1
|
Damian D. The Growing Threat of Tick-Borne Viruses: Global Trends, Clinical Outcomes, and Diagnostic Strategies. Viral Immunol 2025. [PMID: 40274388 DOI: 10.1089/vim.2025.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Tick-borne viruses are an increasing global health concern due to their significant impact on humans and animals, as well as their expanding geographic distribution. Notable viruses in this group include the tick-borne encephalitis virus (TBEV), Crimean-Congo hemorrhagic fever virus (CCHFV), Heartland virus (HRTV), and Powassan virus (POWV). This review evaluates their geographic spread, clinical effects, diagnostic challenges, treatment options, and research gaps. These viruses are increasingly spreading due to climate change and shifting tick habitats. The TBEV is moving into new areas of Europe and Asia, while the CCHFV is advancing into the Balkans and Caucasus. The HRTV has become more common in the United States, and the POWV is emerging in new regions of North America. Symptoms can vary from mild fever to severe neurological and hemorrhagic conditions. Diagnostic difficulties stem from inconsistent test accuracy, and treatment options are scarce, with only a few vaccines available. Tick-borne viruses represent a significant and expanding health threat, given their diverse clinical outcomes and diagnostic difficulties. Developing more accurate and accessible diagnostic tools is critical for early identification and treatment. Additionally, creating effective vaccines will be essential to reducing the overall burden of these viruses. With the increasing spread of tick-borne viruses, enhanced surveillance, ongoing research efforts, and strategic public health interventions are necessary to effectively control their impact and prevent further outbreaks.
Collapse
Affiliation(s)
- Donath Damian
- University of Dar es Salaam-Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| |
Collapse
|
2
|
Koser T, Hurt A, Thompson L, Courtemanch A, Wise B, Cross P. Scent detection dogs detect a species of hard tick, Dermacentor albipictus, with comparable accuracy and efficiency to traditional tick drag surveys. Parasit Vectors 2025; 18:126. [PMID: 40176125 PMCID: PMC11967051 DOI: 10.1186/s13071-024-06519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/30/2024] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Accurate surveillance data are critical for addressing tick and tick-borne pathogen risk to human and animal health. Current surveillance methods for detecting invading or expanding tick species are limited in their ability to scale efficiently to state or national levels. In this study we explored the potential use of scent detection dogs to assist field surveys for a hard tick species: Dermacentor albipictus. METHODS We used a series of indoor and in situ training simulations to teach scent detection dogs to recognize D. albipictus scent, distinguish tick scent from associated vegetation, and develop a cautious search pattern. After training, we deployed both a scent detection dog survey team and a human-only survey team on transect and surveillance plot surveys then compared the detection rates and efficiency of both methods. RESULTS Scent detection dogs required more time and money to train on field surveys but were comparable to traditional tick drags when accounting for cost per unit area surveyed. There was a lack of agreement on positive (ticks present) versus negative (ticks not present) sites between the two methods, implying that neither method is particularly reliable at detecting D. albipictus. CONCLUSIONS Estimating detection bias and false negative rates for tick surveillance methods such as tick drags will be important for accurately evaluating tick-borne disease risk across space and into the future. We found scent detection dogs to be a reasonable alternative sampling approach to consider when ticks are at low abundance or patchily distributed such as during tick range expansion or novel invasions. Scent detection dogs may also be useful for sampling for ticks in areas or along surfaces that are difficult to sample with the traditional tick drag technique like at ports of entry or livestock competitions.
Collapse
Affiliation(s)
- Troy Koser
- Montana State University, Montana, USA.
- Northern Rocky Mountain Science Center, U.S. Geological Survey, Montana, USA.
| | - Aimee Hurt
- Working Dogs for Conservation, Montana, USA
| | - Laura Thompson
- National Climate Adaptation Science Center, U.S. Geological Survey, Knoxville, TN, USA
| | | | | | - Paul Cross
- Northern Rocky Mountain Science Center, U.S. Geological Survey, Montana, USA
| |
Collapse
|
3
|
Chakraborty S, Lyons LA, Winata F, Mateus-Pinilla N, Smith RL. Methods of active surveillance for hard ticks and associated tick-borne pathogens of public health importance in the contiguous United States: a comprehensive systematic review. JOURNAL OF MEDICAL ENTOMOLOGY 2025:tjaf031. [PMID: 40111123 DOI: 10.1093/jme/tjaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/26/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Tick-borne diseases in humans and animals have increased prevalence across the United States. To understand risk factors underlying tick-borne diseases it is useful to conduct regular surveillance and monitoring of ticks and the pathogens they carry, in a sustained and effective manner. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, this study aims to summarize the previously used methods for active surveillance of ticks and tick-borne pathogens, identify the existing knowledge gaps in ongoing surveillance, and highlight and guide the mechanisms required to inform those gaps for more effective and sustainable future surveillance efforts. After screening 2,500 unique studies between 1944 and 2018, we found 646 articles that performed active surveillance of hard ticks and/or their associated tick-borne pathogens of public health importance within the United States. An additional 103 articles were included for the 2019 to 2023 period. Active surveillance has been performed in ~42% of the counties (1944 to 2018) and ~23% of the counties (2019 to 2023) within the contiguous US, and states with the most coverage are in the Northeast, Upper Midwest, and along the West coast. The most reported tick was Ixodes scapularis (195 studies) and most commonly reported pathogen was Borrelia burgdorferi (143 studies). Overall, surveillance efforts have increased and become more diversified, and methods of tick and tick-borne pathogens testing have undergone changes, but those efforts are mainly concentrated in focal regions of a county. Future surveillance efforts should follow Centers for Disease Control and Prevention guidelines and target areas of United States with scarce reports of active surveillance and build collaborations and resources to increase surveillance.
Collapse
Affiliation(s)
- Sulagna Chakraborty
- Department of Veterinary Clinical Medicine, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Lee Ann Lyons
- Department of Pathobiology, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Fikriyah Winata
- Department of Geography, Texas A&M University, College Station, TX, USA
| | - Nohra Mateus-Pinilla
- Department of Pathobiology, University of Illinois Urbana Champaign, Urbana, IL, USA
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Rebecca L Smith
- Department of Pathobiology, University of Illinois Urbana Champaign, Urbana, IL, USA
| |
Collapse
|
4
|
Kelly PH, Kwark R, Marick HM, Davis J, Stark JH, Madhava H, Dobler G, Moïsi JC. Different environmental factors predict the occurrence of tick-borne encephalitis virus (TBEV) and reveal new potential risk areas across Europe via geospatial models. Int J Health Geogr 2025; 24:3. [PMID: 40087786 PMCID: PMC11908066 DOI: 10.1186/s12942-025-00388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is the most serious tick-borne viral disease in Europe. Identifying TBE risk areas can be difficult due to hyper focal circulation of the TBE virus (TBEV) between mammals and ticks. To better define TBE hazard risks and elucidate regional-specific environmental factors that drive TBEV circulation, we developed two machine-learning (ML) algorithms to predict the habitat suitability (maximum entropy), and occurrence of TBEV (extreme gradient boosting) within distinct European regions (Central Europe, Nordics, and Baltics) using local variables of climate, habitat, topography, and animal hosts and reservoirs. METHODS Geocoordinates that reported the detection of TBEV in ticks or rodents and anti-TBEV antibodies in rodent reservoirs in 2000 or later were extracted from published and grey literature. Region-specific ML models were defined via K-means clustering and trained according to the distribution of extracted geocoordinates relative to explanatory variables in each region. Final models excluded colinear variables and were evaluated for performance. RESULTS 521 coordinates (455 ticks; 66 rodent reservoirs) of TBEV occurrence (2000-2022) from 100 records were extracted for model development. The models had high performance across regions (AUC: 0.72-0.92). The strongest predictors of habitat suitability and TBEV occurrence in each region were associated with different variable categories: climate variables were the strongest predictors of habitat suitability in Central Europe; rodent reservoirs and elevation were strongest in the Nordics; and animal hosts and land cover contributed most to the Baltics. The models predicted several areas with few or zero reported TBE incidence as highly suitable (≥ 60%) TBEV habitats or increased probability (≥ 25%) of TBEV occurrence including western Norway coastlines, northern Denmark, northeastern Croatia, eastern France, and northern Italy, suggesting potential capacity for locally-acquired autochthonous TBEV infections or possible underreporting of TBE cases based on reported human surveillance data. CONCLUSIONS This study shows how varying environmental factors drive the occurrence of TBEV within different European regions and identifies potential new risk areas for TBE. Importantly, we demonstrate the utility of ML models to generate reliable insights into TBE hazard risks when trained with sufficient explanatory variables and to provide high resolution and harmonized risk maps for public use.
Collapse
Affiliation(s)
- Patrick H Kelly
- Vaccines and Antivirals Medical Affairs, Pfizer US Commercial Division, Pfizer, Inc., 66 Hudson Yards Blvd E, New York City, NY, USA.
| | | | | | | | - James H Stark
- Vaccines and Antivirals Medical Affairs, Pfizer US Commercial Division, Cambridge, MA, USA
| | - Harish Madhava
- Vaccines and Antivirals Medical Affairs, Pfizer US Commercial Division, London, UK
| | - Gerhard Dobler
- Bundeswehr Institute for Microbiology, National TBEV Consultant Laboratory, 80937, Munchen, Germany
| | - Jennifer C Moïsi
- Vaccines and Antivirals Medical Affairs, Pfizer US Commercial Division, Paris, France
| |
Collapse
|
5
|
Ferradas C, Salvatierra G, Payahuanca D, Contreras W, López-Pérez AM, Hangawatte TA, León D, Ghersi BM, Gamboa R, Villanueva KM, Pinedo-Cancino V, Pesapane R, Salmón-Mulanovich G, Lescano AG, Foley J. Spotted fever group rickettsiae in black rats, pets, and humans in Zungarococha community, A rural area in the surroundings of Iquitos, Peru. Ticks Tick Borne Dis 2025; 16:102436. [PMID: 39799873 PMCID: PMC11806410 DOI: 10.1016/j.ttbdis.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Rickettsiae are a family of ectoparasite-borne bacteria that can produce high morbidity and mortality among humans. There are scarce data on rickettsial ecology in rural areas of the Peruvian Amazon basin, where seroprevalence has not been determined, and the identities of animals acting as reservoirs of these bacteria are not known. We conducted a cross-sectional study in Zungarococha (between 2019 and 2021), a rural community located approximately 20 km away from Iquitos city. Blood samples were collected from humans (175), dogs (123), and cats (12). Blood samples and tissues were collected from black rats (84). Finally, we collected fleas from dogs and cats (222), ticks from dogs (91), and mites from black rats (32). Blood samples from humans, dogs, cats, and black rats were analyzed by indirect immunofluorescence assays (IFA) to detect IgG antibodies against rickettsias. We screened ectoparasites and black rat tissues by real-time-PCR (qPCR). Positive ectoparasites were further assessed by PCR and DNA amplicon sequencing. Non-parametric tests were used to evaluate factors associated with being seropositive among human adults. IgG seroprevalences were 38.3 %, 58.5 %, 16.7 % and 48.1 % among humans, dogs, cats, and rats, respectively. Among humans, only male gender was statistically associated with having IgG antibodies against Rickettsia spp. (p-value=0.049, chi-square test). Different ectoparasites were identified, including Ctenocephalides felis from cats and dogs, Rhipicephalus sanguineus s.l. from dogs, and Laelaps nuttalli from black rats. Rhipicephalus sanguineus s.l. (2/91 ticks) and Ct. felis (53/56 fleas and 55/55 flea pools) were qPCR-positive for Rickettsia spp. Recovered genetic material from 53 Ct. felis was sequenced and all were identified as Rickettsia asembonensis. All tissue samples from black rats were negative by qPCR. Humans, dogs, cats, and black rats are exposed to spotted fever group rickettsiae in rural areas surrounding Iquitos. As reported in urban areas, R. asembonensis is the main Rickettsia species circulating in rural areas surrounding Iquitos and Ct. felis appears to be the main vector.
Collapse
Affiliation(s)
- Cusi Ferradas
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia (UPCH), Lima Peru; Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA USA
| | - Guillermo Salvatierra
- Department of Health Sciences, School of Veterinary Medicine, Universidad Peruana de Ciencias Aplicadas (UPC), Lima Peru
| | - David Payahuanca
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia (UPCH), Lima Peru
| | - Winnie Contreras
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia (UPCH), Lima Peru
| | - Andrés M López-Pérez
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA USA; Red de Biología y Conservación de Vertebrados, Instituto de Ecología, A.C, Xalapa Mexico
| | - Therangika A Hangawatte
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, OH USA
| | - Diana León
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia (UPCH), Lima Peru
| | - Bruno M Ghersi
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, MA USA
| | - Ricardo Gamboa
- Center for Global Health, Universidad Peruana Cayetano Heredia (UPCH), Tumbes Peru
| | | | - Viviana Pinedo-Cancino
- Laboratorio de Investigación en Productos Naturales Antiparasitarios de la Amazonía, Centro de Investigación de Recursos Naturales de la Amazonía, Univesidad Nacional de la Amazonía Peruana (UNAP), Iquitos Peru; Facultad de Medicina Humana. Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos Peru
| | - Risa Pesapane
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, OH USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, OH USA
| | | | - Andrés G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia (UPCH), Lima Peru; Clima, Latin American Center of Excellence for Climate Change and Health, Universidad Peruana Cayetano Heredia (UPCH), Lima Peru
| | - Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA USA.
| |
Collapse
|
6
|
Estrada-Peña A, de la Fuente J. Machine learning algorithms for the evaluation of risk by tick-borne pathogens in Europe. Ann Med 2024; 56:2405074. [PMID: 39348264 PMCID: PMC11443563 DOI: 10.1080/07853890.2024.2405074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Tick-borne pathogens pose a major threat to human health worldwide. Understanding the epidemiology of tick-borne diseases to reduce their impact on human health requires models covering large geographic areas and considering both the abiotic traits that affect tick presence, as well as the vertebrates used as hosts, vegetation, and land use. Herein, we integrated the public information available for Europe regarding the variables that may affect habitat suitability for ticks and hosts and tested five machine learning algorithms (MLA) for predicting the distribution of four prominent tick species across Europe. MATERIALS AND METHODS A grid of cells 20 km in diameter was prepared to cover the entire territory, containing data on vegetation, points of water, habitat fragmentation, forest density, grass extension, or imperviousness, with information on temperature and water deficit. The distribution of the hosts (162 species) was modelled and included in the dataset. We used five MLA, namely, Random Forest, Neural Networks, Naive Bayes, Gradient Boosting, and AdaBoost, trained with reliable coordinates for Ixodes ricinus, Dermacentor reticulatus, Dermacentor marginatus, and Hyalomma marginatum in Europe. RESULTS Both Random Forest and Gradient Boosting best predicted ticks and host environmental niches. Our results demonstrate that MLA can identify trait-matching combinations of environmental niches. The inclusion of land cover and land use variables has a superior capacity for predicting areas suitable for ticks, compared to classic methods based on the use of climate data alone. CONCLUSIONS Flexible MLA-driven models may offer several advantages over traditional models. We anticipate that these results may be extrapolated to other regions and combinations of tick-vertebrates. These results highlight the potential of MLA for inference in ecology and provide a background for the evolution of a completely automatized tool to calculate the seasonality of ticks for early warning systems aimed at preventing tick-borne diseases.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - José de la Fuente
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
7
|
Jang H, Casel MAB, Jang SG, Choi JH, Gil J, Rollon R, Cheun SY, Kim YI, Song MS, Choi YK. Seasonal dynamics of Haemaphysalis tick species as SFTSV vectors in South Korea. Microbiol Spectr 2024; 12:e0048924. [PMID: 39345179 PMCID: PMC11537100 DOI: 10.1128/spectrum.00489-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024] Open
Abstract
Ticks pose a significant public health threat due to their ability to transmit various pathogens, including emerging tick-borne diseases. This study conducted a comprehensive surveillance of Haemaphysalis tick species and their severe fever with thrombocytopenia syndrome virus (SFTSV) infection rates in South Korea throughout the year 2023, from January to December. To ensure accurate and rapid identification of the prevalent Haemaphysalis tick species in South Korea, we designed PCR primer sets targeting the ITS1 gene, specifically distinguishing Haemaphysalis longicornis from Haemaphysalis flava. Among the 10,343 ticks collected from wild animals, H. longicornis constituted the majority, accounting for 65.5% (6,784/10,343 ticks), followed by H. flava at 33.8% (3,491/10,343 ticks), and Ixodes nipponensis at 0.7% (68/10,343 ticks). These identified ticks were then categorized into 811 pools, with 63 pools testing positive for SFTSV. Remarkably, the prevalence of SFTSV-positive H. longicornis ticks peaked during the summer months, aligning with heightened human outdoor activities and, consequently, an increased risk of human exposure. Conversely, it is noteworthy that H. flava exhibited a higher prevalence during the winter season, reaching its peak in January, with an SFTSV minimum infection rate similar to that of H. longicornis. These findings underscore the year-round presence of Haemaphysalis ticks as potential vectors for SFTSV, extending the temporal window for potential human exposure. Consequently, these results emphasize the necessity for active and continuous field surveillance to comprehensively understand and mitigate the public health risks associated with these tick-borne pathogens. IMPORTANCE To date, the majority of tick surveillance studies have primarily focused on warmer seasons, which are considered optimal periods for ticks to actively seek hosts and transmit pathogens through blood-feeding activities. Consequently, tick species active during winter have often been overlooked, leading to an underestimation of their significance in transmitting severe fever with thrombocytopenia syndrome virus (SFTSV). In this study, we aimed to examine year-round tick prevalence with SFTSV and illuminate the role of the winter-dominant species, Haemaphysalis flava, in South Korea. Through rigorous identification facilitated by a primer set designed specifically for this purpose, we emphasize that H. flava, a competent vector species, harbors SFTSV in the winter season, thereby acting as an overwintering reservoir for the virus. This phenomenon may contribute to a higher infection rate among ticks in the following year.
Collapse
Affiliation(s)
- Hyunwoo Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Mark Anthony B. Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Seung-gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Jeong Ho Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Juryeon Gil
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - So youn Cheun
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Young-Il Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Min Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, South Korea
| |
Collapse
|
8
|
Alaverdyan J, Celina SS, Jirků M, Golovchenko M, Italiya J, Grubhoffer L, Rudenko N, Černý J. A First Look at the Relationship Between Large Herbivore-Induced Landscape Modifications and Ixodes ricinus Tick Abundance in Rewilding Sites. Vector Borne Zoonotic Dis 2024; 24:666-672. [PMID: 38717050 DOI: 10.1089/vbz.2023.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Background: While the influence of landscape and microclimatic conditions on tick populations is well-documented, there remains a gap in more specific data regarding their relationship to rewilding efforts with large herbivore activity. Objective: This pilot study, spanning from 2019 to 2021, explores the effects of naturalistic grazing by large semi-wild ungulates on tick abundance in the Milovice Reserve, Czechia. Methods: Tick collection was observed using flagging techniques at two distinct sites of rewilding area: one grazed, actively utilized by animals involved in the rewilding project, and one ungrazed, left fallow in neighboring areas utilized only by wild animals. Transects, each measuring 150 m in length and 5 m in width (750 m2), were established at these two sampling locations from March to September between 2019 and 2021. To minimize potential bias resulting from tick movement, a 300 m buffer zone separated the two sites. Data analysis employed a generalized estimating equations (GEE) model with negative binomial regression. The study assessed potential variations in tick abundance between selected transects, considering factors such as plant cover seasonality, temperature, and humidity. Results: During the collection periods, we gathered 586 live ticks, with 20% found in grazed areas and 80% in ungrazed areas. Notably, tick abundance was significantly higher in ungrazed areas. Peaks in tick abundance occurred in both grazed and ungrazed areas during spring, particularly in April. However, tick numbers declined more rapidly in grazed areas. Microclimatic variables like temperature and humidity did not significantly impact tick abundance compared to landscape management and seasonal factors. Conclusion: Rewilding efforts, particularly natural grazing by large ungulates, influence tick abundance and distribution. This study provides empirical data on tick ecology in rewilded areas, highlighting the importance of landscape management and environmental factors in tick management and conservation. Trophic rewilding plays a crucial role in shaping ecosystems and tick population dynamics in transformed landscapes.
Collapse
Affiliation(s)
- Johana Alaverdyan
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Seyma S Celina
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Miloslav Jirků
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
| | - Marina Golovchenko
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jignesh Italiya
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Sciences, University of South Bohemia, České Budějovice, Czechia
| | - Natalie Rudenko
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jiří Černý
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
9
|
Leal-Galvan B, Kumar D, Karim S, Saelao P, Thomas DB, Oliva Chavez A. A glimpse into the world of microRNAs and their putative roles in hard ticks. Front Cell Dev Biol 2024; 12:1460705. [PMID: 39376631 PMCID: PMC11456543 DOI: 10.3389/fcell.2024.1460705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Ticks are important blood feeding ectoparasites that transmit pathogens to wildlife, domestic animals, and humans. Hard ticks can feed for several days to weeks, nevertheless they often go undetected. This phenomenon can be explained by a tick's ability to release analgesics, immunosuppressives, anticoagulants, and vasodilators within their saliva. Several studies have identified extracellular vesicles (EVs) as carriers of some of these effector molecules. Further, EVs, and their contents, enhance pathogen transmission, modulate immune responses, and delay wound healing. EVs are double lipid-membrane vesicles that transport intracellular cargo, including microRNAs (miRNAs) to recipient cells. miRNAs are involved in regulating gene expression post-transcriptionally. Interestingly, tick-derived miRNAs have been shown to enhance pathogen transmission and affect vital biological processes such as oviposition, blood digestion, and molting. miRNAs have been found within tick salivary EVs. This review focuses on current knowledge of miRNA loading into EVs and homologies reported in ticks. We also describe findings in tick miRNA profiles, including miRNAs packed within tick salivary EVs. Although no functional studies have been done to investigate the role of EV-derived miRNAs in tick feeding, we discuss the functional characterization of miRNAs in tick biology and pathogen transmission. Lastly, we propose the possible uses of tick miRNAs to develop management tools for tick control and to prevent pathogen transmission. The identification and functional characterization of conserved and tick-specific salivary miRNAs targeting important molecular and immunological pathways within the host could lead to the discovery of new therapeutics for the treatment of tick-borne and non-tick-borne human diseases.
Collapse
Affiliation(s)
- Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX, United States
- USDA-ARS Cattle Fever Tick Research Laboratory, Edinburg, TX, United States
| | - Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Perot Saelao
- USDA-ARS Veterinary Pest Research Unit, Kerrville, TX, United States
| | - Donald B. Thomas
- USDA-ARS Cattle Fever Tick Research Laboratory, Edinburg, TX, United States
| | - Adela Oliva Chavez
- Department of Entomology, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
10
|
Williams AK, Peterman WE, Pesapane R. Refining Ixodes scapularis (Acari: Ixodidae) distribution models: a comparison of current methods to an established protocol. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:827-844. [PMID: 38686854 DOI: 10.1093/jme/tjae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Blacklegged ticks (Ixodes scapularis Say) pose an enormous public health risk in eastern North America as the vector responsible for transmitting 7 human pathogens, including those causing the most common vector-borne disease in the United States, Lyme disease. Species distribution modeling is an increasingly popular method for predicting the potential distribution and subsequent risk of blacklegged ticks, however, the development of such models thus far is highly variable and would benefit from the use of standardized protocols. To identify where standardized protocols would most benefit current distribution models, we completed the "Overview, Data, Model, Assessment, and Prediction" (ODMAP) distribution modeling protocol for 21 publications reporting 22 blacklegged tick distribution models. We calculated an average adherence of 73.4% (SD ± 29%). Most prominently, we found that authors could better justify and connect their selection of variables and associated spatial scales to blacklegged tick ecology. In addition, the authors could provide clearer descriptions of model development, including checks for multicollinearity, spatial autocorrelation, and plausibility. Finally, authors could improve their reporting of variable effects to avoid undermining the models' utility in informing species-environment relationships. To enhance future model rigor and reproducibility, we recommend utilizing several resources including the ODMAP protocol, and suggest that journals make protocol compliance a publication prerequisite.
Collapse
Affiliation(s)
- Allison K Williams
- School of Environment and Natural Resources, College of Food, Agriculture, and Environmental Science, The Ohio State University, 210 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
| | - William E Peterman
- School of Environment and Natural Resources, College of Food, Agriculture, and Environmental Science, The Ohio State University, 210 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Risa Pesapane
- School of Environment and Natural Resources, College of Food, Agriculture, and Environmental Science, The Ohio State University, 210 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Tsai KH, Batool S, Khan A, Cossío-Bayúgar R, Swelum AA, Niaz S, Nasreen N, Ben Said M, Khan A. Infestation prevalence, spatio-temporal distribution, phylogenetic positioning, and pathogen investigation of Argas persicus ticks in domestic hens (Gallus gallus domesticus) from Pakistan. Vet Parasitol Reg Stud Reports 2024; 52:101044. [PMID: 38880575 DOI: 10.1016/j.vprsr.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
Soft ticks pose significant health risks as vectors of various pathogens. This study explored the spatio-temporal distribution and genetic relationships of the soft tick species Argas persicus infesting domestic hens (Gallus gallus domesticus) across different districts in Pakistan. An examination of 778 hens revealed a notable tick infestation prevalence of 70.82%, with a total of 1299 ticks collected from 551 hens. The overall mean intensity was 2.19 soft ticks per infested chicken, and the overall mean abundance was 1.61 soft ticks per examined hen. Morphological identification confirmed all collected ticks (n = 1210) as A. persicus, comprising 719 males, 333 females, 121 nymphs, and 38 larvae. The Haveli, Muzaffarabad, and Kotli districts had the highest infestation rates, while Bagh had the lowest. Molecular analyses of tick DNA, focusing on 16S rDNA and 12S rDNA sequences, revealed genetic similarities among A. persicus soft ticks from Pakistan and other regions, providing insights into their evolutionary history. Importantly, no Babesia, Rickettsia, or Anaplasma infections were detected in the examined samples. These findings enhance the understanding of soft tick infestation patterns and the genetic diversity of A. persicus in the studied region.
Collapse
Affiliation(s)
- Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan; Global Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Sidra Batool
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Afshan Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Raquel Cossío-Bayúgar
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, Km 11. 5 Carretera Federal Cuernavaca- Cuautla, No. 8534, Col. Progreso, CP 62550 Jiutepec, Morelos, Mexico.
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Nasreen Nasreen
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Mourad Ben Said
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia; Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia.
| | - Adil Khan
- Department of Zoology, Bacha Khan University Charsadda, Charsadda 24420, Pakistan.
| |
Collapse
|
12
|
Szaroz D, Kulkarni M, Robayo González CX, Zinszer K. Study protocol for a scoping review of Lyme disease prediction methodologies. BMJ Open 2024; 14:e071402. [PMID: 38772589 PMCID: PMC11110606 DOI: 10.1136/bmjopen-2022-071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/27/2024] [Indexed: 05/23/2024] Open
Abstract
INTRODUCTION In the temperate world, Lyme disease (LD) is the most common vector-borne disease affecting humans. In North America, LD surveillance and research have revealed an increasing territorial expansion of hosts, bacteria and vectors that has accompanied an increasing incidence of the disease in humans. To better understand the factors driving disease spread, predictive models can use current and historical data to predict disease occurrence in populations across time and space. Various prediction methods have been used, including approaches to evaluate prediction accuracy and/or performance and a range of predictors in LD risk prediction research. With this scoping review, we aim to document the different modelling approaches including types of forecasting and/or prediction methods, predictors and approaches to evaluating model performance (eg, accuracy). METHODS AND ANALYSIS This scoping review will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Review guidelines. Electronic databases will be searched via keywords and subject headings (eg, Medical Subject Heading terms). The search will be performed in the following databases: PubMed/MEDLINE, EMBASE, CAB Abstracts, Global Health and SCOPUS. Studies reported in English or French investigating the risk of LD in humans through spatial prediction and temporal forecasting methodologies will be identified and screened. Eligibility criteria will be applied to the list of articles to identify which to retain. Two reviewers will screen titles and abstracts, followed by a full-text screening of the articles' content. Data will be extracted and charted into a standard form, synthesised and interpreted. ETHICS AND DISSEMINATION This scoping review is based on published literature and does not require ethics approval. Findings will be published in peer-reviewed journals and presented at scientific conferences.
Collapse
Affiliation(s)
- Daniel Szaroz
- École de santé publique, Département de médecine sociale et préventive, Université de Montréal, Montreal, Québec, Canada
- Centre de Recherche en Santé Publique (CReSP), Montréal, Québec, Canada
| | - Manisha Kulkarni
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Claudia Ximena Robayo González
- École de santé publique, Département de médecine sociale et préventive, Université de Montréal, Montreal, Québec, Canada
- Centre de Recherche en Santé Publique (CReSP), Montréal, Québec, Canada
| | - Kate Zinszer
- École de santé publique, Département de médecine sociale et préventive, Université de Montréal, Montreal, Québec, Canada
- Centre de Recherche en Santé Publique (CReSP), Montréal, Québec, Canada
| |
Collapse
|
13
|
Sharma Y, Laison EK, Philippsen T, Ma J, Kong J, Ghaemi S, Liu J, Hu F, Nasri B. Models and data used to predict the abundance and distribution of Ixodes scapularis (blacklegged tick) in North America: a scoping review. LANCET REGIONAL HEALTH. AMERICAS 2024; 32:100706. [PMID: 38495312 PMCID: PMC10943480 DOI: 10.1016/j.lana.2024.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Tick-borne diseases (TBD) remain prevalent worldwide, and risk assessment of tick habitat suitability is crucial to prevent or reduce their burden. This scoping review provides a comprehensive survey of models and data used to predict I. scapularis distribution and abundance in North America. We identified 4661 relevant primary research articles published in English between January 1st, 2012, and July 18th, 2022, and selected 41 articles following full-text review. Models used data-driven and mechanistic modelling frameworks informed by diverse tick, hydroclimatic, and ecological variables. Predictions captured tick abundance (n = 14, 34.1%), distribution (n = 22, 53.6%) and both (n = 5, 12.1%). All studies used tick data, and many incorporated both hydroclimatic and ecological variables. Minimal host- and human-specific data were utilized. Biases related to data collection, protocols, and tick data quality affect completeness and representativeness of prediction models. Further research and collaboration are needed to improve prediction accuracy and develop effective strategies to reduce TBD.
Collapse
Affiliation(s)
- Yogita Sharma
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Elda K.E. Laison
- Département de Médecine Préventive et Sociale, University of Montréal, Montréal, Canada
| | - Tanya Philippsen
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Junling Ma
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Jude Kong
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Sajjad Ghaemi
- Digital Technologies Research Center, National Research Council of Canada, Toronto, Canada
| | - Juxin Liu
- Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - François Hu
- Department of Mathematics and Statistics, University of Montréal, Montréal, Canada
| | - Bouchra Nasri
- Département de Médecine Préventive et Sociale, University of Montréal, Montréal, Canada
| |
Collapse
|
14
|
Xi D, Garg K, Lambert JS, Rajput-Ray M, Madigan A, Avramovic G, Gilbert L. Scrutinizing Clinical Biomarkers in a Large Cohort of Patients with Lyme Disease and Other Tick-Borne Infections. Microorganisms 2024; 12:380. [PMID: 38399784 PMCID: PMC10893018 DOI: 10.3390/microorganisms12020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Standard clinical markers can improve tick-borne infection (TBI) diagnoses. We investigated immune and other clinical biomarkers in 110 patients clinically diagnosed with TBIs before (T0) and after antibiotic treatment (T2). At T0, both the initial observation group and patients without seroconversion for tick-borne pathogens exhibited notably low percentages and counts of CD3 percentage (CD3%), CD3+ cells, CD8+ suppressors, CD4 percentage (CD4%), and CD4+ helper cells, with the latter group showing reductions in CD3%, CD3+, and CD8+ counts in approximately 15-22% of cases. Following treatment at the T2 follow-up, patients typically experienced enhancements in their previously low CD3%, CD3+ counts, CD4%, and CD4+ counts; however, there was no notable progress in their low CD8+ counts, and a higher number of patients presented with insufficient transferrin levels. Moreover, among those with negative serology for tick-borne infections, there was an improvement in low CD3% and CD3+ counts, which was more pronounced in patients with deficient transferrin amounts. Among those with CD57+ (n = 37) and CD19+ (n = 101) lymphocyte analysis, 59.46% of patients had a low CD57+ count, 14.85% had a low CD19 count, and 36.63% had a low CD19 percentage (CD19%). Similar findings were observed concerning low CD57+, CD19+, and CD19% markers for negative TBI serology patients. Overall, this study demonstrates that routine standard clinical markers could assist in a TBI diagnosis.
Collapse
Affiliation(s)
- David Xi
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
| | | | - John S. Lambert
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
- Infectious Diseases Department, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Infectious Diseases Department, The Rotunda Hospital, D01 P5W9 Dublin, Ireland
| | - Minha Rajput-Ray
- Curaidh Clinic: Innovative Solutions for Pain, Chronic Disease and Work Health, Perth PH2 8EH, UK;
| | - Anne Madigan
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
| | - Gordana Avramovic
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
| | | |
Collapse
|
15
|
Bellman S, Fausett E, Aeschleman L, Long A, Roeske I, Pilchik J, Piantadosi A, Vazquez-Prokopec G. Mapping the distribution of Amblyomma americanum in Georgia, USA. Parasit Vectors 2024; 17:62. [PMID: 38342907 PMCID: PMC10860309 DOI: 10.1186/s13071-024-06142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/17/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Amblyomma americanum, the lone star tick, is an aggressive questing species that harbors several pathogens dangerous to humans in the United States. The Southeast in particular has large numbers of this tick due to the combined suitable climate and habitats throughout the region. No studies have estimated the underlying distribution of the lone star tick across the state of Georgia, a state where it is the dominant species encountered. METHODS Ticks were collected by flagging 198 transects of 750 m2 at 43 state parks and wildlife management areas across the state from March to July of 2022. A suite of climate, landscape, and wildlife variables were assembled, and a logistic regression model was used to assess the association between these environmental factors and the presence of lone star ticks and to predict the distribution of these ticks across the state. RESULTS A total of 59/198 (30%) transects sampled contained adult or nymph A. americanum, with the majority of transects containing these ticks (54/59, 91.5%) in forested habitats. The presence of A. americanum was associated with elevation, normalized difference vegetation index (NDVI) on January 1, isothermality, temperature seasonality, and precipitation in the wettest quarter. Vast regions of central, eastern, and southern coastal Georgia (57% of the state) were categorized as suitable habitat for the lone star tick. CONCLUSIONS This study describes the distribution of the lone star tick across the state of Georgia at a finer scale than the current county-level information available. It identifies specific variables associated with tick presence and provides a map that can be used to target areas for tick prevention messaging and awareness.
Collapse
Affiliation(s)
- Stephanie Bellman
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Ellie Fausett
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Leah Aeschleman
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Audrey Long
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Isabella Roeske
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Josie Pilchik
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
16
|
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze G(G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines (Basel) 2024; 12:141. [PMID: 38400125 PMCID: PMC10891567 DOI: 10.3390/vaccines12020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.
Collapse
Affiliation(s)
| | - Hugues Fausther-Bovendo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| | - George (Giorgi) Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| |
Collapse
|
17
|
Deshpande G, Beetch JE, Heller JG, Naqvi OH, Kuhn KG. Assessing the Influence of Climate Change and Environmental Factors on the Top Tick-Borne Diseases in the United States: A Systematic Review. Microorganisms 2023; 12:50. [PMID: 38257877 PMCID: PMC10821204 DOI: 10.3390/microorganisms12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
In the United States (US), tick-borne diseases (TBDs) have more than doubled in the past fifteen years and are a major contributor to the overall burden of vector-borne diseases. The most common TBDs in the US-Lyme disease, rickettsioses (including Rocky Mountain spotted fever), and anaplasmosis-have gradually shifted in recent years, resulting in increased morbidity and mortality. In this systematic review, we examined climate change and other environmental factors that have influenced the epidemiology of these TBDs in the US while highlighting the opportunities for a One Health approach to mitigating their impact. We searched Medline Plus, PUBMED, and Google Scholar for studies focused on these three TBDs in the US from January 2018 to August 2023. Data selection and extraction were completed using Covidence, and the risk of bias was assessed with the ROBINS-I tool. The review included 84 papers covering multiple states across the US. We found that climate, seasonality and temporality, and land use are important environmental factors that impact the epidemiology and patterns of TBDs. The emerging trends, influenced by environmental factors, emphasize the need for region-specific research to aid in the prediction and prevention of TBDs.
Collapse
Affiliation(s)
| | | | | | | | - Katrin Gaardbo Kuhn
- Department of Biostatistics & Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.D.); (J.E.B.); (J.G.H.); (O.H.N.)
| |
Collapse
|
18
|
Remesar S, Matute R, Díaz P, Martínez-Calabuig N, Prieto A, Díaz-Cao JM, López-Lorenzo G, Fernández G, López C, Panadero R, Díez-Baños P, Morrondo P, García-Dios D. Tick-borne pathogens in ticks from urban and suburban areas of north-western Spain: Importance of Ixodes frontalis harbouring zoonotic pathogens. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:499-510. [PMID: 36896712 DOI: 10.1111/mve.12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
To identify the questing tick populations in urban and suburban areas from the city of Lugo (NW Spain), ticks were collected monthly by flagging. The presence of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum also was determined by polymerase chain reaction (PCR) and sequence analysis. Overall, 342 questing ticks were collected; the tick abundance was higher in suburban (95.9%) than in urban areas (4.1%). Ixodes frontalis was the most abundant (86.5%); 88.5% were larvae, 11.1% nymphs and 0.3% adults. All development stages of I. ricinus (7.3%) and adults of Rhipicephalus sanguineus sensu lato (5.8%) and Dermacentor reticulatus (0.3%) were found. Rickettsia spp. (31.9%) was more prevalent than Borrelia spp. (2.7%); no ticks were positive to A. phagocytophilum. Six Rickettsia species were identified (R. slovaca, R. monacensis, R. massiliae, R. raoultii, R. sibirica subsp. mongolitimonae and R. aeschielmanii); Candidatus Rickettsia rioja and two novel Rickettsia species also were detected. In addition, Borrelia turdi (1.8%) and B. valaisiana (0.9%) were identified in Ixodes ticks. This is the first report of R. slovaca in R. sanguineus s.l. and of R. monacensis, R. raoultii, R. slovaca, R. sibirica subsp. mongolitimonae and Ca. R. rioja in I. frontalis. Since most of the pathogens detected are zoonotic, their presence in these areas may have implications for public health.
Collapse
Affiliation(s)
- S Remesar
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - R Matute
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - P Díaz
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - N Martínez-Calabuig
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - A Prieto
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - J M Díaz-Cao
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - G López-Lorenzo
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - G Fernández
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - C López
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - R Panadero
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - P Díez-Baños
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - P Morrondo
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - D García-Dios
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
19
|
Lippi CA, Mundis SJ, Sippy R, Flenniken JM, Chaudhary A, Hecht G, Carlson CJ, Ryan SJ. Trends in mosquito species distribution modeling: insights for vector surveillance and disease control. Parasit Vectors 2023; 16:302. [PMID: 37641089 PMCID: PMC10463544 DOI: 10.1186/s13071-023-05912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Species distribution modeling (SDM) has become an increasingly common approach to explore questions about ecology, geography, outbreak risk, and global change as they relate to infectious disease vectors. Here, we conducted a systematic review of the scientific literature, screening 563 abstracts and identifying 204 studies that used SDMs to produce distribution estimates for mosquito species. While the number of studies employing SDM methods has increased markedly over the past decade, the overwhelming majority used a single method (maximum entropy modeling; MaxEnt) and focused on human infectious disease vectors or their close relatives. The majority of regional models were developed for areas in Africa and Asia, while more localized modeling efforts were most common for North America and Europe. Findings from this study highlight gaps in taxonomic, geographic, and methodological foci of current SDM literature for mosquitoes that can guide future efforts to study the geography of mosquito-borne disease risk.
Collapse
Affiliation(s)
- Catherine A Lippi
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA.
| | - Stephanie J Mundis
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Rachel Sippy
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, UK
| | - J Matthew Flenniken
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Anusha Chaudhary
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Gavriella Hecht
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA.
| |
Collapse
|
20
|
Xi D, Thoma A, Rajput-Ray M, Madigan A, Avramovic G, Garg K, Gilbert L, Lambert JS. A Longitudinal Study of a Large Clinical Cohort of Patients with Lyme Disease and Tick-Borne Co-Infections Treated with Combination Antibiotics. Microorganisms 2023; 11:2152. [PMID: 37763996 PMCID: PMC10536678 DOI: 10.3390/microorganisms11092152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The rising prevalence of tick-borne infections (TBIs) necessitates further attention. This study retrospectively investigated the types of TBIs, symptoms, and if combination antibiotics were helpful within a patient cohort at an infectious disease clinic in Ireland. In this chart audit of 301 individuals (184 female, 117 male) tested for TBIs, 140 (46.51%) had positive antibody responses for TBIs from an ELISA (enzyme-linked immunoassay) that was based on a modified two-tiered testing protocol. A total of 93 (66.43%) patients had positive antibody responses to one TBI: 83 (59.29%) for Borrelia, 7 (5.00%) for Rickettsia, and 1 (0.71%) each for either Babesia, Bartonella, or Ehrlichia. The remaining 47 (33.57%) patients were infected with multiple TBIs. These patients were treated with combination antibiotics and monitored at two subsequent follow-ups. Only 2 of 101 patients (1.98%) had discontinued treatment by the second follow-up. In the first follow-up with 118 patients, 70 (59.32%) reported pain and 48 (40.68%) had neurological symptoms. In the next follow-up of 101 patients, 41 (40.59%) had pain while 30 (29.70%) had neurological symptoms. There were statistically significant reductions in the incidence of pain (41.43%) and neurological (37.50%) symptoms between follow-ups. Thus, our study demonstrates that combination antibiotics effectively relieve TBI symptoms with good patient tolerance.
Collapse
Affiliation(s)
- David Xi
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (A.T.); (A.M.); (G.A.)
| | - Abbie Thoma
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (A.T.); (A.M.); (G.A.)
| | - Minha Rajput-Ray
- Curaidh Clinic: Innovative Solutions for Pain, Chronic Disease and Work Health, Perthshire PH2 8EH, UK;
| | - Anne Madigan
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (A.T.); (A.M.); (G.A.)
| | - Gordana Avramovic
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (A.T.); (A.M.); (G.A.)
| | - Kunal Garg
- Te?ted Oy, 40100 Jyväskylä, Finland; (K.G.); (L.G.)
| | | | - John S. Lambert
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (A.T.); (A.M.); (G.A.)
- Infectious Diseases Department, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Infectious Diseases Department, The Rotunda Hospital, D01 P5W9 Dublin, Ireland
| |
Collapse
|
21
|
Lippi CA, Gaff HD, Nadolny RM, Ryan SJ. Newer Surveillance Data Extends our Understanding of the Niche of Rickettsia montanensis (Rickettsiales: Rickettsiaceae) Infection of the American Dog Tick (Acari: Ixodidae) in the United States. Vector Borne Zoonotic Dis 2023. [PMID: 37083463 DOI: 10.1089/vbz.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Background: Understanding the geographic distribution of Rickettsia montanensis infections in Dermacentor variabilis is important for tick-borne disease management in the United States, as both a tick-borne agent of interest and a potential confounder in surveillance of other rickettsial diseases. Two previous studies modeled niche suitability for D. variabilis with and without R. montanensis, from 2002 to 2012, indicating that the D. variabilis niche overestimates the infected niche. This study updates these, adding data since 2012. Methods: Newer surveillance and testing data were used to update Species Distribution Models (SDMs) of D. variabilis, and R. montanensis-infected D. variabilis, in the United States. Using random forest models, found to perform best in previous work, we updated the SDMs and compared them with prior results. Warren's I niche overlap metric was used to compare between predicted suitability for all ticks and "R. montanensis-positive niche" models across datasets. Results: Warren's I indicated <2% change in predicted niche, and there was no change in order of importance of environmental predictors, for D. variabilis or R. montanensis-positive niche. The updated D. variabilis niche model overpredicted suitability compared with the updated R. montanensis-positive niche in key peripheral parts of the range, but slightly underpredicted through the northern and midwestern parts of the range. This reinforces previous findings of a more constrained R. montanensis-positive niche than predicted by D. variabilis records alone. Conclusions: The consistency of predicted niche suitability for D. variabilis in the United States, with the addition of nearly a decade of new data, corroborates this is a species with generalist habitat requirements. Yet a slight shift in updated niche distribution, even of low suitability, included more southern areas, pointing to a need for continued and extended monitoring and surveillance. This further underscores the importance of revisiting vector and vector-borne disease distribution maps.
Collapse
Affiliation(s)
- Catherine A Lippi
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Holly D Gaff
- Department of Biology, Old Dominion University, Norfolk, Virginia, USA
| | - Robyn M Nadolny
- Defense Centers for Public Health-Aberdeen, Aberdeen Proving Ground, Maryland, USA
| | - Sadie J Ryan
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Schluth CG, Standley CJ, Bansal S, Carlson CJ. Spatial parasitology and the unmapped human helminthiases. Parasitology 2023; 150:391-399. [PMID: 36632014 PMCID: PMC10090474 DOI: 10.1017/s0031182023000045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Helminthiases are a class of neglected tropical diseases that affect at least 1 billion people worldwide, with a disproportionate impact on resource-poor areas with limited disease surveillance. Geospatial methods can offer valuable insights into the burden of these infections, particularly given that many are subject to strong ecological influences on the environmental, vector-borne or zoonotic stages of their life cycle. In this study, we screened 6829 abstracts and analysed 485 studies that use maps to document, infer or predict transmission patterns for over 200 species of parasitic worms. We found that quantitative mapping methods are increasingly used in medical parasitology, drawing on One Health surveillance data from the community scale to model geographic distributions and burdens up to the regional or global scale. However, we found that the vast majority of the human helminthiases may be entirely unmapped, with research effort focused disproportionately on a half-dozen infections that are targeted by mass drug administration programmes. Entire regions were also surprisingly under-represented in the literature, particularly southern Asia and the Neotropics. We conclude by proposing a shortlist of possible priorities for future research, including several neglected helminthiases with a burden that may be underestimated.
Collapse
Affiliation(s)
| | - Claire J. Standley
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Colin J. Carlson
- Department of Biology, Georgetown University, Washington, DC, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
23
|
Saegerman C, Humblet MF, Leandri M, Gonzalez G, Heyman P, Sprong H, L’Hostis M, Moutailler S, Bonnet SI, Haddad N, Boulanger N, Leib SL, Hoch T, Thiry E, Bournez L, Kerlik J, Velay A, Jore S, Jourdain E, Gilot-Fromont E, Brugger K, Geller J, Studahl M, Knap N, Avšič-Županc T, Růžek D, Zomer TP, Bødker R, Berger TFH, Martin-Latil S, De Regge N, Raffetin A, Lacour SA, Klein M, Lernout T, Quillery E, Hubálek Z, Ruiz-Fons F, Estrada-Peña A, Fravalo P, Kooh P, Etore F, Gossner CM, Purse B. First Expert Elicitation of Knowledge on Possible Drivers of Observed Increasing Human Cases of Tick-Borne Encephalitis in Europe. Viruses 2023; 15:v15030791. [PMID: 36992499 PMCID: PMC10054665 DOI: 10.3390/v15030791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Tick-borne encephalitis (TBE) is a viral disease endemic in Eurasia. The virus is mainly transmitted to humans via ticks and occasionally via the consumption of unpasteurized milk products. The European Centre for Disease Prevention and Control reported an increase in TBE incidence over the past years in Europe as well as the emergence of the disease in new areas. To better understand this phenomenon, we investigated the drivers of TBE emergence and increase in incidence in humans through an expert knowledge elicitation. We listed 59 possible drivers grouped in eight domains and elicited forty European experts to: (i) allocate a score per driver, (ii) weight this score within each domain, and (iii) weight the different domains and attribute an uncertainty level per domain. An overall weighted score per driver was calculated, and drivers with comparable scores were grouped into three terminal nodes using a regression tree analysis. The drivers with the highest scores were: (i) changes in human behavior/activities; (ii) changes in eating habits or consumer demand; (iii) changes in the landscape; (iv) influence of humidity on the survival and transmission of the pathogen; (v) difficulty to control reservoir(s) and/or vector(s); (vi) influence of temperature on virus survival and transmission; (vii) number of wildlife compartments/groups acting as reservoirs or amplifying hosts; (viii) increase of autochthonous wild mammals; and (ix) number of tick species vectors and their distribution. Our results support researchers in prioritizing studies targeting the most relevant drivers of emergence and increasing TBE incidence.
Collapse
Affiliation(s)
- Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, 4000 Liege, Belgium
- Correspondence:
| | - Marie-France Humblet
- Department for Occupational Protection and Hygiene, Unit Biosafety, Biosecurity and Environmental Licences, University of Liege, 4000 Liege, Belgium
| | - Marc Leandri
- UMI SOURCE, Université Paris-Saclay—UVSQ, 78000 Versailles, France
| | - Gaëlle Gonzalez
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | | | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 MA Bilthoven, The Netherlands
| | - Monique L’Hostis
- Ecole Nationale Vétérinaire Agroalimentaire et de l’Alimentation Nantes-Atlantique, Oniris, 44307 Nantes, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Sarah I. Bonnet
- UMR 2000 Institut Pasteur-CNRS-Université Paris-Cité, Ecology and Emergence of Arthropod-borne Pathogens, 75015 Paris, France
- Animal Health Department, INRAE, 37380 Nouzilly, France
| | - Nadia Haddad
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Nathalie Boulanger
- UR7290: VBP: Borrelia Group, France and French Reference Centre on Lyme Borreliosis, CHRU, Unversity of Strasbourg, 67000 Strasbourg, France
| | - Stephen L. Leib
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | | | - Etienne Thiry
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, 4000 Liege, Belgium
| | - Laure Bournez
- ANSES, Nancy Laboratory for Rabies and Wildlife, 54220 Malzéville, France
| | - Jana Kerlik
- Department of Epidemiology, Regional Authority of Public Health in Banská Bystrica, 497556 Banská Bystrica, Slovakia
| | - Aurélie Velay
- Unité Mixte de Recherché Immunorhumathologie Moléculaire (UMR IRM_S) 1109, Université de Strasbourg, INSERM, 67000 Strasbourg, France
| | - Solveig Jore
- Zoonotic, Water and Foodborne Infections, The Norwegian Institute for Public Health (NIPH), 0213 Oslo, Norway
| | - Elsa Jourdain
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Route de Theix, 63122 Saint-Genès-Champanelle, France
| | | | - Katharina Brugger
- Competence Center Climate and Health, Austrian National Institute of Public Health, 1010 Vienna, Austria
| | - Julia Geller
- Department of Virology and Immunology, National Institute for Health Development, 11619 Tallinn, Estonia
| | - Marie Studahl
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, 41685 Gothenburg, Sweden
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Tizza P. Zomer
- Lyme Center Apeldoorn, Gelre Hospital, 7300 DS Apeldoorn, The Netherlands
| | - René Bødker
- Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Thomas F. H. Berger
- Agroscope, Risk Evaluation and Risk Mitigation, Schwarzenburgstrasse, 3003 Bern-Liebefeld, Switzerland
| | - Sandra Martin-Latil
- Laboratory for Food Safety, ANSES, University of Paris-EST, 94700 Maisons-Alfort, France
| | - Nick De Regge
- Operational Direction Infectious Diseases in Animals, Unit of Exotic and Vector-borne Diseases, Sciensano, 1180 Brussels, Belgium
| | - Alice Raffetin
- Reference Centre for Tick-Borne Diseases, Paris and Northern Region, Department of Infectious Diseases, General Hospital of Villeneuve-Saint-Georges, 94100 Villeneuve-Saint-Georges, France
| | - Sandrine A. Lacour
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Matthias Klein
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, LMU München, Marchioninistraße 15, 81377 München, Germany
| | - Tinne Lernout
- Scientific Directorate of Epidemiology and Public Health, Sciensano, 1180 Brussels, Belgium
| | - Elsa Quillery
- ANSES, Risk Assessment Department, 94700 Maisons-Alfort, France
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60365 Brno, Czech Republic
| | - Francisco Ruiz-Fons
- Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain
| | - Agustín Estrada-Peña
- Deptartment of Animal Health, Faculty of Veterinary Medicine, 50013 Zaragoza, Spain
| | - Philippe Fravalo
- Pôle Agroalimentaire, Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
| | - Pauline Kooh
- ANSES, Risk Assessment Department, 94700 Maisons-Alfort, France
| | - Florence Etore
- ANSES, Risk Assessment Department, 94700 Maisons-Alfort, France
| | - Céline M. Gossner
- European Centre for Disease Prevention and Control (ECDC), 17183 Solna, Sweden
| | - Bethan Purse
- UK Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Oxfordshire OX10 8BB, UK
| |
Collapse
|
24
|
Lippi CA, Canfield S, Espada C, Gaff HD, Ryan SJ. Estimating the distribution of Oryzomys palustris, a potential key host in expanding rickettsial tick-borne disease risk. Ecosphere 2023; 14:e4445. [PMID: 39211416 PMCID: PMC11359945 DOI: 10.1002/ecs2.4445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 03/18/2023] Open
Abstract
Increasingly, geographic approaches to assessing the risk of tick-borne diseases are being used to inform public health decision-making and surveillance efforts. The distributions of key tick species of medical importance are often modeled as a function of environmental factors, using niche modeling approaches to capture habitat suitability. However, this is often disconnected from the potential distribution of key host species, which may play an important role in the actual transmission cycle and risk potential in expanding tick-borne disease risk. Using species distribution modeling, we explore the potential geographic range of Oryzomys palustris, the marsh rice rat, which has been implicated as a potential reservoir host of Rickettsia parkeri, a pathogen transmitted by the Gulf Coast tick (Amblyomma maculatum) in the southeastern United States. Due to recent taxonomic reclassification of O. palustris subspecies, we reclassified geolocated collections records into the newer clade definitions. We modeled the distribution of the two updated clades in the region, establishing for the first time, range maps and distributions of these two clades. The predicted distribution of both clades indicates a largely Gulf and southeastern coastal distribution. Estimated suitable habitat for O. palustris extends into the southern portion of the Mid-Atlantic region, with a discontinuous, limited area of suitability in coastal California. Broader distribution predictions suggest potential incursions along the Mississippi River. We found considerable overlap of predicted O. palustris ranges with the distribution of A. maculatum, indicating the potential need for extended surveillance efforts in those overlapping areas and attention to the role of hosts in transmission cycles.
Collapse
Affiliation(s)
- Catherine A. Lippi
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Samuel Canfield
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Christina Espada
- Department of Biology, Old Dominion University, Norfolk, Virginia, USA
| | - Holly D. Gaff
- Department of Biology, Old Dominion University, Norfolk, Virginia, USA
| | - Sadie J. Ryan
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
Wimms C, Aljundi E, Halsey SJ. Regional dynamics of tick vectors of human disease. CURRENT OPINION IN INSECT SCIENCE 2023; 55:101006. [PMID: 36702303 DOI: 10.1016/j.cois.2023.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The expansion of tick-borne diseases challenges ecologists, epidemiologists, and public health professionals to understand the mechanisms underlying its emergence. The vast majority of tick-borne disease research emphasizes Ixodes spp. and Borrelia burgdorferi, with less known about other Ixodidae ticks that serve as vectors for an increasing number of pathogens of public health concern. Here, we review and discuss the current knowledge of tick and tick-borne pathogens in an undersurveilled region of the United States. We discuss how landscape shifts may potentially influence tick vector dynamics and expansion. We also discuss the impact of climate change on the phenology of ticks and subsequent disease transmission. Increased efforts in the Central Plains to conduct basic science will help understand the patterns of tick distribution and pathogen prevalence. It is crucial to develop intensive datasets that may be used to generate models that can aid in developing mitigation strategies.
Collapse
Affiliation(s)
- Chantelle Wimms
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Evan Aljundi
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Samniqueka J Halsey
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
26
|
Lippi CA, Gaff HD, Nadolny RM, Ryan SJ. Newer Surveillance Data Extends our Understanding of the Niche of Rickettsia montanensis (Rickettsiales: Rickettsiaceae) Infection of the American Dog Tick (Acari: Ixodidae) in the United States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523628. [PMID: 36711596 PMCID: PMC9882046 DOI: 10.1101/2023.01.11.523628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Understanding the geographic distribution of Rickettsia montanensis infections in Dermacentor variabilis is important for tick-borne disease management in the United States, as both a tick-borne agent of interest and a potential confounder in surveillance of other rickettsial diseases. Two previous studies modeled niche suitability for D. variabilis with and without R. montanensis , from 2002-2012, indicating that the D. variabilis niche overestimates the infected niche. This study updates these, adding data since 2012. Methods Newer surveillance and testing data were used to update Species Distribution Models (SDMs) of D. variabilis , and R. montanensis infected D. variabilis , in the United States. Using random forest (RF) models, found to perform best in previous work, we updated the SDMs and compared them with prior results. Warren's I niche overlap metric was used to compare between predicted suitability for all ticks and 'pathogen positive niche' models across datasets. Results Warren's I indicated <2% change in predicted niche, and there was no change in order of importance of environmental predictors, for D. variabilis or R. montanensis positive niche. The updated D. variabilis niche model overpredicted suitability compared to the updated R. montanensis positive niche in key peripheral parts of the range, but slightly underpredicted through the northern and midwestern parts of the range. This reinforces previous findings of a more constrained pathogen-positive niche than predicted by D. variabilis records alone. Conclusions The consistency of predicted niche suitability for D. variabilis in the United States, with the addition of nearly a decade of new data, corroborates this is a species with generalist habitat requirements. Yet a slight shift in updated niche distribution, even of low suitability, included more southern areas, pointing to a need for continued and extended monitoring and surveillance. This further underscores the importance of revisiting vector and vector-borne disease distribution maps.
Collapse
Affiliation(s)
- Catherine A. Lippi
- Department of Geography and Emerging Pathogens Institute, University Florida, Gainesville, FL 32611
| | - Holly D. Gaff
- Department of Biology, Old Dominion University, Norfolk, VA 23529
| | - Robyn M. Nadolny
- Defense Centers for Public Health-Aberdeen, Aberdeen Proving Ground, MD 21010
| | - Sadie J. Ryan
- Department of Geography and Emerging Pathogens Institute, University Florida, Gainesville, FL 32611
| |
Collapse
|
27
|
Martin JT, Fischhoff IR, Castellanos AA, Han BA. Ecological Predictors of Zoonotic Vector Status Among Dermacentor Ticks (Acari: Ixodidae): A Trait-Based Approach. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2158-2166. [PMID: 36066562 PMCID: PMC9667724 DOI: 10.1093/jme/tjac125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 05/05/2023]
Abstract
Increasing incidence of tick-borne human diseases and geographic range expansion of tick vectors elevates the importance of research on characteristics of tick species that transmit pathogens. Despite their global distribution and role as vectors of pathogens such as Rickettsia spp., ticks in the genus Dermacentor Koch, 1844 (Acari: Ixodidae) have recently received less attention than ticks in the genus Ixodes Latreille, 1795 (Acari: Ixodidae). To address this knowledge gap, we compiled an extensive database of Dermacentor tick traits, including morphological characteristics, host range, and geographic distribution. Zoonotic vector status was determined by compiling information about zoonotic pathogens found in Dermacentor species derived from primary literature and data repositories. We trained a machine learning algorithm on this data set to assess which traits were the most important predictors of zoonotic vector status. Our model successfully classified vector species with ~84% accuracy (mean AUC) and identified two additional Dermacentor species as potential zoonotic vectors. Our results suggest that Dermacentor species that are most likely to be zoonotic vectors are broad ranging, both in terms of the range of hosts they infest and the range of ecoregions across which they are found, and also tend to have large hypostomes and be small-bodied as immature ticks. Beyond the patterns we observed, high spatial and species-level resolution of this new, synthetic dataset has the potential to support future analyses of public health relevance, including species distribution modeling and predictive analytics, to draw attention to emerging or newly identified Dermacentor species that warrant closer monitoring for zoonotic pathogens.
Collapse
Affiliation(s)
- Jessica T Martin
- Department of Fish, Wildlife, and Conservation Ecology, New Mexico State University, 2980 South Espina Street, Las Cruces, NM 88003, USA
| | - Ilya R Fischhoff
- Cary Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, USA
| | | | - Barbara A Han
- Cary Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, USA
| |
Collapse
|
28
|
Transmission Cycle of Tick-Borne Infections and Co-Infections, Animal Models and Diseases. Pathogens 2022; 11:pathogens11111309. [PMID: 36365060 PMCID: PMC9696261 DOI: 10.3390/pathogens11111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Tick-borne pathogens such as species of Borrelia, Babesia, Anaplasma, Rickettsia, and Ehrlichia are widespread in the United States and Europe among wildlife, in passerines as well as in domestic and farm animals. Transmission of these pathogens occurs by infected ticks during their blood meal, carnivorism, and through animal bites in wildlife, whereas humans can become infected either by an infected tick bite, through blood transfusion and in some cases, congenitally. The reservoir hosts play an important role in maintaining pathogens in nature and facilitate transmission of individual pathogens or of multiple pathogens simultaneously to humans through ticks. Tick-borne co-infections were first reported in the 1980s in white-footed mice, the most prominent reservoir host for causative organisms in the United States, and they are becoming a major concern for public health now. Various animal infection models have been used extensively to better understand pathogenesis of tick-borne pathogens and to reveal the interaction among pathogens co-existing in the same host. In this review, we focus on the prevalence of these pathogens in different reservoir hosts, animal models used to investigate their pathogenesis and host responses they trigger to understand diseases in humans. We also documented the prevalence of these pathogens as correlating with the infected ticks’ surveillance studies. The association of tick-borne co-infections with other topics such as pathogens virulence factors, host immune responses as they relate to diseases severity, identification of vaccine candidates, and disease economic impact are also briefly addressed here.
Collapse
|
29
|
Barbosa AD, Long M, Lee W, Austen JM, Cunneen M, Ratchford A, Burns B, Kumarasinghe P, Ben-Othman R, Kollmann TR, Stewart CR, Beaman M, Parry R, Hall R, Tabor A, O’Donovan J, Faddy HM, Collins M, Cheng AC, Stenos J, Graves S, Oskam CL, Ryan UM, Irwin PJ. The Troublesome Ticks Research Protocol: Developing a Comprehensive, Multidiscipline Research Plan for Investigating Human Tick-Associated Disease in Australia. Pathogens 2022; 11:1290. [PMID: 36365042 PMCID: PMC9694322 DOI: 10.3390/pathogens11111290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
In Australia, there is a paucity of data about the extent and impact of zoonotic tick-related illnesses. Even less is understood about a multifaceted illness referred to as Debilitating Symptom Complexes Attributed to Ticks (DSCATT). Here, we describe a research plan for investigating the aetiology, pathophysiology, and clinical outcomes of human tick-associated disease in Australia. Our approach focuses on the transmission of potential pathogens and the immunological responses of the patient after a tick bite. The protocol is strengthened by prospective data collection, the recruitment of two external matched control groups, and sophisticated integrative data analysis which, collectively, will allow the robust demonstration of associations between a tick bite and the development of clinical and pathological abnormalities. Various laboratory analyses are performed including metagenomics to investigate the potential transmission of bacteria, protozoa and/or viruses during tick bite. In addition, multi-omics technology is applied to investigate links between host immune responses and potential infectious and non-infectious disease causations. Psychometric profiling is also used to investigate whether psychological attributes influence symptom development. This research will fill important knowledge gaps about tick-borne diseases. Ultimately, we hope the results will promote improved diagnostic outcomes, and inform the safe management and treatment of patients bitten by ticks in Australia.
Collapse
Affiliation(s)
- Amanda D. Barbosa
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, DF, Brazil
| | - Michelle Long
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Wenna Lee
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Jill M. Austen
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Mike Cunneen
- The App Workshop Pty Ltd., Perth, WA 6000, Australia
| | - Andrew Ratchford
- Emergency Department, Northern Beaches Hospital, Sydney, NSW 2086, Australia
- School of Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Brian Burns
- Emergency Department, Northern Beaches Hospital, Sydney, NSW 2086, Australia
- Sydney Medical School, Sydney University, Camperdown, NSW 2006, Australia
| | - Prasad Kumarasinghe
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia
- College of Science, Health, Education and Engineering, Murdoch University, Murdoch, WA 6150, Australia
- Western Dermatology, Hollywood Medical Centre, Nedlands, WA 6009, Australia
| | | | | | - Cameron R. Stewart
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia
| | - Miles Beaman
- PathWest Laboratory Medicine, Murdoch, WA 6150, Australia
- Pathology and Laboratory Medicine, Medical School, University of Western Australia, Crawley, WA 6009, Australia
- School of Medicine, University of Notre Dame Australia, Fremantle, WA 6160, Australia
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Roy Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Ala Tabor
- Queensland Alliance for Agriculture and Food Innovation, Centre of Animal Science, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Justine O’Donovan
- Clinical Services and Research, Australian Red Cross Lifeblood, Sydney, NSW 2015, Australia
| | - Helen M. Faddy
- Clinical Services and Research, Australian Red Cross Lifeblood, Sydney, NSW 2015, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Petrie, QLD 4502, Australia
| | - Marjorie Collins
- School of Psychology, Murdoch University, Murdoch, WA 6150, Australia
| | - Allen C. Cheng
- School of Public Health and Preventive Medicine, Monash University, Clayton, VIC 3800, Australia
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC 3004, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Stephen Graves
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Charlotte L. Oskam
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Una M. Ryan
- Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Peter J. Irwin
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
30
|
Morozov A, Tischenkov A, Silaghi C, Proka A, Toderas I, Movila A, Frickmann H, Poppert S. Prevalence of Bacterial and Protozoan Pathogens in Ticks Collected from Birds in the Republic of Moldova. Microorganisms 2022; 10:microorganisms10061111. [PMID: 35744630 PMCID: PMC9227923 DOI: 10.3390/microorganisms10061111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Epidemiological knowledge on pathogens in ticks feeding on birds in Moldova is scarce. To reduce this gap of information, a total of 640 migrating and native birds of 40 species were caught from 2012 to 2015 and examined for the presence of ticks in the Republic of Moldova. Altogether, 262 ticks belonging to five tick species (Ixodes ricunus n = 245, Ixodes frontalis n = 12, Haemaphysalis punctata n = 2, Hyalomma marginatum n = 2 (only males), Dermacentor marginatus n = 1) were collected from 93 birds. Of these ticks, 250 (96%) were at the stage of a nymph and 9 at the stage of a larva (3%). One imago of I. frontalis and two imagoes of Hy. marginatum were found. Generally, ticks infested 14.1% of the assessed birds belonging to 12 species. DNA was extracted from individual ticks with subsequent PCR targeting Rickettsia spp., Borrelia spp. in general, as well as relapsing fever-associated Borrelia spp., in particular, Anaplasma phagocytophilum, Neoehrlichia mikurensis, Babesia spp. and Coxiella burnetii. The bird species Turdus merula showed the heaviest infestation with ticks and the highest incidence of infected ticks. Altogether, 32.8% of the assessed ticks (n = 86) were positive for one of the pathogens. DNA of Borrelia spp. was found in 15.2% (40/262) of the investigated ticks; in 7.6% of ticks (20/262), DNA of rickettsiae was detected; 6.9% (18/262) of the ticks were positive for A. phagocytophilum DNA; in 1.5% of the ticks (4/262), DNA of Neoehrlichia mikurensis was detected, followed by 1.5% (4/262) Babesia microti and 1.5% (4/262) Borrelia miyamotoi. Within the B. burgdorferi complex, B. garinii (n = 36) was largely predominant, followed by B. valaisiana (n = 2) and B. lusitaniae (n = 2). Among the detected Rickettsia spp., R. monacensis (n = 16), R. helvetica (n = 2) and R. slovaca (n = 1) were identified. In conclusion, the study provided some new information on the prevalence of ticks on birds in Moldova, as well as the presence of DNA of pathogens in the ticks. By doing so, it provided an additional piece in the puzzle of the global epidemiology of tick-transmitted infectious diseases from a geographic side from where respective surveillance data are scarce.
Collapse
Affiliation(s)
- Alexandr Morozov
- Center of Research of Biological Invasions, Institute of Zoology, MD-2012 Chisinau, Moldova; (A.P.); (I.T.); (A.M.)
- Correspondence: (A.M.); (S.P.)
| | - Alexei Tischenkov
- Natural Geography Department, Shevchenko Transnistria State University, MD-3300 Tiraspol, Moldova;
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, 80802 Munich, Germany;
- Institute of Infectology, Friedrich-Loeffler-Institute, 17493 Greifswald, Germany
| | - Andrei Proka
- Center of Research of Biological Invasions, Institute of Zoology, MD-2012 Chisinau, Moldova; (A.P.); (I.T.); (A.M.)
| | - Ion Toderas
- Center of Research of Biological Invasions, Institute of Zoology, MD-2012 Chisinau, Moldova; (A.P.); (I.T.); (A.M.)
| | - Alexandru Movila
- Center of Research of Biological Invasions, Institute of Zoology, MD-2012 Chisinau, Moldova; (A.P.); (I.T.); (A.M.)
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany;
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Sven Poppert
- Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany
- Correspondence: (A.M.); (S.P.)
| |
Collapse
|