases Alfred Health Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - S J Lee
- Department of Infectious Diseases Alfred Health Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - S Fleming
- Australian Centre for Blood Diseases, Alfred Health Melbourne, Victoria, Australia.,Department of Haematology, Alfred Health Melbourne, Victoria, Australia
| | - A Wei
- Australian Centre for Blood Diseases, Alfred Health Melbourne, Victoria, Australia.,Department of Haematology, Alfred Health Melbourne, Victoria, Australia
| | - J Coutsouvelis
- Pharmacy Department, Alfred Health Melbourne, Victoria, Australia.,Centre for Medicine Use and Safety, Monash University Parkville, Victoria, Australia
| | - M Ananda-Rajah
- Department of General Medicine, Alfred Health, Melbourne, Victoria, Australia.,Department of Infectious Diseases Alfred Health Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Scorzoni L, Fuchs BB, Junqueira JC, Mylonakis E. Current and promising pharmacotherapeutic options for candidiasis. Expert Opin Pharmacother 2021; 22:867-887. [PMID: 33538201 DOI: 10.1080/14656566.2021.1873951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Candida spp. are commensal yeasts capable of causing infections such as superficial, oral, vaginal, or systemic infections. Despite medical advances, the antifungal pharmacopeia remains limited and the development of alternative strategies is needed.Areas covered: We discuss available treatments for Candida spp. infections, highlighting advantages and limitations related to pharmacokinetics, cytotoxicity, and antimicrobial resistance. Moreover, we present new perspectives to improve the activity of the available antifungals, discussing their immunomodulatory potential and advances on drug delivery carriers. New therapeutic approaches are presented including recent synthesized antifungal compounds (Enchochleated-Amphotericin B, tetrazoles, rezafungin, enfumafungin, manogepix and arylamidine); drug repurposing using a diversity of antibacterial, antiviral and non-antimicrobial drugs; combination therapies with different compounds or photodynamic therapy; and innovations based on nano-particulate delivery systems.Expert opinion: With the lack of novel drugs, the available assets must be leveraged to their best advantage through modifications that enhance delivery, efficacy, and solubility. However, these efforts are met with continuous challenges presented by microbes in their infinite plight to resist and survive therapeutic drugs. The pharmacotherapeutic options in development need to focus on new antimicrobial targets. The success of each antimicrobial agent brings strategic insights to the next phased approach in treatingCandida spp. infections.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| |
Collapse
|
22
|
Li D, Li T, Bai C, Zhang Q, Li Z, Li X. A predictive nomogram for mortality of cancer patients with invasive candidiasis: a 10-year study in a cancer center of North China. BMC Infect Dis 2021; 21:76. [PMID: 33446133 PMCID: PMC7809763 DOI: 10.1186/s12879-021-05780-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/07/2021] [Indexed: 12/29/2022] Open
Abstract
Background Invasive candidiasis is the most common fungal disease among hospitalized patients and continues to be a major cause of mortality. Risk factors for mortality have been studied previously but rarely developed into a predictive nomogram, especially for cancer patients. We constructed a nomogram for mortality prediction based on a retrospective review of 10 years of data for cancer patients with invasive candidiasis. Methods Clinical data for cancer patients with invasive candidiasis during the period of 2010–2019 were studied; the cases were randomly divided into training and validation cohorts. Variables in the training cohort were subjected to a predictive nomogram based on multivariate logistic regression analysis and a stepwise algorithm. We assessed the performance of the nomogram through the area under the receiver operating characteristic (ROC) curve (AUC) and decision curve analysis (DCA) in both the training and validation cohorts. Results A total of 207 cases of invasive candidiasis were examined, and the crude 30-day mortality was 28.0%. Candida albicans (48.3%) was the predominant species responsible for infection, followed by the Candida glabrata complex (24.2%) and Candida tropicalis (10.1%). The training and validation cohorts contained 147 and 60 cases, respectively. The predictive nomogram consisted of bloodstream infections, intensive care unit (ICU) admitted > 3 days, no prior surgery, metastasis and no source control. The AUCs of the training and validation cohorts were 0.895 (95% confidence interval [CI], 0.846–0.945) and 0.862 (95% CI, 0.770–0.955), respectively. The net benefit of the model performed better than “treatment for all” in DCA and was also better for opting low-risk patients out of treatment than “treatment for none” in opt-out DCA. Conclusion Cancer patients with invasive candidiasis exhibit high crude mortality. The predictive nomogram established in this study can provide a probability of mortality for a given patient, which will be beneficial for therapeutic strategies and outcome improvement.
Collapse
Affiliation(s)
- Ding Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China.
| | - Tianjiao Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Changsen Bai
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Qing Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Zheng Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Binshuixi Road, Tianjin, 300387, Xiqing District, China.
| |
Collapse
|
23
|
Kim EJ, Lee E, Kwak YG, Yoo HM, Choi JY, Kim SR, Shin MJ, Yoo SY, Cho NH, Choi YH. Trends in the Epidemiology of Candidemia in Intensive Care Units From 2006 to 2017: Results From the Korean National Healthcare-Associated Infections Surveillance System. Front Med (Lausanne) 2020; 7:606976. [PMID: 33392229 PMCID: PMC7773785 DOI: 10.3389/fmed.2020.606976] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Candidemia is an important healthcare-associated infection (HAI) in intensive care units (ICUs). However, limited research has been conducted on candidemia in the Republic of Korea. We aimed to analyze the secular trends in the incidence and distribution of candidemia in ICUs over 12-years using data from the Korean National Healthcare-Associated Infections Surveillance System (KONIS). KONIS was established in 2006 and has performed prospective surveillance of HAIs including bloodstream infections (BSIs) in ICUs. We evaluated the trends in the distribution of causative pathogens and the incidence of candidemia. From 2006 to 2017, 2,248 candidemia cases occurred in 9,184,264 patient-days (PDs). The pooled mean incidence rates of candidemia significantly decreased from 3.05 cases/10,000 PDs in 2006 to 2.5 cases/10,000 PDs in 2017 (P = 0.001). Nevertheless, the proportion of candidemia gradually increased from 15.2% in 2006 to 16.6% in 2017 (P = 0.001). The most frequent causative pathogen of BSIs from 2006 to 2012 was Staphylococcus aureus; however, Candida spp. emerged as the most frequent causative pathogen since 2013. C. albicans (39.9%) was the most common among Candida spp. causing BSIs, followed by Candida tropicalis (20.2%) and Candida parapsilosis (18.2%). The proportion of candidemia caused by C. glabrata significantly increased from 8.9% in 2006 to 17.9% in 2017 (P < 0.001). There was no significant change in the distribution of Candida spp. by year (P = 0.285). The most common source of BSIs was central lines associated BSI (92.5%). There was a significant increase in the proportion of candidemia by year in hospitals with organ transplant wards (from 18.9% in 2006 to 21.1% in 2017, P = 0.003), hospitals with <500 beds (from 2.7% in 2006 to 13.6% in 2017, P < 0.001), and surgical ICUs (from 16.2% in 2006 to 21.7% in 2017, P = 0.003). The proportion of candidemia has increased in Korea, especially in hospitals with <500 beds and surgical ICUs. Thus, appropriate infection control programs are needed.
Collapse
Affiliation(s)
- Eun Jin Kim
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, South Korea
| | - Eunyoung Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea.,Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Yee Gyung Kwak
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, South Korea
| | - Hyeon Mi Yoo
- Infection Control Office, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Ji Youn Choi
- Infection Control Unit, Chung-Ang University Healthcare System, Seoul, South Korea
| | - Sung Ran Kim
- Infection Control Office, Korea University Guro Hospital, Seoul, South Korea
| | - Myoung Jin Shin
- Infection Control Office, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - So-Yeon Yoo
- Adjunct Assistant Professor, College of Nursing, The Catholic University of Korea, Seoul, South Korea
| | - Nan-Hyoung Cho
- Department of Infection Control, Gangnam Severance Hospital, Yonsei University, Seoul, South Korea
| | - Young Hwa Choi
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
24
|
Arastehfar A, Gabaldón T, Garcia-Rubio R, Jenks JD, Hoenigl M, Salzer HJF, Ilkit M, Lass-Flörl C, Perlin DS. Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium. Antibiotics (Basel) 2020; 9:antibiotics9120877. [PMID: 33302565 PMCID: PMC7764418 DOI: 10.3390/antibiotics9120877] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
The high clinical mortality and economic burden posed by invasive fungal infections (IFIs), along with significant agricultural crop loss caused by various fungal species, has resulted in the widespread use of antifungal agents. Selective drug pressure, fungal attributes, and host- and drug-related factors have counteracted the efficacy of the limited systemic antifungal drugs and changed the epidemiological landscape of IFIs. Species belonging to Candida, Aspergillus, Cryptococcus, and Pneumocystis are among the fungal pathogens showing notable rates of antifungal resistance. Drug-resistant fungi from the environment are increasingly identified in clinical settings. Furthermore, we have a limited understanding of drug class-specific resistance mechanisms in emerging Candida species. The establishment of antifungal stewardship programs in both clinical and agricultural fields and the inclusion of species identification, antifungal susceptibility testing, and therapeutic drug monitoring practices in the clinic can minimize the emergence of drug-resistant fungi. New antifungal drugs featuring promising therapeutic profiles have great promise to treat drug-resistant fungi in the clinical setting. Mitigating antifungal tolerance, a prelude to the emergence of resistance, also requires the development of effective and fungal-specific adjuvants to be used in combination with systemic antifungals.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, 08034 Barcelona, Spain;
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), 08024 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies. Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin Hoenigl
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | | | - Macit Ilkit
- Division of Mycology, University of Çukurova, 01330 Adana, Turkey
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| |
Collapse
|
25
|
Mat Jalil MT, Hairudin NH, Ibrahim D. Muscodor sp. IBRL OS-94, A Promising Endophytic Fungus of Ocimum sanctum with Antimicrobial Activity. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: An endophytic fungus, Muscodor sp. IBRL OS-94 isolated from the leaf of Ocimum sanctum was believed to possess significant antimicrobial activity and several assays were carried out to evaluate its pharmaceutical potential. Methods: Agar plug diffusion and the disk diffusion assays were performed to evaluate the antimicrobial activity of the fungal extract. Also, the broth microdilution assay was done to investigate the minimum inhibitory concentration (MIC) of the fungal extract. Meanwhile, the scanning electron microscope (SEM) was employed to observe the structural degeneration of the microbial cells treated to the extract. Results: The results revealed that fungal isolate showed favorable antimicrobial activity through agar plug diffusion assay and the disk diffusion assay demonstrated that most of the test microorganisms were susceptible to extracellular extract compared to extracellular extract. As for the MIC and MLC values, the extracellular fungal extract exerted a bactericidal/fungicidal effect against all five Gram-positive bacteria, four Gram-negative bacteria, one yeast, and none of the test fungi. Meanwhile, the intracellular fungal extract exhibited bactericidal/fungicidal activity against three Gram-positive bacteria, one Gram-negative bacterium, and one yeast. The structural degeneration study via SEM revealed that various cell abnormalities including severe damage to the cell wall which led to microbial cell death. Conclusion: The present study suggests the fungal extract from Muscodor sp. IBRLOS-94 as an antimicrobial agent.
Collapse
Affiliation(s)
- Mohd Taufiq Mat Jalil
- School of Biology, Faculty of Applied Science, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
- Industrial Biotechnology Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Nabila Husna Hairudin
- School of Biology, Faculty of Applied Science, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
- Industrial Biotechnology Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Darah Ibrahim
- School of Biology, Faculty of Applied Science, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
- Industrial Biotechnology Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| |
Collapse
|
26
|
Accuracy of matrix-assisted LASER desorption ionization-time of flight mass spectrometry for identification of Candida. Biosci Rep 2020; 39:BSR20190859. [PMID: 31537628 PMCID: PMC6822510 DOI: 10.1042/bsr20190859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 01/23/2023] Open
Abstract
Background: Candida is a fungus that causes various types of candidemia, which is the fourth major infectious disease of the blood system. MALDI-TOF-MS is a simple and rapid detection instrument. The aim of the present study was to verify the accuracy of MALDI-TOF-MS in detecting Candida. Method: A pooled analysis of articles on MALDI-TOF-MS for diagnosis of candidemia was performed. The quality of original research was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) guidelines. Stata 12.0 software was used to merge the correct identification rates of Candida and Candida subspecies and obtain pooled sensitivity and specificity of the diagnostic methods. Heterogeneity was found in the subgroup analysis of the included articles. Hence, we explored the factors causing the heterogeneity and its impact on the overall situation. Sensitivity analysis was used to examine the effect of Candida level on total response. Egger’s test was used to evaluate the publication bias of the included articles. Results: A total of 16 articles in Pubmed, 79 articles in Embase, 1 article in Cochrane Library, 30 articles in Web of Science and 3 from other sources were identified, of which 10 articles were included based on the inclusion and exclusion criteria. The overall identification accuracy was 100%. Conclusion: The accuracy of MALDI-TOF-MS for the identification of Candida was 100%. Further research is necessary to determine whether MALDI-TOF-MS can be used as a clinical diagnostic standard for the identification of Candida.
Collapse
|
27
|
Genetic Basis of Azole and Echinocandin Resistance in Clinical Candida glabrata in Japan. Antimicrob Agents Chemother 2020; 64:AAC.00783-20. [PMID: 32571826 DOI: 10.1128/aac.00783-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
Infections caused by Candida glabrata have caused worldwide concern, especially when they are associated with increasing echinocandin and azole resistance. In this study, we analyzed the molecular mechanisms of azole and echinocandin resistance in C. glabrata isolates obtained from hospitalized patients in Japan from 1997 to 2019. All isolates were checked phenotypically for resistance and genotypically for mutations in PDR1, ERG11, hot spot 1 (HS1), HS2, and HS3 of FKS1, and HS1 and HS2 of FKS2, and all isolates were genotyped by multilocus sequence typing (MLST). Interestingly, 32.6% of the isolates were resistant to caspofungin, and 4.7% were resistant to micafungin. The isolates showed low rates of resistance to azoles, ranging from 2.3% to 9.3%, and only 4.7% of the isolates were non-wild type for flucytosine susceptibility. For the first time in Japan, 4.7% of the isolates were identified as multidrug-resistant strains. Nonsynonymous mutations in PDR1, including two novel mutations associated with azole resistance, were identified in 39.5% of the isolates, and a single nonsynonymous mutation was identified in ERG11 Nine isolates from the same patient harbored nonsynonymous mutations in HS1 of FKS2, and a single isolate harbored a single nonsynonymous mutation in HS1 of FKS1 MLST genotyping revealed 13 different sequence types (STs), with 3 new STs, and ST7 was the most prevalent among the patients (35%) and was associated with high resistance rates. Our results are of crucial clinical concern, since understanding the molecular mechanisms underlying fungal resistance is imperative for guiding specific therapy for efficient patient treatment and promoting strategies to prevent epidemic spread.
Collapse
|
28
|
Antifungal Susceptibility of Clinical Yeast Isolates from a Large Canadian Reference Laboratory and Application of Whole-Genome Sequence Analysis To Elucidate Mechanisms of Acquired Resistance. Antimicrob Agents Chemother 2020; 64:AAC.00402-20. [PMID: 32571812 DOI: 10.1128/aac.00402-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022] Open
Abstract
To understand the epidemiology and susceptibility patterns of yeast infections in Ontario, Canada, we examined 4,715 clinical yeast isolates submitted to our laboratory for antifungal susceptibility testing from 2014 to 2018. Candida albicans was the most frequently submitted species (43.0%), followed by C. glabrata (21.1%), C. parapsilosis (15.0%), and C. tropicalis (6.2%). Twenty-three other Candida spp. (11.6%) and 4 non-Candida species (3.1%) were also identified. Few changes in species distribution were observed from 2014 to 2018, but the total numbers of yeast isolates sent for testing increased, with an annual 7.4% change. According to CLSI clinical breakpoints, resistance rates remained low overall. Moderate fluconazole resistance was noted among C. glabrata (9%), C. parapsilosis (9%), and C. tropicalis (12%) isolates. Only 1% of C. glabrata isolates were resistant to caspofungin, micafungin, and anidulafungin. Whole-genome sequence analysis confirmed 11 cases of acquired resistance to azoles or echinocandins via in-host evolution. There were mutations in the gene for the catalytic subunit of 1,3-beta-glucan synthase-mediated echinocandin resistance in 3 of 3 C. albicans strains, 3 of 4 C. glabrata strains, and 1 strain of C. tropicalis Azole resistance was likely caused by a homozygous ERG3 mutation in 1 C. albicans strain and a previously undescribed chromosomal-duplication event involving ERG11 and TAC1 orthologs in 1 C. tropicalis strain. While antifungal resistance rates remain low among yeast isolates in Ontario, ongoing surveillance is necessary to inform empirical therapy for optimal patient management and to guide antifungal stewardship.
Collapse
|
29
|
Ricotta EE, Lai YL, Babiker A, Strich JR, Kadri SS, Lionakis MS, Prevots DR, Adjemian J. Invasive Candidiasis Species Distribution and Trends, United States, 2009-2017. J Infect Dis 2020; 223:1295-1302. [PMID: 32798221 DOI: 10.1093/infdis/jiaa502] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Invasive candidiasis (IC) is a growing concern among US healthcare facilities. A large-scale study evaluating incidence and trends of IC in the United States by species and body site is needed to understand the distribution of infection. METHODS An electronic medical record database was used to calculate incidence and trends of IC in the United States by species and infection site from 2009 through 2017. Hospital incidence was calculated using total unique inpatient hospitalizations in hospitals reporting at least 1 Candida case as the denominator. IC incidence trends were assessed using generalized estimating equations with exchangeable correlation structure to fit Poisson regression models, controlling for changes in hospital characteristics and case mix over time. RESULTS Candida albicans remains the leading cause of IC in the United States, followed by Candida glabrata. The overall incidence of IC was 90/100 000 patients, which did not change significantly over time. There were no changes in incidence among C. albicans, C. glabrata, C. parapsilosis, or C. tropicalis; the incidence of other Candida spp. as a whole increased 7.2% annually. While there was no change in candidemia 2009-2017, abdominal and nonabdominal sterile site IC increased significantly. CONCLUSIONS Nonbloodstream IC is increasing in the United States. Understanding the epidemiology of IC should facilitate improved management of infected patients.
Collapse
Affiliation(s)
- Emily E Ricotta
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yi Ling Lai
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ahmed Babiker
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jeffrey R Strich
- Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Maryland, USA.,United States Public Health Service, Commissioned Corps, Rockville, Maryland, USA
| | - Sameer S Kadri
- Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - D Rebecca Prevots
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer Adjemian
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,United States Public Health Service, Commissioned Corps, Rockville, Maryland, USA
| |
Collapse
|
30
|
Xiao G, Liao W, Zhang Y, Luo X, Zhang C, Li G, Yang Y, Xu Y. Analysis of fungal bloodstream infection in intensive care units in the Meizhou region of China: species distribution and resistance and the risk factors for patient mortality. BMC Infect Dis 2020; 20:599. [PMID: 32795259 PMCID: PMC7427856 DOI: 10.1186/s12879-020-05291-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/26/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Fungal bloodstream infections (FBI) among intensive care unit (ICU) patients are increasing. Our objective was to characterize the fungal pathogens that cause bloodstream infections and determine the epidemiology and risk factors for patient mortality among ICU patients in Meizhou, China. METHODS Eighty-one ICU patients with FBI during their stays were included in the study conducted from January 2008 to December 2017. Blood cultures were performed and the antimicrobial susceptibility profiles of the resulting isolates were determined. Logistic multiple regression and ROC curve analysis were used to assess the risk factors for mortality among the cases. RESULTS The prevalence of FBI in ICU patients was 0.38% (81/21,098) with a mortality rate of 36% (29/81). Ninety-eight strains of bloodstream-infecting fungi, mainly Candida spp., were identified from these patients. Candida albicans was most common (43%). Two strains of C. parapsilosis were no-sensitive to caspofungin, C. glabrata were less than 80% sensitive to azole drugs. Logistic multiple regression showed that age, serum albumin, APACHE II score, three or more underlying diseases, and length of stay in ICU were independent risk factors for mortality in FBI. ROC curve analysis showed that APACHE II scores > 19 and serum albumin ≤25 g/L were the best predictors of mortality. CONCLUSION Candida spp. predominated with high mortality rates among cases of FBI in ICU. Thus, clinical staff should enhance overall patient monitoring and concurrently monitor fungal susceptibility to reduce mortality rates.
Collapse
Affiliation(s)
- Guangwen Xiao
- Medical College, Jiaying University, Meizhou, People's Republic of China.
| | - Wanqing Liao
- Shanghai Key Laboratory of Medical Fungal Molecular Biology, Shanghai, People's Republic of China.
| | - Yuenong Zhang
- The First Department of Anesthesiology, People's Hospital of Meizhou, Meizhou, People's Republic of China
| | - Xiaodong Luo
- Medical College, Jiaying University, Meizhou, People's Republic of China
| | - Cailing Zhang
- Department of Anesthesiology, Chinese Medical Hospital of Meizhou, Meizhou, People's Republic of China
| | - Guodan Li
- Medical College, Jiaying University, Meizhou, People's Republic of China
| | - Yingping Yang
- Medical College, Jiaying University, Meizhou, People's Republic of China
| | - Yunyao Xu
- Department of Cardiology, Yuedong Hospital the Third Affiliated Hospital of Sun Yat-Sen University, Meizhou, People's Republic of China
| |
Collapse
|
31
|
Arastehfar A, Daneshnia F, Salehi M, Yaşar M, Hoşbul T, Ilkit M, Pan W, Hagen F, Arslan N, Türk-Dağı H, Hilmioğlu-Polat S, Perlin DS, Lass-Flörl C. Low level of antifungal resistance of Candida glabrata blood isolates in Turkey: Fluconazole minimum inhibitory concentration and FKS mutations can predict therapeutic failure. Mycoses 2020; 63:911-920. [PMID: 32413170 PMCID: PMC7497236 DOI: 10.1111/myc.13104] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022]
Abstract
Background Candida glabrata is the third leading cause of candidaemia in Turkey; however, the data regarding antifungal resistance mechanisms and genotypic diversity in association with their clinical implication are limited. Objectives To assess genotypic diversity, antifungal susceptibility and mechanisms of drug resistance of Cglabrata blood isolates and their association with patients' outcome in a retrospective multicentre study. Patients/Methods Isolates from 107 patients were identified by ITS sequencing and analysed by multilocus microsatellite typing, antifungal susceptibility testing, and sequencing of PDR1 and FKS1/2 hotspots (HSs). Results Candida glabrata prevalence in Ege University Hospital was twofold higher in 2014‐2019 than in 2005‐2014. Six of the analysed isolates had fluconazole MICs ≥ 32 µg/mL; of them, five harboured unique PDR1 mutations. Although echinocandin resistance was not detected, three isolates had mutations in HS1‐Fks1 (S629T, n = 1) and HS1‐Fks2 (S663P, n = 2); one of the latter was also fluconazole‐resistant. All patients infected with isolates carrying HS‐FKS mutations and/or demonstrating fluconazole MIC ≥ 32 µg/mL (except one without clinical data) showed therapeutic failure (TF) with echinocandin and fluconazole; seven such isolates were collected in Ege (n = 4) and Gulhane (n = 3) hospitals and six detected recently. Among 34 identified genotypes, none were associated with mortality or enriched for fluconazole‐resistant isolates. Conclusion Antifungal susceptibility testing should be supplemented with HS‐FKS sequencing to predict TF for echinocandins, whereas fluconazole MIC ≥ 32 µg/mL may predict TF. Recent emergence of C glabrata isolates associated with antifungal TF warrants future comprehensive prospective studies in Turkey.
Collapse
Affiliation(s)
- Amir Arastehfar
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China.,Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Farnaz Daneshnia
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
| | - Mohammadreza Salehi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Melike Yaşar
- Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Tuğrul Hoşbul
- Department of Medical Microbiology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Weihua Pan
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, The Netherlands.,People's Hospital, Jining, China
| | - Nazlı Arslan
- Department of Medical Microbiology, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey
| | - Hatice Türk-Dağı
- Department of Microbiology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | | | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Jiang W, Withers B, Sutrave G, Clancy LE, Yong MI, Blyth E. Pathogen-Specific T Cells Beyond CMV, EBV and Adenovirus. Curr Hematol Malig Rep 2020; 14:247-260. [PMID: 31228095 DOI: 10.1007/s11899-019-00521-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Infectious diseases contribute significantly to morbidity and mortality in recipients of allogeneic haematopoietic stem cell transplantation (aHSCT), particularly in the era of highly immunosuppressive transplant regimens and alternate donor transplants. Delayed cellular immune recovery is a major mechanism for the increased risk in these patients. Adoptive cell therapy with ex vivo manipulated pathogen-specific T cells (PSTs) is increasingly taking its place as a treatment strategy using donor-derived or third party-banked cells. RECENT FINDINGS The majority of clinical trial data in the form of early-phase studies has been in the prophylaxis or treatment of cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus (AdV). Advancements in methods to select and enrich PSTs offer the opportunity to target the less common viral pathogens as well as fungi with this technology. Early clinical studies of PSTs targeting polyomaviruses (BK virus and JC virus), human herpesvirus 6 (HHV6), varicella zoster virus (VZV) and Aspergillus spp. have shown promising results in small numbers of patients. Other potential targets include herpes simplex virus (HSV), respiratory viruses and other invasive fungal species. In this review, we describe the burden of disease of this wider spectrum of pathogens, the progress in the development of manufacturing capability, early clinical results and the opportunities and challenges for implementation in the clinic.
Collapse
Affiliation(s)
- Wei Jiang
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Barbara Withers
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia.,St Vincent's Hospital, Darlinghurst, Australia
| | - Gaurav Sutrave
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia.,BMT and Cell Therapies Program, Westmead Hospital, Sydney, Australia
| | - Leighton E Clancy
- Westmead Institute of Medical Research, University of Sydney, Sydney, Australia.,Sydney Cellular Therapies Laboratory, Westmead, Australia
| | - Michelle I Yong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Emily Blyth
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia. .,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia. .,St Vincent's Hospital, Darlinghurst, Australia. .,BMT and Cell Therapies Program, Westmead Hospital, Sydney, Australia.
| |
Collapse
|
33
|
Suh JW, Kim SB, Yoon YK, Sohn JW, Kim MJ, Kim JH. Anidulafungin Versus Micafungin in the Treatment of Candidemia in Adult Patients. Mycopathologia 2020; 185:653-664. [PMID: 32705415 PMCID: PMC7377311 DOI: 10.1007/s11046-020-00471-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/29/2020] [Indexed: 11/24/2022]
Abstract
Background Echinocandins are recommended for the treatment of invasive candidiasis and candidemia. However, there are few studies comparing anidulafungin and micafungin in terms of efficacy and safety. The objective of this study was to evaluate the clinical efficacy and safety between anidulafungin and micafungin treatment for adult patients with candidemia. Methods This retrospective cohort study performed on adult candidemia patients diagnosed from January 2006 through December 2018 at a tertiary medical center. The study subjects included adult patients ≥ 19 years with candidemia who were only treated with anidulafungin or micafungin for ≥ 3 days. Clinical characteristics were collected and analyzed. Hepatotoxicity was assessed according to the Common Terminology Criteria for Adverse Events Version 5.0. Results A total of 98 patients with candidemia were treated with anidulafungin (n = 52, 53.1%) or micafungin (n = 46, 46.9%). There were no significant differences in age, sex, source of candidemia, and comorbidities between the anidulafungin and micafungin groups. Although there were more patients with abnormal baseline liver function test (LFT) in the anidulafungin group, the rate of clinical response (51.9% vs. 46.7%), mycological response (76.9% vs. 67.4%), and mortality (30-day mortality 26.9% vs. 21.7% and 90-day mortality 78.8% vs. 73.9%) was similar between the anidulafungin and micafungin groups. Also, there was no significant difference in terms of hepatotoxicity, even among the patients with abnormal baseline LFT between the two groups. Conclusions Our results suggest that clinical efficacy and safety may be similar between anidulafungin and micafungin treatment for adult patients with candidemia. Electronic supplementary material The online version of this article (10.1007/s11046-020-00471-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Woong Suh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sun Bean Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jang Wook Sohn
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min Ja Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jong Hun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
34
|
Song Y, Chen X, Yan Y, Wan Z, Liu W, Li R. Prevalence and Antifungal Susceptibility of Pathogenic Yeasts in China: A 10-Year Retrospective Study in a Teaching Hospital. Front Microbiol 2020; 11:1401. [PMID: 32719663 PMCID: PMC7347963 DOI: 10.3389/fmicb.2020.01401] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
To determine the dynamic changes of pathogenic yeast prevalence and antifungal susceptibility patterns in tertiary hospitals in China, we analyzed 527 yeast isolates preserved in the Research Center for Medical Mycology at Peking University, Beijing, China, between Jan 2010 and Dec 2019 and correctly identified 19 yeast species by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and ribosomal DNA sequencing. Antifungal susceptibility testing was performed following a Sensititre YeastOne colorimetric microdilution panel with nine clinically available antifungals. The Clinical and Laboratory Standards Institute (CLSI)-approved standard M27-A3 (S4) and newly revised clinical breakpoints or species-specific and method-specific epidemiological cutoff values were used for the interpretation of susceptibility test data. In this study, although Candida albicans was the predominant single species, non-C. albicans species constituted >50% of isolates in 6 out of 10 years, and more rare species were present in the recent 5 years. The non-C. albicans species identified most frequently were Candida parapsilosis sensu stricto, Candida tropicalis, and Candida glabrata. The prevalence of fluconazole and voriconazole resistance in the C. parapsilosis sensu stricto population was <3%, but C. tropicalis exhibited decreased susceptibility to fluconazole (42, 57.5%) and voriconazole (31, 42.5%), and 22 (30.1%) C. tropicalis isolates exhibited wild-type minimum inhibitory concentrations (MICs) to posaconazole. Furthermore, fluconazole and voriconazole cross-resistance prevalence in C. tropicalis was 19 (26.1%). The overall prevalence of fluconazole resistance in the C. glabrata population was 14 (26.9%), and prevalence of isolates exhibiting voriconazole non-wild-type MICs was 33 (63.5%). High-level echinocandin resistance was mainly observed in C. glabrata, and the prevalence rates of isolate resistance to anidulafungin, micafungin, and caspofungin were 5 (9.6%), 5 (9.6%), and 4 (7.7%), respectively. Moreover, one C. glabrata isolate showed multidrug resistant to azoles, echinocandins, and flucytosine. Overall, the 10-year surveillance study showed the increasing prevalence of non-C. albicans species over time; the emergence of azole resistance in C. tropicalis and multidrug resistance in C. glabrata over the years reinforced the need for epidemiological surveillance and monitoring.
Collapse
Affiliation(s)
- Yinggai Song
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xianlian Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Yan
- Department of Laboratory Medicine, Peking University First Hospital, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Wei Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
35
|
Abstract
Although not as ubiquitous as antibacterial susceptibility testing, antifungal susceptibility testing (AFST) is a tool of increasing importance in clinical microbiology laboratories. The goal of AFST is to reliably produce MIC values that may be used to guide patient therapy, inform epidemiological studies, and track rates of antifungal drug resistance. There are three methods that have been standardized by standards development organizations: broth dilution, disk diffusion, and azole agar screening for Aspergillus Other commonly used methods include gradient diffusion and the use of rapid automated instruments. Novel methodologies for susceptibility testing are in development. It is important for laboratories to consider not only the method of testing but also the interpretation (or lack thereof) of in vitro data.
Collapse
|
36
|
Oliveira JSD, Pereira VS, Castelo-Branco DDSCM, Cordeiro RDA, Sidrim JJC, Brilhante RSN, Rocha MFG. The yeast, the antifungal, and the wardrobe: a journey into antifungal resistance mechanisms of Candida tropicalis. Can J Microbiol 2020; 66:377-388. [PMID: 32319304 DOI: 10.1139/cjm-2019-0531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Candida tropicalis is a prominent non-Candida albicans Candida species involved in cases of candidemia, mainly causing infections in patients in intensive care units and (or) those presenting neutropenia. In recent years, several studies have reported an increase in the recovery rates of azole-resistant C. tropicalis isolates. Understanding C. tropicalis resistance is of great importance, since resistant strains are implicated in persistent or recurrent and breakthrough infections. In this review, we address the main mechanisms underlying C. tropicalis resistance to the major antifungal classes used to treat candidiasis. The main genetic basis involved in C. tropicalis antifungal resistance is discussed. A better understanding of the epidemiology of resistant strains and the mechanisms involved in C. tropicalis resistance can help improve diagnosis and assessment of the antifungal susceptibility of this Candida species to improve clinical management.
Collapse
Affiliation(s)
- Jonathas Sales de Oliveira
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Vandbergue Santos Pereira
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil.,School of Veterinary, Postgraduate Program in Veterinary Sciences, State University of Ceará, 1315 Coronel Nunes de Melo Street, Rodolfo Teófilo, CEP 60420-270, Fortaleza-CE, Brazil
| |
Collapse
|
37
|
Poissy J, Damonti L, Bignon A, Khanna N, Von Kietzell M, Boggian K, Neofytos D, Vuotto F, Coiteux V, Artru F, Zimmerli S, Pagani JL, Calandra T, Sendid B, Poulain D, van Delden C, Lamoth F, Marchetti O, Bochud PY. Risk factors for candidemia: a prospective matched case-control study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:109. [PMID: 32188500 PMCID: PMC7081522 DOI: 10.1186/s13054-020-2766-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/07/2020] [Indexed: 12/29/2022]
Abstract
Background Candidemia is an opportunistic infection associated with high morbidity and mortality in patients hospitalized both inside and outside intensive care units (ICUs). Identification of patients at risk is crucial to ensure prompt antifungal therapy. We sought to assess risk factors for candidemia and death, both outside and inside ICUs. Methods This prospective multicenter matched case-control study involved six teaching hospitals in Switzerland and France. Cases were defined by positive blood cultures for Candida sp. Controls were matched to cases using the following criteria: age, hospitalization ward, hospitalization duration, and, when applicable, type of surgery. One to three controls were enrolled by case. Risk factors were analyzed by univariate and multivariate conditional regression models, as a basis for a new scoring system to predict candidemia. Results One hundred ninety-two candidemic patients and 411 matched controls were included. Forty-four percent of included patients were hospitalized in ICUs, and 56% were hospitalized outside ICUs. Independent risk factors for candidemia in the ICU population included total parenteral nutrition, acute kidney injury, heart disease, prior septic shock, and exposure to aminoglycoside antibiotics. Independent risk factors for candidemia in the non-ICU population included central venous catheter, total parenteral nutrition, and exposure to glycopeptides and nitroimidazoles. The accuracy of the scores based on these risk factors is better in the ICU than in the non-ICU population. Independent risk factors for death in candidemic patients included septic shock, acute kidney injury, and the number of antibiotics to which patients were exposed before candidemia. Discussion While this study shows a role for known and novel risk factors for candidemia, it specifically highlights important differences in their distribution according to the hospital setting (ICU versus non-ICU). Conclusion This study provides novel risk scores for candidemia accounting for the hospital setting and recent progress in patients’ management strategies and fungal epidemiology.
Collapse
Affiliation(s)
- Julien Poissy
- Current affiliation : Univ. Lille, Inserm U1285, CHU Lille, Pôle de réanimation, NRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.,Inserm, U995-2 "Fungal Associated Invasive and Inflammatory Diseases", F-59000, Lille, France.,Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Lauro Damonti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, rue du Bugnon 46, CH-1011, Lausanne, Switzerland.,Department of Infectious Diseases Department, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anne Bignon
- Surgical Intensive Care Unit, University Hospital of Lille, F-59000, Lille, France
| | - Nina Khanna
- Division of Infectious Diseases and Hospital Epidemiology, University and University Hospital of Basel, Basel, Switzerland
| | - Matthias Von Kietzell
- Infectious Diseases Department, Cantonal Hospital of Saint Gallen, St. Gallen, Switzerland
| | - Katia Boggian
- Infectious Diseases Department, Cantonal Hospital of Saint Gallen, St. Gallen, Switzerland
| | - Dionysios Neofytos
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Fanny Vuotto
- Infectious Diseases Department, University Hospital of Lille, F-59000, Lille, France
| | - Valérie Coiteux
- Hematological Disorders Department, University Hospital and University of Lille, F-59000, Lille, France
| | - Florent Artru
- Digestive Intensive Care Department, University Hospital and University of Lille, F-59000, Lille, France
| | - Stephan Zimmerli
- Department of Infectious Diseases Department, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jean-Luc Pagani
- Adult Intensive Care Service, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Boualem Sendid
- Inserm, U995-2 "Fungal Associated Invasive and Inflammatory Diseases", F-59000, Lille, France.,Laboratory of Mycology and Parasitology, Hospital and University of Lille, F-59000, Lille, France
| | - Daniel Poulain
- Inserm, U995-2 "Fungal Associated Invasive and Inflammatory Diseases", F-59000, Lille, France.,Laboratory of Mycology and Parasitology, Hospital and University of Lille, F-59000, Lille, France
| | - Christian van Delden
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, rue du Bugnon 46, CH-1011, Lausanne, Switzerland.,Microbiology Institute, Lausanne University Hospital and University of Lausanne, CH-1010, Lausanne, Switzerland
| | - Oscar Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, rue du Bugnon 46, CH-1011, Lausanne, Switzerland.,Department of Medicine, Ensemble Hospitalier de la Côte, CH-1110, Morges, Switzerland
| | - Pierre-Yves Bochud
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
| | | | | |
Collapse
|
38
|
Singh DK, Tóth R, Gácser A. Mechanisms of Pathogenic Candida Species to Evade the Host Complement Attack. Front Cell Infect Microbiol 2020; 10:94. [PMID: 32232011 PMCID: PMC7082757 DOI: 10.3389/fcimb.2020.00094] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Candida species are common colonizers of the human skin, vagina, and the gut. As human commensals, Candida species do not cause any notable damage in healthy individuals; however, in certain conditions they can initiate a wide range of diseases such as chronic disseminated candidiasis, endocarditis, vaginitis, meningitis, and endophthalmitis. The incidence of Candida caused infections has increased worldwide, with mortality rates exceeding 70% in certain patient populations. C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, and C. krusei are responsible for more than 90% of Candida-related infections. Interestingly, the host immune response against these closely related fungi varies. As part of the innate immune system, complement proteins play a crucial role in host defense, protecting the host by lysing pathogens or by increasing their phagocytosis by phagocytes through opsonization. This review summarizes interactions of host complement proteins with pathogenic Candida species, including C. albicans and non-albicans Candida species such as C. parapsilosis. We will also highlight the various ways of complement activation, describe the antifungal effects of complement cascades and explore the mechanisms adopted by members of pathogenic Candida species for evading complement attack.
Collapse
Affiliation(s)
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary.,MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
39
|
Kidd SE, Chen SCA, Meyer W, Halliday CL. A New Age in Molecular Diagnostics for Invasive Fungal Disease: Are We Ready? Front Microbiol 2020; 10:2903. [PMID: 31993022 PMCID: PMC6971168 DOI: 10.3389/fmicb.2019.02903] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Invasive fungal diseases (IFDs) present an increasing global burden in immunocompromised and other seriously ill populations, including those caused by pathogens which are inherently resistant or less susceptible to antifungal drugs. Early diagnosis encompassing accurate detection and identification of the causative agent and of antifungal resistance is critical for optimum patient outcomes. Many molecular-based diagnostic approaches have good clinical utility although interpretation of results should be according to clinical context. Where an IFD is in the differential diagnosis, panfungal PCR assays allow the rapid detection/identification of fungal species directly from clinical specimens with good specificity; sensitivity is also high when hyphae are seen in the specimen including in paraffin-embedded tissue. Aspergillus PCR assays on blood fractions have good utility in the screening of high risk hematology patients with high negative predictive value (NPV) and positive predictive value (PPV) of 94 and 70%, respectively, when two positive PCR results are obtained. The standardization, and commercialization of Aspergillus PCR assays has now enabled direct comparison of results between laboratories with commercial assays also offering the simultaneous detection of common azole resistance mutations. Candida PCR assays are not as well standardized with the only FDA-approved commercial system (T2Candida) detecting only the five most common species; while the T2Candida outperforms blood culture in patients with candidemia, its role in routine Candida diagnostics is not well defined. There is growing use of Mucorales-specific PCR assays to detect selected genera in blood fractions. Quantitative real-time Pneumocystis jirovecii PCRs have replaced microscopy and immunofluorescent stains in many diagnostic laboratories although distinguishing infection may be problematic in non-HIV-infected patients. For species identification of isolates, DNA barcoding with dual loci (ITS and TEF1α) offer optimal accuracy while next generation sequencing (NGS) technologies offer highly discriminatory analysis of genetic diversity including for outbreak investigation and for drug resistance characterization. Advances in molecular technologies will further enhance routine fungal diagnostics.
Collapse
Affiliation(s)
- Sarah E. Kidd
- National Mycology Reference Centre, Microbiology and Infectious Diseases, South Australia Pathology, Adelaide, SA, Australia
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Wieland Meyer
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Research and Education Network, Westmead Hospital, Westmead, NSW, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
40
|
Identification of Cryptic Species of Four Candida Complexes in a Culture Collection. J Fungi (Basel) 2019; 5:jof5040117. [PMID: 31861048 PMCID: PMC6958398 DOI: 10.3390/jof5040117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 01/11/2023] Open
Abstract
Candida spp. are one of the most common causes of fungal infections worldwide. The taxonomy of Candida is controversial and has undergone recent changes due to novel genetically related species. Therefore, some complexes of cryptic species have been proposed. In clinical settings, the correct identification of Candida species is relevant since some species are associated with high resistance to antifungal drugs and increased virulence. This study aimed to identify the species of four Candida complexes (C. albicans, C. glabrata, C. parapsilosis, and C. haemulonii) by molecular methods. This is the first report of six cryptic Candida species in Honduras: C. dubliniensis, C. africana, C. duobushaemulonii, C. orthopsilosis, and C. metapsilosis, and it is also the first report of the allele hwp1-2 of C. albicans sensu stricto. It was not possible to demonstrate the existence of C. auris among the isolates of the C. haemulonii complex. We also propose a simple method based on PCR-RFLP for the discrimination of the multi-resistant pathogen C. auris within the C. haemulonii complex.
Collapse
|
41
|
Reyes-Montes MDR, Acosta-Altamirano G, Duarte-Escalante E, Salazar EG, Martínez-Herrera E, Arenas R, González G, Frías-De-León MG. Usefulness of a multiplex PCR for the rapid identification of Candida glabrata species complex in Mexican clinical isolates. Rev Inst Med Trop Sao Paulo 2019; 61:e37. [PMID: 31411267 PMCID: PMC6690577 DOI: 10.1590/s1678-9946201961037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/25/2019] [Indexed: 01/12/2023] Open
Abstract
Candida glabrata complex includes three species identified
through molecular biology methods: C. glabrata sensu stricto ,
C. nivariensis and C. bracarensis . In
Mexico, the phenotypic methods are still used in the diagnosis; therefore, the
presence of C. nivariensis and C. bracarensis
among clinical isolates is still unknown. The aim of this study was to evaluate
the utility of a multiplex PCR for the identification of the C.
glabrata species complex. DNA samples from 92 clinical isolates
that were previously identified through phenotypic characteristics as C.
glabrata were amplified by four oligonucleotides (UNI-5.8S, GLA-f,
BRA-f, and NIV-f) that generate amplicons of 397, 293 and 223-bp corresponding
to C. glabrata sensu stricto , C. nivariensis
, and C. bracarensis , respectively. The amplicon sequences
were used to perform a phylogenetic analysis through the Maximum Likelihood
method (MEGA6), including strains and reference sequences of species belonging
to C. glabrata complex. In addition, recombination and linkage
disequilibrium were estimated (DnaSP version 5.0) for C. glabrata sensu
stricto isolate s . Eighty-eight isolates
generated a 397-bp fragment and only in one isolate a 223-bp amplicon was
observed. In the phylogenetic tree, the sequences of 397-bp were grouped with
C. glabrata reference sequences , and the
sequence of 223-bp was grouped with C. bracarensis reference
sequences, corroborating the PCR identification. The number of recombination
events for the isolates of C. glabrata sensu stricto was zero,
suggesting a clonal population structure. Three isolates that did not amplify
any of the expected fragments were identified as Saccharomyces
cerevisiae through the sequencing of the D1/D2 domain region within
the 28S rDNA gene. The multiplex PCR is a fast, cost-effective and reliable tool
that can be used in clinical laboratories to identify C.
glabrata complex species.
Collapse
Affiliation(s)
- María Del Rocío Reyes-Montes
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Ciudad de México, México
| | | | - Esperanza Duarte-Escalante
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Ciudad de México, México
| | - Eduardo García Salazar
- Hospital Regional de Alta Especialidad de Ixtapaluca, Unidad de Investigación, Ixtapaluca, México
| | - Erick Martínez-Herrera
- Hospital Regional de Alta Especialidad de Ixtapaluca, Unidad de Investigación, Ixtapaluca, México
| | - Roberto Arenas
- Hospital General "Dr. Manuel Gea González, Sección de Micología, Ciudad de México, México
| | - Gloria González
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología, Monterrey, México
| | | |
Collapse
|
42
|
Rivero-Menendez O, Navarro-Rodriguez P, Bernal-Martinez L, Martin-Cano G, Lopez-Perez L, Sanchez-Romero I, Perez-Ayala A, Capilla J, Zaragoza O, Alastruey-Izquierdo A. Clinical and Laboratory Development of Echinocandin Resistance in Candida glabrata: Molecular Characterization. Front Microbiol 2019; 10:1585. [PMID: 31354675 PMCID: PMC6637773 DOI: 10.3389/fmicb.2019.01585] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022] Open
Abstract
The pathogenic yeast Candida glabrata has become a public health issue due to the increasing number of echinocandin resistant clinical strains reported. In this study, acquisition and development of resistance to this antifungal class were studied in serial C. glabrata isolates from five patients admitted in two Spanish hospitals with a resistant profile against echinocandins associated with different mutations in hot-spot 1 of FKS2 gene. For two of these patients susceptible FKS wild-type isolates obtained prior to resistant ones were also investigated. Isolates were genotyped using multilocus sequence typing and microsatellite length polymorphism techniques, which yielded comparable results. Susceptible and resistant isolates from the same patient had the same genotype, being sequence type (ST) 3 the most prevalent among them. Isolates with different FKS mutations but the same ST were present in the same patient. MSH2 gene alterations were also studied to investigate their correlation with antifungal resistance acquisition but no association was found with antifungal resistance nor with specific genotypes. In vitro exposure to increasing concentrations of micafungin to susceptible isolates developed colonies carrying FKS mutations in agar plates containing a minimum concentration of 0.06 mg/L of micafungin after less than 48 h of exposure. We investigated the correlation between development of resistance and genotype in a set of susceptible strains after being in vitro exposed to micafungin and anidulafungin but no correlation was found. Mutant prevention concentration values and spontaneous growth frequencies after selection with both echinocandins were statistically similar, although FKS mutant colonies were more abundant after micafungin exposure (p < 0.001). Mutation S663P and F659 deletion were the most common ones found after selection with both echinocandins.
Collapse
Affiliation(s)
- Olga Rivero-Menendez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Navarro-Rodriguez
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Tarragona, Spain
| | - Leticia Bernal-Martinez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain.,Spanish Network for the Research in Infectious Diseases (RD16CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Martin-Cano
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Lopez-Perez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Javier Capilla
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Tarragona, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain.,Spanish Network for the Research in Infectious Diseases (RD16CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain.,Spanish Network for the Research in Infectious Diseases (RD16CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
43
|
Low Level of Antifungal Resistance in Iranian Isolates of Candida glabrata Recovered from Blood Samples in a Multicenter Study from 2015 to 2018 and Potential Prognostic Values of Genotyping and Sequencing of PDR1. Antimicrob Agents Chemother 2019; 63:AAC.02503-18. [PMID: 30936110 PMCID: PMC6591624 DOI: 10.1128/aac.02503-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/18/2019] [Indexed: 11/20/2022] Open
Abstract
Establishing an effective empirical antifungal therapy requires that national surveillance studies be conducted. Herein, we report the clinical outcome of infections with and the microbiological features of Iranian isolates of Candida glabrata derived from patients suffering from candidemia. C. glabrata isolates were retrospectively collected from four major cities in Iran; identified by a 21-plex PCR, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and large subunit of ribosomal DNA sequencing; and genotyped by amplified fragment length polymorphism (AFLP). Mutations in PDR1, ERG11, and hot spot 1 (HS1) of FKS1 and FKS2 were investigated, and antifungal susceptibility testing (AFST) was performed (by the CLSI M27-A3 and M27-S4 methods). Seventy isolates of C. glabrata were collected from 65 patients with a median age of 58 years. Fluconazole was the most widely used (29.23%) and least effective antifungal agent. The overall crude mortality rate was 35.4%. Only one strain was resistant to fluconazole, and 57.7% and 37.5% of the isolates were non-wild type (non-WT) for susceptibility to caspofungin and voriconazole, respectively. All isolates showed the WT phenotype for amphotericin B, posaconazole, and itraconazole. HS1 of FKS1 and FKS2 did not harbor any mutations, while numerous missense mutations were observed in PDR1 and ERG11 AFLP clustered our isolates into nine genotypes; among them, genotypes 1 and 2 were significantly associated with a higher mortality rate (P = 0.034 and P = 0.022, α < 0.05). Moreover, 83.3% of patients infected with strains harboring a single new mutation in PDR1, T745A, died despite treatment with fluconazole or caspofungin. Overall, Iranian isolates of C. glabrata were susceptible to the major antifungal drugs. Application of genotyping techniques and sequencing of a specific gene (PDR1) might have prognostic implications.
Collapse
|
44
|
Pham LTT, Pharkjaksu S, Chongtrakool P, Suwannakarn K, Ngamskulrungroj P. A Predominance of Clade 17 Candida albicans Isolated From Hemocultures in a Tertiary Care Hospital in Thailand. Front Microbiol 2019; 10:1194. [PMID: 31258518 PMCID: PMC6587676 DOI: 10.3389/fmicb.2019.01194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
Candida albicans is one of the most common human fungal pathogens. Candidemia has significant mortality globally. No epidemiological study of C. albicans based on multilocus sequence typing (MLST) has been conducted in Thailand. Therefore, MLST was used to study the molecular epidemiology of C. albicans blood strains in a large Thai teaching hospital. In vitro virulence phenotypes and antifungal susceptibility testing by broth microdilution were also conducted. Forty-six C. albicans blood strains from 37 patients were collected from the Department of Microbiology, Siriraj Hospital, in 2016 and 2017. Most patients (71.8%) were more than 60 years old, and the case fatality rate was 54.8%. The male-to-female ratio was 5:3. Thirty-four diploid sequence types (DSTs), including six new DSTs, were identified, with DST2514 (8.7%) and DST2876 (8.7%) as the most common DSTs. Strains were clustered into nine clades. Unlike other studies of C. albicans blood strains in Asia, clade 17 was the most common (13 strains, 28.3%). Sequential allelic changes were evident in sequential strains from one patient. All strains produced phospholipase and hemolysin, while none produced proteinase. The ability to form biofilm was found in 82.6% of the strains. Clade 17 strains showed significantly stronger hemolytic activity than non–clade 17 strains (69.2% versus 27.3%; p = 0.022). However, no significant association existed between clades and patient mortalities. All were susceptible or wild type to anidulafungin (MIC range = 0.015–0.12 and GM = 0.030), micafungin (MIC range = ≤ 0.008–0.015 and GM = 0.008), caspofungin (MIC range = 0.008–0.12 and GM = 0.036), and amphotericin B (MIC range = 0.25–0.5 and GM = 0.381). Only one strain was resistant to voriconazole (MIC range = ≤ 0.008 to ≥ 8 and GM = 0.010) and fluconazole (MIC range = 0.12–16 and GM = 0.398). In conclusion, a high prevalence of clade 17 C. albicans blood strains was found in Thailand, in contrast to other Asian countries. This unique finding might be explained by the strong hemolytic activity that is required for bloodstream infection of C. albicans.
Collapse
Affiliation(s)
- Linh Thi Truc Pham
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Sujiraphong Pharkjaksu
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Piriyaporn Chongtrakool
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Kamol Suwannakarn
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| |
Collapse
|
45
|
Keighley C, Chen SCA, Marriott D, Pope A, Chapman B, Kennedy K, Bak N, Underwood N, Wilson HL, McDonald K, Darvall J, Halliday C, Kidd S, Nguyen Q, Hajkowicz K, Sorrell TC, Van Hal S, Slavin MA. Candidaemia and a risk predictive model for overall mortality: a prospective multicentre study. BMC Infect Dis 2019; 19:445. [PMID: 31113382 PMCID: PMC6528341 DOI: 10.1186/s12879-019-4065-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/02/2019] [Indexed: 01/21/2023] Open
Abstract
Background Candidaemia is associated with high mortality. Variables associated with mortality have been published previously, but not developed into a risk predictive model for mortality. We sought to describe the current epidemiology of candidaemia in Australia, analyse predictors of 30-day all-cause mortality, and develop and validate a mortality risk predictive model. Methods Adults with candidaemia were studied prospectively over 12 months at eight institutions. Clinical and laboratory variables at time of blood culture-positivity were subject to multivariate analysis for association with 30-day all-cause mortality. A predictive score for mortality was examined by area under receiver operator characteristic curves and a historical data set was used for validation. Results The median age of 133 patients with candidaemia was 62 years; 76 (57%) were male and 57 (43%) were female. Co-morbidities included underlying haematologic malignancy (n = 20; 15%), and solid organ malignancy in (n = 25; 19%); 55 (41%) were in an intensive care unit (ICU). Non-albicans Candida spp. accounted for 61% of cases (81/133). All-cause 30-day mortality was 31%. A gastrointestinal or unknown source was associated with higher overall mortality than an intravascular or urologic source (p < 0.01). A risk predictive score based on age > 65 years, ICU admission, chronic organ dysfunction, preceding surgery within 30 days, haematological malignancy, source of candidaemia and antibiotic therapy for ≥10 days stratified patients into < 20% or ≥ 20% predicted mortality. The model retained accuracy when validated against a historical dataset (n = 741). Conclusions Mortality in patients with candidaemia remains high. A simple mortality risk predictive score stratifying patients with candidaemia into < 20% and ≥ 20% 30-day mortality is presented. This model uses information available at time of candidaemia diagnosis is easy to incorporate into decision support systems. Further validation of this model is warranted. Electronic supplementary material The online version of this article (10.1186/s12879-019-4065-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Keighley
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Darcy Rd, 3rd Level, ICPMR Building, Westmead, Sydney, New South Wales, 2145, Australia. .,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia. .,Department of Infectious Diseases, Westmead Hospital, Westmead, Sydney, NSW, Australia.
| | - S C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Darcy Rd, 3rd Level, ICPMR Building, Westmead, Sydney, New South Wales, 2145, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Department of Infectious Diseases, Westmead Hospital, Westmead, Sydney, NSW, Australia
| | - D Marriott
- Department of Microbiology and Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - A Pope
- Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia.,School of Mathematics and Statistics, University of NSW, Sydney, NSW, Australia
| | - B Chapman
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - K Kennedy
- Department of Infectious Diseases and Microbiology, Canberra Hospital, Australian National University Medical School, Canberra, ACT, Australia
| | - N Bak
- Department of Infectious Diseases, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - N Underwood
- Infection Management Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - H L Wilson
- Department of Infectious Diseases and Microbiology, Canberra Hospital, Australian National University Medical School, Canberra, ACT, Australia
| | - K McDonald
- Department of Microbiology and Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - J Darvall
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - C Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Darcy Rd, 3rd Level, ICPMR Building, Westmead, Sydney, New South Wales, 2145, Australia
| | - S Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, SA, Australia
| | - Q Nguyen
- National Centre for Clinical Excellence on Emerging Drugs of Concern (NCCRED), National Drug and Alcohol Research Centre (NDARC), University of New South Wales, Sydney, Australia
| | - K Hajkowicz
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - T C Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Department of Infectious Diseases, Westmead Hospital, Westmead, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - S Van Hal
- Department of Infectious Diseases and Microbiology, New South Wales Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - M A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, National Centre for Infections in Cancer, Melbourne, VIC, Australia
| |
Collapse
|
46
|
Atomic Force Microscopy Demonstrates that Candida glabrata Uses Three Epa Proteins To Mediate Adhesion to Abiotic Surfaces. mSphere 2019; 4:4/3/e00277-19. [PMID: 31043520 PMCID: PMC6495341 DOI: 10.1128/msphere.00277-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Candida glabrata cell wall proteins mediate the attachment of C. glabrata to abiotic surfaces through molecular interactions that are poorly understood. Here, we study the forces engaged in Epa-dependent adhesion using single-cell techniques. Fungal adhesion to hydrophilic and hydrophobic substrates involves mainly three Epa proteins, suggesting a broad role for the Epa adhesins in mediating adherence. These proteins might represent a potential target for the development of innovative antifungal drugs. The fungal pathogen Candida glabrata can cause both mucosal and disseminated infections. Cell adhesion, a key step in colonization and infection, depends in C. glabrata primarily on the Epa family of cell adhesion proteins. While Epa proteins have been documented to mediate specific adhesion to host glycans, some of them also promote nonspecific adhesion to abiotic surfaces, though this is incompletely understood. Here we address this issue using a combination of genetics and single-cell force measurements. By quantifying the forces driving the attachment of single C. glabrata cells to hydrophobic and hydrophilic substrates, we show that cell adhesion is strongly increased by loss of Sir-mediated silencing. Using a series of mutant strains lacking specific EPA genes, we demonstrate unexpectedly that three major Epa proteins, Epa1, Epa6, and Epa7, primarily contribute to both hydrophilic and hydrophobic interactions, suggesting a broad role for the Epa adhesins in mediating specific and nonspecific adherence and implicating Epa genes in biofilm formation on abiotic surfaces. IMPORTANCECandida glabrata cell wall proteins mediate the attachment of C. glabrata to abiotic surfaces through molecular interactions that are poorly understood. Here, we study the forces engaged in Epa-dependent adhesion using single-cell techniques. Fungal adhesion to hydrophilic and hydrophobic substrates involves mainly three Epa proteins, suggesting a broad role for the Epa adhesins in mediating adherence. These proteins might represent a potential target for the development of innovative antifungal drugs.
Collapse
|
47
|
Khan Z, Ahmad S, Al-Sweih N, Mokaddas E, Al-Banwan K, Alfouzan W, Al-Obaid I, Al-Obaid K, Asadzadeh M, Jeragh A, Joseph L, Varghese S, Vayalil S, Al-Musallam O. Changing trends in epidemiology and antifungal susceptibility patterns of six bloodstream Candida species isolates over a 12-year period in Kuwait. PLoS One 2019; 14:e0216250. [PMID: 31042770 PMCID: PMC6494055 DOI: 10.1371/journal.pone.0216250] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/16/2019] [Indexed: 01/12/2023] Open
Abstract
Changing trends in incidence and antifungal susceptibility patterns of six Candida species causing candidemia in Kuwait between 2006–2017 are reported. A total of 2075 isolates obtained from 1448 patients were analyzed. Identity of Candida species isolates was determined by phenotypic methods and confirmed by PCR amplification/PCR-sequencing of rDNA and/or MALDI-TOF MS. Antifungal susceptibility was determined by Etest. C. albicans accounted for 539 (37.22%) cases followed by C. parapsilosis (n = 502, 34.67%), C. tropicalis (n = 210, 14.5%), C. glabrata (n = 148, 10.22%), C. krusei (n = 27, 1.81%) and C. dubliniensis (n = 22, 1.5%). The comparative percent distribution of Candida species causing candidemia between 2006–2011 and 2012–2017 was as follows: C. albicans 41.8% and 33.1%, C. parapsilosis complex 32.01% and 37.04%, C. tropicalis 13.59% and 15.31%, and C. glabrata 8.77% and 11.51%, C. krusei 2.0% and 1.7%, and C. dubliniensis 1.75 and 1.3%, respectively. Three of 371 C. albicans isolates during 2006–2011 and five of 363 during 2012–2017 were resistant to fluconazole. Among C. parapsilosis isolates, one of 310 during 2006–2011 and 21 of 446 during 2012–2017 were resistant to this drug. Furthermore, at an epidemiologic cutoff value (ECV) of ≤0.5 μg/ml, 70.1% C. albicans isolates were wild-type for fluconazole during 2006–2011 as compared to 58.1% during 2012–2017. Likewise, at an ECV of ≤2 μg/ml, 98.0% of C. parapsilosis isolates were wild-type during 2006–2011 as compared to 93.4% during 2012–2017. Clonal spread of fluconazole-resistant C. parapsilosis in one major hospital was documented. An 8.8% shift in favor of non-albicans Candida species with concomitant increase in MICs between the two periods preludes emergence of fluconazole-resistant candidemia cases in Kuwait.
Collapse
Affiliation(s)
- Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- * E-mail:
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- Department of Microbiology, Maternity Hospital, Shuwaikh, Kuwait
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- Department of Microbiology, Ibn-Sina Hospital, Shuwaikh, Kuwait
| | - Khalifa Al-Banwan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- Department of Microbiology, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- Department of Microbiology, Farwaniya Hospital, Farwaniya, Kuwait
| | - Inaam Al-Obaid
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh, Kuwait
| | - Khaled Al-Obaid
- Department of Microbiology, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Ahlam Jeragh
- Department of Microbiology, Al-Adan Hospital, Hadyia, Kuwait
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Soumya Varghese
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Sandhya Vayalil
- Mycology Reference Laboratory, Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Omar Al-Musallam
- Mycology Reference Laboratory, Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
48
|
Yeast Species in the Oral Cavities of Older People: A Comparison between People Living in Their Own Homes and Those in Rest Homes. J Fungi (Basel) 2019; 5:jof5020030. [PMID: 31013697 PMCID: PMC6617379 DOI: 10.3390/jof5020030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Oral candidiasis is prevalent among older people due to predisposing factors such as impaired immune defenses, medications and denture use. An increasing number of older people live in rest home facilities and it is unclear how this institutionalized living affects the quantity and type of fungi colonizing these people's oral cavities. Smears and swabs of the palate and tongue and saliva samples were taken from participants residing in rest homes (RH; n = 20) and older people living in their own homes (OH; n = 20). Yeast in samples were quantified and identified by culturing on CHROMagar Candida and sequencing the ITS2 region of rDNA. A higher proportion of RH residents had Candida hyphae present in smears compared to OH participants (35% vs. 30%) although this difference was not statistically significant (p = 0.74). RH residents had, on average, 23 times as many yeast per mL saliva as OH participants (p = 0.01). Seven yeast species were identified in OH samples and only five in RH samples, with Candida albicans and Candida glabrata being the most common species isolated from both participant groups. The results indicate that older people living in aged-care facilities were more likely to have candidiasis and have a higher yeast carriage rate than similarly aged people living at home. This may be due to morbidities which led to the need for residential care and/or related to the rest home environment.
Collapse
|
49
|
Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species From 1997-2016. Open Forum Infect Dis 2019; 6:S79-S94. [PMID: 30895218 PMCID: PMC6419901 DOI: 10.1093/ofid/ofy358] [Citation(s) in RCA: 521] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The emergence of antifungal resistance threatens effective treatment of invasive fungal infection (IFI). Invasive candidiasis is the most common health care–associated IFI. We evaluated the activity of fluconazole (FLU) against 20 788 invasive isolates of Candida (37 species) collected from 135 medical centers in 39 countries (1997–2016). The activity of anidulafungin, caspofungin, and micafungin (MCF) was evaluated against 15 308 isolates worldwide (2006–2016). Methods Species identification was accomplished using phenotypic (1997–2001), genotypic, and proteomic methods (2006–2016). All isolates were tested using reference methods and clinical breakpoints published in the Clinical and Laboratory Standards Institute documents. Results A decrease in the isolation of Candida albicans and an increase in the isolation of Candida glabrata and Candida parapsilosis were observed over time. Candida glabrata was the most common non–C. albicans species detected in all geographic regions except for Latin America, where C. parapsilosis and Candida tropicalis were more common. Six Candida auris isolates were detected: 1 each in 2009, 2013, 2014, and 2015 and 2 in 2016; all were from nosocomial bloodstream infections and were FLU-resistant (R). The highest rates of FLU-R isolates were seen in C. glabrata from North America (NA; 10.6%) and in C. tropicalis from the Asia-Pacific region (9.2%). A steady increase in isolation of C. glabrata and resistance to FLU was detected over 20 years in the United States. Echinocandin-R (EC-R) ranged from 3.5% for C. glabrata to 0.1% for C. albicans and C. parapsilosis. Resistance to MCF was highest among C. glabrata (2.8%) and C. tropicalis (1.3%) from NA. Mutations on FKS hot spot (HS) regions were detected among 70 EC-R isolates (51/70 were C. glabrata). Most isolates harboring FKS HS mutations were resistant to 2 or more ECs. Conclusions EC-R and FLU-R remain uncommon among contemporary Candida isolates; however, a slow and steady emergence of resistance to both antifungal classes was observed in C. glabrata and C. tropicalis isolates.
Collapse
Affiliation(s)
- Michael A Pfaller
- JMI Laboratories, North Liberty, Iowa.,University of Iowa College of Medicine, Iowa City, Iowa
| | | | - John D Turnidge
- Departments of Pathology and Molecular and Cellular Biology, University of Adelaide, Adelaide, SA, Australia
| | | | | |
Collapse
|
50
|
Santolaya ME, Thompson L, Benadof D, Tapia C, Legarraga P, Cortés C, Rabello M, Valenzuela R, Rojas P, Rabagliati R, on behalf of the Chilean Invasive Mycosis Network. A prospective, multi-center study of Candida bloodstream infections in Chile. PLoS One 2019; 14:e0212924. [PMID: 30849092 PMCID: PMC6407853 DOI: 10.1371/journal.pone.0212924] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Active surveillance is necessary for improving the management and outcome of patients with candidemia. The aim of this study was to describe epidemiologic and clinical features of candidemia in children and adults in tertiary level hospitals in Chile. METHODS We conducted a prospective, multicenter, laboratory-based survey study of candidemia in 26 tertiary care hospitals in Chile, from January 2013 to October 2017. RESULTS A total of 780 episodes of candidemia were included, with a median incidence of 0.47/1,000 admissions. Demographic, clinical and microbiological information of 384 cases of candidemia, from 18 hospitals (7,416 beds), was included in this report. One hundred and thirty-four episodes (35%) occurred in pediatric patients and 250 (65%) in adult population. Candida albicans (39%), Candida parapsilosis (30%) and Candida glabrata (10%) were the leading species, with a significant difference in the distribution of species between ages. The use of central venous catheter and antibiotics were the most frequent risk factors in all age groups (> 70%). Three hundred and fifteen strains were studied for antifungal susceptibility; 21 strains (6.6%) were resistant to fluconazole, itraconazole, voriconazole, anidulafungin or micafungin. The most commonly used antifungal therapies were fluconazole (39%) and echinocandins (36%). The overall 30-day survival was 74.2%, significantly higher in infants (82%) and children (86%) compared with neonates (72%), adults (71%) and elderly (70%). CONCLUSIONS Our prospective, multicenter surveillance study showed a low incidence of candidemia in Chile, with high 30-day survival, a large proportion of elderly patients, C. glabrata as the third most commonly identified strain, a 6.6% resistance to antifungal agents and a frequent use of echinocandins.
Collapse
Affiliation(s)
- Maria E. Santolaya
- Infectious Diseases Unit, Department of Pediatrics, Hospital Dr. Luis Calvo Mackenna, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Chilean Invasive Mycosis Network, Santiago, Chile
- * E-mail:
| | - Luis Thompson
- Chilean Invasive Mycosis Network, Santiago, Chile
- Infectious Diseases Unit, Department of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Dona Benadof
- Chilean Invasive Mycosis Network, Santiago, Chile
- Microbiology Laboratory, Hospital Dr. Roberto del Río, Santiago, Chile
| | - Cecilia Tapia
- Chilean Invasive Mycosis Network, Santiago, Chile
- Microbiological and Micological Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paulette Legarraga
- Chilean Invasive Mycosis Network, Santiago, Chile
- Department of Clinical Laboratories, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Cortés
- Chilean Invasive Mycosis Network, Santiago, Chile
- Medicine Department, Hospital San Borja Arriarán, Clínica Santa María, Faculty of Medicine, Universidad de Chile, Santiago Chile
| | - Marcela Rabello
- Infectious Diseases Unit, Department of Pediatrics, Hospital Dr. Luis Calvo Mackenna, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Chilean Invasive Mycosis Network, Santiago, Chile
| | - Romina Valenzuela
- Infectious Diseases Unit, Department of Pediatrics, Hospital Dr. Luis Calvo Mackenna, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Chilean Invasive Mycosis Network, Santiago, Chile
| | - Pamela Rojas
- Chilean Invasive Mycosis Network, Santiago, Chile
- Microbiology Laboratory, Hospital Padre Hurtado, Santiago, Chile
| | - Ricardo Rabagliati
- Chilean Invasive Mycosis Network, Santiago, Chile
- Department of Infectious Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|