1
|
Adams JJ, Bruce HA, Subramania S, Ploder L, Garcia J, Pot I, Blazer LL, Singer AU, Sidhu SS. Synthetic antibodies targeting EphA2 induce diverse signaling-competent clusters with differential activation. Protein Sci 2025; 34:e70145. [PMID: 40411427 PMCID: PMC12102760 DOI: 10.1002/pro.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/26/2025]
Abstract
The receptor tyrosine kinase EphA2 interacts with ephrin (Efn) ligands to mediate bi-directional signals that drive cellular sorting processes during tissue development. In the context of various cancers, EphA2 can also drive invasive metastatic disease and represents an important target for cancer therapeutics. Natural Efn ligands sterically seed intertwined EphA2 clusters capable of recruiting intracellular kinases to mediate trans-phosphorylation. Synthetic proteins, such as antibodies (Abs), can mimic Efn ligands to trigger EphA2 signaling, leading to receptor internalization and degradation, and enabling intracellular delivery of conjugated drugs. Furthermore, Abs are capable of recruiting EphA2 into clusters distinct from those seeded by Efn. We developed three synthetic Abs targeting distinct EphA2 domains and determined the paratope valency necessary for agonist or antagonist properties of each of the three epitopes. Structural modeling of monovalent Fabs in complex with EphA2 elucidated competitive and non-competitive mechanisms of inhibition of EphA2 canonical signaling. Likewise, modeling of clusters induced by bivalent IgGs elucidated multiple signaling-competent EphA2 clusters capable of triggering a continuum of signaling strengths and provided insights into the requirement for multimerization of EphA2 to trigger phosphorylation. Our study shows how different agonist clusters lead to distinct kinase recruitment efficiencies to modify phosphotyrosine signal strength, and provides a panel of anti-EphA2 Abs as reagents for the development of therapeutics.
Collapse
Affiliation(s)
| | | | | | - Lynda Ploder
- School of PharmacyUniversity of WaterlooKitchenerOntarioCanada
| | - Julia Garcia
- School of PharmacyUniversity of WaterlooKitchenerOntarioCanada
| | - Isabelle Pot
- School of PharmacyUniversity of WaterlooKitchenerOntarioCanada
| | - Levi L. Blazer
- School of PharmacyUniversity of WaterlooKitchenerOntarioCanada
| | | | | |
Collapse
|
2
|
Alexandraki KI, Papadimitriou E, Spyroglou A, Karapanagioti A, Antonopoulou I, Theohari I, Violetis O, Sotiropoulos GC, Theocharis S, Kaltsas GA. Immunohistochemical expression of ephrin receptors in neuroendocrine neoplasms: a case-series of gastroenteropancreatic neuroendocrine neoplasms and a systematic review of the literature. Endocrine 2025; 87:1323-1332. [PMID: 39425842 DOI: 10.1007/s12020-024-04079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Erythropoietin-producing hepatocellular (EPH) receptors are the largest known family of tyrosine kinases receptors (TKR) in humans, implicated in cell proliferation, adhesion, migration, tumor angiogenesis, invasion and metastasis. The aim of the present study is to assess the expression of EPHs in neuroendocrine neoplasms (NENs). METHODS Immunohistochemical staining of specimens of 30 patients with gastroenteropancreatic and lung NENs was performed for EPH-A1, EPH-A2, EPH-A4, EPH-A5 protein expression, in addition to ki-67 multiplication index and programmed death-ligand 1. Additionally, we performed a systematic review of the available literature in three different databases reporting on the expression of EPH in all neuroendocrine neoplasms. RESULTS Positive expression was seen in 16/19 (84%) specimens for EPH-A1, 15/23 (65%) for EPH-A2, 21/24 (88%) for EPH-A4, 24/26 (92%) for EPH-A5. EPH-A1 was expressed in 9/9 pancreatic, 3/4 small intestine, but not in one lung NEN, EPH-A2 in 5/10 pancreatic, 3/4 small intestine and lung, and in one of each of gastric, appendix, colorectal, and cervical NENs, respectively. EPH-A4 showed positive expression in 9/11 pancreatic, 4/4 small intestine, 3/3 lung specimens and EPH-A5 in 10/11, 4/4 and 4/4, respectively. Data retrieved from the systematic review of the literature in combination with the data from the present study are suggestive of a frequent EPH expression in pituitary, thyroid, lung and gastroenteropancreatic NENs, yet, with varying expressions of the single receptor subtypes. CONCLUSION EPHs may have a role in NEN tumorigenesis, prognosis as well as a role in the evolving molecular-targeted therapies.
Collapse
Affiliation(s)
- Krystallenia I Alexandraki
- Second Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Eirini Papadimitriou
- Endocrine Unit, First Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariadni Spyroglou
- Second Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angeliki Karapanagioti
- Endocrine Unit, First Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Antonopoulou
- Endocrine Unit, First Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Irini Theohari
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Odysseas Violetis
- Second Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios C Sotiropoulos
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory A Kaltsas
- Endocrine Unit, First Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Tognolini M, Ferrari FR, Zappia A, Giorgio C. Ephrin receptor type-A2 (EphA2) targeting in cancer: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:1009-1018. [PMID: 39259047 DOI: 10.1080/13543776.2024.2402382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION EphA2 is a tyrosine kinase receptor and is considered a promising target in cancer. Different approaches are used to target EphA2 receptor, and a lot of preclinical data demonstrate the potential exploitation of this receptor in clinical oncology for diagnosis and cancer therapy, including immunotherapy. AREAS COVERED In this review, we have summarized the recent patents involving the EphA2 targeting in cancer. For this aim, we used the patent database Patentscope covering the time period of 2018-present. Preclinical and clinical data of the inventions were considered when published on peer reviewed journals. Moreover, the clinicalTrial.gov identifiers (NCT numbers) were included when available. For an easier and more immediate reading, we classify the patents in different categories, considering the nature (aptamers, small molecules, antibodies, peptides, antigens and chimeric antigen receptors) of the inventions exploiting EphA2 in clinical oncology. EXPERT OPINION Despite the availability of a plethora of chemically diverse agents, there are no approved anticancer drugs targeting EphA2 yet. However, these intellectual properties, some of which supported by strong preclinical evidence, keep the hope that, after more than 30 years from its discovery, we will finally see the first EphA2 targeting agent approved in clinical oncology.
Collapse
Affiliation(s)
| | | | - Alfonso Zappia
- Food and Drug Department, University of Parma, Parma, Italy
| | | |
Collapse
|
4
|
Giordano G, Tucciarello C, Merlini A, Cutrupi S, Pignochino Y. Targeting the EphA2 pathway: could it be the way for bone sarcomas? Cell Commun Signal 2024; 22:433. [PMID: 39252029 PMCID: PMC11382444 DOI: 10.1186/s12964-024-01811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Bone sarcomas are malignant tumors of mesenchymal origin. Complete surgical resection is the cornerstone of multidisciplinary treatment. However, advanced, unresectable forms remain incurable. A crucial step towards addressing this challenge involves comprehending the molecular mechanisms underpinning tumor progression and metastasis, laying the groundwork for innovative precision medicine-based interventions. We previously showed that tyrosine kinase receptor Ephrin Type-A Receptor 2 (EphA2) is overexpressed in bone sarcomas. EphA2 is a key oncofetal protein implicated in metastasis, self-renewal, and chemoresistance. Molecular, genetic, biochemical, and pharmacological approaches have been developed to target EphA2 and its signaling pathway aiming to interfere with its tumor-promoting effects or as a carrier for drug delivery. This review synthesizes the main functions of EphA2 and their relevance in bone sarcomas, providing strategies devised to leverage this receptor for diagnostic and therapeutic purposes, with a focus on its applicability in the three most common bone sarcoma histotypes: osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Giorgia Giordano
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Cristina Tucciarello
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Ymera Pignochino
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy.
| |
Collapse
|
5
|
Ezenwafor TC, Uzonwanne VO, Madukwe JUA, Amin SM, Anye VC, Obayemi JD, Odusanya OS, Soboyejo WO. Adhesion of LHRH/EphA2 to human Triple Negative Breast Cancer tissues. J Mech Behav Biomed Mater 2022; 136:105461. [PMID: 36195050 DOI: 10.1016/j.jmbbm.2022.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022]
Abstract
The adhesive interactions between molecular recognition units (such as specific peptides and antibodies) and antigens or other receptors on the surfaces of tumors are of great value in the design of targeted nanoparticles and drugs for the detection and treatment of specific cancers. In this paper, we present the results of a combined experimental and theoretical study of the adhesion between Luteinizing Hormone Releasing Hormone (LHRH)/Epherin type A2 (EphA2)-AFM coated tips and LHRH/EphA2 receptors that are overexpressed on the surfaces of human Triple Negative Breast Cancer (TNBC) tissues of different histological grades. Following a histochemical and immuno-histological study of human tissue extracts, the receptor overexpression, and their distributions are characterized using Immunohistochemistry (IHC), Immunofluorescence (IF), and a combination of fluorescence microscopy and confocal microscopy. The adhesion forces between LHRH or EphA2 and human TNBC breast tissues are measured using force microscopy techniques that account for the potential effects of capillary forces due to the presence of water vapor. The corresponding adhesion energies are also determined using adhesion theory. The pull off forces and adhesion energies associated with higher grades of TNBC are shown to be greater than those associated with normal/non-tumorigenic human breast tissues, which were studied as controls. The observed increase in adhesion forces and adhesion energies are also correlated with the increasing incidence of LHRH/EphA2 receptors at higher grades of TNBC. The implications of the results are discussed for the development of targeted nanostructures for the detection and treatment of TNBC.
Collapse
Affiliation(s)
- Theresa C Ezenwafor
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; NASENI Centre of Excellence in Nanotechnology and Advanced Materials, Km 4, Ondo Road, Akure, Ondo State, Nigeria; Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA, 01609, USA
| | - Vanessa O Uzonwanne
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA, 01609, USA
| | - Jonathan U A Madukwe
- Department of Histopathology, National Hospital, Abuja, Federal Capital Territory (FCT), Nigeria
| | - Said M Amin
- Department of Histopathology, National Hospital, Abuja, Federal Capital Territory (FCT), Nigeria
| | - Vitalis C Anye
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria
| | - John D Obayemi
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA, 01609, USA
| | - Olushola S Odusanya
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Kwale, Abuja, Federal Capital Territory, Nigeria
| | - Winston O Soboyejo
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA, 01609, USA.
| |
Collapse
|
6
|
Gao G, Wang Y, Hua H, Li D, Tang C. Marine Antitumor Peptide Dolastatin 10: Biological Activity, Structural Modification and Synthetic Chemistry. Mar Drugs 2021; 19:363. [PMID: 34202685 PMCID: PMC8303260 DOI: 10.3390/md19070363] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 12/22/2022] Open
Abstract
Dolastatin 10 (Dol-10), a leading marine pentapeptide isolated from the Indian Ocean mollusk Dolabella auricularia, contains three unique amino acid residues. Dol-10 can effectively induce apoptosis of lung cancer cells and other tumor cells at nanomolar concentration, and it has been developed into commercial drugs for treating some specific lymphomas, so it has received wide attention in recent years. In vitro experiments showed that Dol-10 and its derivatives were highly lethal to common tumor cells, such as L1210 leukemia cells (IC50 = 0.03 nM), small cell lung cancer NCI-H69 cells (IC50 = 0.059 nM), and human prostate cancer DU-145 cells (IC50 = 0.5 nM), etc. With the rise of antibody-drug conjugates (ADCs), milestone progress was made in clinical research based on Dol-10. A variety of ADCs constructed by combining MMAE or MMAF (Dol-10 derivatives) with a specific antibody not only ensured the antitumor activity of the drugs themself but also improved their tumor targeting and reduced the systemic toxicity. They are currently undergoing clinical trials or have been approved for marketing, such as Adcetris®, which had been approved for the treatment of anaplastic large T-cell systemic malignant lymphoma and Hodgkin lymphoma. Dol-10, as one of the most medically valuable natural compounds discovered up to now, has brought unprecedented hope for tumor treatment. It is particularly noteworthy that, by modifying the chemical structure of Dol-10 and combining with the application of ADCs technology, Dol-10 as a new drug candidate still has great potential for development. In this review, the biological activity and chemical work of Dol-10 in the advance of antitumor drugs in the last 35 years will be summarized, which will provide the support for pharmaceutical researchers interested in leading exploration of antitumor marine peptides.
Collapse
Affiliation(s)
- Gang Gao
- School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China;
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (H.H.); (D.L.)
| | - Yanbing Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China;
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (H.H.); (D.L.)
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (H.H.); (D.L.)
| | - Chunlan Tang
- School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China;
| |
Collapse
|
7
|
Expression Pattern and Prognostic Value of EPHA/EFNA in Breast Cancer by Bioinformatics Analysis: Revealing Its Importance in Chemotherapy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5575704. [PMID: 33977106 PMCID: PMC8087473 DOI: 10.1155/2021/5575704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 11/20/2022]
Abstract
The activities of the ephrin family in breast cancer (BrCa) are complex. Family A receptors (EPHA) and ligands (EFNA) can act as oncogenes or tumor suppressors and are implicated in chemoresistance. Here, we examined the expression pattern and prognostic value of the EPHA/EFNA family in patients with breast cancer, including patients with different subtypes or different chemotherapy cohorts. In the UALCAN database, the mRNA expression of EPHA1, EPHA10, EFNA1, EFNA3, and EFNA4 was significantly higher, whereas that of EPHA2, EPHA4, EPHA5, and EFNA5 was significantly lower in breast cancer tissues than in paracancerous tissues. The transcriptional levels of EPHA/EFNA family members were correlated with intrinsic subclasses of breast cancer. The relationship between EPHA/EFNA and the clinicopathological parameters of BrCa was analyzed using bc-GenExMiner V4.5. EPHA1, EPHA2, EPHA4, EPHA7, EFNA3, EFNA4, and EFNA5 were upregulated in estrogen receptor- (ER-) and progesterone receptor- (PR-) negative tumors, whereas EPHA3, EPHA6, and EFNA1 were upregulated in ER- and PR-positive tumors. EPHA1, EPHA2, EFNA3, and EFNA4 mRNA expression was significantly higher in human epidermal growth factor receptor 2- (HER2-) positive tumors than in HER2-negative tumors. Triple-negative status was positively correlated with EPHA1, EPHA2, EPHA4, EPHA7, EFNA3, EFNA4, and EFNA5 and negatively correlated with EPHA3 and EPHA10 mRNA expression. Genetic alterations of EPHA/EFNA in breast cancer varied from 1.1% to 10% for individual genes, as determined by the cBioPortal database. The Kaplan–Meier plotter indicated that high EphA7 mRNA expression was associated with poor overall survival (OS) and recurrence-free survival (RFS), especially in the HER2 and luminal A subtypes. EFNA4 was predicted to have poor OS and RFS in breast cancers, especially in luminal B, basal-like subtype, and patients treated with adjuvant chemotherapy. High EPHA3 expression was significantly associated with better OS and RFS, especially in the luminal A subtype, but with poor RFS in BrCa patients receiving chemotherapy. Our findings systematically elucidate the expression pattern and prognostic value of the EPHA/EFNA family in BrCa, which might provide potential prognostic factors and novel targets in BrCa patients, including those with different subtypes or treated with chemotherapy.
Collapse
|
8
|
Hsu K, Middlemiss S, Saletta F, Gottschalk S, McCowage GB, Kramer B. Chimeric Antigen Receptor-modified T cells targeting EphA2 for the immunotherapy of paediatric bone tumours. Cancer Gene Ther 2021; 28:321-334. [PMID: 32873870 PMCID: PMC8057949 DOI: 10.1038/s41417-020-00221-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapy, as an approved treatment option for patients with B cell malignancies, demonstrates that genetic modification of autologous immune cells is an effective anti-cancer regimen. Erythropoietin-producing Hepatocellular receptor tyrosine kinase class A2 (EphA2) is a tumour associated antigen expressed on a range of sarcomas, including paediatric osteosarcoma (OS) and Ewing sarcoma (ES). We tested human EphA2 directed CAR T cells for their capacity to target and kill human OS and ES tumour cells using in vitro and in vivo assays, demonstrating that EphA2 CAR T cells have potent anti-tumour efficacy in vitro and can eliminate established OS and ES tumours in vivo in a dose and delivery route dependent manner. Next, in an aggressive metastatic OS model we demonstrated that systemically infused EphA2 CAR T cells can traffic to and eradicate tumour deposits in murine livers and lungs. These results support further pre-clinical evaluation of EphA2 CAR T cells to inform the design of early phase clinical trial protocols to test the feasibility and safety of this immune cell therapy in paediatric bone sarcoma patients.
Collapse
Affiliation(s)
- Kenneth Hsu
- Children's Cancer Research Unit, Kid's Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Shiloh Middlemiss
- Children's Cancer Research Unit, Kid's Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Federica Saletta
- Children's Cancer Research Unit, Kid's Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey B McCowage
- Children's Cancer Centre, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Belinda Kramer
- Children's Cancer Research Unit, Kid's Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
| |
Collapse
|
9
|
Coleman RL, Hu W, Soliman P, Nick A, Ramirez PT, Westin SN, Garcia ME, Zhu Z, Palancia J, Fellman BM, Yuan Y, Ram P, Bischoff F, Schmeler K, Bodurka D, Meyer LA, Sood AK. Dasatinib, paclitaxel, and carboplatin in women with advanced-stage or recurrent endometrial cancer: A pilot clinical and translational study. Gynecol Oncol 2021; 161:104-112. [PMID: 33551196 PMCID: PMC11844805 DOI: 10.1016/j.ygyno.2021.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate the effect of dasatinib therapy on EphA2 signaling in cancers of women with measurable (biopsy amenable) advanced-stage, chemo-naïve primary or recurrent endometrial cancer. Preliminary efficacy was also assessed. PATIENTS AND METHODS We performed a pilot study of single-agent dasatinib lead-in, followed by triplet dasatinib, paclitaxel, and carboplatin. We measured the downstream effectors of EphA2 signaling in pre- and post-dasatinib treatment biopsy tissue samples; we also determined the severity of adverse events and patients' progression-free survival and overall survival durations. RESULTS Eighteen patients were recruited and given dasatinib (150 mg orally daily for 14 days), followed by paclitaxel, carboplatin and dasatinib (daily) for six cycles (21-day cycles). Seventeen patients were evaluable for toxicity and 11 patients for response. A reverse phase protein array and proximity ligation assay revealed that CRAF/BRAF dimerization, caveolin-1 level, and Notch pathway signaling were predictive of response and resistance to dasatinib. Overall, the objective response rate was 45% (95% CI: 17%-77%), with median progression-free survival duration of 10.5 months and median overall survival duration of 30.4 months. The most common grade 3 or 4 adverse events were neutropenia (76%), thrombocytopenia (53%), anemia (53%), and fatigue (12%). CONCLUSIONS Caveolin-1 expression, in combination with CRAF/BRAF heterodimerization, is associated with resistance to EphA2 targeting by dasatinib. The triplet combination showed interesting clinical activity in endometrial cancer with acceptable toxicity. Pretreatment with dasatinib may accentuate combination therapy toxicity.
Collapse
Affiliation(s)
- Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Pamela Soliman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Alpa Nick
- Tennessee Oncology from St. Thomas Medical Partners, Nashville, TN, United States of America
| | - Pedro T Ramirez
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Michael E Garcia
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Zhifei Zhu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Julieta Palancia
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Bryan M Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Prahlad Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | | - Kathleen Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Diane Bodurka
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Larissa A Meyer
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
10
|
Kim J, Kim JS, Min KH, Kim YH, Chen X. Bombesin-Tethered Reactive Oxygen Species (ROS)-Responsive Nanoparticles for Monomethyl Auristatin F (MMAF) Delivery. Bioengineering (Basel) 2021; 8:bioengineering8040043. [PMID: 33805342 PMCID: PMC8066503 DOI: 10.3390/bioengineering8040043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Dolastatin derivatives, represented by monomethylauristatin E (MMAE), have been translated in clinic with a form of antibody–drug conjugate; however, their potential in nanoparticle systems has not been well established due to the potential risk of immature release of extremely high cytotoxic dolastatin drugs during blood circulation. Herein, we rationally propose monomethylauristatin F (MMAF), a dolastatin-derived, loaded nanoparticle system composed of bombesin (BBN)-tethered ROS-responsive micelle system (BBN-PEG-PPADT) to achieve efficient anticancer therapy with targeted and efficient delivery of MMAF. The developed MMAF-loaded BBN-PEG-PPADT micelles (MMAF@BBN-PEG-PPADT) exhibited improved cellular uptake via interactions between BBN and gastrin-releasing peptide receptors on the cancer cells and the intracellular burst release of MMAF, owing to the ROS-responsive disruption, which allowed the efficient anticancer effects of MMAF in vitro. This study suggests the potential of nanoparticle systems in the delivery of dolastatin drugs.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
- Correspondence: (J.K.); (X.C.)
| | | | - Kyung Hyun Min
- Department of Pharmacy, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Korea;
| | - Young-Hwa Kim
- Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (J.K.); (X.C.)
| |
Collapse
|
11
|
London M, Gallo E. The EphA2 and cancer connection: potential for immune-based interventions. Mol Biol Rep 2020; 47:8037-8048. [PMID: 32990903 DOI: 10.1007/s11033-020-05767-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
The Eph (erythropoietin-producing human hepatocellular) receptors form the largest known subfamily of receptor tyrosine kinases. These receptors interact with membrane-bound ephrin ligands via direct cell-cell interactions resulting in bi-directional activation of signal pathways. Importantly, the Eph receptors play critical roles in embryonic tissue organization and homeostasis, and in the maintenance of adult processes such as long-term potentiation, angiogenesis, and stem cell differentiation. The Eph receptors also display properties of both tumor promoters and suppressors depending on the cellular context. Characterization of EphA2 receptor in regard to EphA2 dysregulation has revealed associations with various pathological processes, especially cancer. The analysis of various tumor types generally identify EphA2 receptor as overexpressed and/or mutated, and for certain types of cancers EphA2 is linked with poor prognosis and decreased patient survival. Thus, here we highlight the role of EphA2 in malignant tissues that are specific to cancer; these include glioblastoma multiforme, prostate cancer, ovarian and uterine cancers, gastric carcinoma, melanoma, and breast cancer. Due to its large extracellular domain, therapeutic targeting of EphA2 with monoclonal antibodies (mAbs), which may function as inhibitors of ligand activation or as molecular agonists, has been an oft-attempted strategy. Therefore, we review the most current mAb-based therapies against EphA2 expressing cancers currently in pre-clinical and/or clinical stages. Finally, we discuss the latest peptides and cyclical-peptides that function as selective agonists for EphA2 receptor.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
12
|
Xiao T, Xiao Y, Wang W, Tang YY, Xiao Z, Su M. Targeting EphA2 in cancer. J Hematol Oncol 2020; 13:114. [PMID: 32811512 PMCID: PMC7433191 DOI: 10.1186/s13045-020-00944-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Eph receptors and the corresponding Eph receptor-interacting (ephrin) ligands jointly constitute a critical cell signaling network that has multiple functions. The tyrosine kinase EphA2, which belongs to the family of Eph receptors, is highly produced in tumor tissues, while found at relatively low levels in most normal adult tissues, indicating its potential application in cancer treatment. After 30 years of investigation, a large amount of data regarding EphA2 functions have been compiled. Meanwhile, several compounds targeting EphA2 have been evaluated and tested in clinical studies, albeit with limited clinical success. The present review briefly describes the contribution of EphA2-ephrin A1 signaling axis to carcinogenesis. In addition, the roles of EphA2 in resistance to molecular-targeted agents were examined. In particular, we focused on EphA2's potential as a target for cancer treatment to provide insights into the application of EphA2 targeting in anticancer strategies. Overall, EphA2 represents a potential target for treating malignant tumors.
Collapse
Affiliation(s)
- Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Yuhang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenxiang Wang
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yan Yan Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Zhiqiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Min Su
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
13
|
Orahoske CM, Li Y, Petty A, Salem FM, Hanna J, Zhang W, Su B, Wang B. Dimeric small molecule agonists of EphA2 receptor inhibit glioblastoma cell growth. Bioorg Med Chem 2020; 28:115656. [PMID: 32828423 DOI: 10.1016/j.bmc.2020.115656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 11/15/2022]
Abstract
EphA2 receptor kinase could become a novel target for anti-glioblastoma treatment. Doxazosin previously identified acts like the endogenous ligand of EphA2 and induces cell apoptosis. Through lead structure modification a derivative of Doxazosin possessing unique dimeric structure showed an improvement in the activity. In the current study, we expanded the dimeric scaffold by lead optimization to explore the chemical space of the conjoining moieties and a slight variation to the core structure. 27 new derivatives were synthesized and examined with EphA2 overexpressed and wild type glioblastoma cell lines for cell proliferation and EphA2 activation. Three new compounds 3d, 3e, and 7bg showed potent and selective activities against the growth of EphA2 overexpressed glioblastoma cells. Dimer 3d modification replaces the long alkyl chain with a short polyethylene glycol chain. Dimer 7bg has a relatively longer polyethylene glycol chain in comparison to compound 3d and the length is more similar to the lead compound. Whereas dimer 3e has a rigid aromatic linker exploring the chemical space. The diversity of the linkers in the active suggest additional hydrogen binding sites has a positive correlation to the activity. All three dimers showed selective activity in EphA2 overexpressed cells, indicating the activity is correlated to the EphA2 targeting effect.
Collapse
Affiliation(s)
- Cody M Orahoske
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Yaxin Li
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Aaron Petty
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fatma M Salem
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Jovana Hanna
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Wenjing Zhang
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA.
| | - Bingcheng Wang
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
14
|
Bennett G, Brown A, Mudd G, Huxley P, Van Rietschoten K, Pavan S, Chen L, Watcham S, Lahdenranta J, Keen N. MMAE Delivery Using the Bicycle Toxin Conjugate BT5528. Mol Cancer Ther 2020; 19:1385-1394. [PMID: 32398269 DOI: 10.1158/1535-7163.mct-19-1092] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Abstract
The EphA2 receptor is found at high levels in tumors and low levels in normal tissue and high EphA2 expression in biopsies is a predictor of poor outcome in patients. Drug discovery groups have therefore sought to develop EphA2-based therapies using small molecule, peptide, and nanoparticle-based approaches (1-3). However, until now only EphA2-targeting antibody-drug conjugates (ADC) have entered clinical development. For example, MEDI-547 is an EphA2-targeting ADC that displayed encouraging antitumor activity in preclinical models and progressed to phase I clinical testing in man. Here we describe the development of BT5528, a bicyclic peptide ("Bicycle") conjugated to the auristatin derivative maleimidocaproyl-monomethyl auristatin E to generate the Bicycle toxin conjugate BT5528. The report compares and contrasts the Pharmacokinetics (PK) characteristics of antibody and Bicycle-based targeting systems and discusses how the PK and payload characteristics of different delivery systems impact the efficacy-toxicity trade off which is key to the development of successful cancer therapies. We show that BT5528 gives rise to rapid update into tumors and fast renal elimination followed by persistent toxin levels in tumors without prolonged exposure of parent drug in the vasculature. This fast in, fast out kinetics gave rise to more favorable toxicology findings in rats and monkeys than were observed with MEDI-547 in preclinical and clinical studies.Graphical Abstract: http://mct.aacrjournals.org/content/molcanther/19/7/1385/F1.large.jpg.
Collapse
Affiliation(s)
| | - Amy Brown
- Bicycle Therapeutics, Cambridge, United Kingdom
| | - Gemma Mudd
- Bicycle Therapeutics, Cambridge, United Kingdom
| | | | | | - Silvia Pavan
- Fabbrica Italiana Sintetici S.p.A., Vicenza, Italy
| | | | | | | | | |
Collapse
|
15
|
Janes PW, Vail ME, Gan HK, Scott AM. Antibody Targeting of Eph Receptors in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13050088. [PMID: 32397088 PMCID: PMC7281212 DOI: 10.3390/ph13050088] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
The Eph subfamily of receptor tyrosine kinases mediate cell-cell communication controlling cell and tissue patterning during development. While generally less active in adult tissues, they often re-emerge in cancers, particularly on undifferentiated or progenitor cells in tumors and the tumor microenvironment, associated with tumor initiation, angiogenesis and metastasis. Eph receptors are thus attractive therapeutic targets, and monoclonal antibodies have been commonly developed and tested for anti-cancer activity in preclinical models, and in some cases in the clinic. This review summarizes 20 years of research on various antibody-based approaches to target Eph receptors in tumors and the tumor microenvironment, including their mode of action, tumor specificity, and efficacy in pre-clinical and clinical testing.
Collapse
|
16
|
Roh JW, Choi JE, Han HD, Hu W, Matsuo K, Nishimura M, Lee JS, Kwon SY, Cho CH, Kim J, Coleman RL, Lopez-Bernstein G, Sood AK. Clinical and biological significance of EZH2 expression in endometrial cancer. Cancer Biol Ther 2019; 21:147-156. [PMID: 31640461 PMCID: PMC7012102 DOI: 10.1080/15384047.2019.1672455] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/19/2019] [Accepted: 09/01/2019] [Indexed: 10/25/2022] Open
Abstract
The objective of this study was to examine the clinical significance of EZH2 expression and the therapeutic efficacy of its silencing in endometrial cancer. EZH2 expression in clinical samples was evaluated using a tissue microarray and correlated with clinical outcomes. The biological roles of EZH2 were assayed in vitro and in vivo. Gene expression was examined to reveal the molecular mechanism underlying the roles of EZH2 in endometrial cancer. We found that EZH2 overexpression was significantly correlated with disease-free and overall survival of patients with endometrial cancer. EZH2 silencing resulted in decreased cell viability and invasiveness, and increased apoptosis. In addition, EZH2 silencing enhanced the cytotoxicity of taxanes and cisplatin in Hec-1A and Ishikawa endometrial cancer cells. EZH2 silencing using small-interfering RNA (siRNA) incorporated into chitosan nanoparticles (siRNA/CN) induced a significant anti-tumor effect compared with that observed in controls (66.6% reduction in Hec-1A cells and 63.2% reduction in Ishikawa cells, p < .05 for both). Moreover, EZH2 siRNA/CN in combination with taxanes produced more robust anti-tumor effects versus those induced by monotherapies (77.0% for Hec-1A cells and 57.7% for Ishikawa cells, p < .05 for both). These results were associated with decreased angiogenesis and cell proliferation, and enhanced apoptosis. Genomic analyses revealed that EZH2 silencing decreased the expression levels of many genes associated with tumor growth, including PRDX6. Collectively, these results support EZH2 as an attractive target for the therapeutic management of endometrial cancer.
Collapse
Affiliation(s)
- Ju-Won Roh
- Department of Obstetrics & Gynecology, Dongguk University, Seoul, Republic of Korea
- Departments of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jung Eun Choi
- Department of Obstetrics & Gynecology, Dongguk University, Seoul, Republic of Korea
| | - Hee Dong Han
- Departments of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Wei Hu
- Departments of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Matsuo
- Departments of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Masato Nishimura
- Departments of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ju-Seog Lee
- Departments of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sun Young Kwon
- Department of Pathology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Chi Heum Cho
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Jongseung Kim
- Departments of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Family Medicine, Boramae Medical Center, Seoul Metropolitan Government Seoul National University, Seoul, Republic of Korea
| | - Robert L. Coleman
- Departments of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Bernstein
- Center for RNAi and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K. Sood
- Departments of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNAi and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Hisamatsu T, McGuire M, Wu SY, Rupaimoole R, Pradeep S, Bayraktar E, Noh K, Hu W, Hansen JM, Lyons Y, Gharpure KM, Nagaraja AS, Mangala LS, Mitamura T, Rodriguez-Aguayo C, Eun YG, Rose J, Bartholomeusz G, Ivan C, Lee JS, Matsuo K, Frumovitz M, Wong KK, Lopez-Berestein G, Sood AK. PRKRA/PACT Expression Promotes Chemoresistance of Mucinous Ovarian Cancer. Mol Cancer Ther 2019; 18:162-172. [PMID: 30305341 PMCID: PMC6318044 DOI: 10.1158/1535-7163.mct-17-1050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 07/11/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
For mucinous ovarian cancer (MOC), standard platinum-based therapy is largely ineffective. We sought to identify possible mechanisms of oxaliplatin resistance of MOC and develop strategies to overcome this resistance. A kinome-based siRNA library screen was carried out using human MOC cells to identify novel targets to enhance the efficacy of chemotherapy. In vitro and in vivo validations of antitumor effects were performed using mouse MOC models. Specifically, the role of PRKRA/PACT in oxaliplatin resistance was interrogated. We focused on PRKRA, a known activator of PKR kinase, and its encoded protein PACT because it was one of the five most significantly downregulated genes in the siRNA screen. In orthotopic mouse models of MOC, we observed a significant antitumor effect of PRKRA siRNA plus oxaliplatin. In addition, expression of miR-515-3p was regulated by PACT-Dicer interaction, and miR-515-3p increased the sensitivity of MOC to oxaliplatin. Mechanistically, miR-515-3p regulated chemosensitivity, in part, by targeting AXL. The PRKRA/PACT axis represents an important therapeutic target in MOC to enhance sensitivity to oxaliplatin.
Collapse
Affiliation(s)
- Takeshi Hisamatsu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael McGuire
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyunghee Noh
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Gene Therapy Research Unit, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jean M Hansen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasmin Lyons
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kshipra M Gharpure
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Archana S Nagaraja
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Takashi Mitamura
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Young Gyu Eun
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johnathon Rose
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Geoffrey Bartholomeusz
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, California
| | - Michael Frumovitz
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kwong K Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
18
|
Chen X, Lu B, Ma Q, Ji CD, Li JZ. EphA3 inhibits migration and invasion of esophageal cancer cells by activating the mesenchymal‑epithelial transition process. Int J Oncol 2018; 54:722-732. [PMID: 30483759 DOI: 10.3892/ijo.2018.4639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/02/2018] [Indexed: 11/06/2022] Open
Abstract
Eph receptor tyrosine kinases are critical for cell‑cell communication during normal and oncogenic development. Eph receptor A3 (EphA3) expression is associated with tumor promotion in certain types of cancer; however, it acts as a tumor suppressor in others. The expression levels of EphA3 and its effects on tumor progression in esophageal squamous cell carcinoma (ESCC) cell lines were determined using reverse transcription‑quantitative polymerase chain reaction analysis and a Transwell invasion assay. The present study demonstrated that EphA3 expression was decreased in ESCC tissues and cell lines. Treatment with the DNA methylation inhibitor 5‑aza‑2'‑deoxycytidine increased the mRNA expression levels of EphA3 in the ESCC cell lines KYSE510 and KYSE30. In addition, overexpression of EphA3 in KYSE450 and KYSE510 cells inhibited cell migration and invasion. EphA3 overexpression also decreased RhoA GTPase. Furthermore, EphA3 overexpression induced mesenchymal‑epithelial transition, as demonstrated by epithelial‑like morphological alterations, increased expression of epithelial proteins (E‑cadherin and the tight junction protein 1 zonula occludens‑1) and decreased expression of mesenchymal proteins (Vimentin, N‑cadherin and Snail). Conversely, silencing EphA3 in KYSE410 cells triggered epithelial‑mesenchymal transition, and promoted cell migration and invasion. These results suggested that EphA3 may serve a tumor‑suppressor role in ESCC.
Collapse
Affiliation(s)
- Xia Chen
- Key Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Bin Lu
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, P.R. China
| | - Qian Ma
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, P.R. China
| | - Cheng-Dong Ji
- Department of Scientific Research Management, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Jian-Zhong Li
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
19
|
Gharpure KM, Pradeep S, Sans M, Rupaimoole R, Ivan C, Wu SY, Bayraktar E, Nagaraja AS, Mangala LS, Zhang X, Haemmerle M, Hu W, Rodriguez-Aguayo C, McGuire M, Mak CSL, Chen X, Tran MA, Villar-Prados A, Pena GA, Kondetimmanahalli R, Nini R, Koppula P, Ram P, Liu J, Lopez-Berestein G, Baggerly K, S Eberlin L, Sood AK. FABP4 as a key determinant of metastatic potential of ovarian cancer. Nat Commun 2018; 9:2923. [PMID: 30050129 PMCID: PMC6062524 DOI: 10.1038/s41467-018-04987-y] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
The standard treatment for high-grade serous ovarian cancer is primary debulking surgery followed by chemotherapy. The extent of metastasis and invasive potential of lesions can influence the outcome of these primary surgeries. Here, we explored the underlying mechanisms that could increase metastatic potential in ovarian cancer. We discovered that FABP4 (fatty acid binding protein) can substantially increase the metastatic potential of cancer cells. We also found that miR-409-3p regulates FABP4 in ovarian cancer cells and that hypoxia decreases miR-409-3p levels. Treatment with DOPC nanoliposomes containing either miR-409-3p mimic or FABP4 siRNA inhibited tumor progression in mouse models. With RPPA and metabolite arrays, we found that FABP4 regulates pathways associated with metastasis and affects metabolic pathways in ovarian cancer cells. Collectively, these findings demonstrate that FABP4 is functionally responsible for aggressive patterns of disease that likely contribute to poor prognosis in ovarian cancer.
Collapse
Affiliation(s)
- Kshipra M Gharpure
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Marta Sans
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Rajesha Rupaimoole
- Department of Pathology and Institute of RNA Medicine, Beth Israel Deaconess Medical Center Cancer Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cristina Ivan
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Archana S Nagaraja
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Xinna Zhang
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Monika Haemmerle
- Martin-Luther-University Halle-Wittenberg, Institute of Pathology, 06112, Halle (Saale), Germany
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael McGuire
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Celia Sze Ling Mak
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Michelle A Tran
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Alejandro Villar-Prados
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Guillermo Armaiz Pena
- Department of Pharmacology, Ponce Health Sciences University, Ponce, 00716, Puerto Rico
| | | | - Ryan Nini
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pranavi Koppula
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Prahlad Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jinsong Liu
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keith Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Chang N, Lee HW, Lim JE, Jeong DE, Song HJ, Kim S, Nam DH, Sung HH, Jeong BC, Seo SI, Jeon SS, Lee HM, Choi HY, Jeon HG. Establishment and antitumor effects of dasatinib and PKI-587 in BD-138T, a patient-derived muscle invasive bladder cancer preclinical platform with concomitant EGFR amplification and PTEN deletion. Oncotarget 2018; 7:51626-51639. [PMID: 27438149 PMCID: PMC5239502 DOI: 10.18632/oncotarget.10539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/29/2016] [Indexed: 11/25/2022] Open
Abstract
Muscle-invasive bladder cancer (MIBC) consists of a heterogeneous group of tumors with a high rate of metastasis and mortality. To facilitate the in-depth investigation and validation of tailored strategies for MIBC treatment, we have developed an integrated approach using advanced high-throughput drug screening and a clinically relevant patient-derived preclinical platform. We isolated patient-derived tumor cells (PDCs) from a rare MIBC case (BD-138T) that harbors concomitant epidermal growth factor receptor (EGFR) amplification and phosphatase and tensin homolog (PTEN) deletion. High-throughput in vitro drug screening demonstrated that dasatinib, a SRC inhibitor, and PKI-587, a dual PI3K/mTOR inhibitor, exhibited targeted anti-proliferative and pro-apoptotic effects against BD-138T PDCs. Using established patient-derived xenograft models that successfully retain the genomic and molecular characteristics of the parental tumor, we confirmed that these anti-tumor responses occurred through the inhibition of SRC and PI3K/AKT/mTOR signaling pathways. Taken together, these experimental results demonstrate that dasatinib and PKI-587 might serve as promising anticancer drug candidates for treating MIBC with combined EGFR gene amplification and PTEN deletion.
Collapse
Affiliation(s)
- Nakho Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea
| | - Hye Won Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea.,Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
| | - Joung Eun Lim
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Da Eun Jeong
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Hye Jin Song
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Sudong Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea.,Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Seoul 06351, Korea
| | - Do-Hyun Nam
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea
| | - Hyun Hwan Sung
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Byong Chang Jeong
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Seong Il Seo
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Seong Soo Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Hyun Moo Lee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Han-Yong Choi
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Hwang Gyun Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| |
Collapse
|
21
|
Petty A, Idippily N, Bobba V, Geldenhuys WJ, Zhong B, Su B, Wang B. Design and synthesis of small molecule agonists of EphA2 receptor. Eur J Med Chem 2017; 143:1261-1276. [PMID: 29128116 DOI: 10.1016/j.ejmech.2017.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/30/2022]
Abstract
Ligand-independent activation of EphA2 receptor kinase promotes cancer metastasis and invasion. Activating EphA2 receptor tyrosine kinase with small molecule agonist is a novel strategy to treat EphA2 overexpressing cancer. In this study, we performed a lead optimization of a small molecule Doxazosin that was identified as an EphA2 receptor agonist. 33 new analogs were developed and evaluated; a structure-activity relationship was summarized based on the EphA2 activation of these derivatives. Two new derivative compounds 24 and 27 showed much improved activity compared to Doxazosin. Compound 24 possesses a bulky amide moiety, and compound 27 has a dimeric structure that is very different to the parental compound. Compound 27 with a twelve-carbon linker of the dimer activated the kinase and induced receptor internalization and cell death with the best potency. Another dimer with a six-carbon linker has significantly reduced potency compared to the dimer with a longer linker, suggesting that the length of the linker is critical for the activity of the dimeric agonist. To explore the receptor binding characteristics of the new molecules, we applied a docking study to examine how the small molecule binds to the EphA2 receptor. The results reveal that compounds 24 and 27 form more hydrogen bonds to EphA2 than Doxazosin, suggesting that they may have higher binding affinity to the receptor.
Collapse
Affiliation(s)
- Aaron Petty
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nethrie Idippily
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Viharika Bobba
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, Robert C. Byrd Health Sciences Center, West Virginia University, USA
| | - Bo Zhong
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA.
| | - Bingcheng Wang
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
22
|
Lee YY, Jeon HK, Hong JE, Cho YJ, Ryu JY, Choi JJ, Lee SH, Yoon G, Kim WY, Do IG, Kim MK, Kim TJ, Choi CH, Lee JW, Bae DS, Kim BG. Proton pump inhibitors enhance the effects of cytotoxic agents in chemoresistant epithelial ovarian carcinoma. Oncotarget 2016; 6:35040-50. [PMID: 26418900 PMCID: PMC4741507 DOI: 10.18632/oncotarget.5319] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
This study was designed to investigate whether proton pump inhibitors (PPI, V-ATPase blocker) could increase the effect of cytotoxic agents in chemoresistant epithelial ovarian cancer (EOC). Expression of V-ATPase protein was evaluated in patients with EOC using immunohistochemistry, and patient survival was compared based on expression of V-ATPase mRNA from a TCGA data set. In vitro, EOC cell lines were treated with chemotherapeutic agents with or without V-ATPase siRNA or PPI (omeprazole) pretreatment. Cell survival and apoptosis was assessed using MTT assay and ELISA, respectively. In vivo experiments were performed to confirm the synergistic effect with omeprazole and paclitaxel on tumor growth in orthotopic and patient-derived xenograft (PDX) mouse models. Expression of V-ATPase protein in ovarian cancer tissues was observed in 44 patients (44/59, 74.6%). Higher expression of V-ATPase mRNA was associated with poorer overall survival in TCGA data. Inhibition of V-ATPase by siRNA or omeprazole significantly increased cytotoxicity or apoptosis to paclitaxel in chemoresistant (HeyA8-MDR, SKOV3-TR) and clear cell carcinoma cells (ES-2, RMG-1), but not in chemosensitive cells (HeyA8, SKOV3ip1). Moreover, the combination of omeprazole and paclitaxel significantly decreased the total tumor weight compared with paclitaxel alone in a chemoresistant EOC animal model and a PDX model of clear cell carcinoma. However, this finding was not observed in chemosensitive EOC animal models. These results show that omeprazole pretreatment can increase the effect of chemotherapeutic agents in chemoresistant EOC and clear cell carcinoma via reduction of the acidic tumor microenvironment.
Collapse
Affiliation(s)
- Yoo-Young Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye-Kyung Jeon
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Eun Hong
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Jae Cho
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Yoon Ryu
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Hoon Lee
- Department of Obstetrics and Gynecology, Chung-Ang University School of Medicine, Seoul, Korea
| | - Gun Yoon
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Woo Young Kim
- Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - In-Gu Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min Kyu Kim
- Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Tae-Joong Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Sphingosine kinase 1 is a reliable prognostic factor and a novel therapeutic target for uterine cervical cancer. Oncotarget 2016; 6:26746-56. [PMID: 26311741 PMCID: PMC4694949 DOI: 10.18632/oncotarget.4818] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/11/2015] [Indexed: 01/03/2023] Open
Abstract
Sphingosine kinase 1 (SPHK1), an oncogenic kinase, has previously been found to be upregulated in various types of human malignancy and to play a crucial role in tumor development and progression. Although SPHK1 has gained increasing prominence as an important enzyme in cancer biology, its potential as a predictive biomarker and a therapeutic target in cervical cancer remains unknown. SPHK1 expression was examined in 287 formalin-fixed, paraffin-embedded cervical cancer tissues using immunohistochemistry, and its clinical implications and prognostic significance were analyzed. Cervical cancer cell lines including HeLa and SiHa were treated with the SPHK inhibitors SKI-II or FTY720, and effects on cell survival, apoptosis, angiogenesis, and invasion were examined. Moreover, the effects of FTY720 on tumor growth were evaluated using a patient-derived xenograft (PDX) model of cervical cancer. Immunohistochemical analysis revealed that expression of SPHK1 was significantly increased in cervical cancer compared with normal tissues. SPHK1 expression was significantly associated with tumor size, invasion depth, FIGO stage, lymph node metastasis, and lymphovascular invasion. Patients with high SPHK1 expression had lower overall survival and recurrence-free survival rates than those with low expression. Treatment with SPHK inhibitors significantly reduced viability and increased apoptosis in cervical cancer cells. Furthermore, FTY720 significantly decreased in vivo tumor weight in the PDX model of cervical cancer. We provide the first convincing evidence that SPHK1 is involved in tumor development and progression of cervical cancer. Our data suggest that SPHK1 might be a potential prognostic marker and therapeutic target for the treatment of cervical cancer.
Collapse
|
24
|
Donaghy H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 2016; 8:659-71. [PMID: 27045800 PMCID: PMC4966843 DOI: 10.1080/19420862.2016.1156829] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 11/15/2022] Open
Abstract
Antibody-drug conjugates (ADCs) represent a new class of cancer therapeutics. Their design involves a tumor-specific antibody, a linker and a cytotoxic payload. They were designed to allow specific targeting of highly potent cytotoxic agents to tumor cells whilst sparing normal cells. Frequent toxicities that may be driven by any of the components of an ADC have been reported. There are currently more than 50 ADCs in active clinical development, and a further ∼20 that have been discontinued. For this review, the reported toxicities of ADCs were analysed, and the mechanisms for their effects are explored in detail. Methods to reduce toxicities, including dosing strategies and drug design, are discussed. The toxicities reported for active and discontinued drugs are important to drive the rational design and improve the therapeutic index of ADCs of the future.
Collapse
|
25
|
Han HD, Cho YJ, Cho SK, Byeon Y, Jeon HN, Kim HS, Kim BG, Bae DS, Lopez-Berestein G, Sood AK, Shin BC, Park YM, Lee JW. Linalool-Incorporated Nanoparticles as a Novel Anticancer Agent for Epithelial Ovarian Carcinoma. Mol Cancer Ther 2016; 15:618-27. [PMID: 26861249 DOI: 10.1158/1535-7163.mct-15-0733-t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/30/2016] [Indexed: 11/16/2022]
Abstract
Although cytotoxic chemotherapy is widely used against epithelial ovarian cancer (EOC), adverse side effects and emergence of resistance can limit its utility. Therefore, new drugs with systemic delivery platforms are urgently needed for this disease. In this study, we developed linalool-incorporated nanoparticles (LIN-NP) as a novel anticancer agent. We prepared LIN-NPs by the self-assembly water-in-oil-in-water (w/o/w) emulsion method. LIN-NP-mediated cytotoxicity and apoptosis was assessed in EOC cells, and the role of reactive oxygen species (ROS) generation as the mechanism of action was evaluated. In addition, therapeutic efficacy of LIN-NP was assessed in cell lines and patient-derived xenograft (PDX) models for EOC. LIN-NPs had significant cytotoxicity and apoptotic activity against EOC cells, including A2780, HeyA8, and SKOV3ip1. LIN-NP treatment increased apoptosis in EOC cells through ROS generation and a subsequent decrease in mitochondrial membrane potential and increase in caspase-3 levels. In addition, 100 mg/kg LIN-NPs significantly decreased tumor weight in the HeyA8 (P < 0.001) and SKOV3ip1 (P = 0.006) in vivo models. Although treatment with 50 mg/kg LIN-NP did not decrease tumor weight compared with the control group, combination treatment with paclitaxel significantly decreased tumor weight compared with paclitaxel alone in SKOV3ip1 xenografts (P = 0.004) and the patient-derived xenograft model (P = 0.020). We have developed LIN-NPs that induce ROS generation as a novel anticancer agent for EOC. These findings have broad applications for cancer therapy. Mol Cancer Ther; 15(4); 618-27. ©2016 AACR.
Collapse
Affiliation(s)
- Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Young-Jae Cho
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea. Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Sung Keun Cho
- Research Center for Medicinal Chemistry, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Yeongseon Byeon
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Hat Nim Jeon
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Hye-Sun Kim
- Department of Pathology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Gyeonggi-do, South Korea
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Byung Cheol Shin
- Research Center for Medicinal Chemistry, Korea Research Institute of Chemical Technology, Daejeon, South Korea.
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea.
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea. Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
26
|
Eaton JS, Miller PE, Mannis MJ, Murphy CJ. Ocular Adverse Events Associated with Antibody-Drug Conjugates in Human Clinical Trials. J Ocul Pharmacol Ther 2015; 31:589-604. [PMID: 26539624 DOI: 10.1089/jop.2015.0064] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This article reviews ocular adverse events (AEs) reported in association with administration of antibody-drug conjugates (ADCs) in human clinical trials. References reporting ocular toxicity or AEs associated with ADCs were collected using online publication searches. Articles, abstracts, or citations were included if they cited ocular toxicities or vision-impairing AEs with a confirmed or suspected association with ADC administration. Twenty-two references were found citing ocular or vision-impairing AEs in association with ADC administration. All references reported use of ADCs in human clinical trials for treatment of various malignancies. The molecular target and cytotoxic agent varied depending on the ADC used. Ocular AEs affected a diversity of ocular tissues. The most commonly reported AEs involved the ocular surface and included blurred vision, dry eye, and corneal abnormalities (including microcystic corneal disease). Most ocular AEs were not severe (≤ grade 2) or dose limiting. Clinical outcomes were not consistently reported, but when specified, most AEs improved or resolved with cessation of treatment or with ameliorative therapy. A diverse range of ocular AEs are reported in association with administration of ADCs for the treatment of cancer. The toxicologic mechanism(s) and pathogenesis of such events are not well understood, but most are mild in severity and reversible. Drug development and medical professionals should be aware of the clinical features of these events to facilitate early recognition and intervention in the assessment of preclinical development programs and in human clinical trials.
Collapse
Affiliation(s)
| | - Paul E Miller
- 1 Ocular Services On Demand (OSOD), LLC , Madison, Wisconsin.,2 Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison , Madison, Wisconsin
| | - Mark J Mannis
- 3 Department of Ophthalmology and Vision Sciences, School of Medicine, University of California , Davis, Sacramento, California
| | - Christopher J Murphy
- 1 Ocular Services On Demand (OSOD), LLC , Madison, Wisconsin.,3 Department of Ophthalmology and Vision Sciences, School of Medicine, University of California , Davis, Sacramento, California.,4 Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California , Davis, Davis, California
| |
Collapse
|
27
|
Han HD, Jeon YW, Kwon HJ, Jeon HN, Byeon Y, Lee CO, Cho SH, Shin BC. Therapeutic efficacy of doxorubicin delivery by a CO2 generating liposomal platform in breast carcinoma. Acta Biomater 2015; 24:279-285. [PMID: 26102337 DOI: 10.1016/j.actbio.2015.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/21/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
Drug delivery using thermosensitive liposomes (TSL) has significant potential for tumor drug targeting and can be combined with local hyperthermia to trigger drug release. Although TSL-mediated drug delivery can be effective by itself, we developed doxorubicin (DOX)-containing CO2 bubble-generating TSL (TSL-C) that were found to enhance the antitumor effects of DOX owing to the synergism between burst release of drug and hyperthermia-induced CO2 generation. An ultrasound imaging system was used to monitor hyperthermia-induced CO2 generation in TSL-C and the results revealed that hyperthermia-induced CO2 generation in TSL-C led to increased DOX release compared to that observed for non-CO2-generating TSL. Moreover, TSL-C significantly inhibited the tumor growth in MDA-MB-231 tumor-bearing mice compared to TSL (p<0.004). Taken together, we demonstrated that the TSL-C platform increased the therapeutic efficacy of cancer chemotherapy and showed the applicability of this approach to increase drug release within the tumor microenvironment. As a novel and highly effective drug delivery platform, TSL-C has great potential for use in a broad range of applications for the treatment of various human diseases. STATEMENT OF SIGNIFICANCE We have developed a novel method for drug release from liposomes by gas (CO2) generation in tumor microenvironment. In addition, we demonstrate therapeutic efficacy in breast carcinoma. CO2-generated liposomal doxorubicin is a novel and highly attractive delivery system for anticancer drug with the potential for broad applications in human disease.
Collapse
|
28
|
Miyake T, Pradeep S, Wu SY, Rupaimoole R, Zand B, Wen Y, Gharpure KM, Nagaraja AS, Hu W, Cho MS, Dalton HJ, Previs RA, Taylor ML, Hisamatsu T, Kang Y, Liu T, Shacham S, McCauley D, Hawke DH, Wiktorowicz JE, Coleman RL, Sood AK. XPO1/CRM1 Inhibition Causes Antitumor Effects by Mitochondrial Accumulation of eIF5A. Clin Cancer Res 2015; 21:3286-97. [PMID: 25878333 PMCID: PMC4506247 DOI: 10.1158/1078-0432.ccr-14-1953] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/26/2015] [Indexed: 12/18/2022]
Abstract
PURPOSE XPO1 inhibitors have shown promise for cancer treatment, and yet the underlying mechanisms for the antitumor effects are not well understood. In this study, we explored the usefulness of selective inhibitors of nuclear export (SINE) compounds that are specific inhibitors of XPO1. EXPERIMENTAL DESIGN We used proteomic analysis in XPO1 inhibitor-treated ovarian cancer cell lines and examined antitumor effects in ovarian and breast cancer mouse models. We also studied the effects of XPO1 inhibitor in combination with chemotherapeutic agents. RESULTS XPO1 inhibitor treatment substantially increased the percentage of apoptotic cells (60%) after 72 hours of incubation. XPO1 inhibitor promoted the accumulation of eIF5A in mitochondria, leading to cancer cell death. Topotecan showed the greatest synergistic effect with XPO1 inhibitor. XPO1 inhibitors prevented the translocation of IGF2BP1 from the nucleus to the cytoplasm, thereby permitting the localization of eIF5A in the mitochondria. This process was p53, RB, and FOXO independent. Significant antitumor effects were observed with XPO1 inhibitor monotherapy in orthotopic ovarian (P < 0.001) and breast (P < 0.001) cancer mouse models, with a further decrease in tumor burden observed in combination with topotecan or paclitaxel (P < 0.05). This mitochondrial accumulation of eIF5A was highly dependent on the cytoplasmic IGF2BP1 levels. CONCLUSIONS We have unveiled a new understanding of the role of eIF5A and IGF2BP1 in XPO1 inhibitor-mediated cell death and support their clinical development for the treatment of ovarian and other cancers. Our data also ascertain the combinations of XPO1 inhibitors with specific chemotherapy drugs for therapeutic trials.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Chromatography, Liquid
- Electrophoresis, Gel, Two-Dimensional
- Enzyme Inhibitors/pharmacology
- Female
- Fluorescent Antibody Technique
- Humans
- Immunohistochemistry
- Karyopherins/antagonists & inhibitors
- Mammary Neoplasms, Experimental/metabolism
- Mice
- Mice, Nude
- Mitochondria/metabolism
- Ovarian Neoplasms/metabolism
- Peptide Initiation Factors/metabolism
- Proteomics
- RNA, Small Interfering
- RNA-Binding Proteins/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Signal Transduction/drug effects
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tandem Mass Spectrometry
- Transfection
- Xenograft Model Antitumor Assays
- Eukaryotic Translation Initiation Factor 5A
- Exportin 1 Protein
Collapse
Affiliation(s)
- Takahito Miyake
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Behrouz Zand
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kshipra M Gharpure
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Archana S Nagaraja
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Soon Cho
- Department of Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather J Dalton
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rebecca A Previs
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Morgan L Taylor
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Takeshi Hisamatsu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Kang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Liu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - David H Hawke
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John E Wiktorowicz
- Department of Biochemistry and Molecular Biology, NHLBI Proteomics Center, The University of Texas Medical Branch, Galveston, Texas
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
29
|
Park SH, Park S, Kim DY, Pyo A, Kimura RH, Sathirachinda A, Choy HE, Min JJ, Gambhir SS, Hong Y. Isolation and Characterization of a Monobody with a Fibronectin Domain III Scaffold That Specifically Binds EphA2. PLoS One 2015; 10:e0132976. [PMID: 26177208 PMCID: PMC4503726 DOI: 10.1371/journal.pone.0132976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/19/2015] [Indexed: 01/21/2023] Open
Abstract
Monobodies are binding scaffold proteins originating from a human fibronectin domain III (Fn3) scaffold that can be easily engineered with specificity and affinity. Human EphA2 (hEphA2) is an early detection marker protein for various tumors including lung, breast, and colon cancer. In this study, we isolated two hEphA2-specific monobodies (E1 and E10) by screening a yeast surface display library. They showed the same amino acid sequence except in the DE loop and had high affinity (~2 nM Kd) against hEphA2. E1 bound only hEphA2 and mEphA2, although it bound hEphA2 with an affinity 2-fold higher than that of mEphA2. However, E10 also bound the mEphA6 and mEphA8 homologs as well as hEphA2 and mEphA2. Thus, E1 but not E10 was highly specific for hEphA2. E1 specifically bound human cells and xenograft tumor tissues expressing hEphA on the cell surface. In vivo optical imaging showed strong targeting of Cy5.5-labeled E1 to mouse tumor tissue induced by PC3 cells, a human prostate cancer cell line that expresses a high level of hEphA2. In conclusion, the highly specific monobody E1 is useful as a hEphA2 probe candidate for in vivo diagnosis and therapy.
Collapse
Affiliation(s)
- Seung-Hwan Park
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sukho Park
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ayoung Pyo
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Richard H. Kimura
- Molecular Imaging Program at Stanford, Department of Radiology, Bio-X Program, Stanford University, Palo Alto, CA, United States of America
| | - Ataya Sathirachinda
- Molecular Imaging Program at Stanford, Department of Radiology, Bio-X Program, Stanford University, Palo Alto, CA, United States of America
| | - Hyon E. Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford, Department of Radiology, Bio-X Program, Stanford University, Palo Alto, CA, United States of America
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
30
|
Kikuchi S, Kaibe N, Morimoto K, Fukui H, Niwa H, Maeyama Y, Takemura M, Matsumoto M, Nakamori S, Miwa H, Hirota S, Sasako M. Overexpression of Ephrin A2 receptors in cancer stromal cells is a prognostic factor for the relapse of gastric cancer. Gastric Cancer 2015; 18:485-94. [PMID: 24908114 DOI: 10.1007/s10120-014-0390-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/15/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Microenvironments control cancer growth and progression. We explored the prognostic impact of stromal reaction and cancer stromal cells on relapse risk and survival after curative gastrectomy in gastric cancer patients. METHODS Tissue samples were obtained from 107 patients with gastric adenocarcinoma who underwent curative (R0) gastrectomy. Primary stromal cells isolated from gastric cancer tissue (GCSC) and normal gastric tissue (Gastric stromal cell: GSC) in each patient were cultured and subjected to comprehensive proteome (LC-MS/MS) and real-time RT-PCR analysis. Expression of Ephrin A2 receptors (EphA2) in cancers and GCSC was evaluated immunohistochemically. Intermingling of EphA2-positive cancer cells and GCSC (IC/A2+) and overexpression of EphA2 in cancer cells (Ca/A2+) in invasive parts of tumors were assessed, as were relationships of IC/A2+, Ca/A2+, and clinicopathological factors with relapse-free survival and overall survival. RESULTS Proteome analysis showed that EphA2 expression was significantly higher in GCSC than GSC. Real-time RT-PCR analysis showed that levels of EphA1/A2/A3/A5 and EphB2/B4 were ≥2.0-fold higher in GCSC than GSC. Ca/A2 and IC/A2 were positive in 65 (60.7 %) and 26 (24.3 %) patients, respectively. Relapse was significantly more frequent in IC/A2-positive than in IC/A2-negative (HR, 2.12; 95 % CI, 1.16-5.41; p = 0.0207) patients. Among the 54 patients who received S-1 adjuvant chemotherapy, relapse-free survival (RFS) was significantly shorter in those who were IC/A2-positive than in those who were IC/A2-negative and Ca/A2-negative (HR, 2.83; 95 % CI, 1.12-12.12; p = 0.0339). Multivariable analysis indicated that pathological stage (p = 0.010) and IC/A2+ (p = 0.008) were independent risk factors for recurrence. CONCLUSION IC/A2+ was predictive of relapse after curative (R0) gastrectomy.
Collapse
Affiliation(s)
- Shojiro Kikuchi
- Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee JW, Ryu JY, Yoon G, Jeon HK, Cho YJ, Choi JJ, Song SY, Do IG, Lee YY, Kim TJ, Choi CH, Kim BG, Bae DS. Sphingosine kinase 1 as a potential therapeutic target in epithelial ovarian cancer. Int J Cancer 2014; 137:221-9. [PMID: 25429856 DOI: 10.1002/ijc.29362] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/21/2014] [Indexed: 01/22/2023]
Abstract
Sphingosine kinase 1 (SK1) is over-expressed in multiple types of human cancer. SK1 has growth-promoting effects and has been proposed as a potential therapeutic target. We investigated the therapeutic effects of SK1 inhibition in epithelial ovarian carcinoma (EOC). SK1 siRNA or inhibitors were tested in EOC cell lines, including A2780, SKOV3ip1, A2780-CP20, SKOV3-TR, ES2 and RMG2. Cells were treated with SK inhibitor or FTY720, and cell proliferation, apoptosis, angiogenesis and invasion were examined by MTT, FACS, ELISA and wound-healing assays, respectively. In vivo experiments were performed to test the effects of FTY720 on tumor growth in orthotopic mouse xenografts of EOC cell lines A2780 or SKOV3ip1 and a patient-derived xenograft (PDX) model of clear cell ovarian carcinoma (CCC). Blocking SK1 with siRNA or inhibitors significantly reduced proliferation, angiogenesis and invasion, and increased apoptosis in chemosensitive (A2780 and SKOV3ip1) and chemoresistant (A2780-CP20, SKOV3-TR, ES2 and RMG2) EOC cells. SK1 inhibitors also decreased the intracellular enzymatic activity of SK1. Furthermore, FTY720 treatment significantly decreased the in vivo tumor weight in xenograft models of established cell lines (A2780 and SKOV3ip1) and a PDX model for CCC compared to control (p < 0.05). These results support therapeutic targeting of SK1 as a potential new strategy for EOC.
Collapse
Affiliation(s)
- Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Herington AC, Mertens-Walker I, Lisle JE, Maharaj M, Stephenson SA. Inhibiting Eph kinase activity may not be "Eph"ective for cancer treatment. Growth Factors 2014; 32:207-13. [PMID: 25413947 DOI: 10.3109/08977194.2014.985293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several Eph receptor tyrosine kinases (RTKs) are commonly over-expressed in epithelial and mesenchymal cancers and are recognized as promising therapeutic targets. Although normal interaction between Eph receptors and their ephrin ligands stimulates kinase activity and is generally tumor suppressive, significant Eph over-expression allows activation of ligand- and/or kinase-independent signaling pathways that promote oncogenesis. Single-agent kinase inhibitors are widely used to target RTK-driven tumors but acquired and de novo resistance to such agents is a major limitation to effective clinical use. Accumulating evidence suggests that Ephs can be inhibited by "leaky" or low-specificity kinase inhibitors targeted at other RTKs. Such off-target effects may therefore inadvertently promote ligand- and/or kinase-independent oncogenic Eph signaling, thereby providing a new mechanism by which resistance to the RTK inhibitors can emerge. We propose that combining specific, non-leaky kinase inhibitors with tumor-suppressive stimulators of Eph signaling may provide more effective treatment options for overcoming treatment-induced resistance and clinical failure.
Collapse
Affiliation(s)
- A C Herington
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Queensland , Australia and
| | | | | | | | | |
Collapse
|
33
|
Rhoda K, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. Potential nanotechnologies and molecular targets in the quest for efficient chemotherapy in ovarian cancer. Expert Opin Drug Deliv 2014; 12:613-34. [PMID: 25300775 DOI: 10.1517/17425247.2015.970162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Ovarian cancer, considered one of the most fatal gynecological cancers, goes largely undiagnosed until metastasis presents itself, usually once the patient is in the final stages and thus, too late for worthwhile therapy. Targeting this elusive disease in its early stages would improve the outcome for most patients, while the information generated thereof would increase the possibility of preventative mechanisms of therapy. AREAS COVERED This review discusses various molecular targets as possible moieties to be incorporated in a holistic drug delivery system or the more aptly termed 'theranostic' system. These molecular targets can be used for targeting, visualizing, diagnosing, and ultimately, treating ovarian cancer in its entirety. Currently implemented nanoframeworks, such as nanomicelles and nanoliposomes, are described and the effectiveness of nanostructures in tumor targeting, treatment functions, and overcoming the drug resistance challenge is discussed. EXPERT OPINION Novel nanotechnology strategies such as the development of nanoframeworks decorated with targeted ligands of a molecular nature may provide an efficient chemotherapy, especially when instituted in combination with imaging, diagnostic, and ultimately, therapeutic moieties. An imperative aspect of utilizing nanotechnology in the treatment of ovarian cancer is the flexibility of the drug delivery system and its ability to overcome standard obstacles such as: i) successfully treating the desired cells through direct targeting; ii) reducing toxicity levels of treatment by achieving direct targeting; and iii) delivery of targeted therapy using an efficient vehicle that is exceptionally degradable in response to a particular stimulus. The targeting of ovarian cancer in its early stages using imaging and diagnostic nanotechnology is an area that can be improved upon by combining therapeutic moieties with molecular biomarkers. The nanotechnology and molecular markers mentioned in this review have generally been used for either imaging or diagnostics, and have not yet been successfully implemented into bi-functional tools, which it is hoped, should eventually include a therapeutic aspect.
Collapse
Affiliation(s)
- Khadija Rhoda
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, 7 York Road, Parktown, 2193 , South Africa
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptor tyrosine kinase family plays important roles in developmental processes, adult tissue homeostasis, and various diseases. Interaction with Eph receptor-interacting protein (ephrin) ligands on the surface of neighboring cells triggers Eph receptor kinase-dependent signaling. The ephrins can also transmit signals, leading to bidirectional cell contact-dependent communication. Moreover, Eph receptors and ephrins can function independently of each other through interplay with other signaling systems. Given their involvement in many pathological conditions ranging from neurological disorders to cancer and viral infections, Eph receptors and ephrins are increasingly recognized as attractive therapeutic targets, and various strategies are being explored to modulate their expression and function. Eph receptor/ephrin upregulation in cancer cells, the angiogenic vasculature, and injured or diseased tissues also offer opportunities for Eph/ephrin-based targeted drug delivery and imaging. Thus, despite the challenges presented by the complex biology of the Eph receptor/ephrin system, exciting possibilities exist for therapies exploiting these molecules.
Collapse
Affiliation(s)
- Antonio Barquilla
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037; ,
| | | |
Collapse
|
35
|
Nagano K, Maeda Y, Kanasaki SI, Watanabe T, Yamashita T, Inoue M, Higashisaka K, Yoshioka Y, Abe Y, Mukai Y, Kamada H, Tsutsumi Y, Tsunoda SI. Ephrin receptor A10 is a promising drug target potentially useful for breast cancers including triple negative breast cancers. J Control Release 2014; 189:72-9. [PMID: 24946238 DOI: 10.1016/j.jconrel.2014.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/20/2014] [Accepted: 06/09/2014] [Indexed: 12/20/2022]
Abstract
Ephrin receptor A10 (EphA10) is a relatively uncharacterized protein which is expressed in many breast cancers but not expressed in normal breast tissues. Here, we examined the potential of EphA10 as a drug target in breast cancer. Immunohistochemical staining of clinical tissue sections revealed that EphA10 was expressed in various breast cancer subtypes, including triple negative breast cancers (TNBCs), with no expression observed in normal tissues apart from testis. Ligand-dependent proliferation was observed in EphA10-transfected MDA-MB-435 cells (MDA-MB-435(EphA10)) and native TNBC cells (MDA-MB-436). However, this phenomenon was not observed in parental MDA-MB-435 cells which express a low level of EphA10. Finally, tumor growth was significantly suppressed by administration of an anti-EphA10 monoclonal antibody in a xenograft mouse model. These results suggest that inhibition of EphA10 signaling may be a novel therapeutic option for management of breast cancer, including TNBCs which are currently not treated with molecularly targeted agents.
Collapse
Affiliation(s)
- Kazuya Nagano
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yuka Maeda
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - So-Ichiro Kanasaki
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takanobu Watanabe
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Yamashita
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Inoue
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kazuma Higashisaka
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Center of Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Abe
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yohei Mukai
- Laboratory of Innovative Antibody Engineering and Design, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; The Center of Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Center of Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shin-ichi Tsunoda
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Center of Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
36
|
EphA2 targeting pegylated nanocarrier drug delivery system for treatment of lung cancer. Pharm Res 2014; 31:2796-809. [PMID: 24867421 DOI: 10.1007/s11095-014-1377-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Evaluation of tumor targeting pegylated EphA2 peptide coated nanoparticles (ENDDs) of a novel anticancer agent DIM-C-pPhC6H5 (DIM-P) and Docetaxel (DOC) and investigate its antitumor activity and potential for treatment of lung cancer. METHODS Nanoparticles were prepared with DIM-P and DOC (NDDs) using Nano-DeBEE. ENDDs were prepared by conjugating NDDs with 6His-PEG2K-EphA2 peptide and characterized for physicochemical properties, binding assay, cytotoxicity, cellular uptake studies, drug release and pharmacokinetic parameters. Anti-tumor activity of ENDDs was evaluated using a metastatic H1650 and orthotopic A549 tumor models in nude mice and tumor tissue were analyzed by RT-PCR and immunohistochemistry. RESULTS Particle size and entrapment efficiency of ENDDs were 197 ± 21 nm and 95 ± 2%. ENDDs showed 32.5 ± 3.5% more cellular uptake than NDDs in tumor cells. ENDDs showed 23 ± 3% and 26 ± 4% more tumor reduction compared to NDDs in metastatic and orthotopic tumor models, respectively. In-vivo imaging studies using the Care stream MX FX Pro system showed (p < 0.001) 40-60 fold higher flux for ENDDs compared to NDDs at tumor site. CONCLUSIONS The results emanating from these studies demonstrate anti-cancer potential of DIM-P and the role of ENDDs as effective tumor targeting drug delivery systems for lung cancer treatment.
Collapse
|
37
|
Roh JW, Huang J, Hu W, Yang X, Jennings NB, Sehgal V, Sohn BH, Han HD, Lee SJ, Thanapprapasr D, Bottsford-Miller J, Zand B, Dalton HJ, Previs RA, Davis AN, Matsuo K, Lee JS, Ram P, Coleman RL, Sood AK. Biologic effects of platelet-derived growth factor receptor α blockade in uterine cancer. Clin Cancer Res 2014; 20:2740-50. [PMID: 24634380 PMCID: PMC4024372 DOI: 10.1158/1078-0432.ccr-13-2507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Platelet-derived growth factor receptor α (PDGFRα) expression is frequently observed in many kinds of cancer and is a candidate for therapeutic targeting. This preclinical study evaluated the biologic significance of PDGFRα and PDGFRα blockade (using a fully humanized monoclonal antibody, 3G3) in uterine cancer. EXPERIMENTAL DESIGN Expression of PDGFRα was examined in uterine cancer clinical samples and cell lines, and biologic effects of PDGFRα inhibition were evaluated using in vitro (cell viability, apoptosis, and invasion) and in vivo (orthotopic) models of uterine cancer. RESULTS PDGFRα was highly expressed and activated in uterine cancer samples and cell lines. Treatment with 3G3 resulted in substantial inhibition of PDGFRα phosphorylation and of downstream signaling molecules AKT and mitogen-activated protein kinase (MAPK). Cell viability and invasive potential of uterine cancer cells were also inhibited by 3G3 treatment. In orthotopic mouse models of uterine cancer, 3G3 monotherapy had significant antitumor effects in the PDGFRα-positive models (Hec-1A, Ishikawa, Spec-2) but not in the PDGFRα-negative model (OVCA432). Greater therapeutic effects were observed for 3G3 in combination with chemotherapy than for either drug alone in the PDGFRα-positive models. The antitumor effects of therapy were related to increased apoptosis and decreased proliferation and angiogenesis. CONCLUSIONS These findings identify PDGFRα as an attractive target for therapeutic development in uterine cancer.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immunohistochemistry
- Mice, Nude
- Mitogen-Activated Protein Kinases/metabolism
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Oligonucleotide Array Sequence Analysis
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor alpha/immunology
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Signal Transduction/drug effects
- Transcriptome/drug effects
- Uterine Neoplasms/drug therapy
- Uterine Neoplasms/genetics
- Uterine Neoplasms/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ju-Won Roh
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jie Huang
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wei Hu
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - XiaoYun Yang
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nicholas B Jennings
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Vasudha Sehgal
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bo Hwa Sohn
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Hee Dong Han
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sun Joo Lee
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Duangmani Thanapprapasr
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Justin Bottsford-Miller
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Behrouz Zand
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Heather J Dalton
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rebecca A Previs
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ashley N Davis
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Koji Matsuo
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ju-Seog Lee
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prahlad Ram
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Robert L Coleman
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Anil K Sood
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
38
|
Xi HQ, Wu XS, Wei B, Chen L. Eph receptors and ephrins as targets for cancer therapy. J Cell Mol Med 2014; 16:2894-909. [PMID: 22862837 PMCID: PMC4393718 DOI: 10.1111/j.1582-4934.2012.01612.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/13/2012] [Indexed: 12/15/2022] Open
Abstract
Eph receptor tyrosine kinases and their ephrin ligands are involved in various signalling pathways and mediate critical steps of a wide variety of physiological and pathological processes. Increasing experimental evidence demonstrates that both Eph receptor and ephrin ligands are overexpressed in a number of human tumours, and are associated with tumour growth, invasiveness and metastasis. In this regard, the Eph/ephrin system provides the foundation for potentially exciting new targets for anticancer therapies for Eph-expressing tumours. The purpose of this review is to outline current advances in the role of Eph receptors and ephrin ligands in cancer, and to discuss novel therapeutic approaches of anticancer therapies.
Collapse
Affiliation(s)
- Hong-Qing Xi
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | | | | | | |
Collapse
|
39
|
Matsuo K, Nishimura M, Komurov K, Shahzad MMK, Ali-Fehmi R, Roh JW, Lu C, Cody DD, Ram PT, Loizos N, Coleman RL, Sood AK. Platelet-derived growth factor receptor alpha (PDGFRα) targeting and relevant biomarkers in ovarian carcinoma. Gynecol Oncol 2014; 132:166-75. [PMID: 24183729 PMCID: PMC3946949 DOI: 10.1016/j.ygyno.2013.10.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/08/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Platelet-derived growth factor receptor alpha (PDGFRα) is believed to be associated with cell survival. We examined (i) whether PDGFRα blockade enhances the antitumor activity of taxanes in ovarian carcinoma and (ii) potential biomarkers of response to anti-PDGFRα therapy. METHODS PDGFRα expression in 176 ovarian carcinomas was evaluated with tissue microarray and correlated to survival outcome. Human-specific monoclonal antibody to PDGFRα (IMC-3G3) was used for in vitro and in vivo experiments with or without docetaxel. Gene microarrays and reverse-phase protein arrays with pathway analyses were performed to identify potential predictive biomarkers. RESULTS When compared to low or no PDGFRα expression, increased PDGFRα expression was associated with significantly poorer overall survival of patients with ovarian cancer (P=0.014). Although treatment with IMC-3G3 alone did not affect cell viability or increase apoptosis, concurrent use of IMC-3G3 with docetaxel significantly enhanced sensitization to docetaxel and apoptosis. In an orthotopic mouse model, IMC-3G3 monotherapy had no significant antitumor effects in SKOV3-ip1 (low PDGFRα expression), but showed significant antitumor effects in HeyA8-MDR (high PDGFRα expression). Concurrent use of IMC-3G3 with docetaxel, compared with use of docetaxel alone, significantly reduced tumor weight in all tested cell lines. In protein ontology, the EGFR and AKT pathways were downregulated by IMC-3G3 therapy. MAPK and CCNB1 were downregulated only in the HeyA8-MDR model. CONCLUSION These data identify IMC-3G3 as an attractive therapeutic strategy and identify potential predictive markers for further development.
Collapse
Affiliation(s)
- Koji Matsuo
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Masato Nishimura
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kakajan Komurov
- Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mian M K Shahzad
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rouba Ali-Fehmi
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Ju-Won Roh
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunhua Lu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dianna D Cody
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prahlad T Ram
- Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Robert L Coleman
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, University of Texas, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, University of Texas, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
40
|
|
41
|
Abstract
Ascites tumor cells (ATCs) represent a potentially valuable source of cells for monitoring treatment of ovarian cancer as it would obviate the need for more invasive surgical biopsies. The ability to perform longitudinal testing of ascites in a point-of-care setting could significantly impact clinical trials, drug development, and clinical care. Here, we developed a microfluidic chip platform to enrich ATCs from highly heterogeneous peritoneal fluid and then perform molecular analyses on these cells. We evaluated 85 putative ovarian cancer protein markers and found that nearly two-thirds were either nonspecific for malignant disease or had low abundance. Using four of the most promising markers, we prospectively studied 47 patients (33 ovarian cancer and 14 control). We show that a marker set (ATCdx) can sensitively and specifically map ATC numbers and, through its reliable enrichment, facilitate additional treatment-response measurements related to proliferation, protein translation, or pathway inhibition.
Collapse
|
42
|
The homeobox only protein homeobox (HOPX) and colorectal cancer. Int J Mol Sci 2013; 14:23231-43. [PMID: 24287901 PMCID: PMC3876040 DOI: 10.3390/ijms141223231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/13/2022] Open
Abstract
The HOP (homeobox only protein) homeobox (HOPX) is most closely related to the homeobox protein that contains a homeobox-like domain but lacks certain conserved residues required for DNA binding. Here, we review the current understanding of HOPX in the progression of colorectal cancer (CRC). HOPX was initially reported as a differentiation marker and is expressed in various normal tissues. In the colon, HOPX is expressed uniquely in the quiescent stem cell, +4, and in differentiated mucosal cells of the colon. HOPX expression is markedly suppressed in a subset of cancers, mainly in an epigenetic manner. CRC may include separate entities which are differentially characterized by HOPX expression from a prognostic point of view. HOPX itself can regulate epigenetics, and defective expression of HOPX can result in loss of tumor suppressive function and differentiation phenotype. These findings indicate that HOPX may be both a central regulator of epigenetic dynamics and a critical determinant for differentiation in human cells. HOPX downstream targets were identified in CRC cell lines and hold promise as candidates for therapeutic targets of CRC, such as EphA2 or AP-1. Further analysis will elucidate and confirm the precise role of such proteins in CRC progression.
Collapse
|
43
|
Tomao F, Papa A, Rossi L, Caruso D, Zoratto F, Benedetti Panici P, Tomao S. Beyond bevacizumab: investigating new angiogenesis inhibitors in ovarian cancer. Expert Opin Investig Drugs 2013; 23:37-53. [PMID: 24111925 DOI: 10.1517/13543784.2013.839657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Ovarian cancer is the most lethal gynecological cancer, mainly because of the advanced stage of the disease at diagnosis, with recent research investigating novel targets and agents into the clinical practice, with the aim to improve prognosis and quality of life. Angiogenesis is a significant target for ovarian cancer therapy. AREAS COVERED Areas covered in this review include the most common molecular pathways of angiogenesis, which have provided novel targets for tailored therapy in ovarian cancer patients. These therapeutic strategies comprise monoclonal antibodies and tyrosine kinase inhibitors. These drugs have as molecular targets such as vascular endothelial growth factor (VEGF), VEGF receptor, platelet-derived growth factor, fibroblast growth factor, angiopoietin and Ephrin type-A receptor 2. EXPERT OPINION The expansion in understanding the molecular biology that characterizes cancer cells has led to the rapid development of new agents to target important pathways, but the heterogeneity of ovarian cancer biology indicates that there is no predominant defect. This review attempts to discuss progress till date in tackling a more general target applicable to ovarian cancer angiogenesis.
Collapse
Affiliation(s)
- Federica Tomao
- 'Sapienza' University of Rome, Department of Gynaecology and Obstetrics, Policlinico 'Umberto I' , Rome , Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Li RX, Chen ZH, Chen ZK. The role of EPH receptors in cancer-related epithelial-mesenchymal transition. CHINESE JOURNAL OF CANCER 2013; 33:231-40. [PMID: 24103789 PMCID: PMC4026543 DOI: 10.5732/cjc.013.10108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Erythropoietin-producing hepatoma (EPH) receptors are considered the largest family of receptor tyrosine kinases and play key roles in physiological and pathologic processes in development and disease. EPH receptors are often overexpressed in human malignancies and are associated with poor prognosis. However, the functions of EPH receptors in epithelial-mesenchymal transition (EMT) remain largely unknown. This review depicts the relationship between EPH receptors and the EMT marker E-cadherin as well as the crosstalk between EPH receptors and the signaling pathways involved EMT. Further discussion is focused on the clinical significance of EPH receptors as candidates for targeting in cancer therapeutics. Finally, we summarize how targeted inhibition of both EPH receptors and EMT-related signaling pathways represents a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Rui-Xin Li
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.
| | | | | |
Collapse
|
45
|
Nishimura M, Jung EJ, Shah MY, Lu C, Spizzo R, Shimizu M, Han HD, Ivan C, Rossi S, Zhang X, Nicoloso MS, Wu SY, Almeida MI, Bottsford-Miller J, Pecot CV, Zand B, Matsuo K, Shahzad MM, Jennings NB, Rodriguez-Aguayo C, Lopez-Berestein G, Sood AK, Calin GA. Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov 2013; 3:1302-15. [PMID: 24002999 DOI: 10.1158/2159-8290.cd-13-0159] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED Development of improved RNA interference-based strategies is of utmost clinical importance. Although siRNA-mediated silencing of EphA2, an ovarian cancer oncogene, results in reduction of tumor growth, we present evidence that additional inhibition of EphA2 by a microRNA (miRNA) further "boosts" its antitumor effects. We identified miR-520d-3p as a tumor suppressor upstream of EphA2, whose expression correlated with favorable outcomes in two independent patient cohorts comprising 647 patients. Restoration of miR-520d-3p prominently decreased EphA2 protein levels, and suppressed tumor growth and migration/invasion both in vitro and in vivo. Dual inhibition of EphA2 in vivo using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes loaded with miR-520d-3p and EphA2 siRNA showed synergistic antitumor efficiency and greater therapeutic efficacy than either monotherapy alone. This synergy is at least in part due to miR-520d-3p targeting EphB2, another Eph receptor. Our data emphasize the feasibility of combined miRNA-siRNA therapy, and will have broad implications for innovative gene silencing therapies for cancer and other diseases. SIGNIFICANCE This study addresses a new concept of RNA inhibition therapy by combining miRNA and siRNA in nanoliposomal particles to target oncogenic pathways altered in ovarian cancer. Combined targeting of the Eph pathway using EphA2-targeting siRNA and the tumor suppressor miR-520d-3p exhibits remarkable therapeutic synergy and enhanced tumor suppression in vitro and in vivo compared with either monotherapy alone.
Collapse
Affiliation(s)
- Masato Nishimura
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Obstetrics and Gynecology, The University of Tokushima, Graduate School; Japan
| | - Eun-Jung Jung
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Surgery, School of Medicine, Gyeongsang National University, Jin-ju, South Korea
| | - Maitri Y Shah
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Chunhua Lu
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Riccardo Spizzo
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Masayoshi Shimizu
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Hee Dong Han
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas M.D. Anderson Center, Houston, TX; USA
| | - Simona Rossi
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Batiment Genopode, Lausanne, Switzerland
| | - Xinna Zhang
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas M.D. Anderson Center, Houston, TX; USA
| | - Milena S Nicoloso
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sherry Y Wu
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Maria Ines Almeida
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Justin Bottsford-Miller
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Chad V Pecot
- Department of Thoracic, Head & Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Behrouz Zand
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Koji Matsuo
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Mian M Shahzad
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Division of Gynecologic Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nicholas B Jennings
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas M.D. Anderson Center, Houston, TX; USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas M.D. Anderson Center, Houston, TX; USA.,Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas M.D. Anderson Center, Houston, TX; USA.,Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas M.D. Anderson Center, Houston, TX; USA
| |
Collapse
|
46
|
Duggineni S, Mitra S, Lamberto I, Han X, Xu Y, An J, Pasquale EB, Huang Z. Design and Synthesis of Potent Bivalent Peptide Agonists Targeting the EphA2 Receptor. ACS Med Chem Lett 2013; 4. [PMID: 24167659 DOI: 10.1021/ml3004523] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Designing potent and selective peptides and small molecules that target Eph receptor tyrosine kinases remains a challenge and new strategies are needed for developing novel and potent ligands for these receptors. In this study, we performed a structure-activity relationship study of a previously identified 12 amino acid-long peptide, SWL, by alanine scanning to identify residues important for receptor binding. To further enhance and optimize the receptor binding affinity of the SWL peptide, we applied the concept of bivalent ligand design to synthesize several SWL-derived dimeric peptides as novel ligands capable of binding simultaneously to two EphA2 receptor molecules. The dimeric peptides possess higher receptor binding affinity than the original monomeric SWL peptide, consistent with bivalent binding. The most potent dimeric peptide, a SWL dimer with a 6 carbon linker, has about 13 fold increased potency compared to SWL. Furthermore, similar to SWL, the dimeric peptide is an agonist and can promote EphA2 tyrosine phosphorylation (activation) in cultured cells.
Collapse
Affiliation(s)
- Srinivas Duggineni
- SUNY Upstate Cancer Research Institute,
Department of Pharmacology, State University of New York, Syracuse,
New York 13210, United States
| | - Sayantan Mitra
- Sanford-Burnham Medical Research Institute,
La Jolla, California 92037, United States
| | - Ilaria Lamberto
- Sanford-Burnham Medical Research Institute,
La Jolla, California 92037, United States
| | - Xiaofeng Han
- SUNY Upstate Cancer Research Institute,
Department of Pharmacology, State University of New York, Syracuse,
New York 13210, United States
| | - Yan Xu
- SUNY Upstate Cancer Research Institute,
Department of Pharmacology, State University of New York, Syracuse,
New York 13210, United States
| | - Jing An
- SUNY Upstate Cancer Research Institute,
Department of Pharmacology, State University of New York, Syracuse,
New York 13210, United States
| | - Elena B. Pasquale
- Sanford-Burnham Medical Research Institute,
La Jolla, California 92037, United States
- Department of Pathology, University
of California, San Diego, California 92093, United States
| | - Ziwei Huang
- SUNY Upstate Cancer Research Institute,
Department of Pharmacology, State University of New York, Syracuse,
New York 13210, United States
| |
Collapse
|
47
|
Auffinger B, Thaci B, Nigam P, Rincon E, Cheng Y, Lesniak MS. New therapeutic approaches for malignant glioma: in search of the Rosetta stone. F1000 MEDICINE REPORTS 2012; 4:18. [PMID: 22991580 PMCID: PMC3438652 DOI: 10.3410/m4-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malignant gliomas are heterogeneous, diffuse and highly infiltrating by nature. Despite wide surgical resection and improvements in radio- and chemotherapies, the prognosis of patients with glioblastoma multiforme remains extremely poor, with a median survival time of only 14.5 months from diagnosis to death. Particular challenges for glioblastoma multiforme therapy are posed by limitations in the extent of feasible surgical resections, distinct tumor heterogeneity, difficulties in drug delivery across the blood-brain barrier and low drug distribution within the tumor. Therefore, new paradigms permitting tumor-specific targeting and extensive intratumoral distribution must be developed to allow an efficient therapeutic delivery. This review highlights the latest advances in the treatment of glioblastoma multiforme and the recent developments that have resulted from the interchange between preclinical and clinical efforts. We also summarize and discuss novel therapies for malignant glioma, focusing on advances in the following main topics of glioblastoma multiforme therapy: immunotherapy, gene therapy, stem cell-based therapies and nanotechnology. We discuss strategies and outcomes of emerging therapeutic approaches in these fields, and the main challenges associated with the integration of discoveries that occur in the laboratory into clinical practice.
Collapse
Affiliation(s)
- Brenda Auffinger
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine5841 South Maryland Ave, M/C 3026, Chicago, IL 60637
| | - Bart Thaci
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine5841 South Maryland Ave, M/C 3026, Chicago, IL 60637
| | - Pragati Nigam
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine5841 South Maryland Ave, M/C 3026, Chicago, IL 60637
| | - Esther Rincon
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine5841 South Maryland Ave, M/C 3026, Chicago, IL 60637
| | - Yu Cheng
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine5841 South Maryland Ave, M/C 3026, Chicago, IL 60637
| | - Maciej S. Lesniak
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine5841 South Maryland Ave, M/C 3026, Chicago, IL 60637
| |
Collapse
|
48
|
Antibody-drug conjugates: using monoclonal antibodies for delivery of cytotoxic payloads to cancer cells. Ther Deliv 2012; 2:397-416. [PMID: 22834009 DOI: 10.4155/tde.10.98] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
One approach to improving activity of anticancer drugs is to conjugate them to antibodies that recognize tumor-associated, cell-surface antigens. The antibody-drug conjugate concept evolved following major advances, first, in the development of humanized and fully human antibodies; second, in the discoveries of highly cytotoxic compounds ('drugs) linkable to antibodies; and finally, in the optimization of linkers that couple the drug to the antibody and provide sufficient stability of the antibody-drug conjugate in the circulation, optimal activation of the drug in the tumor, and the ability of the activated drug to overcome multidrug resistance. In this article, we will review the considerations for selecting a target antigen, the design of the conjugate, and the pre-clinical and clinical experiences with the current generation of antibody-drug conjugates.
Collapse
|
49
|
Tandon M, Vemula SV, Sharma A, Ahi YS, Mittal S, Bangari DS, Mittal SK. EphrinA1-EphA2 interaction-mediated apoptosis and FMS-like tyrosine kinase 3 receptor ligand-induced immunotherapy inhibit tumor growth in a breast cancer mouse model. J Gene Med 2012; 14:77-89. [PMID: 22228563 DOI: 10.1002/jgm.1649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The receptor tyrosine kinase EphA2 is overexpressed in several types of cancers and is currently being pursued as a target for breast cancer therapeutics. The EphA2 ligand EphrinA1 induces EphA2 phosphorylation and intracellular internalization and degradation, thus inhibiting tumor progression. The hematopoietic growth factor, FMS-like tyrosine kinase 3 receptor ligand (Flt3L), promotes expansion and mobilization of functional dendritic cells. METHODS We tested the EphrinA1-EphA2 interaction in MDA-MB-231 breast cancer cells focusing on the receptor-ligand-mediated apoptosis of breast cancer cells. To determine whether EphrinA1-EphA2 interaction-associated apoptosis and Flt3L-mediated immunotherapy would have an additive effect in inhibiting tumor growth, we used an immunocompetent mouse model of breast cancer to evaluate intratumoral (i.t.) inoculation strategies with human adenovirus (HAd) vectors expressing either EphrinA1 (HAd-EphrinA1-Fc), Flt3L (HAd-Flt3L) or a combination of EphrinA1-Fc + Flt3L (HAd-EphrinA1-Fc + HAd-Flt3L). RESULTS In vitro analysis demonstrated that an EphrinA1-EphA2 interaction led to apoptosis-related changes in breast cancer cells. In vivo, three i.t. inoculations of HAd-EphrinA1-Fc showed potent inhibition of tumor growth. Furthermore, increased inhibition in tumor growth was observed with the combination of HAd-EphrinA1-Fc and HAd-Flt3L accompanied by the generation of an anti-tumor adaptive immune response. CONCLUSIONS The results obtained in the present study, indicating the induction of apoptosis and inhibition of mammary tumor growth, show the potential therapeutic benefits of HAd-EphrinA1-Fc. In combination with HAd-Flt3L, this represents a promising strategy for effectively inducing mammary tumor regression by HAd vector-based therapy.
Collapse
Affiliation(s)
- Manish Tandon
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Park JS, Ryu JY, Jeon HK, Cho YJ, Park YA, Choi JJ, Lee JW, Kim BG, Bae DS. The effects of selenium on tumor growth in epithelial ovarian carcinoma. J Gynecol Oncol 2012; 23:190-6. [PMID: 22808362 PMCID: PMC3395015 DOI: 10.3802/jgo.2012.23.3.190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/09/2012] [Accepted: 04/09/2012] [Indexed: 11/30/2022] Open
Abstract
Objective Epidemiological studies suggest that selenium protects against the development of several cancers. Selenium (sodium selenite) has been reported to interfere with cell growth and proliferation, and to induce cell death. In this study, we tested whether selenium could have growth-inhibiting effect in ovarian cancer cells and an orthotopic animal model. Methods Cell growth in selenium-treated cells was determined in human ovarian cancer cells, A2780, HeyA8, and SKOV3ip1 using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Animal experiment of selenium with paclitaxel was performed using SKOV3ip1 cells in nude mice to evaluate their inhibiting effect for tumor growth. In addition, another animal experiment of paclitaxel with or without selenium was performed to assess the effect of survival and food intake in mice. Results The in vitro growth of selenium-treated cells was significantly decreased dose-dependently in A2780, HeyA8, and SKOV3ip1 cells. Therapy experiment in mice was started 1 week after injection of the SKOV3ip1 cells. Treatment with selenium (1.5 mg/kg, 3 times/week) and paclitaxel injection showed no addictive effect of the inhibition of tumor growth. However, combination of selenium and paclitaxel showed the slightly increased food intake compared with paclitaxel alone. Conclusion Although selenium has growth-inhibiting effect in ovarian carcinoma cells in vitro, there is no additive effect on tumor growth in mice treated with combination of paclitaxel and selenium. However, food intake is slightly higher in selenium-treated mice during chemotherapy.
Collapse
Affiliation(s)
- Jin Sun Park
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|