1
|
Sheng H, Suo J, Wang X, Lü Z, Wang S, Yang Q, Li J, Li W, Chen J, Yang B. Global prevalence and transmission of the mcr-9 in Salmonella: A genomic study with insights from Salmonella enterica serovar Thompson isolated from poultry food in China. Food Res Int 2025; 202:115763. [PMID: 39967076 DOI: 10.1016/j.foodres.2025.115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
The plasmid-mediated mcr-9 gene has been widely detected in Salmonella across multiple countries and regions, raising significant concerns for food safety and public health. To investigate the transmission dynamics of mcr-9 in Salmonella, we conducted a comprehensive genomic epidemiological study and explored the potential mechanisms of mcr-9 transmission in poultry-derived S. Thompson in China. This study analyzed 126 mcr-9-positive Salmonella isolates from food in China and genomic data of 1,487 publicly available mcr-9-positive Salmonella collected over the past 40 years from 32 countries and various sources. Two variants, mcr-9.1 and mcr-9.2, were detected, with mcr-9.1 being the most prevalent subtype globally. S. Typhimurium/I 4,[5],12:i:- (23.1 %, 372/1,613) was the dominant lineage of the total collection, followed by S. Saintpaul (15.9 %, 256/1,613), S. Heidelberg (11.4 %, 184/1,613), and S. Thompson (8.6 %, 139/1,613). S. Typhimurium/I 4,[5],12:i:- was widely distributed in North America and Europe, primarily prevalent in humans and swine, whereas S. Thompson was predominantly found in China, mainly prevalent in poultry-related foods and humans. Conjugation experiments were performed on 116 S. Thompson strains from 126 Salmonella isolates. The results showed that 85.3 % (99/116) of the mcr-9-positive plasmids were transferable. The IncHI2-IncHI2A plasmids from three representative donors demonstrated the ability to transfer at varying frequencies to seven Salmonella recipients of different serotypes including Typhimurium, Thompson, Enteritidis, Indiana, Rissen, London, and Derby. Chicken juice matrix significantly increased the proportion of mcr-9-positive S. Thompson conjugants. The inability of mcr-9-positive IncHI2-IncHI2A plasmids to transfer via conjugation may be due to the integration of the plasmid into the chromosome. In addition, the deletion of IS1B-cfdB-fucO-frmR-uvrA-fghA-gloA-frmA-uvrB-flhD-smc-copG-IS26 gene region was observed in the non-conjugative mcr-9-positive plasmids. These findings underscore the importance of ongoing surveillance of mcr-9-positive multidrug-resistant S. Thompson for food safety in China.
Collapse
Affiliation(s)
- Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Changji Vocational and Technical College, Changji, Xinjiang 831100, China
| | - Xiaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zexun Lü
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiuping Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Li
- School of Biomedicine and Food Engineering, Shangluo University, Shangluo, Shaanxi 726000, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Schumann A, Gaballa A, Wiedmann M. The multifaceted roles of phosphoethanolamine-modified lipopolysaccharides: from stress response and virulence to cationic antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0019323. [PMID: 39382292 DOI: 10.1128/mmbr.00193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The pet genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying pet genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions.
Collapse
Affiliation(s)
- Anna Schumann
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Kaspersen HP, Brouwer MS, Nunez-Garcia J, Cárdenas-Rey I, AbuOun M, Duggett N, Ellaby N, Delgado-Blas J, Hammerl JA, Getino M, Serna C, Naas T, Veldman KT, Bossers A, Sunde M, Mo SS, Jørgensen SB, Ellington M, Gonzalez-Zorn B, La Ragione R, Glaser P, Anjum MF. Escherichia coli from six European countries reveals differences in profile and distribution of critical antimicrobial resistance determinants within One Health compartments, 2013 to 2020. Euro Surveill 2024; 29:2400295. [PMID: 39574393 PMCID: PMC11583308 DOI: 10.2807/1560-7917.es.2024.29.47.2400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024] Open
Abstract
BackgroundAntimicrobial resistance (AMR) is a global threat. Monitoring using an integrated One Health approach is essential to detect changes in AMR occurrence.AimWe aimed to detect AMR genes in pathogenic and commensal Escherichia coli collected 2013-2020 within monitoring programmes and research from food animals, food (fresh retail raw meat) and humans in six European countries, to compare vertical and horizontal transmission.MethodsWe whole genome sequenced (WGS) 3,745 E. coli isolates, detected AMR genes using ResFinder and performed phylogenetic analysis to determine isolate relatedness and transmission. A BLASTn-based bioinformatic method compared draft IncI1 genomes to conserved plasmid references from Europe.ResultsResistance genes to medically important antimicrobials (MIA) such as extended-spectrum cephalosporins (ESC) were widespread but predicted resistance to MIAs authorised for human use (carbapenem, tigecycline) was detected only in two human and three cattle isolates. Phylogenetic analysis clustered E. coli according to phylogroups; commensal animal isolates showed greater diversity than those from human patients. Only 18 vertical animal-food and human-animal transmission events of E. coli clones were detected. However, IncI1 plasmids from different sources and/or countries carrying resistance to ESCs were conserved and widely distributed, although these variants were rarely detected in human pathogens.ConclusionUsing WGS we demonstrated AMR is driven vertically and horizontally. Human clinical isolates were more closely related, but their IncI1 plasmids were more diverse, while animal or food isolates were less similar with more conserved IncI1 plasmids. These differences likely arose from variations in selective pressure, influencing AMR evolution and transmission.
Collapse
Affiliation(s)
- Håkon P Kaspersen
- Norwegian Veterinary Institute, Section for Food Safety and Animal Health Research, Ås, Norway
| | - Michael Sm Brouwer
- Wageningen Bioveterinary Research part of Wageningen University and Research, Department of Bacteriology, Host-Pathogen interactions and Diagnostic Development, Lelystad, The Netherlands
| | - Javier Nunez-Garcia
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Ingrid Cárdenas-Rey
- Wageningen Bioveterinary Research part of Wageningen University and Research, Department of Bacteriology, Host-Pathogen interactions and Diagnostic Development, Lelystad, The Netherlands
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Nicholas Duggett
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Nicholas Ellaby
- United Kingdom Health Security Agency, London, United Kingdom
| | - Jose Delgado-Blas
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Jens A Hammerl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Maria Getino
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Carlos Serna
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Thierry Naas
- Bacteriology-Hygiene unit, Hopital Bicêtre, Assistance Publique-Hopitaux De Paris, University Paris-Saclay, Paris, France
| | - Kees T Veldman
- Wageningen Bioveterinary Research part of Wageningen University and Research, Department of Bacteriology, Host-Pathogen interactions and Diagnostic Development, Lelystad, The Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research part of Wageningen University and Research, Department of Bacteriology, Host-Pathogen interactions and Diagnostic Development, Lelystad, The Netherlands
| | - Marianne Sunde
- Norwegian Veterinary Institute, Section for Food Safety and Animal Health Research, Ås, Norway
| | - Solveig S Mo
- Norwegian Veterinary Institute, Section for Food Safety and Animal Health Research, Ås, Norway
| | - Silje B Jørgensen
- Department for Microbiology and Infection Control, Department for Emergency Medicine, Akershus University Hospital, Lørenskog, Norway
| | | | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Roberto La Ragione
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Philippe Glaser
- Ecology and evolution of antibiotic resistance Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| |
Collapse
|
4
|
Navickaite I, Holmes H, Dondi L, Randall L, Fearnley C, Taylor E, Fullick E, Horton R, Williamson S, AbuOun M, Teale C, Anjum MF. Occurrence and characterization of rmtB-harbouring Salmonella and Escherichia coli isolates from a pig farm in the UK. J Antimicrob Chemother 2024; 79:1329-1336. [PMID: 38629139 DOI: 10.1093/jac/dkae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/20/2024] [Indexed: 06/04/2024] Open
Abstract
OBJECTIVES To characterize and elucidate the spread of amikacin-resistant Enterobacteriaceae isolates from environmental samples on a pig farm in the UK, following the previous identification of index Salmonella isolates harbouring the rmtB gene, a 16S rRNA methylase. METHODS Environmental samples were collected during two visits to a pig farm in the UK. Isolates were recovered using selective media (amikacin 128 mg/L) followed by real-time PCR and WGS to analyse rmtB-carrying Salmonella and Escherichia coli isolates. RESULTS Salmonella and E. coli isolates harbouring the rmtB gene were detected at both farm visits. All Salmonella isolates were found to be monophasic S. enterica serovar Typhimurium variant Copenhagen of ST34. rmtB-harbouring E. coli isolates were found to be one of three STs: ST4089, ST1684 and ST34. Long-read sequencing identified the rmtB gene to be chromosomally located in Salmonella isolates and on IncFII-type plasmids in E. coli isolates. The results showed the rmtB gene to be flanked by IS26 elements and several resistance genes. CONCLUSIONS We report on the occurrence of rmtB-harbouring Enterobacteriaceae on a pig farm in the UK. rmtB confers resistance to multiple aminoglycosides and this work highlights the need for surveillance to assess dissemination and risk.
Collapse
Affiliation(s)
| | - Harry Holmes
- Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - Letizia Dondi
- Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - Luke Randall
- Animal and Plant Health Agency, Weybridge, Surrey, UK
| | | | - Emma Taylor
- Animal and Plant Health Agency, Weybridge, Surrey, UK
| | | | - Robert Horton
- Animal and Plant Health Agency, Weybridge, Surrey, UK
| | | | - Manal AbuOun
- Animal and Plant Health Agency, Weybridge, Surrey, UK
| | | | - Muna F Anjum
- Animal and Plant Health Agency, Weybridge, Surrey, UK
| |
Collapse
|
5
|
Zhong T, Wu H, Hu J, Liu Y, Zheng Y, Li N, Sun Z, Yin XF, He QY, Sun X. Two synonymous single-nucleotide polymorphisms promoting fluoroquinolone resistance of Escherichia coli in the environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133849. [PMID: 38432089 DOI: 10.1016/j.jhazmat.2024.133849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Single-nucleotide polymorphism (SNP) is one of the core mechanisms that respond to antibiotic resistance of Escherichia coli (E. coli), which is a major issue in environmental pollution. A specific type of SNPs, synonymous SNPs, have been generally considered as the "silent" SNPs since they do not change the encoded amino acid. However, the impact of synonymous SNPs on mRNA splicing, nucleo-cytoplasmic export, stability, and translation was gradually discovered in the last decades. Figuring out the mechanism of synonymous SNPs in regulating antibiotic resistance is critical to improve antimicrobial therapy strategies in clinics and biological treatment strategies of antibiotic-resistant E. coli-polluted materials. With our newly designed antibiotic resistant SNPs prediction algorithm, Multilocus Sequence Type based Identification for Phenotype-single nucleotide polymorphism Analysis (MIPHA), and in vivo validation, we identified 2 important synonymous SNPs 522 G>A and 972 C>T, located at hisD gene, which was previously predicted as a fluoroquinolone resistance-related gene without a detailed mechanism in the E. coli samples with environmental backgrounds. We first discovered that hisD causes gyrA mutation via the upregulation of sbmC and its downstream gene umuD. Moreover, those 2 synonymous SNPs of hisD cause its own translational slowdown and further reduce the expression levels of sbmC and its downstream gene umuD, making the fluoroquinolone resistance determining region of gyrA remains unmutated, ultimately causing the bacteria to lose their ability to resist drugs. This study provided valuable insight into the role of synonymous SNPs in mediating antibiotic resistance of bacteria and a new perspective for the treatment of environmental pollution caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Tairan Zhong
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Haiming Wu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiehua Hu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yun Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yundan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenghua Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xing-Feng Yin
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Anjum MF, Duggett N, Sheldon E, Sharma M, Smith RP, Teale CJ. Genomics to detect transmission of livestock-associated methicillin-resistant Staphylococcus aureus from UK pigs in abattoirs during slaughter. J Antimicrob Chemother 2024; 79:962-967. [PMID: 38442335 DOI: 10.1093/jac/dkae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Livestock-associated MRSA (LA-MRSA) transmission/cross-contamination can occur at abattoir through colonized pigs, increasing occupational hazards and health concerns for workers. To assess this risk we used genomics to identify LA-MRSA lineages present in batches of pigs sent to slaughter and distribution of clones. METHODS WGS was performed on 85 LA-MRSA previously isolated from six abattoirs from 105 batches of pigs sent from 100 UK farms. spa typing and MLST were performed on all isolates. A mashtree tree was constructed to compare genomes of the LA-MRSA with 1281 global isolates from livestock and humans. A phylogenetic tree and pairwise SNP distance matrices were built from whole genomes of 109 isolates closest to those from abattoirs to compare evolutionary relationships and identify clones. RESULTS All abattoir isolates belonged to CC398 and were mainly of spa type t011, although other spa types were present. Phylogenetic analysis confirmed the abattoir isolates were most closely related to each other and to pig LA-MRSA from across Europe, indicating a common evolutionary origin with related lineages colonizing UK pigs.Comparison of genomes using SNPs suggested between one and four clones were transferring between pigs from different batches. Transmission likely occurred on farm premises, during transportation, and/or within abattoirs through contact with contaminated surfaces in lairage or post-stunning. CONCLUSIONS Genomics forensically identified related isolates/clones circulating in pigs at slaughter, showing contamination occurs often. Results suggest that further genomic tracking will identify hotspots, and improvements in measures such as biosecurity and disinfection will help reduce risk for workers.
Collapse
Affiliation(s)
- Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, UK
| | - Nicholas Duggett
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, UK
| | - Ewart Sheldon
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, UK
| | - Meenaxi Sharma
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, UK
| | - Richard P Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, UK
| | - Chris J Teale
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, UK
| |
Collapse
|
7
|
Olorunleke SO, Kirchner M, Duggett N, Stevens K, Chah KF, Nwanta JA, Brunton LA, Anjum MF. Rapid detection and molecular epidemiology of β-lactamase producing Enterobacteriaceae isolated from food animals and in-contact humans in Nigeria. PLoS One 2024; 19:e0289190. [PMID: 38603727 PMCID: PMC11008865 DOI: 10.1371/journal.pone.0289190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/02/2024] [Indexed: 04/13/2024] Open
Abstract
The emergence and spread of β-lactamase-producing Enterobacteriaceae poses a significant threat to public health, necessitating the rapid detection and investigation of the molecular epidemiology of these pathogens. We modified a multiplex real-time (RT)-PCR to concurrently detect β-lactamase genes (blaCTX-M, blaTEM, and blaSHV) and Enterobacteriaceae 16S ribosomal RNA. qPCR probes and primers were validated using control isolates, and the sensitivity and specificity assessed. The optimised multiplex qPCR was used to screen 220 non-clinical Enterobacteriaceae from food animals and in-contact humans in Southeast Nigeria selected on cefotaxime-supplemented agar plates. Binary logistic regression was used to explore factors associated with the presence of the blaTEM and blaSHV genes in these isolates, and a subset of isolates from matched sampling sites and host species were whole genome sequenced, and their antimicrobial resistance (AMR) and plasmid profiles determined. The sensitivity and specificity of the qPCR assay was 100%. All isolates (220/220) were positive for Enterobacteriaceae ribosomal 16S rRNA and blaCTX-M, while 66.4% (146/220) and 9% (20/220) were positive for blaTEM and blaSHV, respectively. The prevalence of blaTEM and blaSHV varied across different sampling sites (farm, animal market and abattoirs). Isolates from Abia state were more likely to harbour blaTEM (OR = 2.3, p = 0.04) and blaSHV (OR = 5.12,p = 0.01) than isolates from Ebonyi state; blaTEM was more likely to be detected in isolates from food animals than humans (OR = 2.34, p = 0.03), whereas the reverse was seen for blaSHV (OR = 7.23, p = 0.02). Furthermore, Klebsiella and Enterobacter isolates harboured more AMR genes than Escherichia coli, even though they were isolated from the same sample. We also identified pan resistant Klebsiella harbouring resistance to ten classes of antimicrobials and disinfectant. Therefore, we recommend ESKAPE pathogens are included in AMR surveillance in future and suggest qPCRs be utilised for rapid screening of Enterobacteriaceae from human and animal sources.
Collapse
Affiliation(s)
- Solomon Olabiyi Olorunleke
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria Nsukka, Enugu, Nigeria
| | - Miranda Kirchner
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
| | - Nicholas Duggett
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
| | - Kim Stevens
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Kennedy F. Chah
- Department of Veterinary Pathology and Microbiology, University of Nigeria Nsukka, Enugu, Nigeria
| | - John A. Nwanta
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria Nsukka, Enugu, Nigeria
| | - Lucy A. Brunton
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Muna F. Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
| |
Collapse
|
8
|
Hassan IZ, Qekwana DN, Naidoo V. Prevalence of colistin resistance and antibacterial resistance in commensal Escherichia coli from chickens: An assessment of the impact of regulatory intervention in South Africa. Vet Med Sci 2024; 10:e1315. [PMID: 37929776 PMCID: PMC10766030 DOI: 10.1002/vms3.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a global health problem largely due to the overuse of antimicrobials. In recognition of this, the World Health Assembly in 2015 agreed on a global action plan to tackle AMR. Following the global emergence of the mcr-1-associated colistin resistance gene in the livestock industry in 2016, several countries including South Africa restricted the veterinary use of colistin as the gene threatens the clinical utility of the drug. This study is a follow-up to the restriction in place in order to evaluate the impact of such policy adoption. OBJECTIVE To assess the prevalence of antibacterial resistance (ABR), and the mcr-1 colistin resistance gene in broiler chicken over a 2-year period, as a follow-up to the veterinary ban on colistin use in South Africa. METHODS A total of 520 swab samples were obtained during 2019 (March-April) and 2020 (February-March), from healthy broiler chicken carcasses (n = 20) and chicken droppings in transport crates (n = 20) at various poultry abattoirs (N = 7) in the Gauteng province of South Africa. Escherichia coli organisms were isolated and subjected to a panel of 24 antibacterials using the MicroScan machine. Screening for mcr-1 colistin resistance gene was undertaken using PCR. RESULT Four hundred and thirty-eight (438) E. coli strains were recovered and none demonstrated phenotypic resistance towards colistin, amikacin, carbapenems, tigecycline and piperacillin/tazobactam. The mcr-1 gene was not detected in any of the isolates tested. Resistances to the aminoglycosides (0%-9.8%) and fluoroquinolones (0%-18.9%) were generally low. Resistances to ampicillin (32%-39.3%) and trimethoprim/sulphamethoxazole (30.6%-3.6%) were fairly high. A significant (p < 0.05) increase in cephalosporins and cephamycin resistance was noted in the year 2020 (February-March) when compared with the year 2019 (March-April). CONCLUSION The absence of mcr-1 gene and colistin resistance suggests that mitigation strategies adopted were effective and clearly demonstrated the significance of regulatory interventions in reducing resistance to critical drugs. Despite the drawback in regulatory framework such as free farmers access to antimicrobials OTC and a dual registration system in place, there is a general decline in the prevalence of ABR when the present data are compared with the last national veterinary surveillance on AMR (SANVAD 2007). To further drive resistance down, mitigation strategies should focus on strengthening regulatory framework, the withdrawal of OTC dispensing of antimicrobials, capping volumes of antimicrobials, banning growth promoters and investing on routine surveillance/monitoring of AMR and antimicrobial consumption.
Collapse
Affiliation(s)
- Ibrahim Z. Hassan
- Department of Paraclinical SciencesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
- Present address:
DSI/NWU Preclinical Drug Development PlatformNorth‐West UniversityPotchefstroomSouth Africa
| | - Daniel N. Qekwana
- Department of Paraclinical SciencesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
| | - Vinny Naidoo
- Department of Paraclinical SciencesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
9
|
Deza-Cruz I, Vilar MJ, Velasova M, AbuOun M, Anjum MF, Smith RP. Antimicrobial resistance of Escherichia coli in the UK: comparison of single vs. pooled samples from healthy pigs. Lett Appl Microbiol 2023; 76:ovad123. [PMID: 37942558 DOI: 10.1093/lambio/ovad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
This study compared the antimicrobial resistance (AMR) of Escherichia coli detected from single samples vs. pooled samples at herd level. The national monitoring dataset included isolates from one sample per pig holding, whereas the research study included isolates from pooled samples of 10 pigs per holding. In both datasets, caecal samples were collected from healthy pigs randomly selected at slaughterhouses and plated on non-selective and antibiotic selective media. Resistance against a panel of nine antibiotics was compared between datasets by generalized linear mixed effects models (GLMMs) and by bootstrapped generalized linear model (GLM) to account for pooling. The highest proportion of resistant E. coli was observed against tetracycline and ampicillin in both datasets. In non-selective media, single and pooled samples showed similar results, but the bootstrapped GLM detected significantly lower resistance to ciprofloxacin and nalidixic acid in the national dataset. In selective media, a significantly greater proportion of resistant isolates was observed in the research dataset for ceftazidime (OR: 0.05, 95%CI = 0.01-0.42) and nalidixic acid (OR: 0.15, 95%CI = 0.05-0.51). The results suggest that one sample per holding provides similar information on AMR at herd level as pooled samples for most of the tested antibiotics, although less resistance to ciprofloxacin, ceftazidime, and nalidixic acid was detected.
Collapse
Affiliation(s)
- Iñaki Deza-Cruz
- Department of Veterinary Epidemiology and Public Health, School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, United Kingdom
| | - María J Vilar
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Martina Velasova
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Richard P Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| |
Collapse
|
10
|
Hassan IZ, Qekwana DN, Naidoo V. Do Pathogenic Escherichia coli Isolated from Gallus gallus in South Africa Carry Co-Resistance Toward Colistin and Carbapenem Antimicrobials? Foodborne Pathog Dis 2023; 20:388-397. [PMID: 37471208 DOI: 10.1089/fpd.2023.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Colistin and carbapenems are critically important antimicrobials often used as a last resort to manage multidrug-resistant bacterial infections in humans. With limited alternatives, resistance to these antimicrobials is of concern as organisms could potentially spread horizontally rendering treatments ineffective. The aim of this study was to investigate co-resistance to colistin and carbapenems among Escherichia coli isolated from poultry in South Africa. Forty-six E. coli strains obtained from clinical cases of breeder and broiler chickens were used. In addition to other antibiotics, all the isolates were tested against colistin and carbapenems using broth microdilution. Multiplex polymerase chain reactions were used to investigate the presence of colistin (mcr-1 to 5) and carbapenem (blaOXA-48, blaNDM-1, and blaVIM) resistance genes. Isolates exhibiting colistin resistance (>2 μg/mL) underwent a whole-genome sequencing analysis. Resistance to colistin (10.9%) and cefepime (6.5%) was noted with all colistin-resistant strains harboring the mcr-1 gene. None of the E. coli isolates were resistant to carbapenems nor carried the other resistant genes (mcr-2 to 5, blaOXA-48, blaNDM-1, and blaVIM). The mcr-1-positive strains belonged to sequence types ST117 and ST156 and carried virulence genes ompA, aslA, fdeC, fimH, iroN, iutA, tsh, pic, ast A and set 1A/1B. In conclusion, clinical E. coli strains from chickens in this study possessed mobile resistance genes for colistin and several other clinically relevant antimicrobials but not carbapenems. Additionally, they belonged to sequence types in addition to carrying virulence factors often associated with human extraintestinal pathogenic E. coli infections. Thus, the potential risk of transmitting these strains to humans cannot be underestimated especially if sick birds are dispatched into the thriving poorly regulated Cornish hen industry. The need for routine veterinary surveillance and monitoring of antimicrobial resistance, antimicrobial use and the importance of strengthening regulations guiding the informal poultry sector remains important.
Collapse
Affiliation(s)
- Ibrahim Zubairu Hassan
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Daniel N Qekwana
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Vinny Naidoo
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
11
|
Gaballa A, Wiedmann M, Carroll LM. More than mcr: canonical plasmid- and transposon-encoded mobilized colistin resistance genes represent a subset of phosphoethanolamine transferases. Front Cell Infect Microbiol 2023; 13:1060519. [PMID: 37360531 PMCID: PMC10285318 DOI: 10.3389/fcimb.2023.1060519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Mobilized colistin resistance genes (mcr) may confer resistance to the last-resort antimicrobial colistin and can often be transmitted horizontally. mcr encode phosphoethanolamine transferases (PET), which are closely related to chromosomally encoded, intrinsic lipid modification PET (i-PET; e.g., EptA, EptB, CptA). To gain insight into the evolution of mcr within the context of i-PET, we identified 69,814 MCR-like proteins present across 256 bacterial genera (obtained by querying known MCR family representatives against the National Center for Biotechnology Information [NCBI] non-redundant protein database via protein BLAST). We subsequently identified 125 putative novel mcr-like genes, which were located on the same contig as (i) ≥1 plasmid replicon and (ii) ≥1 additional antimicrobial resistance gene (obtained by querying the PlasmidFinder database and NCBI's National Database of Antibiotic Resistant Organisms, respectively, via nucleotide BLAST). At 80% amino acid identity, these putative novel MCR-like proteins formed 13 clusters, five of which represented putative novel MCR families. Sequence similarity and a maximum likelihood phylogeny of mcr, putative novel mcr-like, and ipet genes indicated that sequence similarity was insufficient to discriminate mcr from ipet genes. A mixed-effect model of evolution (MEME) indicated that site- and branch-specific positive selection played a role in the evolution of alleles within the mcr-2 and mcr-9 families. MEME suggested that positive selection played a role in the diversification of several residues in structurally important regions, including (i) a bridging region that connects the membrane-bound and catalytic periplasmic domains, and (ii) a periplasmic loop juxtaposing the substrate entry tunnel. Moreover, eptA and mcr were localized within different genomic contexts. Canonical eptA genes were typically chromosomally encoded in an operon with a two-component regulatory system or adjacent to a TetR-type regulator. Conversely, mcr were represented by single-gene operons or adjacent to pap2 and dgkA, which encode a PAP2 family lipid A phosphatase and diacylglycerol kinase, respectively. Our data suggest that eptA can give rise to "colistin resistance genes" through various mechanisms, including mobilization, selection, and diversification of genomic context and regulatory pathways. These mechanisms likely altered gene expression levels and enzyme activity, allowing bona fide eptA to evolve to function in colistin resistance.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Lopez-Garcia AV, AbuOun M, Nunez-Garcia J, Nale JY, Gaylov EE, Phothaworn P, Sukjoi C, Thiennimitr P, Malik DJ, Korbsrisate S, Clokie MRJ, Anjum MF. Pathogen genomics and phage-based solutions for accurately identifying and controlling Salmonella pathogens. Front Microbiol 2023; 14:1166615. [PMID: 37234523 PMCID: PMC10206635 DOI: 10.3389/fmicb.2023.1166615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/03/2023] [Indexed: 05/28/2023] Open
Abstract
Salmonella is a food-borne pathogen often linked to poultry sources, causing gastrointestinal infections in humans, with the numbers of multidrug resistant (MDR) isolates increasing globally. To gain insight into the genomic diversity of common serovars and their potential contribution to disease, we characterized antimicrobial resistance genes, and virulence factors encoded in 88 UK and 55 Thai isolates from poultry; the presence of virulence genes was detected through an extensive virulence determinants database compiled in this study. Long-read sequencing of three MDR isolates, each from a different serovar, was used to explore the links between virulence and resistance. To augment current control methods, we determined the sensitivity of isolates to 22 previously characterized Salmonella bacteriophages. Of the 17 serovars included, Salmonella Typhimurium and its monophasic variants were the most common, followed by S. Enteritidis, S. Mbandaka, and S. Virchow. Phylogenetic analysis of Typhumurium and monophasic variants showed poultry isolates were generally distinct from pigs. Resistance to sulfamethoxazole and ciprofloxacin was highest in isolates from the UK and Thailand, respectively, with 14-15% of all isolates being MDR. We noted that >90% of MDR isolates were likely to carry virulence genes as diverse as the srjF, lpfD, fhuA, and stc operons. Long-read sequencing revealed the presence of global epidemic MDR clones in our dataset, indicating they are possibly widespread in poultry. The clones included MDR ST198 S. Kentucky, harboring a Salmonella Genomic Island-1 (SGI)-K, European ST34 S. 1,4,[5],12:i:-, harboring SGI-4 and mercury-resistance genes, and a S. 1,4,12:i:- isolate from the Spanish clone harboring an MDR-plasmid. Testing of all isolates against a panel of bacteriophages showed variable sensitivity to phages, with STW-77 found to be the most effective. STW-77 lysed 37.76% of the isolates, including serovars important for human clinical infections: S. Enteritidis (80.95%), S. Typhimurium (66.67%), S. 1,4,[5],12:i:- (83.3%), and S. 1,4,12: i:- (71.43%). Therefore, our study revealed that combining genomics and phage sensitivity assays is promising for accurately identifying and providing biocontrols for Salmonella to prevent its dissemination in poultry flocks and through the food chain to cause infections in humans.
Collapse
Affiliation(s)
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Javier Nunez-Garcia
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Janet Y. Nale
- Department of Veterinary and Animal Science, Scotland's Rural College, Inverness, United Kingdom
| | - Edouard E. Gaylov
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chutikarn Sukjoi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Danish J. Malik
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Muna F. Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| |
Collapse
|
13
|
Ewers C, Göpel L, Prenger-Berninghoff E, Semmler T, Kerner K, Bauerfeind R. Occurrence of mcr-1 and mcr-2 colistin resistance genes in porcine Escherichia coli isolates (2010-2020) and genomic characterization of mcr-2-positive E. coli. Front Microbiol 2022; 13:1076315. [PMID: 36569100 PMCID: PMC9780603 DOI: 10.3389/fmicb.2022.1076315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction The global emergence of plasmid-mediated colistin resistance is threatening the efficacy of colistin as one of the last treatment options against multi-drug resistant Gram-negative bacteria. To date, ten mcr-genes (mcr-1 to mcr-10) were reported. While mcr-1 has disseminated globally, the occurrence of mcr-2 was reported scarcely. Methods and results We determined the occurrence of mcr-1 and mcr-2 genes among Escherichia coli isolates from swine and performed detailed genomic characterization of mcr-2-positive strains. In the years 2010-2017, 7,614 porcine E. coli isolates were obtained from fecal swine samples in Europe and isolates carrying at least one of the virulence associated genes predicting Shiga toxin producing E. coli (STEC), enterotoxigenic E. coli (ETEC) or enteropathogenic E. coli (EPEC) were stored. 793 (10.4%) of these isolates carried the mcr-1 gene. Of 1,477 additional E. coli isolates obtained from sheep blood agar containing 4 mg/L colistin between 2018 and 2020, 36 (2.4%) isolates were mcr-1-positive. In contrast to mcr-1, the mcr-2 gene occurred at a very low frequency (0.13%) among the overall 9,091 isolates. Most mcr-2-positive isolates originated from Belgium (n = 9), one from Spain and two from Germany. They were obtained from six different farms and revealed multilocus sequence types ST10, ST29, ST93, ST100, ST3057 and ST5786. While the originally described mcr-2.1 was predominant, we also detected a new mcr-2 variant in two isolates from Belgium, which was termed mcr-2.8. MCR-2 isolates were mostly classified as ETEC or ETEC-like, while one isolate from Spain represented an atypical enteropathogenic E. coli (aEPEC; eae+). The ST29-aEPEC isolate carried mcr-2 on the chromosome. Another eight isolates carried their mcr-2 gene on IncX4 plasmids that resembled the pKP37-BE MCR-2 plasmid originally described in Belgium in 2015. Three ST100 E. coli isolates from a single farm in Belgium carried the mcr-2.1 gene on a 47-kb self-transmissible IncP type plasmid of a new IncP-1 clade. Discussion This is the first report of mcr-2 genes in E. coli isolates from Germany. The detection of a new mcr-2 allele and a novel plasmid backbone suggests the presence of so far undetected mcr-2 variants and mobilizable vehicles.
Collapse
Affiliation(s)
- Christa Ewers
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany,*Correspondence: Christa Ewers,
| | - Lisa Göpel
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Ellen Prenger-Berninghoff
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Torsten Semmler
- NG1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Katharina Kerner
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Rolf Bauerfeind
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
14
|
Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock-A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11060659. [PMID: 35745513 PMCID: PMC9230117 DOI: 10.3390/pathogens11060659] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Antimicrobial resistance is a serious public-health problem throughout the world. Escherichia coli, the most common Gram-negative microorganism, has developed different resistance mechanisms, making treating infections difficult. Colistin is considered a last-resort drug in the treatment of infections caused by E. coli. Plasmid-mediated mobile-colistin-resistant (mcr) genes in E. coli, now disseminated globally, are considered a major public-health threat. Humans, chickens, and pigs are the main reservoirs for E. coli and the sources of antibiotic resistance. Hence, an up-to-date and precise estimate of the global prevalence of mcr resistance genes in these reservoirs is necessary to understand more precisely the worldwide spread and to more effectively implement control and prevention strategies. Methodology: Publications were identified in the PubMed database on the basis of the PRISMA guidelines. English full-text articles were selected from December 2014 to March 2021. Descriptive statistics and a meta-analysis were performed in Excel and R software, respectively. Colistin resistance was defined as the molecular-genetic detection of the mcr genes. The crude and estimated prevalence were calculated for each host and continent. The studies were divided into two groups; community-based when they involved isolates from healthy humans, chickens, or pigs, and clinical studies when they involved only hospital, outpatient, or laboratory isolates. Results: A total of 1278 studies were identified and 218 were included in this systematic review and meta-analysis, divided into community studies (159 studies) and clinical studies (59 studies). The general prevalence of mcr-mediated colistin-resistant E. coli (mcrMCRE) was 6.51% (n = 11,583/177,720), reported in 54 countries and on five continents; Asia with 119 studies followed by Europe with 61 studies registered the most articles. Asia reported the major diversity of mcr-variants (eight of nine, except mcr-2). Worldwide, chickens and pigs proved to be the principal reservoir of mcr with an estimated prevalence of 15.8% and 14.9%, respectively. Healthy humans and clinical isolates showed a lower prevalence with 7.4% and 4.2% respectively. Conclusions: In this systematic review and meta-analysis, the worldwide prevalence of mcr in E. coli isolated from healthy humans, chickens, and pigs was investigated. A wide prevalence and distribution of mcr genes was demonstrated on all continents in E. coli isolates from the selected reservoirs. Understanding the epidemiology and occurrence in the reservoirs of mcr in E. coli on different continents of the world facilitates tracing how mcr genes are transmitted and determining the infection risks for humans. This knowledge can be used to reduce the incidence of zoonotic transmission by implementing the appropriate control programs.
Collapse
|
15
|
Conjugative transfer of mcr-1-bearing plasmid from Salmonella to Escherichia coli in vitro on chicken meat and in mouse gut. Food Res Int 2022; 157:111263. [DOI: 10.1016/j.foodres.2022.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022]
|
16
|
Khine NO, Lugsomya K, Niyomtham W, Pongpan T, Hampson DJ, Prapasarakul N. Longitudinal Monitoring Reveals Persistence of Colistin-Resistant Escherichia coli on a Pig Farm Following Cessation of Colistin Use. Front Vet Sci 2022; 9:845746. [PMID: 35372535 PMCID: PMC8964308 DOI: 10.3389/fvets.2022.845746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Colistin-resistant bacteria harboring plasmid-mediated mcr genes are of concern as they may be a cause of serious nosocomial infections. It is hypothesized that cessation of colistin use as a feed additive for pigs will reduce the occurrence and distribution of mcr genes in farms. The aim of this study was to investigate this hypothesis by longitudinal monitoring and characterizing of mcr positive Escherichia coli (MCRPE) isolates after colistin was withdrawn on a central Thailand pig farm that previously had a high frequency of MCRPE. Colistin use ceased at the beginning of 2017, and subsequently 170 samples were collected from farrowing sows and suckling piglets (n = 70), wastewater (n = 50) and farm workers (n = 50) over a 3.5-year period. Bacteria were identified by MALDI-TOF mass spectrometry and minimal inhibitory concentrations were determined by broth microdilution. The antibiogram of mcr positive E. coli isolates was determined using the Vitek2 automated susceptibility machine, and multiplex and simplex PCRs were performed for mcr-1-8 genes. MCRPE containing either mcr-1 or mcr-3 were isolated from pigs throughout the investigation period, but with a declining trend, whereas MCRPE isolates were recovered from humans only in 2017. MCRPE were still being recovered from wastewater in 2020. Most MCRPE isolates possessed the virulence genes Stap, Stb, or Stx2e, reflecting pathogenic potential in pigs, and showed high rates of resistance to ampicillin, gentamicin and tetracycline. Pulsed-field gel electrophoresis and multi-locus sequence typing showed that diverse MCRPE clones were distributed on the farm. The study identified a decline of pathogenic MCRPE following withdrawal of colistin, with pigs being the primary source, followed by wastewater. However, short-term therapeutic usage of other antibiotics could enhance the re-occurrence of mcr-carrying bacteria. Factors including the environment, management, and gene adaptations that allow maintenance of colistin resistance require further investigation, and longer-term studies are needed.
Collapse
Affiliation(s)
- Nwai Oo Khine
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kittitat Lugsomya
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, China
| | - Waree Niyomtham
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tawat Pongpan
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Bangkok, Thailand
| | - David J. Hampson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Bangkok, Thailand
| |
Collapse
|
17
|
Storey N, Cawthraw S, Turner O, Rambaldi M, Lemma F, Horton R, Randall L, Duggett NA, AbuOun M, Martelli F, Anjum MF. Use of genomics to explore AMR persistence in an outdoor pig farm with low antimicrobial usage. Microb Genom 2022; 8:000782. [PMID: 35344479 PMCID: PMC9176276 DOI: 10.1099/mgen.0.000782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Food animals may be reservoirs of antimicrobial resistance (AMR) passing through the food chain, but little is known about AMR prevalence in bacteria when selective pressure from antimicrobials is low or absent. We monitored antimicrobial-resistant Escherichia coli over 1 year in a UK outdoor pig farm with low antimicrobial usage (AMU) compared to conventional pig farms in the United Kingdom. Short and selected long-read whole-genome sequencing (WGS) was performed to identify AMR genes, phylogeny and mobile elements in 385 E. coli isolates purified mainly from pig and some seagull faeces. Generally, low levels of antimicrobial-resistant E. coli were present, probably due to low AMU. Those present were likely to be multi-drug resistant (MDR) and belonging to particular Sequence Types (STs) such as ST744, ST88 or ST44, with shared clones (<14 Single Nucleotide Polymorphisms (SNPs) apart) isolated from different time points indicating epidemiological linkage within pigs of different ages, and between pig and the wild bird faeces. Although importance of horizontal transmission of AMR is well established, there was limited evidence of plasmid-mediated dissemination between different STs. Non-conjugable MDR plasmids or large AMR gene-bearing transposons were stably integrated within the chromosome and remained associated with particular STs/clones over the time period sampled. Heavy metal resistance genes were also detected within some genetic elements. This study highlights that although low levels of antimicrobial-resistant E. coli correlates with low AMU, a basal level of MDR E. coli can still persist on farm potentially due to transmission and recycling of particular clones within different pig groups. Environmental factors such as wild birds and heavy metal contaminants may also play important roles in the recycling and dissemination, and hence enabling persistence of MDR E. coli. All such factors need to be considered as any rise in AMU on low usage farms, could in future, result in a significant increase in their AMR burden.
Collapse
Affiliation(s)
- Nathaniel Storey
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
- Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Shaun Cawthraw
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Olivia Turner
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Margherita Rambaldi
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
- University of Bologna, Via Zamboni, 33, 40126 Bologna BO, Italy
| | - Fabrizio Lemma
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Robert Horton
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Luke Randall
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Nicholas A. Duggett
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
- Teeside University, Campus Heart, Middlesbrough TS1 3BX, UK
| | - Manal AbuOun
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Francesca Martelli
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Muna F. Anjum
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
- *Correspondence: Muna F. Anjum,
| |
Collapse
|
18
|
Prevalence and zoonotic transmission of colistin-resistant and carbapenemase-producing Enterobacterales on German pig farms. One Health 2021; 13:100354. [PMID: 34934795 PMCID: PMC8654966 DOI: 10.1016/j.onehlt.2021.100354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/22/2022] Open
Abstract
The treatment of infections due to colistin-resistant (Col-E) and carbapenemase-producing (CPE) Enterobacterales challenges clinicians both in human and veterinary medicine. Preventing zoonotic transmission of these multidrug-resistant bacteria is a Public Health priority. This study investigates the prevalence of Col-E and CPE on 81 pig farms in North-West Germany as well as among 138 directly exposed humans working on these farms. Between March 2018 and September 2020, 318 samples of porcine feces were taken using boot swabs. Farm workers provided a stool sample. Both a selective culture-based approach and a molecular detection of colistin (mcr-1 to mcr-5) and carbapenem resistance determinants (bla OXA-48/bla VIM/bla KPC/bla NDM) was used to screen all samples. Isolates from farm workers and farms were compared using core genome multilocus-sequence typing (cgMLST) and plasmid-typing. CPE were cultured neither from porcine feces nor from human stool samples. In one stool sample, bla OXA-48 was detected, but no respective CPE isolate was found. Col-E were found in 18/318 porcine (5.7%) samples from 10/81 (12.3%) farms and 2/138 (1.4%) farmers, respectively. All Col-E isolates were Escherichia coli harboring mcr-1. Both farm workers colonized with Col-E worked on farms where no Col-E were detected in porcine samples. In conclusion, CPE were absent on German pig farms. This supports findings of culture-based national monitoring systems and provides evidence that even when improving the diagnostic sensitivity by using molecular detection techniques in addition to culture, CPE are not prevalent. Col-E were prevalent in porcine feces despite a recent decrease in colistin usage among German livestock and absence of colistin treatments on the sampled farms. Farmers carried Col-E, but zoonotic transmission was not confirmed.
Collapse
|
19
|
Sheng Q, Du R, Ma C, Zhou Y, Shen X, Hou X, Xu L, Li L, Deng X, Wang J. NMPA-approved traditional Chinese medicine-Pingwei Pill: new indication for colistin recovery against MCR-positive bacteria infection. Chin Med 2021; 16:106. [PMID: 34663394 PMCID: PMC8524834 DOI: 10.1186/s13020-021-00518-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The wide spread of plasmid-mediated colistin resistance by mobile colistin resistance (MCR) in Enterobacteriaceae severely limits the clinical application of colistin as a last-line drug against bacterial infection. The identification of colistin potentiator from natural plants or their compound preparation as antibiotic adjuncts is a new promising strategy to meet this challenge. METHODS Herein, the synergistic activity, as well as the potential mechanism, of Pingwei pill plus antibiotics against MCR-positive Gram-negative pathogens was examined using checkerboard assay, time-killing curves, combined disk test, western blot assay, and microscope analysis. Additionally, the Salmonella sp. HYM2 infection models of mouse and chick were employed to examine the in vivo efficacy of Pingwei pill in combination with colistin against bacteria infection. Finally, network pharmacology and molecular docking assay were used to predicate other actions of Pingwei pill for Salmonella infection. RESULTS Our results revealed that Pingwei Pill synergistically potentiated the antibacterial activity of colistin against MCR-1-positive bacteria by accelerating the damage and permeability of the bacterial outer membrane with an FIC (Fractional Inhibitory Concentration) index less than 0.5. The treatment of Pingwei Pill neither inhibited bacterial growth nor affected MCR production. Notably, Pingwei Pill in combination with colistin significantly prolonged the median survival in mouse and chick models of infection using the Salmonella sp. strain HYM2, decreased bacteria burden and organ index of infected animal, alleviated pathological damage of cecum, which suggest that Pingwei Pill recovered the therapeutic performance of colistin for MCR-1- positive Salmonella infection in mice and the naturally infected host chick. Pharmacological network topological analysis, molecular docking, bacterial adhesion, and invasion pathway verification assays were performed to identify the other molecular mechanisms of Pingwei Pill as a colistin potentiator against Gram-negative bacteria infection. CONCLUSION Taken together, NMPA (National Medical Products Administration)-approved Pingwei Pill is a promising adjuvant with colistin for MCR-positive bacterial infection with a shortened R&D (research and development) cycle and affordable R&D cost and risk.
Collapse
Affiliation(s)
- Qiushuang Sheng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Runbao Du
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cunhui Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Shen
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoning Hou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lei Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
20
|
Tu Z, Gu J, Zhang H, Liu J, Shui J, Zhang A. Withdrawal of Colistin Reduces Incidence of mcr-1-Harboring IncX4-Type Plasmids but Has Limited Effects on Unrelated Antibiotic Resistance. Pathogens 2021; 10:1019. [PMID: 34451483 PMCID: PMC8398929 DOI: 10.3390/pathogens10081019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
The global dissemination of plasmid-mediated colistin resistance gene mcr and its variants have posed a great threat to public health. Therefore, the Chinese government banned the use of colistin as a feed additive in livestock in April 2017. To explore the dynamic changes of overall antibiotic resistance genes (ARGs) and phylogenetic relationship of bacteria from a single pig farm before and after the withdrawal of colistin, fecal swab samples were collected from a large-scale pig farm before (n = 32; 2 months pre-withdrawal of colistin) and after withdrawal of colistin (n = 30; 13 months post-withdrawal of colistin). Escherichia coli and Klebsiella pneumoniae were isolated. Whole-genome sequencing (Illumina, MiSeq) was performed to examine ARGs, plasmids and the genetic relationship of the isolates. The overall SNP results indicated all isolates had high genetic diversity, and the evolutionary relationship across isolates was not influenced by the ban of colistin. However, the prevalence of mcr-1.1 (5.6%, p < 0.01) was significantly lower than before the ban (86.4%). Plasmid profiling analysis showed that 17 of 20 (85.0%) observed mcr-1.1 genes reside on IncX4-type plasmids, 16 of which (94.1%) were from isolates before the ban. On the contrary, the presence of blaCTX-M gene was significantly increased (p = 0.0215) post-withdrawal of colistin. Our results showed that withdrawal of colistin reduced the incidence of mcr-1-harboring IncX4-type plasmids, but had limited influences on unrelated ARGs.
Collapse
Affiliation(s)
- Zunfang Tu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Z.T.); (J.G.); (H.Z.); (J.S.)
| | - Ju Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Z.T.); (J.G.); (H.Z.); (J.S.)
| | - Haoyu Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Z.T.); (J.G.); (H.Z.); (J.S.)
| | - Jinxin Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Junrui Shui
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Z.T.); (J.G.); (H.Z.); (J.S.)
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Z.T.); (J.G.); (H.Z.); (J.S.)
| |
Collapse
|
21
|
Ribeiro S, Mourão J, Novais Â, Campos J, Peixe L, Antunes P. From farm to fork: Colistin voluntary withdrawal in Portuguese farms reflected in decreasing occurrence of mcr-1-carrying Enterobacteriaceae from chicken meat. Environ Microbiol 2021; 23:7563-7577. [PMID: 34327794 DOI: 10.1111/1462-2920.15689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022]
Abstract
Expansion of mcr-carrying Enterobacteriaceae (MCR-E) is a well-recognized problem affecting animals, humans and the environment. Ongoing global control actions involve colistin restrictions among food-animal production, but their impact on poultry-derived products is largely unknown, justifying comprehensive farm-to-fork studies. Occurrence of MCR-E among 53 chicken-meat batches supplied from 29 Portuguese farms shortly after colistin withdrawal was evaluated. Strains (FT-IR/MLST/WGS), mcr plasmids and their adaptive features were characterized by cultural, molecular and genomic approaches. We found high rates of chicken-meat batches (80%-100% - 4 months; 12% - the last month) with multiple MDR + mcr-1-carrying Escherichia coli (Ec-including ST117 and ST648-Cplx) and Klebsiella pneumoniae (Kp-ST147-O5:K35) clones, some of them persisting over time. The mcr-1 was located in the chromosome (Ec-ST297/16-farms) or dispersed IncX4 (Ec-ST602/ST6469/5-farms), IncHI2-ST2/ST4 (Ec-ST533/ST6469/5 farms and Kp-ST147/6-farms) or IncI2 (Ec-ST117/1-farm) plasmids. WGS revealed high load and diversity in virulence, antibiotic resistance and metal tolerance genes. This study supports colistin withdrawal potential efficacy in poultry production and highlights both poultry-production chain as a source of mcr-1 and the risk of foodborne transmission to poultry-meat consumers. Finally, in the antibiotic reduction/replacement context, other potential co-selective pressures (e.g., metals-Cu as feed additives) need to be further understood to guide concerted, effective and durable actions under 'One Health' perspective.
Collapse
Affiliation(s)
- Sofia Ribeiro
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Joana Mourão
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ângela Novais
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Joana Campos
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,INEB-Institute of Biomedical Engineering, i3S-Institute for Research & Innovation in Health, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Patrícia Antunes
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, 4150-180, Portugal
| |
Collapse
|
22
|
Nobrega DB, Tang KL, Caffrey NP, De Buck J, Cork SC, Ronksley PE, Polachek AJ, Ganshorn H, Sharma N, Kastelic JP, Kellner JD, Ghali WA, Barkema HW. Prevalence of antimicrobial resistance genes and its association with restricted antimicrobial use in food-producing animals: a systematic review and meta-analysis. J Antimicrob Chemother 2021; 76:561-575. [PMID: 33146719 DOI: 10.1093/jac/dkaa443] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There is ongoing debate regarding potential associations between restrictions of antimicrobial use and prevalence of antimicrobial resistance (AMR) in bacteria. OBJECTIVES To summarize the effects of interventions reducing antimicrobial use in food-producing animals on the prevalence of AMR genes (ARGs) in bacteria from animals and humans. METHODS We published a full systematic review of restrictions of antimicrobials in food-producing animals and their associations with AMR in bacteria. Herein, we focus on studies reporting on the association between restricted antimicrobial use and prevalence of ARGs. We used multilevel mixed-effects models and a semi-quantitative approach based on forest plots to summarize findings from studies. RESULTS A positive effect of intervention [reduction in prevalence or number of ARGs in group(s) with restricted antimicrobial use] was reported from 29 studies for at least one ARG. We detected significant associations between a ban on avoparcin and diminished presence of the vanA gene in samples from animals and humans, whereas for the mecA gene, studies agreed on a positive effect of intervention in samples only from animals. Comparisons involving mcr-1, blaCTX-M, aadA2, vat(E), sul2, dfrA5, dfrA13, tet(E) and tet(P) indicated a reduced prevalence of genes in intervention groups. Conversely, no effects were detected for β-lactamases other than blaCTX-M and the remaining tet genes. CONCLUSIONS The available body of scientific evidence supported that restricted use of antimicrobials in food animals was associated with an either lower or equal presence of ARGs in bacteria, with effects dependent on ARG, host species and restricted drug.
Collapse
Affiliation(s)
- Diego B Nobrega
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Karen L Tang
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Niamh P Caffrey
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Susan C Cork
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul E Ronksley
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alicia J Polachek
- W21C Research and Innovation Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Heather Ganshorn
- Libraries and Cultural Resources, University of Calgary, Calgary, AB, Canada
| | - Nishan Sharma
- W21C Research and Innovation Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - James D Kellner
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - William A Ghali
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2021; 75:3491-3500. [PMID: 32780112 PMCID: PMC7662176 DOI: 10.1093/jac/dkaa345] [Citation(s) in RCA: 1789] [Impact Index Per Article: 447.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives WGS-based antimicrobial susceptibility testing (AST) is as reliable as phenotypic AST for several antimicrobial/bacterial species combinations. However, routine use of WGS-based AST is hindered by the need for bioinformatics skills and knowledge of antimicrobial resistance (AMR) determinants to operate the vast majority of tools developed to date. By leveraging on ResFinder and PointFinder, two freely accessible tools that can also assist users without bioinformatics skills, we aimed at increasing their speed and providing an easily interpretable antibiogram as output. Methods The ResFinder code was re-written to process raw reads and use Kmer-based alignment. The existing ResFinder and PointFinder databases were revised and expanded. Additional databases were developed including a genotype-to-phenotype key associating each AMR determinant with a phenotype at the antimicrobial compound level, and species-specific panels for in silico antibiograms. ResFinder 4.0 was validated using Escherichia coli (n = 584), Salmonella spp. (n = 1081), Campylobacter jejuni (n = 239), Enterococcus faecium (n = 106), Enterococcus faecalis (n = 50) and Staphylococcus aureus (n = 163) exhibiting different AST profiles, and from different human and animal sources and geographical origins. Results Genotype–phenotype concordance was ≥95% for 46/51 and 25/32 of the antimicrobial/species combinations evaluated for Gram-negative and Gram-positive bacteria, respectively. When genotype–phenotype concordance was <95%, discrepancies were mainly linked to criteria for interpretation of phenotypic tests and suboptimal sequence quality, and not to ResFinder 4.0 performance. Conclusions WGS-based AST using ResFinder 4.0 provides in silico antibiograms as reliable as those obtained by phenotypic AST at least for the bacterial species/antimicrobial agents of major public health relevance considered.
Collapse
Affiliation(s)
- Valeria Bortolaia
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Rolf S Kaas
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | | | - Marilyn C Roberts
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Vincent Cattoir
- Rennes University Hospital, Department of Clinical Microbiology, Rennes, France.,National Reference Center for Antimicrobial Resistance (lab Enterococci), Rennes, France.,University of Rennes 1, INSERM U1230, Rennes, France
| | - Alain Philippon
- Faculty of Medicine Paris Descartes, Bacteriology, Paris, France
| | - Rosa L Allesoe
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Ana Rita Rebelo
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Alfred Ferrer Florensa
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Linda Fagelhauer
- Institute of Medical Microbiolgy, Justus Liebig University Giessen, Giessen, Germany.,German Center for Infection Research, site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany.,Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiolgy, Justus Liebig University Giessen, Giessen, Germany.,German Center for Infection Research, site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - Bernd Neumann
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Guido Werner
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Jennifer K Bender
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Kerstin Stingl
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Minh Nguyen
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | - Jasmine Coppens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | - Henrik Westh
- Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Muna F Anjum
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | | | - Isabelle Kempf
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | | | | | | | - Ana Amaro
- National Institute of Agrarian and Veterinary Research (INIAV), National Reference Laboratory for Animal Health, Oeiras, Portugal
| | - Lurdes Clemente
- National Institute of Agrarian and Veterinary Research (INIAV), National Reference Laboratory for Animal Health, Oeiras, Portugal
| | - Joël Mossong
- Laboratoire National de Santé, Epidemiology and Microbial Genomics, Dudelange, Luxembourg
| | - Serge Losch
- Laboratoire de Médecine Vétérinaire de l'Etat, Veterinary Services Administration, Dudelange, Luxembourg
| | - Catherine Ragimbeau
- Laboratoire National de Santé, Epidemiology and Microbial Genomics, Dudelange, Luxembourg
| | - Ole Lund
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Frank M Aarestrup
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| |
Collapse
|
24
|
Duggett N, Ellington MJ, Hopkins KL, Ellaby N, Randall L, Lemma F, Teale C, Anjum MF. Detection in livestock of the human pandemic Escherichia coli ST131 fimH30(R) clone carrying blaCTX-M-27. J Antimicrob Chemother 2021; 76:263-265. [PMID: 33068401 DOI: 10.1093/jac/dkaa407] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Nicholas Duggett
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | | | - Katie L Hopkins
- National Infection Service, Public Health England, London NW9 5EQ, UK
| | - Nicholas Ellaby
- National Infection Service, Public Health England, London NW9 5EQ, UK
| | - Luke Randall
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Fabrizio Lemma
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Christopher Teale
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| |
Collapse
|
25
|
De Lucia A, Card RM, Duggett N, Smith RP, Davies R, Cawthraw SA, Anjum MF, Rambaldi M, Ostanello F, Martelli F. Reduction in antimicrobial resistance prevalence in Escherichia coli from a pig farm following withdrawal of group antimicrobial treatment. Vet Microbiol 2021; 258:109125. [PMID: 34033985 DOI: 10.1016/j.vetmic.2021.109125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
An important element in the control of antimicrobial resistance (AMR) is reduction in antimicrobial usage. In the veterinary sector individual antimicrobial treatment of livestock, rather than the use of group treatment, can help achieve this goal. The aim of this study was to investigate how cessation of group antimicrobial treatment impacted the prevalence of AMR in commensal Escherichia coli in pigs at one farm over an 11-month period. Minimum inhibitory concentrations of eight antimicrobials were determined for 259 E. coli isolates collected during the study. A significant reduction in the prevalence of multidrug resistance and a significant increase in the proportion of full susceptibility to the panel of nine antimicrobials tested was seen after 11 months. Whole genome sequencing of 48 multidrug resistant isolates revealed E. coli clones that persisted across multiple visits and provided evidence for the presence of plasmids harbouring AMR genes shared across multiple E. coli lineages. E. coli were also isolated from on-farm environmental samples. Whole genome sequencing of one multidrug resistant isolate obtained from cleaning tools showed it was clonal to pig-derived E. coli that persisted on the farm for 11 months. In this study we provide evidence that withdrawal of group antimicrobial use leads to significant reductions in key indicators for AMR prevalence and the importance of the farm environment as a reservoir of resistant bacteria. These findings support policy makers and producers in the implementation of measures to control AMR and reduce antimicrobial use.
Collapse
Affiliation(s)
- A De Lucia
- Dipartimento di Scienze Mediche Veterinarie Università di Bologna, Italy; Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - R M Card
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - N Duggett
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - R P Smith
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - R Davies
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - S A Cawthraw
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - M F Anjum
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - M Rambaldi
- Dipartimento di Scienze Mediche Veterinarie Università di Bologna, Italy.
| | - F Ostanello
- Dipartimento di Scienze Mediche Veterinarie Università di Bologna, Italy.
| | - F Martelli
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| |
Collapse
|
26
|
Shaw LP, Chau KK, Kavanagh J, AbuOun M, Stubberfield E, Gweon HS, Barker L, Rodger G, Bowes MJ, Hubbard ATM, Pickford H, Swann J, Gilson D, Smith RP, Hoosdally SJ, Sebra R, Brett H, Peto TEA, Bailey MJ, Crook DW, Read DS, Anjum MF, Walker AS, Stoesser N. Niche and local geography shape the pangenome of wastewater- and livestock-associated Enterobacteriaceae. SCIENCE ADVANCES 2021; 7:eabe3868. [PMID: 33837077 PMCID: PMC8034854 DOI: 10.1126/sciadv.abe3868] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/22/2021] [Indexed: 05/07/2023]
Abstract
Escherichia coli and other Enterobacteriaceae are diverse species with "open" pangenomes, where genes move intra- and interspecies via horizontal gene transfer. However, most analyses focus on clinical isolates. The pangenome dynamics of natural populations remain understudied, despite their suggested role as reservoirs for antimicrobial resistance (AMR) genes. Here, we analyze near-complete genomes for 827 Enterobacteriaceae (553 Escherichia and 274 non-Escherichia spp.) with 2292 circularized plasmids in total, collected from 19 locations (livestock farms and wastewater treatment works in the United Kingdom) within a 30-km radius at three time points over a year. We find different dynamics for chromosomal and plasmid-borne genes. Plasmids have a higher burden of AMR genes and insertion sequences, and AMR-gene-carrying plasmids show evidence of being under stronger selective pressure. Environmental niche and local geography both play a role in shaping plasmid dynamics. Our results highlight the importance of local strategies for controlling the spread of AMR.
Collapse
Affiliation(s)
- Liam P Shaw
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Kevin K Chau
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - James Kavanagh
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Emma Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - H Soon Gweon
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK
| | - Leanne Barker
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Gillian Rodger
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Mike J Bowes
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Alasdair T M Hubbard
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Hayleah Pickford
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jeremy Swann
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford OX4 9DU, UK
| | - Daniel Gilson
- Department of Epidemiological Sciences, The Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Richard P Smith
- Department of Epidemiological Sciences, The Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Sarah J Hoosdally
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, a Mount Sinai venture, 333 Ludlow Street, North Tower, 8th floor, Stamford, CT 06902, USA
| | - Howard Brett
- Thames Water Utilities, Clearwater Court, Vastern Road, Reading RG1 8DB, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford OX4 9DU, UK
| | - Mark J Bailey
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford OX4 9DU, UK
| | - Daniel S Read
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford OX4 9DU, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
27
|
Usui M, Nozawa Y, Fukuda A, Sato T, Yamada M, Makita K, Tamura Y. Decreased colistin resistance and mcr-1 prevalence in pig-derived Escherichia coli in Japan after banning colistin as a feed additive. J Glob Antimicrob Resist 2021; 24:383-386. [PMID: 33545419 DOI: 10.1016/j.jgar.2021.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/20/2020] [Accepted: 01/23/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Antimicrobial resistance to colistin, a widely used feed additive for farm animals across the world, has raised public health concern in recent years. Since July 2018, its use as feed additive has been banned in Japan to reduce the spread of plasmid-based mobilized colistin resistance (mcr) genes and the subsequent development of colistin-resistant bacteria. Evaluating the effects of these measures is required. METHODS We evaluated the effects of colistin use, as a feed additive, on colistin resistance in pigs (n=5) from birth to finishing in the farm. Moreover, to evaluate changes in colistin resistance and mcr gene prevalence in response to colistin withdrawal, E. coli samples derived from pig faeces sourced from the fields of three geographically distinct farms were characterized before and after the withdrawal of colistin as a feed additive. RESULTS Colistin-resistant Escherichia coli in pigs (n=5) increased during the colistin administration period and decreased immediately after its end. In three fields, the colistin resistance rate and prevalence of mcr-1 decreased immediately and significantly after the ban. However, colistin-resistant and mcr-1-positive E. coli were still detected in all three farm fields 12 months after the ban on colistin use. CONCLUSION Agricultural colistin use caused selective pressure that contributed to widespread mcr dissemination in Japan. Colistin resistance and the presence of mcr genes should be continuously monitored in food-producing animals.
Collapse
Affiliation(s)
- Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| | - Yohei Nozawa
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Tomomi Sato
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Michi Yamada
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Kohei Makita
- Laboratory of Veterinary Epidemiology, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| |
Collapse
|
28
|
Shen C, Zhong LL, Ma F, El-Sayed Ahmed MAEG, Doi Y, Zhang G, Liu Y, Huang S, Li HY, Zhang L, Liao K, Xia Y, Dai M, Yan B, Tian GB. Genomic patterns and characterizations of chromosomally-encoded mcr-1 in Escherichia coli populations. Gut Pathog 2020; 12:55. [PMID: 33292487 PMCID: PMC7700713 DOI: 10.1186/s13099-020-00393-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/17/2020] [Indexed: 01/20/2023] Open
Abstract
The emergence and transmission of the mobile colistin resistance gene (mcr-1) threatened the extensive use of polymyxin antimicrobials. Accumulated evidence showed that the banning of colistin additive in livestock feed efficiently reduce mcr-1 prevalence, not only in animals but also in humans and environments. However, our previous study has revealed that a small proportion of Escherichia coli could continually carry chromosomally-encoded mcr-1. The chromosomally-encoded events, indicated the existence of stabilized heritage of mcr-1 and revealed a potential threat in the antimicrobial stewardship interventions, are yet to be investigated. In this study, we systematically investigated the genetic basis of chromosomally-encoded mcr-1 in prevalence and potential mechanisms of lineage, plasmid, insertion sequence, and phage. Our results demonstrated that the emergence of chromosomally-encoded mcr-1 could originate from multiple mechanisms, but mainly derived through the recombination of ISApl1/Tn6330. We reported a specific transmission mechanism, which is a phage-like region without lysogenic components, could associate with the emergence and stabilization of chromosomally-encoded mcr-1. These results highlighted the potential origin and risks of chromosomally-encoded mcr-1, which could be a heritable repository and thrive again when confronted with new selective pressures. To the best of our knowledge, this is the first study to systematically reveal the genomic basis of chromosomally-encoded mcr-1, and report a specific transmission pattern involved in phage-like region. Overall, we demonstrate the origin mechanisms and risks of chromosomally-encoded mcr-1. It highlights the need of public attention on chromosome-encoded mcr-1 to prevent from its reemergence.
Collapse
Affiliation(s)
- Cong Shen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Lan-Lan Zhong
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Furong Ma
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Cairo, Egypt
| | - Yohei Doi
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Guili Zhang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yang Liu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Songyin Huang
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong-Yu Li
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liyan Zhang
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Kang Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yong Xia
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Yan
- Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
- School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.
| |
Collapse
|
29
|
The importance of using whole genome sequencing and extended spectrum beta-lactamase selective media when monitoring antimicrobial resistance. Sci Rep 2020; 10:19880. [PMID: 33199763 PMCID: PMC7670430 DOI: 10.1038/s41598-020-76877-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
To tackle the problem of antimicrobial resistance (AMR) surveillance programmes are in place within Europe applying phenotypic methods, but there are plans for implementing whole genome sequencing (WGS). We tested the benefits of WGS using Escherichia coli collected from pig surveillance performed between 2013 to 2017. WGS was performed on 498 E. coli producing ESBL and AmpC enzymes, recovered from pig caeca on MacConkey + cefotaxime (McC + CTX) agar, as recommended by the European Commission, or ESBL agar, used additionally by United Kingdom. Our results indicated WGS was extremely useful for monitoring trends for specific ESBL genes, as well as a plethora of AMR genotypes, helping to establish their prevalence and co-linkage to certain plasmids. Recovery of isolates with multi-drug resistance (MDR) genotypes was lower from McC + CTX than ESBL agar. The most widespread ESBL genes belonged to the blaCTX-M family. blaCTX-M-1 dominated all years, and was common in two highly stable IncI1 MDR plasmids harbouring (blaCTX-M-1,sul2, tetA) or (blaCTX-M-1, aadA5, sul2, dfrA17), in isolates which were phylogenetically dissimilar, suggesting plasmid transmission. Therefore, WGS provided a wealth of data on prevalence of AMR genotypes and plasmid persistence absent from phenotypic data and, also, demonstrated the importance of culture media for detecting ESBL E. coli.
Collapse
|
30
|
Khine NO, Lugsomya K, Kaewgun B, Honhanrob L, Pairojrit P, Jermprasert S, Prapasarakul N. Multidrug Resistance and Virulence Factors of Escherichia coli Harboring Plasmid-Mediated Colistin Resistance: mcr-1 and mcr-3 Genes in Contracted Pig Farms in Thailand. Front Vet Sci 2020; 7:582899. [PMID: 33240958 PMCID: PMC7683614 DOI: 10.3389/fvets.2020.582899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/02/2020] [Indexed: 12/01/2022] Open
Abstract
The presence of the plasmid-mediated colistin resistance encoding mcr gene family in the Enterobacteriaceae is one of the crucial global concerns. The use of colistin in livestock rearing is believed to be the cause of mcr gene spreading and is of impact to public health. The objective of this research was to detect the frequency and virulent genes of mcr-positive Escherichia coli (MCRPE) in fecal samples from healthy pigs in a contract farming system across Thailand. A total of 696 pooled samples were derived from 80 farms, located in 49 provinces across six regions of Thailand. The colistin-resistant E. coli were identified by MALDI-TOF mass spectrometry and antimicrobial susceptibility testing by broth microdilution. The antibiogram was determined using an automated susceptibility machine, and the genetic characteristics were investigated for mcr-1–5 genes, phylogenetic group, replicon types, and virulent genes. In total, 31 of 696 samples were positive, with E. coli containing mcr-1 or combination of mcr-1 and mcr-3 with incidence of 4.45 and 0.43%. Phylogenetic groups A and B1 and the IncF and IncFIB replicon types were predominantly found in the MCRPE located in the central area, with multidrug-resistant traits against 3–14 types of antimicrobials. Additionally, 19 of 31 isolates identified as enterotoxigenic E. coli were with the stap and stb (enterotoxin-encoding genes). In conclusion, a low carriage rate of mcr-positive E. coli was detected in the large-scale farming of healthy pigs. The association between multidrug-resistant MCRPE and their pathogenic potential should be of concern.
Collapse
Affiliation(s)
- Nwai Oo Khine
- Department of Veterinary Microbiology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand.,The International Graduate Course of Veterinary Science and Technology, Chulalongkorn University, Bangkok, Thailand
| | - Kittitat Lugsomya
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, China
| | - Benjarong Kaewgun
- Department of Veterinary Microbiology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Lertrob Honhanrob
- Department of Veterinary Microbiology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Panupong Pairojrit
- Department of Veterinary Microbiology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suthipat Jermprasert
- Department of Veterinary Microbiology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand.,Diagnosis and Monitoring of Animal Pathogen Research Unit (DMAP), Bangkok, Thailand
| |
Collapse
|
31
|
Xiaomin S, Yiming L, Yuying Y, Zhangqi S, Yongning W, Shaolin W. Global impact of mcr-1-positive Enterobacteriaceae bacteria on "one health". Crit Rev Microbiol 2020; 46:565-577. [PMID: 33044874 DOI: 10.1080/1040841x.2020.1812510] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polymyxins, especially polymyxin B and polymyxin E (colistin), are considered to be the last line of defence against infections caused by multi-drug-resistant (MDR) gram-negative bacteria such as carbapenem-resistant Enterobacteriaceae (CRE). However, the recent emergence and dissemination of the plasmid-mediated colistin resistance gene mcr-1 and its variants pose a serious challenge to public health and the livestock industry. This review describes the prevalence and dissemination of mcr-1-positive isolates from different sources, including animals (food animals, pet animals and wildlife), humans (healthy populations and patients) and the environment (farms, urban and rural communities and natural environments) based on existing epidemiological studies of mcr-1 and MCR-1-producing Enterobacteriaceae bacteria around the world. The major mechanisms of mcr-1 transmission across humans, animals and the environment are discussed.
Collapse
Affiliation(s)
- Shi Xiaomin
- Beijing Advance Innovation Center for Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China, P.R. China
| | - Li Yiming
- Beijing Advance Innovation Center for Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China, P.R. China
| | - Yang Yuying
- Beijing Advance Innovation Center for Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China, P.R. China
| | - Shen Zhangqi
- Beijing Advance Innovation Center for Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China, P.R. China
| | - Wu Yongning
- Beijing Advance Innovation Center for Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China, P.R. China.,NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Wang Shaolin
- Beijing Advance Innovation Center for Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China, P.R. China
| |
Collapse
|
32
|
Association between the use of colistin for short-term treatment of Gram-negative bacterial infections and the emergence of colistin-resistant Enterobacteriaceae in swine from selected swine farms in Thailand. PLoS One 2020; 15:e0238939. [PMID: 33017441 PMCID: PMC7535051 DOI: 10.1371/journal.pone.0238939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
Long-term use of colistin for preventing Gram-negative bacterial infections in food animals was prohibited in Thailand in 2017, but it is permitted for short-term treatment. This study aimed to investigate association between the use of colistin for short-term treatment of infection and the emergence of colistin-resistant Enterobacteriaceae in swine. The current study was conducted at 2 selected swine farms in Thailand. Neither farm has used colistin to prevent infection for longer than 1 year. Rectal swabs were collected from the same 66 pigs at birth, and on days 7, 14, 21, 28, and 60. Colistin was used to treat sick pigs for up to 3 days. Additional rectal swabs were collected during colistin treatment. Rectal swabs were analyzed for colistin-resistant Enterobacteriaceae and the mcr-1 gene. Results revealed that colistin-resistant Enterobacteriaceae were absent at birth. Some pigs at both farms had diarrhea and received colistin treatment during days 2-27. Colistin-resistant Enterobacteriaceae were detected in 13.3-50.0% of sick and healthy pigs. No sick pigs were observed during days 28-60, and colistin was not used during that period. Colistin-resistant Enterobacteriaceae were detected in 2.8-10.0% of healthy pigs on day 28, and in 0-3.4% of healthy pigs on day 60. The mcr-1 gene was detected in 57.6% of colistin-resistant Enterobacteriaceae isolates. Short-term treatment with colistin was found to be associated with the emergence of colistin-resistant Enterobacteriaceae in swine. Colistin-resistant Enterobacteriaceae rapidly emerged after colistin use, and rapidly decreased or disappeared after its discontinuation.
Collapse
|
33
|
Quantitative Release Assessment of mcr-mediated Colistin-resistant Escherichia Coli from Japanese Pigs. Food Saf (Tokyo) 2020; 8:13-33. [PMID: 32626634 PMCID: PMC7329916 DOI: 10.14252/foodsafetyfscj.d-20-00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022] Open
Abstract
Colistin is a critically important antibiotic for humans. The Japanese government
withdrew colistin growth promoter and shifted therapeutic colistin to a second-choice drug
for pigs in 2017. A quantitative release assessment of mcr-mediated
colistin-resistant Escherichia coli (E. coli) in
Japanese finisher pigs was conducted under the World Organisation for Animal Health (OIE)
risk assessment framework. Input data included colistin resistance and
mcr-1-5 test results for E. coli isolates in the Japan
Veterinary Resistance Monitoring System (JVARM), postal survey results regarding
indication disease occurrence and colistin use by swine veterinarians in 2017 and 2018,
and colistin resistance and mcr monitoring experiments at four pig farms
in 2017-2018. An individual-based model was developed to assess the risk: the proportion
of Japanese finisher pigs with mcr-1-5-mediated colistin-resistant
E. coli dominant in the gut on an arbitrary day. Before implementing
risk management measures, the risk was estimated to be 5.5% (95% CI: 4.2%-10.1%). At 12
months after stopping colistin growth promoter, the proportion of pigs with
plasmid-mediated colistin-resistant E. coli declined by 52.5% on the
experiment farms (95% CI: 8.7%-80.8%). The probability of therapeutic colistin use at the
occurrence of bacterial diarrhea declined from 37.3% (95% CI: 30.3%-42.5%) in 2017 to
31.4% (95% CI: 26.1%-36.9%), and that of edema disease declined from 55.0% (95% CI:
46.0%-63.7%) to 44.4% (95% CI: 36.9%-52.0%). After risk management implementation, the
risk was estimated to have declined to 2.3% (95% CI: 1.8%-4.3%; 58.2% reduction). Scenario
analyses showed that pen-level colistin treatment effectively reduces the risk from 5.5%
to 4.7% (14.5% reduction), an effect similar to stoppage of therapeutic colistin (16.4%
reduction to 4.6%).
Collapse
|
34
|
AbuOun M, O'Connor HM, Stubberfield EJ, Nunez-Garcia J, Sayers E, Crook DW, Smith RP, Anjum MF. Characterizing Antimicrobial Resistant Escherichia coli and Associated Risk Factors in a Cross-Sectional Study of Pig Farms in Great Britain. Front Microbiol 2020; 11:861. [PMID: 32523560 PMCID: PMC7261845 DOI: 10.3389/fmicb.2020.00861] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Combatting antimicrobial resistant (AMR) using a One-Health approach is essential as various bacteria, including Escherichia coli, a common bacteria, are becoming increasingly resistant and livestock may be a reservoir. The AMR gene content of 492 E. coli, isolated from 56 pig farms across Great Britain in 2014–2015, and purified on antibiotic selective and non-selective plates, was determined using whole genome sequencing (WGS). The E. coli were phylogenetically diverse harboring a variety of AMR profiles with widespread resistance to “old” antibiotics; isolates harbored up to seven plasmid Inc-types. None showed concurrent resistance to third-generation cephalosporins, fluoroquinolones and clinically relevant aminoglycosides, although ∼3% harbored AMR genes to both the former two. Transferable resistance to carbapenem and colistin were absent, and six of 117 E. coli STs belonged to major types associated with human disease. Prevalence of genotypically MDR E. coli, gathered from non-selective media was 35% and that of extended-spectrum-beta-lactamase E. coli was low (∼2% from non-selective). Approximately 72.6% of E. coli from ciprofloxacin plates and only 8.5% from the other plates harbored fluoroquinolone resistance due to topoisomerase mutations; the majority were MDR. In fact, multivariable analysis confirmed E. coli purified from CIP enrichment plates were more likely to be MDR, and suggested MDR isolates were also more probable from farms with high antibiotic usage, specialist finisher farms, and farms emptying their manure pits only after each batch. Additionally, farms from the South East were more likely to have MDR E. coli, whereas farms in Yorkshire and the Humber were less likely. Future investigations will determine whether suggested improvements such as better biosecurity or lower antimicrobial use decreases MDR E. coli on pig farms. Although this study focuses on pig farms, we believe the methodology and findings can be applied more widely to help livestock farmers in the United Kingdom and elsewhere to tackle AMR.
Collapse
Affiliation(s)
- Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom.,National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom
| | - Heather M O'Connor
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Emma J Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Javier Nunez-Garcia
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Ellie Sayers
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Derick W Crook
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom.,Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Richard P Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom.,National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom
| |
Collapse
|
35
|
Antimicrobial Resistance Profiles and Characterization of Escherichia coli Strains from Cases of Neonatal Diarrhea in Spanish Pig Farms. Vet Sci 2020; 7:vetsci7020048. [PMID: 32326282 PMCID: PMC7357114 DOI: 10.3390/vetsci7020048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli is considered one of the most common agents associated with neonatal diarrhea in piglets. The aim of this work was to characterize the pathogenic and antimicrobial resistance (AMR) profiles of 122 E. coli strains isolated from pigs suffering diarrhea (n = 94) and pigs without diarrhea (n = 28) of 24 farms in Spain. Virulence factors, toxins and AMR (ESBL and colistin) genes and AMR phenotypes of E. coli isolates were analyzed. Low prevalence of pathogenic E. coli strains (26%) was found in both groups. However, ETEC and VTEC strains were more frequently isolated from diarrheic piglets. Irrespectively of diarrhea occurrence, 97.5% of the strains showed a multidrug-resistance (MDR) profile to aminopenicillins, sulfonamides and tetracyclines. It was found that 22% of E. coli was CTX-M+, with CTX-M-14 being the principal allelic variant. Remarkably, 81.5% of CTX-M+ strains were isolated from diarrheic animals and presented an extended MDR profile to aminopenicillins, quinolones and aminoglycosides. Finally, low frequencies of colistin resistance genes mcr-1 (4/122) and mcr-4 (1/122) were found. MDR E. coli strains are circulating in pig farms of Spain, representing a serious threat to animal and public health. More appropriate diagnostic approaches (genetic and AMR phenotypic analysis) should be implemented in animal health to optimize antibiotic treatments.
Collapse
|
36
|
Migura-Garcia L, González-López JJ, Martinez-Urtaza J, Aguirre Sánchez JR, Moreno-Mingorance A, Perez de Rozas A, Höfle U, Ramiro Y, Gonzalez-Escalona N. mcr-Colistin Resistance Genes Mobilized by IncX4, IncHI2, and IncI2 Plasmids in Escherichia coli of Pigs and White Stork in Spain. Front Microbiol 2020; 10:3072. [PMID: 32010114 PMCID: PMC6978640 DOI: 10.3389/fmicb.2019.03072] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/19/2019] [Indexed: 01/14/2023] Open
Abstract
Colistin has become the last-line antimicrobial for the treatment of multidrug resistant (MDR) Enterobacterales in human medicine. To date, several colistin resistance genes have been described. Of them mcr-1 is disseminated worldwide in Escherichia coli of human and animal origin. The aim of this study was to characterize mcr-mediated resistance plasmids from E. coli of animal origin in Spain. From our strain collection, 70 E. coli of pig origin collected between 2005 and 2014 (10 per year, except for years 2009–2010–2013) were randomly selected and screened for the presence of mcr-genes. Additionally, 20 E. coli isolated in 2011 from white storks (Ciconia ciconia) from the same urban household waste landfill associated colony were also included. Whole genome sequencing of mcr-positive isolates was carried out on a MiSeq (Illumina). Hybrid whole genome sequencing strategy combining nanopore and Illumina technologies were performed in a selection of isolates to close the genomes and plasmids and identify the presence of antimicrobial resistance genes. Minimum inhibitory concentration (MIC) was used to assess the susceptibility to colistin. Mating experiments were carried out to evaluate transferability of the mcr-genes. A total of 19 mcr-1 and one mcr-4 positive isolates were detected, 15 from pigs distributed during the study period, and five from storks collected in 2011. No other mcr-variants were found. The MICs for colistin ranged between 4 and >4 mg/L. High diversity of STs were detected among the mcr-1 positive E. coli isolates, with only ST-10 shared between pigs and white storks. Except for one isolate, all were genotypic and phenotypically MDR, and five of them also harbored cephalosporin resistance genes (blaCTX–M–14, blaSHV–12, and three blaCMY–2). mcr-1 genes were mobilizable by conjugation, associated with IncX4, IncHI2, and IncI2 plasmids. In our study, mcr-1 genes have been circulating in pig farms since 2005 harbored by a variety of E. coli clones. Its persistence may be driven by co-selection since plasmids containing mcr-1 also exhibit resistance to multiple drugs used in veterinary medicine. Furthermore, this is the first report of the presence of mcr-1 gene in isolates from white storks in Spain. This finding highlights the potential importance of wildlife that forage at urban household waste landfills in the transmission and spread of colistin resistance genes.
Collapse
Affiliation(s)
- Lourdes Migura-Garcia
- Centre de Recerca en Sanitat Animal, Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain.,Research and Control of Emerging and Re-emerging Swine Diseases in Europe, OIE Collaborating Centre, CReSA, IRTA, Barcelona, Spain
| | - Juan J González-López
- Servei de Microbiologia, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, United Kingdom
| | - J R Aguirre Sánchez
- Centro de Investigación en Alimentación y Desarrollo, Culiacán, Mexico.,Health and Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinégéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - A Moreno-Mingorance
- Servei de Microbiologia, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Perez de Rozas
- Centre de Recerca en Sanitat Animal, Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Ursula Höfle
- Health and Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinégéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Y Ramiro
- Health and Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinégéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | | |
Collapse
|
37
|
Stubberfield E, AbuOun M, Sayers E, O'Connor HM, Card RM, Anjum MF. Use of whole genome sequencing of commensal Escherichia coli in pigs for antimicrobial resistance surveillance, United Kingdom, 2018. Euro Surveill 2019; 24:1900136. [PMID: 31847943 PMCID: PMC6918588 DOI: 10.2807/1560-7917.es.2019.24.50.1900136] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
BackgroundSurveillance of commensal Escherichia coli, a possible reservoir of antimicrobial resistance (AMR) genes, is important as they pose a risk to human and animal health. Most surveillance activities rely on phenotypic characterisation, but whole genome sequencing (WGS) presents an alternative.AimIn this retrospective study, we tested 515 E. coli isolated from pigs to evaluate the use of WGS to predict resistance phenotype.MethodsMinimum inhibitory concentration (MIC) was determined for nine antimicrobials of clinical and veterinary importance. Deviation from wild-type, fully-susceptible MIC was assessed using European Committee on Antimicrobial Susceptibility Testing (EUCAST) epidemiological cut-off (ECOFF) values. Presence of AMR genes and mutations were determined using APHA SeqFinder. Statistical two-by-two table analysis and Cohen's kappa (k) test were applied to assess genotype and phenotype concordance.ResultsOverall, correlation of WGS with susceptibility to the nine antimicrobials was 98.9% for test specificity, and 97.5% for the positive predictive value of a test. The overall kappa score (k = 0.914) indicated AMR gene presence was highly predictive of reduced susceptibility and showed excellent correlation with MIC. However, there was variation for each antimicrobial; five showed excellent correlation; four very good and one moderate. Suggested ECOFF adjustments increased concordance between genotypic data and kappa values for four antimicrobials.ConclusionWGS is a powerful tool for accurately predicting AMR that can be used for national surveillance purposes. Additionally, it can detect resistance genes from a wider panel of antimicrobials whose phenotypes are currently not monitored but may be of importance in the future.
Collapse
Affiliation(s)
- Emma Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
| | - Ellie Sayers
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
- University of East Anglia/Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Heather M O'Connor
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
| | - Roderick M Card
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
| |
Collapse
|
38
|
Emergence of Escherichia coli harbouring mcr-1 and mcr-3 genes in North West Algerian farmlands. J Glob Antimicrob Resist 2019; 21:132-137. [PMID: 31606428 DOI: 10.1016/j.jgar.2019.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES Colistin resistance has emerged worldwide, threatening the efficacy of colistin treatment of Gram-negative bacterial infections. Farms have been recognised as an important reservoir of genes conferring resistance to colistin. This study aimed to isolate and characterise colistin-resistant bacteria in farmlands located in the region of Oran, northwest Algeria. METHODS Forty environmental samples were collected between May 2016 and March 2018 at eight agricultural sites in the Oran region. RESULTS From the 40 samples, 103 colistin-resistant isolates were isolated from agricultural soil (n = 52), irrigation water (n = 31) and manure (n = 20). Eight isolates were identified as Escherichia coli, including six and two isolates carrying the mcr-1 and mcr-3 gene, respectively. All eight E. coli isolates were non-susceptible to amoxicillin, amoxicillin/clavulanic acid, ticarcillin, nalidixic acid, ciprofloxacin, gentamicin, trimethoprim/sulfamethoxazole and rifamycin; two were also non-susceptible to cefotaxime, cefepime and aztreonam and carried the blaTEM-12 gene in addition to mcr-1. The six mcr-1-carrying E. coli isolates (MIC ≥ 2 μg/mL) belonged to three sequences types, including ST10 (n = 3), ST405 (n = 2) and ST345 (n = 1), whereas the two mcr-3-carrying isolates were assigned to ST155. The conjugation assay was positive only for two mcr-1-positive isolates. CONCLUSION These results show that farms are an important reservoir of colistin-resistant E. coli as well as other antimicrobial resistance genes such as ESBL genes. Transfer of manure from animals to soil and irrigation water might be disseminating a mix of multiple resistances, posing a worrying threat to human health.
Collapse
|
39
|
Xia X, Wang Z, Fu Y, Du XD, Gao B, Zhou Y, He J, Wang Y, Shen J, Jiang H, Wu Y. Association of colistin residues and manure treatment with the abundance of mcr-1 gene in swine feedlots. ENVIRONMENT INTERNATIONAL 2019; 127:361-370. [PMID: 30954722 DOI: 10.1016/j.envint.2019.03.061] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND The extensive use of colistin in swine production may have contributed to the recent emergence of corresponding mobile resistance gene mcr-1. The use of colistin as a feed additive was banned in China in April 2017. OBJECTIVES To examine the occurrence of colistin and dissemination of mcr-1 in swine feedlots before and after the colistin ban and effects of different manure treatments. METHODS Environmental samples were collected from swine feedlots before (December 2016) and after (December 2017) the colistin ban. Colistin concentrations were determined by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. The prevalence of mcr-1 were determined by quantitative PCR analysis, while bacterial community composition was investigated by 16S rRNA sequencing. RESULTS In 2016, colistin was detected in feed and fresh manure samples at 67 mg/kg and 17 mg/kg, respectively, but was absent from all samples in 2017. In 2016, the relative abundance of mcr-1 in fresh manure was lower than that in solid samples after natural drying, while a higher relative abundance was detected in fresh manure samples compared with biogas slurry samples. A strong correlation between colistin concentration and relative abundance of mcr-1 was observed in fresh manure. The samples collected in 2017 showed a lower relative abundance of mcr-1 compared with those collected in 2016. Bacterial community analysis showed that the abundance of Enterobacteriaceae, which act as a vehicle and reservoir of mcr-1, increased with natural dying but decreased with anaerobic digestion. CONCLUSIONS The presence of colistin exerts direct selection pressure for the accumulation of mcr-1 in manure, while the ban on colistin likely halted the dissemination of mcr-1 on pig farms. Anaerobic digestion is an effective waste treatment process for removing mcr-1, which might be mainly driven by the shift in bacterial community structure.
Collapse
Affiliation(s)
- Xi Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zheng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yulin Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiang-Dang Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Binwen Gao
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuqing Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junjia He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China.
| |
Collapse
|
40
|
Velasova M, Smith RP, Lemma F, Horton RA, Duggett NA, Evans J, Tongue SC, Anjum MF, Randall LP. Detection of extended-spectrum β-lactam, AmpC and carbapenem resistance in Enterobacteriaceae in beef cattle in Great Britain in 2015. J Appl Microbiol 2019; 126:1081-1095. [PMID: 30693606 DOI: 10.1111/jam.14211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
Abstract
AIMS This study investigated the occurrence and genetic diversity of Enterobacteriaceae with extended-spectrum β-lactamase (ESBL)-, AmpC- and carbapenemase-mediated resistance in British beef cattle, and related risk factors. METHODS AND RESULTS Faecal samples (n = 776) were obtained from farms in England and Wales (n = 20) and Scotland (n = 20) in 2015. Isolates from selective agars were identified by MALDI ToF mass spectrometry. Selected isolates were characterized by multiplex PCR (blaCTX -M, blaOXA , blaSHV and blaTEM genes), whole-genome sequencing (WGS), minimum inhibitory concentrations and pulsed-field gel electrophoresis. None of the faecal samples yielded carbapenem-resistant Escherichia coli. Ten (25%) of the farms tested positive for ESBL-producing CTX-M Enterobacteriaceae, 15 (37·5%) of the farms were positive for AmpC phenotype E. coli and none were positive for carbapenem-resistant E. coli. WGS showed a total of 30 different resistance genes associated with E. coli, Citrobacter and Serratia from ESBL agars, and colocation of resistance genes with blaCTX -M1 . Buying bulls and bringing in fattening cattle from another farm were identified as significant risk factors for positive samples harbouring CTX-M Enterobacteriaceae or AmpC phenotype E. coli respectively. CONCLUSIONS Beef cattle on a proportion of farms in GB carry ESBL-producing Enterobacteriaceae. Factors, such as operating as a closed herd, may have an important role in reducing introduction and transmission of resistant Enterobacteriaceae. The results indicate management factors may play an important role in impacting ESBL prevalence. In particular, further study would be valuable to understand the impact of maintaining a closed herd on reducing the introduction of resistant Enterobacteriaceae. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study showing the presence of ESBL-producing Enterobacteriaceae in British beef cattle.
Collapse
Affiliation(s)
- M Velasova
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| | - R P Smith
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| | - F Lemma
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| | - R A Horton
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| | - N A Duggett
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| | - J Evans
- SRUC (Inverness Campus), Edinburgh, UK
| | | | - M F Anjum
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| | - L P Randall
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| |
Collapse
|
41
|
Randall LP, Horton RA, Lemma F, Martelli F, Duggett NAD, Smith RP, Kirchner MJ, Ellis RJ, Rogers JP, Williamson SM, Simons RRL, Brena CM, Evans SJ, Anjum MF, Teale CJ. Longitudinal study on the occurrence in pigs of colistin-resistant Escherichia coli carrying mcr-1 following the cessation of use of colistin. J Appl Microbiol 2018; 125:596-608. [PMID: 29741287 DOI: 10.1111/jam.13907] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 11/27/2022]
Abstract
AIMS In 2015, colistin-resistant Escherichia coli and Salmonella with the mcr-1 gene were isolated from a pig farm in Great Britain. Pigs were subsequently monitored over a ~20-month period for the occurrence of mcr-1-mediated colistin resistance and the risk of mcr-1 E. coli entering the food chain was assessed. METHODS AND RESULTS Pig faeces and slurry were cultured for colistin-resistant E. coli and Salmonella, tested for the mcr-1 gene by PCR and selected isolates were further analysed. Seventy-eight per cent of faecal samples (n = 275) from pigs yielded mcr-1 E. coli after selective culture, but in positive samples only 0·2-1·3% of the total E. coli carried mcr-1. Twenty months after the initial sampling, faecal samples (n = 59) were negative for E. coli carrying mcr-1. CONCLUSIONS The risk to public health from porcine E. coli carrying mcr-1 was assessed as very low. Twenty months after cessation of colistin use, E. coli carrying mcr-1 was not detected in pig faeces on a farm where it was previously present. SIGNIFICANCE AND IMPACT OF THE STUDY The results suggest that cessation of colistin use may help over time to reduce or possibly eliminate mcr-1 E. coli on pig farms where it occurs.
Collapse
Affiliation(s)
- L P Randall
- Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, Surrey, UK
| | - R A Horton
- Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, Surrey, UK
| | - F Lemma
- Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, Surrey, UK
| | - F Martelli
- Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, Surrey, UK
| | - N A D Duggett
- Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, Surrey, UK
| | - R P Smith
- Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, Surrey, UK
| | - M J Kirchner
- Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, Surrey, UK
| | - R J Ellis
- Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, Surrey, UK
| | - J P Rogers
- Animal and Plant Health Agency (Bury St Edmunds), Bury St Edmunds, Suffolk, UK
| | - S M Williamson
- Animal and Plant Health Agency (Bury St Edmunds), Bury St Edmunds, Suffolk, UK
| | - R R L Simons
- Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, Surrey, UK
| | - C M Brena
- Animal and Plant Health Agency (Thirsk), Thirsk, North Yorkshire, UK
| | - S J Evans
- Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, Surrey, UK
| | - M F Anjum
- Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, Surrey, UK
| | - C J Teale
- Animal and Plant Health Agency (Shrewsbury), Shrewsbury, UK
| |
Collapse
|