1
|
Carvalho MI, Silva-Carvalho R, Prada J, Pinto C, Gregório H, Lobo L, Pires I, Queiroga FL. TGFβ in malignant canine mammary tumors: relation with angiogenesis, immunologic markers and prognostic role. Vet Q 2024; 44:1-12. [PMID: 39165025 PMCID: PMC11340227 DOI: 10.1080/01652176.2024.2390941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Transforming growth factor-β (TGFβ) and FoxP3 regulatory T cells (Treg) are involved in human breast carcinogenesis. This topic is not well documented in canine mammary tumors (CMT). In this work, the tumoral TGFβ expression was assessed by immunohistochemistry in 67 malignant CMT and its correlation to previously determined FoxP3, VEGF, and CD31 markers and other clinicopathologic parameters was evaluated. The high levels of TGFβ were statistically significantly associated with skin ulceration, tumor necrosis, high histological grade of malignancy (HGM), presence of neoplastic intravascular emboli and presence of lymph node metastases. The observed levels of TGFβ were positively correlated with intratumoral FoxP3 (strong correlation), VEGF (weak correlation) and CD31 (moderate correlation). Tumors that presented a concurrent high expression of TGFβ/FoxP3, TGFβ/VEGF, and TGFβ/CD31 markers were statistically significantly associated with parameters of tumor malignancy (high HGM, presence of vascular emboli and nodal metastasis). Additionally, shorter overall survival (OS) time was statistically significantly associated with tumors with an abundant TGFβ expression and with concurrent high expression of TGFβ/FoxP3, TGFβ/VEGF, and TGFβ/CD31. The presence of lymph node metastasis increased 11 times the risk of disease-related death, arising as an independent predictor of poor prognosis in the multivariable analysis. In conclusion, TGFβ and Treg cells seem involved in tumor progression emerging as potential therapeutic targets for future immunotherapy studies.
Collapse
Affiliation(s)
- Maria Isabel Carvalho
- MVET Research in Veterinary Medicine. Faculty of Veterinary Medicine, Lusófona University – Lisbon Centre, Lisboa, Portugal
| | - Ricardo Silva-Carvalho
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Justina Prada
- Veterinary and Animal Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Carla Pinto
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Hugo Gregório
- Anicura Centro Hospitalar Veterinário, Porto, Portugal
| | - Luis Lobo
- MVET Research in Veterinary Medicine. Faculty of Veterinary Medicine, Lusófona University – Lisbon Centre, Lisboa, Portugal
- Onevet Hospital Veterinário do Porto, Porto, Portugal
- Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Portugal
| | - Isabel Pires
- Veterinary and Animal Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Felisbina L. Queiroga
- Veterinary and Animal Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Portugal
| |
Collapse
|
2
|
Wu X, Jiang X, Liu Z, Xue P, Chen Y, Cao L, Wen Z, Tang Y. Effect of photodynamic therapy on peripheral immune system for unresectable cholangiocarcinoma. Photodiagnosis Photodyn Ther 2024; 49:104279. [PMID: 39168069 DOI: 10.1016/j.pdpdt.2024.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Photodynamic therapy (PDT) has been emerging as a promising treatment for unresectable cholangiocarcinoma (CCA). A number of experiments have demonstrated that PDT could enhance antitumor immunity significantly. However, the impact of PDT on peripheral immune system for unresectable CCA remains unclear. METHODS In a clinical trial comparing the perioperative and long-term outcomes of PDT+stent treatment and stent alone treatment for unresectable CCA, we tested the levels of lymphocytes (CD4+ T cells, CD8+ T cells, NK cells, B cells and Treg cells) and immune-related cytokines (IL-4, IL-6, IL-10, TNF-α, TGF-β, perforin, GM-CSF and IFN-γ) in peripheral blood before and after PDT+stent treatment or stent alone treatment and analyzed the influence of PDT on peripheral immune system for unresectable CCA. RESULTS Before treatment, the levels of all the immune cells and immune-related cytokines did not show significant differences between the PDT+stent group and stent alone group. The ratio of CD8+ T cells increased significantly after PDT treatment, but other kinds of lymphocytes did not show significant difference. Increased level of IL-6 and decreased level of perforin and TGF-β after PDT treatment were demonstrated, whereas no significant changes were found for other immune-related cytokines. CONCLUSION PDT altered the levels of immune cells and immune-related cytokines in the peripheral blood of unresectable CCA patients, potentially correlating with the therapeutic efficacy of PDT in unresectable CCA treatment. Future studies could delve deeper into this aspect to explore how PDT can be more effectively utilized in the management of unresectable CCA.
Collapse
Affiliation(s)
- Xinqiang Wu
- Department of Hepatobiliary Surgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, PR China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Zhaoyuan Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Ping Xue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Yubin Chen
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Zilong Wen
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Yunqiang Tang
- Department of Hepatobiliary Surgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, PR China.
| |
Collapse
|
3
|
Hao Y, Chen P, Guo S, Li M, Jin X, Zhang M, Deng W, Li P, Lei W, Liang A, Qian W. Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of CD19-specific CAR T-cells via TGF-β signaling. Front Med 2024; 18:128-146. [PMID: 37870681 DOI: 10.1007/s11684-023-1010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/19/2023] [Indexed: 10/24/2023]
Abstract
Tumor-derived exosomes (TEXs) enriched in immune suppressive molecules predominantly drive T-cell dysfunction and impair antitumor immunity. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for refractory and relapsed hematological malignancies, but whether lymphoma TEXs have the same impact on CAR T-cell remains unclear. Here, we demonstrated that B-cell lymphoma-derived exosomes induce the initial activation of CD19-CAR T-cells upon stimulation with exosomal CD19. However, lymphoma TEXs might subsequently induce CAR T-cell apoptosis and impair the tumor cytotoxicity of the cells because of the upregulated expression of the inhibitory receptors PD-1, TIM3, and LAG3 upon prolonged exposure. Similar results were observed in the CAR T-cells exposed to plasma exosomes from patients with lymphoma. More importantly, single-cell RNA sequencing revealed that CAR T-cells typically showed differentiated phenotypes and regulatory T-cell (Treg) phenotype conversion. By blocking transforming growth factor β (TGF-β)-Smad3 signaling with TGF-β inhibitor LY2109761, the negative effects of TEXs on Treg conversion, terminal differentiation, and immune checkpoint expression were rescued. Collectively, although TEXs lead to the initial activation of CAR T-cells, the effect of TEXs suppressed CAR T-cells, which can be rescued by LY2109761. A treatment regimen combining CAR T-cell therapy and TGF-β inhibitors might be a novel therapeutic strategy for refractory and relapsed B-cell lymphoma.
Collapse
Affiliation(s)
- Yuanyuan Hao
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Panpan Chen
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shanshan Guo
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mengyuan Li
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xueli Jin
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Minghuan Zhang
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wenhai Deng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Wen Lei
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China.
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
4
|
Heßling LD, Troost-Kind B, Weiß M. NAADP-binding proteins - Linking NAADP signaling to cancer and immunity. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119531. [PMID: 37394011 DOI: 10.1016/j.bbamcr.2023.119531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
NAADP is one of the most potent calcium mobilizing second messengers. Only recently, two NAADP-binding proteins have been identified: HN1L/JPT2 and LSM12. Further, ASPDH was suggested as a less selective binding partner. Apart from this newly uncovered link, little is known about the shared mechanisms between these proteins. The aim of this review is to assess potential functional connections between NAADP and its binding proteins. We here give a description of two major links. For one, HN1L/JPT2 and LSM12 both have potent oncogenic functions in several cancer types. Second, they are involved in similar cellular pathways in both cancer and immunity.
Collapse
Affiliation(s)
- Louisa D Heßling
- The Calcium Signaling Group, Dept. of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Berit Troost-Kind
- The Calcium Signaling Group, Dept. of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mariella Weiß
- The Calcium Signaling Group, Dept. of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
5
|
Mostafa E, Ahmed FASMS, Yahia SH, Ibrahim AIM, Elbahaie ES. The effects of intracellular iron availability on the outcome of Toxoplasma gondii infection in mice. J Parasit Dis 2023; 47:608-618. [PMID: 37520204 PMCID: PMC10382456 DOI: 10.1007/s12639-023-01603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/26/2023] [Indexed: 08/01/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is a parasite that obtains the iron it needs for its own metabolism from the host-cell iron pool. In this work, we aimed to investigate if iron supplementation or deficiency affected the course of T. gondii infection. Eighty mice were divided into four groups, each with 20 animals: Group (I): Uninfected control group. Group (II): Infected control group: injected with Phosphate buffered saline. Group (III): Infected group: received iron sucrose treatment. Group (IV): Infected group: treated with deferoxamine. Quantitative PCR studies were performed on days 3 and 8 post-infection to detect the expression of iron metabolism genes (hamp and ferroprotin) and immune-histochemical analysis to study the percentage of TNF-α and TGF-β tissue expression. Iron supplementation induced progressions of infection evident by increased tissue expression of pro-inflammatory cytokine TNF-α and downregulation of TGF-β which is mostly linked to suppression of the inflammatory process caused by T. gondii. Increased expression of TGF-β and decreased expression of TNF-α was noticed when iron deprivation occurred. On day 3, we noticed increased expression in the hamp gene with iron supplementation while it decreases when the iron supply is low. On the contrary, iron deficiency increased ferroprotin gene expression whereas supplementing decreased it. On day 8, the level of expression of these genes returned to normal levels. These observations document the potential role of iron in controlling toxoplasmosis infection and indicate that the transcription of hamp and ferroprotin in T. gondii-infected cells appears to be regulated by a sophisticated indirect mechanism.
Collapse
Affiliation(s)
- Eman Mostafa
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Samah Hassan Yahia
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Enas Saed Elbahaie
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Regulatory T Cells in Ovarian Carcinogenesis and Future Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14225488. [PMID: 36428581 PMCID: PMC9688690 DOI: 10.3390/cancers14225488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Regulatory T cells (Tregs) have been shown to play a role in the development of solid tumors. A better understanding of the biology of Tregs, immune suppression by Tregs, and how cancer developed with the activity of Tregs has facilitated the development of strategies used to improve immune-based therapy. In ovarian cancer, Tregs have been shown to promote cancer development and resistance at different cancer stages. Understanding the various Treg-mediated immune escape mechanisms provides opportunities to establish specific, efficient, long-lasting anti-tumor immunity. Here, we review the evidence of Treg involvement in various stages of ovarian cancer. We further provide an overview of the current and prospective therapeutic approaches that arise from the modulation of Treg-related tumor immunity at those specific stages. Finally, we propose combination strategies of Treg-related therapies with other anti-tumor therapies to improve clinical efficacy and overcome tumor resistance in ovarian cancer.
Collapse
|
7
|
Singh M, Kumar S, Singh B, Jain P, Kumari A, Pahuja I, Chaturvedi S, Prasad DVR, Dwivedi VP, Das G. The 1, 2-ethylenediamine SQ109 protects against tuberculosis by promoting M1 macrophage polarization through the p38 MAPK pathway. Commun Biol 2022; 5:759. [PMID: 35902694 PMCID: PMC9334294 DOI: 10.1038/s42003-022-03693-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/10/2022] [Indexed: 11/23/2022] Open
Abstract
Directly Observed Treatment Short-course (DOTs), is an effective and widely recommended treatment for tuberculosis (TB). The antibiotics used in DOTs, are immunotoxic and impair effector T cells, increasing the risk of re-infections and reactivation. Multiple reports suggest that addition of immune-modulators along with antibiotics improves the effectiveness of TB treatment. Therefore, drugs with both antimicrobial and immunomodulatory properties are desirable. N1-(Adamantan-2-yl)-N2-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]ethane-1,2-diamine (SQ109) is an asymmetric diamine derivative of adamantane, that targets Mycobacterial membrane protein Large 3 (MmpL3). SQ109 dissipates the transmembrane electrochemical proton-gradient necessary for cell-wall biosynthesis and bacterial activity. Here, we examined the effects of SQ109 on host-immune responses using a murine TB model. Our results suggest the pro-inflammatory nature of SQ109, which instigates M1-macrophage polarization and induces protective pro-inflammatory cytokines through the p38-MAPK pathway. SQ109 also promotes Th1 and Th17-immune responses that inhibit the bacillary burden in a murine model of TB. These findings put forth SQ109 as a potential-adjunct to TB antibiotic therapy. The adamantine derivative SQ109 induces protective pro-inflammatory cytokines and promotes Th1 and Th17-immune responses that inhibit bacterial burden in a tuberculosis mouse model.
Collapse
Affiliation(s)
- Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110 019, India
| | - Santosh Kumar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Baldeep Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Anjna Kumari
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shivam Chaturvedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
8
|
Niu Y, Zhou Q. Th17 cells and their related cytokines: vital players in progression of malignant pleural effusion. Cell Mol Life Sci 2022; 79:194. [PMID: 35298721 PMCID: PMC11072909 DOI: 10.1007/s00018-022-04227-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
Abstract
Malignant pleural effusion (MPE) is an exudative effusion caused by primary or metastatic pleural carcinosis. Th17 cells and their cytokines are critical components in various disease including MPE. In this review, we summarize current published articles regarding the multifunctional roles of Th17 cells and their related cytokines in MPE. Th17 cells are accumulated in MPE compared with paired serum via certain manners. The upregulation of Th17 cells and the interactions between Th17 cells and other immune cells, such as Th1 cells, Th9 cells, regulatory T cells and B cells, are reported to be involved in the formation and development of MPE. In addition, cytokines, which are elaborated by Th17 cells, including IL-17A, IL-17F, IL-21, IL-22, IL-26, GM-CSF, or associated with Th17 cells differentiation, including IL-1β, IL-6, IL-23, TGF-β, are linked to the pathogenesis of MPE through exerting pro- or anti-tumorigenic functions on their own as well as regulating the generation and differentiation of Th17 cells in MPE. Based on these findings, we proposed that Th17 cells and their cytokines might be diagnostic or prognostic tools and potential therapeutic targets for MPE.
Collapse
Affiliation(s)
- Yiran Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Salama MAM, Mostafa NE, Abd El-Aal NF, Moawad HSF, Hammad SK, Adel R, Mostafa EM. Efficacy of Zingiber officinale and Cinnamomum zeylanicum extracts against experimental Trichinella spiralis infection. J Parasit Dis 2022; 46:24-36. [PMID: 35299906 PMCID: PMC8901936 DOI: 10.1007/s12639-021-01412-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023] Open
Abstract
Trichinellosis is a re-emerging zoonotic disease that has become a public health concern since its reported human outbreaks in many countries. The traditional therapy has many adverse effects in addition to the developing resistance. So, this necessitates finding effective natural alternatives. The current study targeted to assess the potential therapeutic effects of Zingiber officinale and Cinnamomum zeylanicum in comparison to albendazole, a conventional therapy for treatment of trichinosis. Sixty mice were classified into five groups (12 mice each), non-infected control, infected control, combined albendazole and prednisolone, Zingiber officinale, and Cinnamomum zeylanicum treated groups. Mice sacrifice was performed on the 7th and 35th days post infection for intestinal and muscular phases respectively. Efficiency of the used preparations was assessed by parasitological, histopathological, immunohistochemical, biochemical studies in addition to ultrastructural evaluation using transmission electron microscopy. A significant reduction in the mean number of T. spiralis adult worms and larvae was observed in Zingiber officinale and Cinnamomum zeylanicum treated groups, (64.5%, 50.8%) and (68%, 54.6%) respectively. Also, both extracts showed moderate cytoplasmic reactivity for TGF-β1, (69.3% & 67.8%) respectively. The highest reduction in serum TNF- α level was observed in Zingiber officinale treated group during the muscle phase (58.4%) while in the intestinal phase was 50%. The ultrastructural study revealed degenerative effects on both adults and larvae in addition to obvious improvement of the histopathological changes in the small intestine and muscles. We concluded that these herbal extracts especially Zingiber officinale can be considered a practical and successful alternative for the treatment of trichinellosis.
Collapse
Affiliation(s)
- Marwa Ahmed Mohamed Salama
- grid.31451.320000 0001 2158 2757Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nahed E. Mostafa
- grid.31451.320000 0001 2158 2757Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Naglaa Fathy Abd El-Aal
- grid.31451.320000 0001 2158 2757Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Howayda Said Fouad Moawad
- grid.31451.320000 0001 2158 2757Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar Kamel Hammad
- grid.31451.320000 0001 2158 2757Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha Adel
- grid.31451.320000 0001 2158 2757Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman M. Mostafa
- grid.31451.320000 0001 2158 2757Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Rajabi F, Abdollahimajd F, Jabalameli N, Nassiri Kashani M, Firooz A. The Immunogenetics of Alopecia areata. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:19-59. [DOI: 10.1007/978-3-030-92616-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Dwivedi M, Laddha NC, Begum R. The Immunogenetics of Vitiligo: An Approach Toward Revealing the Secret of Depigmentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:61-103. [PMID: 35286692 DOI: 10.1007/978-3-030-92616-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vitiligo is a hypomelanotic skin disease and considered to be of autoimmune origin due to breaching of immunological self-tolerance, resulting in inappropriate immune responses against melanocytes. The development of vitiligo includes a strong heritable component. Different strategies ranging from linkage studies to genome-wide association studies are used to explore the genetic factors responsible for the disease. Several vitiligo loci containing the respective genes have been identified which contribute to vitiligo and genetic variants for some of the genes are still unknown. These genes include mainly the proteins that play a role in immune regulation and a few other genes important for apoptosis and regulation of melanocyte functions. Despite the available data on genetic variants and risk alleles which influence the biological processes, only few immunological pathways have been found responsible for all ranges of severity and clinical manifestations of vitiligo. However, studies have concluded that vitiligo is of autoimmune origin and manifests due to complex interactions in immune components and their inappropriate response toward melanocytes. The genes involved in the immune regulation and processing the melanocytes antigen and its presentation can serve as effective immune-therapeutics that can target specific immunological pathways involved in vitiligo. This chapter highlights those immune-regulatory genes involved in vitiligo susceptibility and loci identified to date and their implications in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, 394350, Gujarat, India.
| | - Naresh C Laddha
- In Vitro Specialty Lab Pvt. Ltd, 205-210, Golden Triangle, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| |
Collapse
|
12
|
Liu J, Wang X, Deng Y, Yu X, Wang H, Li Z. Research Progress on the Role of Regulatory T Cell in Tumor Microenvironment in the Treatment of Breast Cancer. Front Oncol 2021; 11:766248. [PMID: 34868991 PMCID: PMC8636122 DOI: 10.3389/fonc.2021.766248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem comprised of cancer cells, stromal cells, and immune cells. Analysis of the composition of TME is essential to assess the prognosis of patients with breast cancer (BC) and the efficacy of different regimes. Treg plays a crucial role in the microenvironment of breast cancer subtypes, and its function contributes to the development and progression of BC by suppressing anti-tumor immunity directly or indirectly through multiple mechanisms. In addition, conventional treatments, such as anthracycline-based neoadjuvant chemotherapy, and neo-therapies, such as immune-checkpoint blockades, have a significant impact on the absence of Tregs in BC TME, thus gaining additional anti-tumor effect to some extent. Strikingly, Treg in BC TME revealed the predicted efficacy of some therapeutic strategies. All these results suggest that we can manipulate the abundance of Treg to achieve the ultimate effect of both conventional and novel treatments. In this review, we discuss new insights into the characteristics of Treg in BC TME, the impact of different regiments on Treg, and the possibilities of Treg as a predictive marker of efficacy for certain treatments.
Collapse
Affiliation(s)
- Jianyu Liu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuhan Deng
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Yu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongbin Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhigao Li
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
13
|
Kong BS, Min SH, Lee C, Cho YM. Mitochondrial-encoded MOTS-c prevents pancreatic islet destruction in autoimmune diabetes. Cell Rep 2021; 36:109447. [PMID: 34320351 PMCID: PMC10083145 DOI: 10.1016/j.celrep.2021.109447] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/08/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are principal metabolic organelles that are increasingly unveiled as immune regulators. However, it is currently not known whether mitochondrial-encoded peptides modulate T cells to induce changes in phenotype and function. In this study, we found that MOTS-c (mitochondrial open reading frame of the 12S rRNA type-c) prevented autoimmune β cell destruction by targeting T cells in non-obese diabetic (NOD) mice. MOTS-c ameliorated the development of hyperglycemia and reduced islet-infiltrating immune cells. Furthermore, adoptive transfer of T cells from MOTS-c-treated NOD mice significantly decreased the incidence of diabetes in NOD-severe combined immunodeficiency (SCID) mice. Metabolic and genomic analyses revealed that MOTS-c modulated T cell phenotype and function by regulating T cell receptor (TCR)/mTOR complex 1 (mTORC1) signaling. Type 1 diabetes (T1D) patients had a lower serum MOTS-c level than did healthy controls. Furthermore, MOTS-c reduced T cell activation by alleviating T cells from the glycolytic stress in T1D patients, suggesting therapeutic potential. Our findings indicate that MOTS-c regulates the T cell phenotype and suppresses autoimmune diabetes.
Collapse
Affiliation(s)
- Byung Soo Kong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Hee Min
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
14
|
Th17/Treg-Related Intracellular Signaling in Patients with Chronic Obstructive Pulmonary Disease: Comparison between Local and Systemic Responses. Cells 2021; 10:cells10071569. [PMID: 34206428 PMCID: PMC8305827 DOI: 10.3390/cells10071569] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Th17/Treg imbalance plays a pivotal role in COPD development and progression. We aimed to assess Th17/Treg-related intracellular signaling at different COPD stages in local and systemic responses. Lung tissue and/or peripheral blood samples were collected and divided into non-obstructed (NOS), COPD stages I and II, and COPD stages III and IV groups. Gene expression of STAT3 and -5, RORγt, Foxp3, interleukin (IL)-6, -17, -10, and TGF-β was assessed by RT-qPCR. IL-6, -17, -10, and TGF-β levels were determined by ELISA. We observed increased STAT3, RORγt, Foxp3, IL-6, and TGF-β gene expression and IL-6 levels in the lungs of COPD I and II patients compared to those of NOS patients. Regarding the systemic response, we observed increased STAT3, RORγt, IL-6, and TGF-β gene expression in the COPD III and IV group and increased IL-6 levels in the COPD I and II group. STAT5 was increased in COPD III and IV patients, although there was a decrease in Foxp3 expression and IL-10 levels in the COPD I and II and COPD III and IV groups, respectively. We demonstrated that an increase in Th17 intracellular signaling in the lungs precedes this increase in the systemic response, whereas Treg intracellular signaling varies between the compartments analyzed in different COPD stages.
Collapse
|
15
|
Lužnik Z, Anchouche S, Dana R, Yin J. Regulatory T Cells in Angiogenesis. THE JOURNAL OF IMMUNOLOGY 2021; 205:2557-2565. [PMID: 33168598 DOI: 10.4049/jimmunol.2000574] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) are crucial mediators of immune homeostasis. They regulate immune response by suppressing inflammation and promoting self-tolerance. In addition to their immunoregulatory role, a growing body of evidence highlights the dynamic role of Tregs in angiogenesis, the process of forming new blood vessels. Although angiogenesis is critically important for normal tissue regeneration, it is also a hallmark of pathological processes, including malignancy and chronic inflammation. Interestingly, the role of Tregs in angiogenesis has been shown to be highly tissue- and context-specific and as a result can yield either pro- or antiangiogenic effects. For these reasons, there is considerable interest in determining the molecular underpinnings of Treg-mediated modulation of angiogenesis in different disease states. The present review summarizes the role of Tregs in angiogenesis and mechanisms by which Tregs regulate angiogenesis and discusses how these mechanisms differ in homeostatic and pathological settings.
Collapse
Affiliation(s)
- Zala Lužnik
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114.,Eye Hospital, University Medical Centre, 1000 Ljubljana, Slovenia; and
| | - Sonia Anchouche
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114.,Faculty of Medicine, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Reza Dana
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114;
| | - Jia Yin
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114;
| |
Collapse
|
16
|
Boccasavia VL, Bovolenta ER, Villanueva A, Borroto A, Oeste CL, van Santen HM, Prieto C, Alonso-López D, Diaz-Muñoz MD, Batista FD, Alarcón B. Antigen presentation between T cells drives Th17 polarization under conditions of limiting antigen. Cell Rep 2021; 34:108861. [PMID: 33730591 PMCID: PMC7972993 DOI: 10.1016/j.celrep.2021.108861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
T cells form immunological synapses with professional antigen-presenting cells (APCs) resulting in T cell activation and the acquisition of peptide antigen-MHC (pMHC) complexes from the plasma membrane of the APC. They thus become APCs themselves. We investigate the functional outcome of T-T cell antigen presentation by CD4 T cells and find that the antigen-presenting T cells (Tpres) predominantly differentiate into regulatory T cells (Treg), whereas T cells that have been stimulated by Tpres cells predominantly differentiate into Th17 pro-inflammatory cells. Using mice deficient in pMHC uptake by T cells, we show that T-T antigen presentation is important for the development of experimental autoimmune encephalitis and Th17 cell differentiation in vivo. By varying the professional APC:T cell ratio, we can modulate Treg versus Th17 differentiation in vitro and in vivo, suggesting that T-T antigen presentation underlies proinflammatory responses in conditions of antigen scarcity.
Collapse
Affiliation(s)
- Viola L Boccasavia
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Elena R Bovolenta
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana Villanueva
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aldo Borroto
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Clara L Oeste
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Hisse M van Santen
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Prieto
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego Alonso-López
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cancer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Manuel D Diaz-Muñoz
- Center for Physiopathology Toulouse-Purpan, INSERM UMR1043/CNRS UMR5282, CHU Purpan, BP3028, 31024 Toulouse, France
| | | | - Balbino Alarcón
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
17
|
Feng X, Xu W, Liu J, Li D, Li G, Ding J, Chen X. Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy. Sci Bull (Beijing) 2021; 66:362-373. [PMID: 36654416 DOI: 10.1016/j.scib.2020.07.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 01/20/2023]
Abstract
Many conventional chemotherapeutics play an immune-modulating effect by inducing immunogenic cell death (ICD) in tumor cells. However, they hardly arouse strong antitumor immune response because the immunosuppressive lymphocytes are present in the tumor microenvironment. These immunosuppressive lymphocytes include regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). We used a low dose of doxorubicin (DOX) to induce ICD in combination with immune regulator 1-methyl-DL-tryptophan (1MT) to suppress indoleamine 2,3-dioxygenase and overcome Treg- and MDSC-associated immune suppression. By co-encapsulation of DOX and 1MT into a reduction-responsive polypeptide nanogel, the drugs were simultaneously released in the tumor cells and synergistically performed antitumor efficacy. After treatment, recruitment of Tregs and MDSCs was inhibited, and the frequency of tumor-infiltrating CD8+ T cells was remarkably enhanced. These results demonstrated that the chemoimmunotherapy strategy effectively suppressed tumor growth without causing evident adverse effects, indicating its great potential in clinical cancer therapy.
Collapse
Affiliation(s)
- Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jianhua Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Di Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Yi FS, Zhai K, Shi HZ. Helper T cells in malignant pleural effusion. Cancer Lett 2020; 500:21-28. [PMID: 33309856 DOI: 10.1016/j.canlet.2020.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Malignant pleural effusion (MPE) is a frequent complication of malignancies and poses a clinical problem. CD4+ T lymphocytes are the most frequent cell population in MPE. Traditionally, CD4+ T cells are classified into two subsets based on cytokine production profiles, type 1 (Th1) and type 2 (Th2) helper T cells, which exhibit distinct functions. Recently, other T-cell subsets have been added to the Th-cell "portfolio", including regulatory T, Th17, Th9, and Th22 cells. The current review focuses on summarizing the Th-cell phenotypic characteristics, mechanism of Th-cell differentiation, and their pleural space recruitment, based on recent research. We also describe the interplay in MPE among different Th cells, as well as Th cells and lung cancer cells or mesothelial cells. Future research should expand the landscape map of human MPE immune cells, explore the immuno-regulation of B cells, and investigate the communication between macrophages and Th cells in MPE, which may facilitate meaningful advancements in the diagnoses and therapeutics of MPE.
Collapse
Affiliation(s)
- Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Zhao H, Wei J, Sun J. Roles of TGF-β signaling pathway in tumor microenvirionment and cancer therapy. Int Immunopharmacol 2020; 89:107101. [PMID: 33099067 DOI: 10.1016/j.intimp.2020.107101] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022]
Abstract
Transforming growth factor β (TGF- β) signaling pathway has pleiotropic effects on cell proliferation, differentiation, adhesion, senescence, and apoptosis. TGF-β can be widely produced by various immune or non-immune cells and regulate cell behaviors through autocrine and paracrine. It plays essential roles in biological processes including embryological development, immune response, and tumor progression. Few cell signalings can contribute to so many pleiotropic functions as the TGF- β signaling pathway in mammals. The significant function of TGF-β signaling in tumor progression and evasion leading it to draw great attention in scientific and clinical research. Understanding the mechanism of TGF- β signaling provides us with chances to potentiate the effectiveness and selectivity of this therapeutic method. Herein, we review the molecular and cellular mechanisms of TGF-β signaling in carcinomas and tumor microenvironment. Then, we enumerate main achievements of TGF-β blockades used or being evaluated in cancer therapy, providing us opportunities to improve therapeutical approaches in the tumor which thrive in a TGF-β-rich environment.
Collapse
Affiliation(s)
- Haodi Zhao
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 30072, PR China
| | - Jing Wei
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jian Sun
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 30072, PR China; Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
20
|
Bhaskar A, Kumari A, Singh M, Kumar S, Kumar S, Dabla A, Chaturvedi S, Yadav V, Chattopadhyay D, Prakash Dwivedi V. [6]-Gingerol exhibits potent anti-mycobacterial and immunomodulatory activity against tuberculosis. Int Immunopharmacol 2020; 87:106809. [PMID: 32693356 DOI: 10.1016/j.intimp.2020.106809] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
The currently available anti-tuberculosis treatment (ATT) comprises exclusively of anti-bacterial drugs, is very lengthy, has adverse side effects on the host and leads to the generation of drug-resistant variants. Therefore, a combination therapy directed against the pathogen and the host is required to counter tuberculosis (TB). Here we demonstrate that [6]-Gingerol, one of the most potent and pharmacologically active ingredients of ginger restricted mycobacterial growth inside the lungs, spleen and liver of mice infected with Mycobacterium tuberculosis (Mtb). The spleen of [6]-Gingerol treated mice displayed increased expression of pro-inflammatory cytokines and enhanced Th1/Th17 responses confirming the immunomodulatory action of [6]-Gingerol. Finally, [6]-Gingerol displayed an excellent potential as an adjunct drug, along with front line anti-TB drug isoniazid. Interestingly, [6]-Gingerol displayed stark anti-tubercular activity against dormant/starved bacilli and drug-resistant variants of Mtb. Taken together, these results indicate strong prospects of [6]-Gingerol as an adjunct anti-mycobacterial and immunomodulatory drug for the treatment of drug-susceptible and drug-resistant strains of TB.
Collapse
Affiliation(s)
- Ashima Bhaskar
- Signal Transduction Laboratory-1, National Institute of Immunology, New Delhi, India.
| | - Anjna Kumari
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Santosh Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Suresh Kumar
- Signal Transduction Laboratory-1, National Institute of Immunology, New Delhi, India
| | - Ankita Dabla
- Signal Transduction Laboratory-1, National Institute of Immunology, New Delhi, India
| | - Shivam Chaturvedi
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Haryana, India
| | | | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
21
|
Silva LEF, Lourenço JD, Silva KR, Santana FPR, Kohler JB, Moreira AR, Velosa APP, Prado CM, Vieira RP, Aun MV, Tibério IFLC, Ito JT, Lopes FDTQS. Th17/Treg imbalance in COPD development: suppressors of cytokine signaling and signal transducers and activators of transcription proteins. Sci Rep 2020; 10:15287. [PMID: 32943702 PMCID: PMC7499180 DOI: 10.1038/s41598-020-72305-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Th17/Treg imbalance contributes to chronic obstructive pulmonary disease (COPD) development and progression. However, intracellular signaling by suppressor of cytokine signaling (SOCS) 1 and SOCS3 and the proteins signal transducer and activator of transcription (STAT) 3 and STAT5 that orchestrate these imbalances are currently poorly understood. Thus, these proteins were investigated in C57BL/6 mice after exposure to cigarette smoke (CS) for 3 and 6 months. The expression of interleukin was measured by ELISA and the density of positive cells in peribronchovascular areas was quantified by immunohistochemistry. We showed that exposure to CS in the 3rd month first induced decreases in the numbers of STAT5+ and pSTAT5+ cells and the expression levels of TGF-β and IL-10. The increases in the numbers of STAT3+ and pSTAT3+ cells and IL-17 expression occurred later (6th month). These findings corroborate the increases in the number of SOCS1+ cells in both the 3rd and 6th months, with concomitant decreases in SOCS3+ cells at the same time points. Our results demonstrated that beginning with the initiation of COPD development, there was a downregulation of the anti-inflammatory response mediated by SOCS and STAT proteins. These results highlight the importance of intracellular signaling in Th17/Treg imbalance and the identification of possible targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Larissa E F Silva
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Juliana D Lourenço
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Kaique R Silva
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Fernanda Paula R Santana
- Laboratory of Studies in Pulmonary Inflammation, Department of Bioscience, Federal University of Sao Paulo, Diadema, SP, Brazil
| | - Júlia B Kohler
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Alyne R Moreira
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Paula P Velosa
- Laboratory of Extracelular Matrix, Department of Clinical Medicine, School of Medicine of University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carla M Prado
- Laboratory of Studies in Pulmonary Inflammation, Department of Bioscience, Federal University of Sao Paulo, Santos, SP, Brazil
| | - Rodolfo P Vieira
- Post-Graduation Program in Bioengineering, Universidade Brasil, Sao Paulo, SP, Brazil
| | - Marcelo V Aun
- Host & Defense Unit, Faculdade Israelita de Ciências da Saúde Albert Einstein, Sao Paulo, SP, Brazil
| | - Iolanda Fátima L C Tibério
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Juliana T Ito
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Fernanda D T Q S Lopes
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil.
- Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Av. Dr. Arnaldo 455 - room 1220, Sao Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
22
|
Giri PS, Dwivedi M, Begum R. Decreased suppression of CD8 + and CD4 + T cells by peripheral regulatory T cells in generalized vitiligo due to reduced NFATC1 and FOXP3 proteins. Exp Dermatol 2020; 29:759-775. [PMID: 32682346 DOI: 10.1111/exd.14157] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/30/2020] [Accepted: 07/11/2020] [Indexed: 02/05/2023]
Abstract
Regulatory T cells (Tregs) are involved in the suppression of activated T cells in generalized vitiligo (GV). The study was aimed to investigate Tregs functional defects in Treg:CD8+ and Treg:CD4+ T cells' co-culture systems of 55 GV patients and 45 controls. CD8+ and CD4+ T-cell proliferation was assessed by BrdU assay; production of IL-10, TGF-β and IFN-γ cytokines was assessed by ELISA; and FOXP3, CD25, NFATC1 and CD44 proteins were measured by flow cytometry. Generalized vitiligo patients showed reduced suppression of CD8+ and CD4+ T cells (P = .0384, P = .0084), increased IFN-γ (P < .0001, P = .0019), decreased IL-10 and TGF-β (P < .0001) and decreased FOXP3, CD25 and NFATC1 proteins (P < .0001). Active vitiligo (AV) patients showed reduced suppression of CD8+ & CD4+ T cells (P = .006, P = .015), increased IFN-γ (P = .036, P = .045), decreased IL-10 (P = .009, P = .021), FOXP3 (P = .0244) and NFATC1 (P = .019). Severe GV (50%-75% VASI) patients showed reduced suppression of CD8+ and CD4+ T cells (P = .0003, P = .001), increased IFN-γ (P = .0029, P < .0001), decreased IL-10 (P = .0057, P = .0017), FOXP3 (P = .002) and NFATC1 (P = .0347). VASI score was positively correlated with the suppression of CD8+ and CD4+ T cells (P = .0006, P < .0001), IL-10 (P = .0096, P = .029), FOXP3 (P = .0008) and NFATC1 (P = .043), whereas it was negatively correlated with IFN-γ (P = .0029, P = .0017). Early age of onset patients' Tregs demonstrated decreased suppression of CD8+ and CD4+ T cells (P = .0156, P = .0074), decreased TGF-β (P = .0212, P = .0083) and NFATC1 (P = .0103). NFATC1 was positively correlated with FOXP3 in Tregs (P < .0001). Our results suggest impaired Tregs suppressive function in GV patients due to decreased NFATC1, FOXP3, CD25, IL-10 and TGF-β resulting into increased CD8+ and CD4+ T-cell proliferation and IFN-γ production. For the first time, decreased NFATC1 levels were correlated with decreased FOXP3, thereby altering Treg cell function in GV patients. Additionally, decreased Treg cell function also affected onset, activity and severity of GV.
Collapse
Affiliation(s)
- Prashant S Giri
- Faculty of Science, C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Surat, India
| | - Mitesh Dwivedi
- Faculty of Science, C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Surat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
23
|
Nono JK, Lutz MB, Brehm K. Expansion of Host Regulatory T Cells by Secreted Products of the Tapeworm Echinococcus multilocularis. Front Immunol 2020; 11:798. [PMID: 32457746 PMCID: PMC7225322 DOI: 10.3389/fimmu.2020.00798] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/07/2020] [Indexed: 01/15/2023] Open
Abstract
Background Alveolar echinococcosis (AE), caused by the metacestode larval stage of the fox-tapeworm Echinococcus multilocularis, is a chronic zoonosis associated with significant modulation of the host immune response. A role of regulatory T-cells (Treg) in generating an immunosuppressive environment around the metacestode during chronic disease has been reported, but the molecular mechanisms of Treg induction by E. multilocularis, particularly parasite immunoregulatory factors involved, remain elusive so far. Methodology/Principal Findings We herein demonstrate that excretory/secretory (E/S) products of the E. multilocularis metacestode promote the formation of Foxp3+ Treg from CD4+ T-cells in vitro in a TGF-β-dependent manner, given that this effect was abrogated by treatment with antibody to mammalian TGF-β. We also show that host T-cells secrete elevated levels of the immunosuppressive cytokine IL-10 in response to metacestode E/S products. Within the E/S fraction of the metacestode we identified an E. multilocularis activin A homolog (EmACT) that displays significant similarities to mammalian Transforming Growth Factor-β (TGF-β/activin subfamily members. EmACT obtained from heterologous expression failed to directly induce Treg expansion from naïve T cells but required addition of recombinant host TGF-β to promote CD4+ Foxp3+ Treg conversion in vitro. Furthermore, like in the case of metacestode E/S products, EmACT-treated CD4+ T-cells secreted higher levels of IL-10. These observations suggest a contribution of EmACT to in vitro expansion of Foxp3+ Treg by the E. multilocularis metacestode. Using infection experiments we show that intraperitoneally injected metacestode tissue expands host Foxp3+ Treg, confirming the expansion of this cell type in vivo during parasite establishment. Conclusion/Significance In conclusion, we herein demonstrate that E. multilocularis larvae secrete factors that induce the secretion of IL-10 by T-cells and contribute to the expansion of TGF-b-driven Foxp3+ Treg, a cell type that has been reported crucial for generating a tolerogenic environment to support parasite establishment and proliferation. Among the E/S factors of the parasite we identified a factor with structural and functional homologies to mammalian activin A which might play an important role in these activities.
Collapse
Affiliation(s)
- Justin Komguep Nono
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaounde, Cameroon
| | - Manfred B. Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Klaus Brehm
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Bhardwaj S, Rani S, Kumaran MS, Bhatia A, Parsad D. Expression of Th17- and Treg-specific transcription factors in vitiligo patients. Int J Dermatol 2020; 59:474-481. [PMID: 31909498 DOI: 10.1111/ijd.14766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 11/04/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Vitiligo is mainly considered an autoimmune skin disease as the number of IL-17 producing Th17 cells, involved in the development of autoimmune and inflammatory pathologies, increased in vitiligo skin. T regulatory cells (Tregs) seem to be altered during the disease. Thus, there must be some upstream molecular factors that regulate the cellular response to apoptotic and inflammatory stimuli. OBJECTIVES To investigate the expression of Th17- and Treg-specific transcription factors in PBMCs and to evaluate the correlation between these transcription factors and cytokines in vitiligo patients. METHODS We investigated 30 active NSV patients for Th17- and Treg-specific transcription factors RORγt (retinoic acid-related orphan receptor gamma t), FOXP3 (forkhead/winged helix), HELIOS, EOS, and IRF4 (Interferon Regulatory Factor 4) as well as apoptotic marker NALP1 (NACHT-leucine-rich-repeat protein 1) in PBMCs with RT-qPCR. Immunostaining was done for transcription factors and cytokines on skin sections. RESULTS The mRNA level of FOXP3 was significantly lower in patients (0.76 fold, P < 0.001), whereas RORγt was slight but not significantly increased (0.76 fold, P = 0.06). Furthermore, NALP1 in lymphocytes was found to be increased in patients (0.69 fold, P < 0.01). The immunostaining results revealed increased expression of RORγ, IL-17A, NALP1, and IL-1β in vitiligo skin when compared to normal healthy skin. CONCLUSION Reduced FOXP3/RORγt mRNA ratio suggests thriving of the Th17 cell population in PBMCs of vitiligo patients. Increased NALP1 levels indicate the existence of an apoptotic phenomenon which correlates with the increased expression of IL-1β in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Supriya Bhardwaj
- Department of Dermatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Seema Rani
- Department of Zoology, Punjab University, Chandigarh, India.,Department of Zoology, Hindu Girls College, Sonepat, India
| | - Muthu S Kumaran
- Department of Dermatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Davinder Parsad
- Department of Dermatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
25
|
De los Santos MI, Bacos DM, Bernal SD. WITHDRAWN: A novel bifunctional T regulatory cell engaging (BiTE) TGF-β1/PD-L1 fusion protein with therapeutic potential for autoimmune diseases. J Transl Autoimmun 2020. [DOI: 10.1016/j.jtauto.2020.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
26
|
Zidlik V, Bezdekova M, Brychtova S. Tumor infiltrating lymphocytes in malignant melanoma - allies or foes? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 164:43-48. [PMID: 31649385 DOI: 10.5507/bp.2019.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/11/2019] [Indexed: 01/22/2023] Open
Abstract
This is an overview of current problematics regarding the role of tumor infiltrating lymphocytes (TILs) in malignant melanomas. Various and often conflicting data have been published, correlating tumor type, stage, prognosis, as well as sex and age of patients. This is partly due to heterogeneity in scaling systems and unstandardized TILs grading but also due to changes of tumor-host interactions. Melanomas are an immunologically heterogeneous group with variability of TILs, where distinct gene expression patterns were found in tumors with absent, and/or non- brisk TIL grade versus brisk TIL grade. However, the presence of TILs alone appears to be inadequate for implicating them as immunologically functional. Further characterisation of TIL phenotype and function is warranted. This especially concerns, evaluation of TILs of the suppressor phenotype but rather than as a prognostic factor, more for prediction of targeted immunotherapy.
Collapse
Affiliation(s)
- Vladimir Zidlik
- Department of Pathology, University Hospital Ostrava, Czech Republic.,Department of Pathology, CGB Laboratory, Ostrava, Czech Republic
| | - Michala Bezdekova
- Institute of Clinical and Molecular Pathology, University Hospital Olomouc, Olomouc, Czech Republic
| | - Svetlana Brychtova
- Institute of Clinical and Molecular Pathology, University Hospital Olomouc, Olomouc, Czech Republic.,Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
27
|
Castellani G, Contarini G, Mereu M, Albanesi E, Devroye C, D'Amore C, Ferretti V, De Martin S, Papaleo F. Dopamine-mediated immunomodulation affects choroid plexus function. Brain Behav Immun 2019; 81:138-150. [PMID: 31175999 DOI: 10.1016/j.bbi.2019.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/11/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Immune system alterations have been implicated in various dopamine-related disorders, such as schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder (ADHD). How immunity might be influenced by dopaminergic dysfunction and impact on clinically-relevant behaviors is still uncertain. We performed a peripheral and cerebral immunophenotyping in mice bearing dopaminergic alteration produced by genetic liability (hypofunction of the dopamine transporter DAT) and psychostimulant (amphetamine) administration. We found that DAT hypofunction influences immune tolerance by increasing functional Tregs and adrenomedullin levels in the thymus and spleen, while reducing microglia activation and infiltration of brain monocyte-derived macrophages (mo-MΦ). Remarkably, both DAT hypofunction and amphetamine treatment are associated with a weaker activation of the choroid plexus (CP) gateway. Conversely, amphetamine reactivated the CP in the setting of DAT hypofunction, paralleling its paradoxical ADHD-relevant behavioral effects. These findings add new knowledge on dopaminergic immunopharmacology and support the immunomodulation of CP functionality as a promising therapeutic strategy for neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Giulia Castellani
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti, 2, 35131 Padova, Italy
| | - Gabriella Contarini
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti, 2, 35131 Padova, Italy
| | - Maddalena Mereu
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti, 2, 35131 Padova, Italy
| | - Ennio Albanesi
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Céline Devroye
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Claudio D'Amore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti, 2, 35131 Padova, Italy
| | - Valentina Ferretti
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti, 2, 35131 Padova, Italy.
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy.
| |
Collapse
|
28
|
Marei HE, Althani A, Caceci T, Arriga R, Sconocchia T, Ottaviani A, Lanzilli G, Roselli M, Caratelli S, Cenciarelli C, Sconocchia G. Recent perspective on CAR and Fcγ-CR T cell immunotherapy for cancers: Preclinical evidence versus clinical outcomes. Biochem Pharmacol 2019; 166:335-346. [PMID: 31176617 DOI: 10.1016/j.bcp.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The chimeric antigen receptor T cell (CAR-T cell) immunotherapy currently represents a hot research trend and it is expected to revolutionize the field of cancer therapy. Promising outcomes have been achieved using CAR-T cell therapy for haematological malignancies. Despite encouraging results, several challenges still pose eminent hurdles before being fully recognized. Directing CAR-T cells to target a single tumour associated antigen (TAA) as the case in haematological malignancies might be much simpler than targeting the extensive inhibitory microenvironments associated with solid tumours. This review focuses on the basic principles involved in development of CAR-T cells, emphasizing the differences between humoral IgG, T-cell receptors, CAR and Fcγ-CR constructs. It also highlights the complex inhibitory network that is usually associated with solid tumours, and tackles recent advances in the clinical studies that have provided great hope for the future use of CAR-T cell immunotherapy. While current Fcγ-CR T cell immunotherapy is in pre-clinical stage, is expected to provide a sound therapeutic approach to add to existing classical chemo- and radio-therapeutic modalities.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35116, Egypt.
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Thomas Caceci
- Biomedical Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Roberto Arriga
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome "Tor Vergata", Rome, Italy
| | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | | | - Mario Roselli
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome "Tor Vergata", Rome, Italy
| | - Sara Caratelli
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | | | |
Collapse
|
29
|
Ettreiki C, Chango A, Barbezier N, Coeffier M, Anton PM, Delayre-Orthez C. Prevention of Adult Colitis by Oral Ferric Iron in Juvenile Mice Is Associated with the Inhibition of the Tbet Promoter Hypomethylation and Gene Overexpression. Nutrients 2019; 11:nu11081758. [PMID: 31370166 PMCID: PMC6723685 DOI: 10.3390/nu11081758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/26/2022] Open
Abstract
Iron is an essential nutrient needed for physiological functions, particularly during the developmental period of the early childhood of at-risk populations. The purpose of this study was to investigate, in an experimental colitis, the consequences of daily oral iron ingestion in the early period on the inflammatory response, the spleen T helper (Th) profiles and the associated molecular mechanisms. Juvenile mice orally received microencapsulated ferric iron or water for 6 weeks. On adult mice, we induced a sham or experimental trinitrobenzene sulfonic acid (TNBS) moderate colitis during the last week of the experiment before sacrificing the animals 7 days later. The severity of the gut inflammation was assessed by macroscopic damage scores (MDS) and the myeloperoxidase activity (MPO). Th profiles were evaluated by the examination of the splenic gene expression of key transcription factors of the Th differentiation (Tbet, Gata3, Foxp3 and RORγ) and the methylation of their respective promoter. While TNBS-induced colitis was associated with a change of the Th profile (notably an increase in the Tbet/Gata3 ratio in the spleen), the colitis-inhibition induced by ferric iron was associated with a limitation of the splenic Th profiles perturbation. The inhibition of the splenic Tbet gene overexpression was associated with an inhibition of promoter hypomethylation. In summary, mice treated by long-term oral ferric iron in the early period of life exhibited an inhibition of colitis associated with the inhibition of the splenic Tbet promoter hypomethylation and gene overexpression.
Collapse
Affiliation(s)
- Chourouk Ettreiki
- PETALES Team, EA 7519 Transformations & Agro-Resources Research Unit, UniLasalle, F-60026 Beauvais, France
| | - Abalo Chango
- PETALES Team, EA 7519 Transformations & Agro-Resources Research Unit, UniLasalle, F-60026 Beauvais, France
| | - Nicolas Barbezier
- PETALES Team, EA 7519 Transformations & Agro-Resources Research Unit, UniLasalle, F-60026 Beauvais, France
| | - Moise Coeffier
- INSERM UMR 1073, Normandie University, UNIROUEN, F-76183 Rouen, France
| | - Pauline M Anton
- PETALES Team, EA 7519 Transformations & Agro-Resources Research Unit, UniLasalle, F-60026 Beauvais, France
| | - Carine Delayre-Orthez
- PETALES Team, EA 7519 Transformations & Agro-Resources Research Unit, UniLasalle, F-60026 Beauvais, France.
| |
Collapse
|
30
|
Zare M, Namavar Jahromi B, Gharesi-Fard B. Analysis of the frequencies and functions of CD4+CD25+CD127low/neg, CD4+HLA-G+, and CD8+HLA-G+ regulatory T cells in pre-eclampsia. J Reprod Immunol 2019; 133:43-51. [DOI: 10.1016/j.jri.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Accepted: 06/15/2019] [Indexed: 11/26/2022]
|
31
|
Kumar S, Sharma C, Kaushik SR, Kulshreshtha A, Chaturvedi S, Nanda RK, Bhaskar A, Chattopadhyay D, Das G, Dwivedi VP. The phytochemical bergenin as an adjunct immunotherapy for tuberculosis in mice. J Biol Chem 2019; 294:8555-8563. [PMID: 30975902 PMCID: PMC6544861 DOI: 10.1074/jbc.ra119.008005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
The widespread availability and use of modern synthetic therapeutic agents have led to a massive decline in ethnomedical therapies. However, these synthetic agents often possess toxicity leading to various adverse effects. For instance, anti-tubercular treatment (ATT) is toxic, lengthy, and severely impairs host immunity, resulting in posttreatment vulnerability to reinfection and reactivation of tuberculosis (TB). Incomplete ATT enhances the risk for the generation of multidrug- or extensively drug-resistant (MDR or XDR, respectively) variants of Mycobacterium tuberculosis (M. tb), the TB-causing microbe. Therefore, a new therapeutic approach that minimizes these risks is urgently needed to combat this deadly disease and prevent future TB epidemics. Previously, we have shown that the phytochemical bergenin induces T helper 1 (Th1)- and Th17 cell-based protective immune responses and potently inhibits mycobacterial growth in a murine model of M. tb infection, suggesting bergenin as a potential adjunct agent to TB therapy. Here, we combined ATT therapy with bergenin and found that this combination reduces immune impairment and the length of treatment in mice. We observed that co-treatment with the anti-TB drug isoniazid and bergenin produces additive effects and significantly reduces bacterial loads compared with isoniazid treatment alone. The bergenin co-treatment also reduced isoniazid-induced immune impairment; promoted long-lasting, antigen-specific central memory T cell responses; and acted as a self-propelled vaccine. Of note, bergenin treatment significantly reduced the bacterial burden of a multidrug-resistant TB strain. These observations suggest that bergenin is a potent immunomodulatory agent that could be further explored as a potential adjunct to TB therapy.
Collapse
Affiliation(s)
- Santosh Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Chetan Sharma
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Sandeep Rai Kaushik
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | | | - Shivam Chaturvedi
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Ranjan Kumar Nanda
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Ashima Bhaskar
- Signal Transduction Laboratory-1, National Institute of Immunology, New Delhi 110 067, India
| | | | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110 067, India.
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India.
| |
Collapse
|
32
|
Tong C, Xia J, Xie B, Li M, Du F, Li C, Li Y, Shan Z, Qi Z. Immunogenicity analysis of decellularized cardiac scaffolds after transplantation into rats. Regen Med 2019; 14:447-464. [PMID: 31070505 DOI: 10.2217/rme-2018-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Cardiac extracellular matrix (cECM) scaffolds are promising biomaterials for clinical applications. Our aim is to determine the immunogenicity of decellularized scaffolds from different sources for use as artificial organs during organ transplantation. Materials & methods: We transplanted Lewis rats with syngeneic (Lewis rat cECM), allogeneic (BN rat cECM) or xenogeneic (hamster cECM) decellularized cardiac scaffolds. Acute vascular and cellular rejection was quantified by immunohistochemistry and immune cell infiltration. Results: BN rat and hamster hearts were rejected following transplantation. BN and hamster cECMs had similarly low immunogenicity compared with Lewis rat cECMs and did not lead to increased rejection. Conclusion: We found that scaffolds from all sources did not induce vascular or cellular rejection and exhibited low immunogenicity.
Collapse
Affiliation(s)
- Cailing Tong
- School of Life Science, Xiamen University, Fujian, 361102, China.,Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Junjie Xia
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Baiyi Xie
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Minghui Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Feifei Du
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Cheng Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Yaguang Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Zhonggui Shan
- Department of Cardiac Surgery, The First Affiliated Hospital of Xiamen University, Fujian, 361003, China
| | - Zhongquan Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| |
Collapse
|
33
|
Nedumpun T, Techakriengkrai N, Thanawongnuwech R, Suradhat S. Negative Immunomodulatory Effects of Type 2 Porcine Reproductive and Respiratory Syndrome Virus-Induced Interleukin-1 Receptor Antagonist on Porcine Innate and Adaptive Immune Functions. Front Immunol 2019; 10:579. [PMID: 30972072 PMCID: PMC6443931 DOI: 10.3389/fimmu.2019.00579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Impaired innate and adaptive immune responses are evidenced throughout the course of PRRSV infection. We previously reported that interleukin-1 receptor antagonist (IL-1Ra) was involved in PRRSV-induced immunosuppression during an early phase of infection. However, the exact mechanism associated with PRRSV-induced IL-1Ra immunomodulation remains unknown. To explore the immunomodulatory properties of PRRSV-induced IL-1Ra on porcine immune functions, monocyte-derived dendritic cells (MoDC) and leukocytes were cultured with type 2 PRRSV, and the immunological role of IL-1Ra was assessed by addition of anti-porcine IL-1Ra Ab. The results demonstrated that PRRSV-induced IL-1Ra reduced phagocytosis, surface expression of MHC II (SLA-DR) and CD86, as well as downregulation of IFNA and IL1 gene expression in the MoDC culture system. Interestingly, IL-1Ra secreted by the PRRSV-infected MoDC also inhibited T lymphocyte differentiation and proliferation, but not IFN-γ production. Although PRRSV-induced IL-1Ra was not directly linked to IL-10 production, it contributed to the differentiation of regulatory T lymphocytes (Treg) within the culture system. Taken together, our results demonstrated that PRRSV-induced IL-1Ra downregulates innate immune functions, T lymphocyte differentiation and proliferation, and influences collectively with IL-10 in the Treg induction. The immunomodulatory roles of IL-1Ra elucidated in this study increase our understanding of the immunobiology of PRRSV.
Collapse
Affiliation(s)
- Teerawut Nedumpun
- Interdisciplinary Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Roongroje Thanawongnuwech
- Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand.,Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| |
Collapse
|
34
|
Inhibitory role of transforming growth factor β2 in experimental autoimmune anterior uveitis. Graefes Arch Clin Exp Ophthalmol 2019; 257:953-960. [PMID: 30719689 DOI: 10.1007/s00417-019-04255-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Experimental autoimmune anterior uveitis (EAAU) is a clinically relevant animal model for human idiopathic anterior uveitis (IAU). The role of the immunomodulator transforming growth factor β2 (TGF-β2) in EAAU pathology is unknown. In this study, we investigated the regulatory role of TGF-β2 in EAAU. METHODS EAAU was induced in male Lewis rats by footpad injection of melanin-associated antigen (MAA). TGF-β2 was administered intravenously (iv) in MAA-sensitized rats during the induction of EAAU, or after the clinical onset of uveitis. MAA-sensitized rats injected similarly with an equal volume of PBS served as control. Animals were examined daily between days 7 and 30 post-injection for the clinical signs of uveitis using slit lamp biomicroscopy. Animals were sacrificed at various time points and eyes were harvested for histological analysis to assess the course and severity of inflammation. For histopathological analysis, paraffin sections of harvested eyes were stained with hematoxylin and eosin. Popliteal lymph nodes (LNs) were used for CD4+CD25+FoxP3+ T regulatory (Tregs) population analysis and for CD4+ T cell proliferation assay. RESULTS Administration of recombinant TGF-β2 during the early stages of EAAU prevented the induction of uveitis. Compared to PBS, the presence of TGF-β2 in the cell culture significantly (p < 0.05) inhibited the proliferation of CD4+ T cells in response to MAA. In MAA-sensitized Lewis rats, iv treatment with recombinant TGF-β2 resulted in significantly (p < 0.05) increased percentage of Tregs compared to animals treated similarly with PBS. Thus, TGF-β2 inhibited the induction of EAAU by inhibiting CD4+ T cell proliferation and increasing the number of Tregs. Injection of TGF-β2 in rats with active EAAU resulted in diminished disease activity. Unfortunately, this treatment did not lead to the early resolution of EAAU. CONCLUSIONS TGF-β2 plays a critical role in regulation of intraocular inflammation in EAAU. Findings reported in this study improve our understanding of immunopathology of IAU and suggest that recombinant TGF-β2 may be a promising therapeutic agent for human IAU.
Collapse
|
35
|
Gurung S, Williams S, Deane JA, Werkmeister JA, Gargett CE. The Transcriptome of Human Endometrial Mesenchymal Stem Cells Under TGFβR Inhibition Reveals Improved Potential for Cell-Based Therapies. Front Cell Dev Biol 2018; 6:164. [PMID: 30564575 PMCID: PMC6288489 DOI: 10.3389/fcell.2018.00164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells with favorable properties for cell therapies and regenerative medicine. Human endometrium harbors a small population of perivascular, clonogenic MSCs (eMSCs) identified by the SUSD2 marker. As for other MSCs, eMSCs require extensive in vitro expansion to generate clinically relevant numbers of cells, resulting in spontaneous differentiation, replicative senescence and cell death, decreasing therapeutic potency. We previously demonstrated that A83-01, a TGF-β receptor inhibitor, maintained eMSC clonogenicity, promoted proliferation, prevented apoptosis and maintained MSC function in vitro. Here we compare the transcriptome of passaged eMSCs from six women cultured with and without A83-01 for 7 days. We identified 1206 differentially expressed genes (DEG) using a false discovery rate cut-off at 0.01 and fold change >2. Significant enrichment of genes involved in anti-inflammatory responses, angiogenesis, cell migration and proliferation, and collagen fibril and extracellular matrix organization were revealed. TGF-β, Wnt and Akt signaling pathways were decreased. Anti-fibrotic and anti-apoptotic genes were induced, and fibroblast proliferation and myofibroblast related genes were downregulated. We found increased MSC potency genes (TWIST1, TWIST2, JAG1, LIFR, and SLIT2) validating the enhanced potency of A83-01-treated eMSCs, and importantly no pluripotency gene expression. We also identified eMSCs’ potential for secreting exosomes, possibly explaining their paracrine properties. Angiogenic and cytokine protein arrays confirmed the angiogenic, anti-fibrotic and immunomodulatory phenotype of A83-01-treated eMSCs, and increased angiogenic activity was functionally demonstrated in vitro. eMSCs culture expanded with A83-01 have enhanced clinically relevant properties, suggesting their potential for cell-therapies and regenerative medicine applications.
Collapse
Affiliation(s)
- Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Sarah Williams
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Giudice A, Crispo A, Grimaldi M, Polo A, Bimonte S, Capunzo M, Amore A, D'Arena G, Cerino P, Budillon A, Botti G, Costantini S, Montella M. The Effect of Light Exposure at Night (LAN) on Carcinogenesis via Decreased Nocturnal Melatonin Synthesis. Molecules 2018; 23:E1308. [PMID: 29844288 PMCID: PMC6100442 DOI: 10.3390/molecules23061308] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
In mammals, a master clock is located within the suprachiasmatic nucleus (SCN) of the hypothalamus, a region that receives input from the retina that is transmitted by the retinohypothalamic tract. The SCN controls the nocturnal synthesis of melatonin by the pineal gland that can influence the activity of the clock's genes and be involved in the inhibition of cancer development. On the other hand, in the literature, some papers highlight that artificial light exposure at night (LAN)-induced circadian disruptions promote cancer. In the present review, we summarize the potential mechanisms by which LAN-evoked disruption of the nocturnal increase in melatonin synthesis counteracts its preventive action on human cancer development and progression. In detail, we discuss: (i) the Warburg effect related to tumor metabolism modification; (ii) genomic instability associated with L1 activity; and (iii) regulation of immunity, including regulatory T cell (Treg) regulation and activity. A better understanding of these processes could significantly contribute to new treatment and prevention strategies against hormone-related cancer types.
Collapse
Affiliation(s)
- Aldo Giudice
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Anna Crispo
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Maria Grimaldi
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Andrea Polo
- Experimental Pharmacology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Mario Capunzo
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, 84081 Salerno, Italy.
| | - Alfonso Amore
- Abdominal Surgical Oncology and Hepatobiliary Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Giovanni D'Arena
- Department of Hematology and Stem Cell Transplantation Unit, IRCCS, Cancer Referral Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Napoli, Italy.
| | - Alfredo Budillon
- Experimental Pharmacology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Gerardo Botti
- Pathology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Susan Costantini
- Experimental Pharmacology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Maurizio Montella
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| |
Collapse
|
37
|
Kim J, Lee BS, Kim B, Na I, Lee J, Lee JY, Park MR, Kim H, Sohn I, Ahn K. Identification of atopic dermatitis phenotypes with good responses to probiotics (Lactobacillus plantarum CJLP133) in children. Benef Microbes 2018; 8:755-761. [PMID: 29035111 DOI: 10.3920/bm2017.0034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The therapeutic effect of probiotics in atopic dermatitis (AD) remains controversial and varies according to the individual patient. We aimed to identify a population of AD patients with a good clinical response to probiotic treatment. We recruited 76 children with a median age of 7.1 years who suffered from moderate to severe AD. After a 2-week washout period, all patients were given Lactobacillus plantarum CJLP133 at a dosage of 1×1010 colony-forming units once a day for 12 weeks. We measured eosinophil counts in the peripheral blood, the proportion of CD4+CD25+Foxp3+ regulatory T (Treg) cells in CD4+ T cells, serum total immunoglobulin E (IgE) levels, and specific IgE against common allergens before the start of the treatment (T1) and at discontinuation (T2). Responders were defined as patients with at least a 30% reduction in the SCORing of AD (SCORAD) index after treatment. There were 36 responders and 40 non-responders after probiotic treatment. The median SCORAD was reduced from 29.5 (range 20.6-46.3) at T1 to 16.4 (range 6.3-30.8) at T2 in the responder group (P<0.001). In multivariable logistic regression analysis, a good clinical response was significantly associated with high total IgE levels (aOR 5.1, 95% CI 1.1-23.6), increased expression of transforming growth factor (TGF)-β (aOR 4.6, 95% CI 1.3-15.9), and a high proportion of Treg cells in CD4+ T cells (aOR 3.7, 95% CI 1.1-12.7) at T1. In the responder group, the proportion of Treg cells was significantly increased after 12 weeks of treatment (P=0.004), while TGF-β mRNA expression was decreased (P=0.017). Our results suggest that a subgroup of patients with a specific AD phenotype showing an immunologically active state (high total IgE, increased expression of TGF-β, high numbers of Treg cells) may benefit from probiotic treatment with L. plantarum CJLP133.
Collapse
Affiliation(s)
- J Kim
- 1 Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnamgu, Seoul 06351, Republic of Korea.,2 Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea
| | - B S Lee
- 2 Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea
| | - B Kim
- 3 Beneficial Microbes R&D Center, CJ CheilJedang Corporation, Suwon, Republic of Korea
| | - I Na
- 2 Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea
| | - J Lee
- 2 Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea
| | - J Y Lee
- 1 Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnamgu, Seoul 06351, Republic of Korea.,2 Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea
| | - M R Park
- 4 Department of Pediatrics, Sung-Ae Hospital, Seoul, Republic of Korea
| | - H Kim
- 5 Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Seoul, Republic of Korea
| | - I Sohn
- 5 Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Seoul, Republic of Korea
| | - K Ahn
- 1 Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnamgu, Seoul 06351, Republic of Korea.,2 Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
38
|
Smids C, Horjus Talabur Horje CS, Drylewicz J, Roosenboom B, Groenen MJM, van Koolwijk E, van Lochem EG, Wahab PJ. Intestinal T Cell Profiling in Inflammatory Bowel Disease: Linking T Cell Subsets to Disease Activity and Disease Course. J Crohns Colitis 2018; 12:465-475. [PMID: 29211912 DOI: 10.1093/ecco-jcc/jjx160] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022]
Abstract
INTRODUCTION A dysregulated intestinal T cell response is presumed in patients with inflammatory bowel disease [IBD]. In this longitudinal study, we investigated the changes in intestinal T lymphocyte subsets in IBD at first presentation and over time during endoscopic active or inactive disease, and relate them to disease activity and outcome. METHODS We included 129 newly diagnosed patients (87 Crohn's disease [CD], 42 ulcerative colitis [UC]) and 19 healthy controls [HC]. Follow-up biopsy specimens were analysed from 70 IBD patients. Immunophenotyping of specimens was performed by flow cytometry identifying lymphocyte subpopulations. RESULTS IBD patients at diagnosis displayed higher percentages of CD4 T+ cells, Tregs, and central memory T cells [TCM] and with lower percentages of CD8 and CD103 T lymphocytes than HC. Follow-up specimens of patients with endoscopic inactive disease showed T cell subset recovery comparable to HC. Endoscopic active disease at follow-up coincided with T cell subsets similar to those at diagnosis. In UC, lower baseline percentages of CD3 cells was associated with milder disease course without the need of an immunomodulator, whereas in CD, higher baseline percentages of CD4 and Tregs were associated with complicated disease course. CONCLUSIONS The intestinal T cell infiltrate in IBD patients with active endoscopic disease is composed of increased percentages of CD4+ T cells, Tregs, and TCM, with lower percentages of CD8+ T cells and CD103+ T cells, compared with HC and endoscopic inactive IBD. Baseline percentages of CD3, CD4, and Tregs were associated with disease outcome. Further research is needed to demonstrate the predictive value of these lymphocyte subsets.
Collapse
Affiliation(s)
- Carolijn Smids
- Crohn and Colitis Centre Rijnstate, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Julia Drylewicz
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Britt Roosenboom
- Crohn and Colitis Centre Rijnstate, Rijnstate Hospital, Arnhem, The Netherlands
| | - Marcel J M Groenen
- Crohn and Colitis Centre Rijnstate, Rijnstate Hospital, Arnhem, The Netherlands
| | - Elly van Koolwijk
- Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Ellen G van Lochem
- Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Peter J Wahab
- Crohn and Colitis Centre Rijnstate, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
39
|
Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG, Harris CC. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun 2018; 9:771. [PMID: 29472616 PMCID: PMC5823939 DOI: 10.1038/s41467-018-03224-w] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
TP53 mutants (mutp53) are involved in the pathogenesis of most human cancers. Specific mutp53 proteins gain oncogenic functions (GOFs) distinct from the tumor suppressor activity of the wild-type protein. Tumor-associated macrophages (TAMs), a hallmark of solid tumors, are typically correlated with poor prognosis. Here, we report a non-cell-autonomous mechanism, whereby human mutp53 cancer cells reprogram macrophages to a tumor supportive and anti-inflammatory state. The colon cancer cells harboring GOF mutp53 selectively shed miR-1246-enriched exosomes. Uptake of these exosomes by neighboring macrophages triggers their miR-1246-dependent reprogramming into a cancer-promoting state. Mutp53-reprogammed TAMs favor anti-inflammatory immunosuppression with increased activity of TGF-β. These findings, associated with poor survival in colon cancer patients, strongly support a microenvironmental GOF role for mutp53 in actively engaging the immune system to promote cancer progression and metastasis. p53 gain of function mutants (mutp53) are involved in the pathogenesis of most human cancers. Here, the authors show that mutp53 regulates the tumor microenvironment by inducing the release of specific exosomes containing miR-1246 that once received by macrophages turns them into tumor supportive macrophages.
Collapse
Affiliation(s)
- Tomer Cooks
- Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, 20892-4258, MD, USA
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias St, Athens, GR-11527, Greece
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, 20892-4258, MD, USA
| | - Keval M Patel
- Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, 20892-4258, MD, USA
| | - James Morris
- Cancer Research UK, Cambridge Research Institute, Robinsons Way, Cambridge, CB2 0RE, UK
| | - Tim Forshew
- UCL Cancer Institute, Huntley St, Camden Town, London, WC1E 6DD, UK
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, 20892-4258, MD, USA
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias St, Athens, GR-11527, Greece.,Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St., GR-11527, Athens, Greece.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health, Science Centre, Wilmslow Road, Manchester, M20 4QL, UK
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, 20892-4258, MD, USA.
| |
Collapse
|
40
|
Tono Y, Ishihara M, Miyahara Y, Tamaru S, Oda H, Yamashita Y, Tawara I, Ikeda H, Shiku H, Mizuno T, Katayama N. Pertuzumab, trastuzumab and eribulin mesylate therapy for previously treated advanced HER2-positive breast cancer: a feasibility study with analysis of biomarkers. Oncotarget 2018; 9:14909-14921. [PMID: 29599915 PMCID: PMC5871086 DOI: 10.18632/oncotarget.24504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
The standard treatment for advanced human epidermal growth factor receptor 2 (HER2)-positive breast cancer is the triple combination of pertuzumab, trastuzumab and docetaxel, but some patients cannot tolerate taxane. To explore a non-taxane triple therapy, we conducted a feasibility study of pertuzumab, trastuzumab and eribulin mesylate (PTE) therapy for previously treated advanced HER2-positive breast cancer with analyses of quality of life and biomarkers. Ten patients were enrolled, two of whom had a history of docetaxel allergy. The median number of prior regimens was 3. The most common Grade 3 toxicities were leukopenia (70%) and neutropenia (70%). Grade 4 or 5 adverse events were not observed. An improving trend for the Functional Assessment of Cancer Therapy-Breast (FACT-B) score at 3 months was observed. Eight cases were included in the biomarker analysis. The peripheral CD8+ T cell/ CD4+Foxp3+ regulatory T cells (Tregs) ratio was significantly increased (p = 0.039). The frequency of peripheral Tregs was associated with the trastuzumab trough concentration (p = 0.019). In a non-clinical analysis, Eribulin mesylate significantly inhibited Ser473 Akt phosphorylation in PIK3CA wild-type cells and mutated cells. These results suggest that PTE therapy is a feasible and promising option for advanced HER2-positive breast cancer. Further investigation is warranted.
Collapse
Affiliation(s)
- Yasutaka Tono
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 514-8507 Mie, Japan.,Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| | - Mikiya Ishihara
- Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| | - Yoshihiro Miyahara
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 514-8507 Mie, Japan
| | - Satoshi Tamaru
- Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| | - Hiroyasu Oda
- Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| | - Yoshiki Yamashita
- Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 514-8507 Mie, Japan
| | - Hiroaki Ikeda
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 514-8507 Mie, Japan.,Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 852-8523 Nagasaki, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 514-8507 Mie, Japan
| | - Toshiro Mizuno
- Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 514-8507 Mie, Japan.,Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| |
Collapse
|
41
|
Loukotová L, Kučka J, Rabyk M, Höcherl A, Venclíková K, Janoušková O, Páral P, Kolářová V, Heizer T, Šefc L, Štěpánek P, Hrubý M. Thermoresponsive β-glucan-based polymers for bimodal immunoradiotherapy – Are they able to promote the immune system? J Control Release 2017; 268:78-91. [DOI: 10.1016/j.jconrel.2017.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023]
|
42
|
Tabares P, Berr S, Langenhorst D, Sawitzki B, ten Berge I, Tony HP, Hünig T. Short-term cytokine stimulation reveals regulatory T cells with down-regulated Foxp3 expression in human peripheral blood. Eur J Immunol 2017; 48:366-379. [DOI: 10.1002/eji.201747244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Paula Tabares
- Institute for Virology and Immunobiology; University of Würzburg; Würzburg Germany
| | - Susanne Berr
- Institute for Virology and Immunobiology; University of Würzburg; Würzburg Germany
| | - Daniela Langenhorst
- Institute for Virology and Immunobiology; University of Würzburg; Würzburg Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology; Charité University Medicine; Berlin Germany
| | - Ineke ten Berge
- Department of Internal Medicine; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Hans-Peter Tony
- Department of Internal Medicine II; University Hospital of Würzburg; Würzburg Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology; University of Würzburg; Würzburg Germany
| |
Collapse
|
43
|
Verma NK, Kelleher D. Not Just an Adhesion Molecule: LFA-1 Contact Tunes the T Lymphocyte Program. THE JOURNAL OF IMMUNOLOGY 2017; 199:1213-1221. [PMID: 28784685 DOI: 10.4049/jimmunol.1700495] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
Abstract
The αLβ2 integrin LFA-1 is known to play a key role in T lymphocyte migration, which is necessary to mount a local immune response, and is also the main driver of autoimmune diseases. This migration-triggering signaling process in T cells is tightly regulated to permit an immune response that is appropriate to the local trigger, as well as to prevent deleterious tissue-damaging bystander effects. Emerging evidence shows that, in addition to prompting a diverse range of downstream signaling cascades, LFA-1 stimulation in T lymphocytes modulates gene-transcription programs, including genetic signatures of TGF-β and Notch pathways, with multifactorial biological outcomes. This review highlights recent findings and discusses molecular mechanisms by which LFA-1 signaling influence T lymphocyte differentiation into the effector subsets Th1, Th17, and induced regulatory T cells. We argue that LFA-1 contact with a cognate ligand, such as ICAM-1, independent of the immune synapse activates a late divergence in T cells' effector phenotypes, hence fine-tuning their functioning.
Collapse
Affiliation(s)
- Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; and
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; and .,Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
44
|
Gou P, Chang X, Ye Z, Yao Y, Nguyen PK, Hammond SK, Wang J, Liu S. A pilot study comparing T-regulatory cell function among healthy children in different areas of Gansu, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22579-22586. [PMID: 28808862 DOI: 10.1007/s11356-017-9907-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Immune system is critical to protecting human health from toxic substances. Our previously published research had found an important link between polycyclic aromatic hydrocarbons (PAHs) in ambient air and changes at the DNA level in immune cells that led to impaired function of regulatory T (Treg) cells in children living in California, USA. But molecular and cellular pathways of these changes remain unclear. The present study aims to explore whether exposure to PAHs leads to changes in Treg cells functions of children living in Gansu, China, where ambient air pollution levels are much higher than those in California, and to explore potential mechanisms of PAH-induced immunological dysfunctions. Air pollutions in Lanzhou and Lintao, Gansu Province, were measured from December 2015 to June 2016. Healthy children were recruited from both cities and enrolled in this pilot study. Demographic information was collected by questionnaires. Blood samples were collected. Peripheral blood Treg cells were analyzed for Treg cells percentage by flow cytometry. Gene expression of forkhead box transcription factor 3 (Foxp3), transforming growth factor-β (TGF-β), and interleukin 35 (IL35) were examined by reverse transcription-polymerase chain reaction (RT-PCR). The results indicated PAH concentration (as sum of 16 PAHs) in Lintao was over two times higher than that was in Lanzhou (707 vs. 326 ng/m3), whereas PM2.5 concentration was comparable in two cities (55.3 in Lintao vs. 65.7 μg/m3 in Lanzhou). Notably, we observed lower gene expressions for Foxp3 (P < 0.05), IL35 (P < 0.05), and TGF-β, in children living in Lintao, suggesting an impairment of Treg cells function potentially associated with higher PAH exposure in Lintao. However, no significant difference was observed in Treg cells % among CD4+ T cells between Lanzhou and Lintao groups.
Collapse
Affiliation(s)
- Panhong Gou
- Department of Toxicology, School of Public Health, Lanzhou University, No 199 Donggang West Road, Lanzhou, 730000, China
| | - Xiaoru Chang
- Department of Toxicology, School of Public Health, Lanzhou University, No 199 Donggang West Road, Lanzhou, 730000, China
| | - Zhonghui Ye
- Department of Toxicology, School of Public Health, Lanzhou University, No 199 Donggang West Road, Lanzhou, 730000, China
| | - Yueli Yao
- Department of Toxicology, School of Public Health, Lanzhou University, No 199 Donggang West Road, Lanzhou, 730000, China
| | - Patton Khuu Nguyen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Hall, #7360, Berkeley, CA, 94720-7360, USA
| | - Sally Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Hall, #7360, Berkeley, CA, 94720-7360, USA
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, No 199 Donggang West Road, Lanzhou, 730000, China.
| | - Sa Liu
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Hall, #7360, Berkeley, CA, 94720-7360, USA.
| |
Collapse
|
45
|
Gonzalez M, Doña I, Palomares F, Campo P, Rodriguez MJ, Rondon C, Gomez F, Fernandez TD, Perkins JR, Escribese MM, Torres MJ, Mayorga C. Dermatophagoides pteronyssinus immunotherapy changes the T-regulatory cell activity. Sci Rep 2017; 7:11949. [PMID: 28931869 PMCID: PMC5607227 DOI: 10.1038/s41598-017-12261-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/05/2017] [Indexed: 01/12/2023] Open
Abstract
Subcutaneous specific immunotherapy (SCIT) has been shown to modify the Dermatophagoides pteronissinus (DP) allergic response, characterized by generation of Treg cells. However, studies have reported no changes in the proportion of Treg cells after immunotherapy, indicating that the effects may be due to modifications in their regulatory activities. We aimed to determine whether Tregs generated by DP-SCIT can switch the allergic response to tolerant and study the involvement of suppressive cytokines on it. Twenty-four DP-allergic rhinitis patients were recruited, 16 treated with DP-SCIT and 8 untreated. Treg and T effector cells were isolated before and after DP-SCIT, and cocultured in different combinations with α-IL-10, α-TGF-β blocking antibodies and nDer p 1. Treg cells after DP-SCIT increased Th1 and decreased Th2 and Th9 proliferation. Similarly, they increased IL-10 and decreased IL-4 and IL-9-producing cells. α-IL-10 affected the activity of Treg cells obtained after DP-SCIT only. Finally, DP-specific IgG4 levels, Treg percentage and IL-10 production were correlated after DP-SCIT. These results demonstrate that DP-SCIT induces Treg cells with different suppressive activities. These changes could be mediated by IL-10 production and appear to play an important role in the induction of the tolerance response leading to a clinical improvement of symptoms.
Collapse
Affiliation(s)
- M Gonzalez
- Research Laboratory-Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - I Doña
- Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - F Palomares
- Research Laboratory-Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - P Campo
- Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - M J Rodriguez
- Research Laboratory-Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - C Rondon
- Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - F Gomez
- Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - T D Fernandez
- Research Laboratory-Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - J R Perkins
- Research Laboratory-Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - M M Escribese
- Institute for Applied Molecular Medicine (IMMA), School of Medicine, Universidad CEU San Pablo, Madrid, Spain
- Basical Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Madrid, Spain
| | - M J Torres
- Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - C Mayorga
- Research Laboratory-Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain.
- Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain.
| |
Collapse
|
46
|
D-mannose induces regulatory T cells and suppresses immunopathology. Nat Med 2017; 23:1036-1045. [DOI: 10.1038/nm.4375] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022]
|
47
|
Zang S, Li J, Yang H, Zeng H, Han W, Zhang J, Lee M, Moczygemba M, Isgandarova S, Yang Y, Zhou Y, Rao A, You MJ, Sun D, Huang Y. Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. J Clin Invest 2017; 127:2998-3012. [PMID: 28691928 DOI: 10.1172/jci92026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
Angioimmunoblastic T cell lymphoma (AITL) represents a distinct, aggressive form of peripheral T cell lymphoma with a dismal prognosis. Recent exome sequencing in patients with AITL has revealed the frequent coexistence of somatic mutations in the Rho GTPase RhoA (RhoAG17V) and loss-of-function mutations in the 5-methylcytosine oxidase TET2. Here, we have demonstrated that TET2 loss and RhoAG17V expression in mature murine T cells cooperatively cause abnormal CD4+ T cell proliferation and differentiation by perturbing FoxO1 gene expression, phosphorylation, and subcellular localization, an abnormality that is also detected in human primary AITL tumor samples. Reexpression of FoxO1 attenuated aberrant immune responses induced in mouse models adoptively transferred with T cells and bearing genetic lesions in both TET2 and RhoA. Our findings suggest a mutational cooperativity between epigenetic factors and GTPases in adult CD4+ T cells that may account for immunoinflammatory responses associated with AITL patients.
Collapse
Affiliation(s)
- Shengbing Zang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Jia Li
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Haiyan Yang
- Department of Lymphoma, Zhejiang Cancer Hospital, Hangzhou, China
| | - Hongxiang Zeng
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Wei Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Jixiang Zhang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA.,Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Minjung Lee
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Margie Moczygemba
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA
| | - Sevinj Isgandarova
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA
| | - Yaling Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, and.,Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine and the Department of Pharmacology, and.,Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Deqiang Sun
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
48
|
Dwivedi VP, Bhattacharya D, Yadav V, Singh DK, Kumar S, Singh M, Ojha D, Ranganathan A, Van Kaer L, Chattopadhyay D, Das G. The Phytochemical Bergenin Enhances T Helper 1 Responses and Anti-Mycobacterial Immunity by Activating the MAP Kinase Pathway in Macrophages. Front Cell Infect Microbiol 2017; 7:149. [PMID: 28507951 PMCID: PMC5410567 DOI: 10.3389/fcimb.2017.00149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) remains one of the greatest health concerns worldwide, which has hindered socioeconomic development in certain parts of the world for many centuries. Although current TB therapy, "Directly Observed Treatment Short-course," is effective, it is associated with unwanted side effects and the risk for the generation of drug-resistant organisms. The majority of infected individuals successfully confine the mycobacterial organisms and remain asymptotic unless immune responses are perturbed. Thus, host immunity can protect against TB and immunomodulation is therefore an attractive therapeutic option. Previous studies have shown that TNF-α and Nitric Oxide (NO) in conjunction with IFN-γ-producing T helper 1 (Th1) cells play critical roles in host protection against TB. Here, we show that bergenin, a phytochemical isolated from tender leaves of Shorea robusta, activates the MAP kinase and ERK pathways and induces TNF-α, NO and IL-12 production in infected macrophages. We further show that bergenin induces Th1 immune responses and potently inhibits bacillary growth in a murine model of Mycobacterium tuberculosis infection. These findings identify bergenin as a potential adjunct to TB therapy.
Collapse
Affiliation(s)
- Ved P. Dwivedi
- Immunology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | | | - Vinod Yadav
- Department of Microbiology, Central University of HaryanaMahendergarh, India
| | - Dhiraj K. Singh
- Immunology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Santosh Kumar
- Immunology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru UniversityNew Delhi, India
| | | | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru UniversityNew Delhi, India
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of MedicineNashville, TN, USA
| | | | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru UniversityNew Delhi, India
| |
Collapse
|
49
|
Stambrook PJ, Maher J, Farzaneh F. Cancer Immunotherapy: Whence and Whither. Mol Cancer Res 2017; 15:635-650. [PMID: 28356330 DOI: 10.1158/1541-7786.mcr-16-0427] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 12/22/2022]
Abstract
The current concepts and practice of cancer immunotherapy evolved from classical experiments that distinguished "self" from "non-self" and the finding that humoral immunity is complemented by cellular immunity. Elucidation of the biology underlying immune checkpoints and interactions between ligands and ligand receptors that govern the immune system's ability to recognize tumor cells as foreign has led to the emergence of new strategies that mobilize the immune system to reverse this apparent tolerance. Some of these approaches have led to new therapies such as the use of mAbs to interfere with the immune checkpoint. Others have exploited molecular technologies to reengineer a subset of T cells to directly engage and kill tumor cells, particularly those of B-cell malignancies. However, before immunotherapy can become a more effective method of cancer care, there are many challenges that remain to be addressed and hurdles to overcome. Included are manipulation of tumor microenvironment (TME) to enhance T effector cell infiltration and access to the tumor, augmentation of tumor MHC expression for adequate presentation of tumor associated antigens, regulation of cytokines and their potential adverse effects, and reduced risk of secondary malignancies as a consequence of mutations generated by the various forms of genetic engineering of immune cells. Despite these challenges, the future of immunotherapy as a standard anticancer therapy is encouraging. Mol Cancer Res; 15(6); 635-50. ©2017 AACR.
Collapse
Affiliation(s)
- Peter J Stambrook
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - John Maher
- Kings College London, CAR Mechanics Group, Guy's Hospital, London, United Kingdom
| | - Farzin Farzaneh
- Division of Cancer Studies, Department of Haematological Medicine, Kings College London, London, United Kingdom
| |
Collapse
|
50
|
Zhang X, Cook KL, Warri A, Cruz IM, Rosim M, Riskin J, Helferich W, Doerge D, Clarke R, Hilakivi-Clarke L. Lifetime Genistein Intake Increases the Response of Mammary Tumors to Tamoxifen in Rats. Clin Cancer Res 2017; 23:814-824. [PMID: 28148690 PMCID: PMC5654585 DOI: 10.1158/1078-0432.ccr-16-1735] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE Whether it is safe for estrogen receptor-positive (ER+) patients with breast cancer to consume soy isoflavone genistein remains controversial. We compared the effects of genistein intake mimicking either Asian (lifetime) or Caucasian (adulthood) intake patterns to that of starting its intake during tamoxifen therapy using a preclinical model. EXPERIMENTAL DESIGN Female Sprague-Dawley rats were fed an AIN93G diet supplemented with 0 (control diet) or 500 ppm genistein from postnatal day 15 onward (lifetime genistein). Mammary tumors were induced with 7,12-dimethylbenz(a)anthracene (DMBA), after which a group of control diet-fed rats were switched to genistein diet (adult genistein). When the first tumor in a rat reached 1.4 cm in diameter, tamoxifen was added to the diet and a subset of previously only control diet-fed rats also started genistein intake (post-diagnosis genistein). RESULTS Lifetime genistein intake reduced de novo resistance to tamoxifen, compared with post-diagnosis genistein groups. Risk of recurrence was lower both in the lifetime and in the adult genistein groups than in the post-diagnosis genistein group. We observed downregulation of unfolded protein response (UPR) and autophagy-related genes (GRP78, IRE1α, ATF4, and Beclin-1) and genes linked to immunosuppression (TGFβ and Foxp3) and upregulation of cytotoxic T-cell marker CD8a in the tumors of the lifetime genistein group, compared with controls, post-diagnosis, and/or adult genistein groups. CONCLUSIONS Genistein intake mimicking Asian consumption patterns improved response of mammary tumors to tamoxifen therapy, and this effect was linked to reduced activity of UPR and prosurvival autophagy signaling and increased antitumor immunity. Clin Cancer Res; 23(3); 814-24. ©2017 AACR.
Collapse
Affiliation(s)
- Xiyuan Zhang
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Katherine L Cook
- Department of Surgical Sciences, Wake Forest University, Winston-Salem, North Carolina
| | - Anni Warri
- Department of Oncology, Georgetown University, Washington, District of Columbia
- Institute of Biomedicine, University of Turku Medical Faculty, Turku, Finland
| | - Idalia M Cruz
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Mariana Rosim
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jeffrey Riskin
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - William Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Daniel Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Robert Clarke
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | | |
Collapse
|