1
|
Wei X, Qin R, Yin L, Iqbal MA, Shaibu Z, Li G, Wu T. Investigating the role of the Pon1-rs854560 (L55M) SNP in colorectal Cancer susceptibility. J Cancer Res Clin Oncol 2025; 151:170. [PMID: 40389753 PMCID: PMC12089196 DOI: 10.1007/s00432-025-06226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 05/07/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide, with both genetic and environmental risk factors. The PON1 rs854560 (L55M) polymorphism has been implicated in cancer susceptibility through its role in oxidative stress regulation, but its association with CRC remains unclear, particularly in Asian populations. AIM This study aimed to investigate the association between the PON1 rs854560 polymorphism and CRC susceptibility in a Chinese cohort, while assessing its impact on PON1 expression and enzymatic activity. METHOD A case-control study was conducted on 1,003 CRC patients and 1,303 healthy controls. The impact of the Pon1-rs854560 SNP was assessed by comparing the genotypes of individuals diagnosed with CRC to those of controls without the disease. RESULTS Genotype distribution showed slight differences between the case and control groups. The frequency of the AA genotype was slightly lower in the case group (91.72%) than in the control group (93.71%). The AT genotype was observed at similar frequencies in both groups (8.28% in the case group and 6.14% in the control group). Notably, the TT genotype was absent in the case group but present in 0.15% of the control group. Genotype combination analysis suggested that individuals carrying the AT + TT genotype (8.28%) had a higher susceptibility to CRC compared to those with the AA + AT genotype (100%). Allele frequency analysis revealed a slightly higher frequency of allele T in the case group (8.28%) than in the control group (6.45%). Additionally, lower PON1 mRNA and protein expression were associated with CRC progression, including features such as poorer differentiation, deeper tumor invasion, and vascular, nerve, and lymphatic metastasis. CONCLUSION The PON1 rs854560 polymorphism influences CRC risk in Chinese individuals, likely through reduced PON1 expression and detoxification capacity. These findings highlight its potential as a genetic biomarker for CRC susceptibility and suggest PON1's role in tumor progression. Further studies should validate these associations in diverse populations and explore therapeutic strategies targeting PON1 activity.
Collapse
Affiliation(s)
- Xi Wei
- Department of Pathology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Rong Qin
- Department of Medical Oncology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Liang Yin
- Department of Breast Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, China
| | | | - Zakari Shaibu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Guorui Li
- Department of Pathology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Ting Wu
- Department of Pathology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, China.
| |
Collapse
|
2
|
Giaccherini M, Rende M, Gentiluomo M, Corradi C, Archibugi L, Ermini S, Maiello E, Morelli L, van Eijck CHJ, Cavestro GM, Schneider M, Mickevicius A, Adamonis K, Basso D, Hlavac V, Gioffreda D, Talar-Wojnarowska R, Schöttker B, Lovecek M, Vanella G, Gazouli M, Uno M, Malecka-Wojciesko E, Vodicka P, Goetz M, Bijlsma MF, Petrone MC, Bazzocchi F, Kiudelis M, Szentesi A, Carrara S, Nappo G, Brenner H, Milanetto AC, Soucek P, Katzke V, Peduzzi G, Rizzato C, Pasquali C, Chen X, Capurso G, Hackert T, Bueno-de-Mesquita B, Uzunoglu FG, Hegyi P, Greenhalf W, Theodoropoulos GE, Sperti C, Perri F, Oliverius M, Mambrini A, Tavano F, Farinella R, Arcidiacono PG, Lucchesi M, Bunduc S, Kupcinskas J, Di Franco G, Stocker H, Neoptolemos JP, Bambi F, Jamroziak K, Testoni SGG, Aoki MN, Mohelnikova-Duchonova B, Izbicki JR, Pezzilli R, Lawlor RT, Kauffmann EF, López de Maturana E, Malats N, Canzian F, Campa D. A pleiotropy scan to discover new susceptibility loci for pancreatic ductal adenocarcinoma. Mutagenesis 2025; 40:61-70. [PMID: 38606763 DOI: 10.1093/mutage/geae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024] Open
Abstract
Pleiotropic variants (i.e. genetic polymorphisms influencing more than one phenotype) are often associated with cancer risk. A scan of pleiotropic variants was successfully conducted 10 years ago in relation to pancreatic ductal adenocarcinoma susceptibility. However, in the last decade, genetic association studies performed on several human traits have greatly increased the number of known pleiotropic variants. Based on the hypothesis that variants already associated with a least one trait have a higher probability of association with other traits, 61 052 variants reported to be associated by at least one genome-wide association study with at least one human trait were tested in the present study consisting of two phases (discovery and validation), comprising a total of 16 055 pancreatic ductal adenocarcinoma (PDAC) cases and 212 149 controls. The meta-analysis of the two phases showed two loci (10q21.1-rs4948550 (P = 6.52 × 10-5) and 7q36.3-rs288762 (P = 3.03 × 10-5) potentially associated with PDAC risk. 10q21.1-rs4948550 shows a high degree of pleiotropy and it is also associated with colorectal cancer risk while 7q36.3-rs288762 is situated 28,558 base pairs upstream of the Sonic Hedgehog (SHH) gene, which is involved in the cell-differentiation process and PDAC etiopathogenesis. In conclusion, none of the single nucleotide polymorphisms (SNPs) showed a formally statistically significant association after correction for multiple testing. However, given their pleiotropic nature and association with various human traits including colorectal cancer, the two SNPs showing the best associations with PDAC risk merit further investigation through fine mapping and ad hoc functional studies.
Collapse
Affiliation(s)
| | | | | | | | - Livia Archibugi
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Rome, Italy
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Ermini
- Blood Transfusion Service, Azienda Ospedaliero Universitaria Meyer, Florence, Italy
| | - Evaristo Maiello
- Department of Oncology, Fondazione IRCCS 'Casa Sollievo della Sofferenza' Hospital, San Giovanni Rotondo, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Giulia Martina Cavestro
- Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele, Milan, Italy
| | - Marton Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Antanas Mickevicius
- Surgery Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kestutis Adamonis
- Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Daniela Basso
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padua, Italy
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS 'Casa Sollievo della Sofferenza' Hospital, San Giovanni Rotondo, Italy
| | | | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Martin Lovecek
- Department of Surgery I, University Hospital Olomouc, Olomouc, Czech Republic
| | - Giuseppe Vanella
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Rome, Italy
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Instituto Do Câncer Do Estado de São Paulo, (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | | | - Pavel Vodicka
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University in Prague, Prague, Czech Republic
| | - Mara Goetz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marteen F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC and Cancer Center Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Maria Chiara Petrone
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Bazzocchi
- Department of Surgery, Fondazione IRCCS 'Casa Sollievo della Sofferenza' Hospital, San Giovanni Rotondo, Italy
| | - Mindaugas Kiudelis
- Surgery Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Andrea Szentesi
- Medical School, Institute for Translational Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Department of Medicine, University of Szeged, Szeged, Hungary
| | - Silvia Carrara
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Gennaro Nappo
- Pancreatic Unit, Humanitas Clinical and Research Center IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Caterina Milanetto
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padua, Italy
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Claudio Pasquali
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padua, Italy
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Rome, Italy
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Bas Bueno-de-Mesquita
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Hegyi
- Medical School, Institute for Translational Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - William Greenhalf
- Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom
| | - George E Theodoropoulos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padua, Italy
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS 'Casa Sollievo della Sofferenza' Hospital, San Giovanni Rotondo, Italy
| | - Martin Oliverius
- Surgery Clinic Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrea Mambrini
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS 'Casa Sollievo della Sofferenza' Hospital, San Giovanni Rotondo, Italy
| | | | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Maurizio Lucchesi
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Stefania Bunduc
- Medical School, Institute for Translational Medicine, University of Pécs, Pécs, Hungary
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Juozas Kupcinskas
- Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gregorio Di Franco
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Franco Bambi
- Blood Transfusion Service, Azienda Ospedaliero Universitaria Meyer, Florence, Italy
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sabrina G G Testoni
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Mateus N Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | | | - Jacob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Rita T Lawlor
- ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Emanuele F Kauffmann
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | | | - Nuria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Ji JH, Lee SH, Jeon CI, Jang J, Park J, Park SJ, Park JJ, Cheon JH, Jee SH, Kim TI. Identification of Genetic Factors Related With Nonhereditary Colorectal Polyposis and Its Recurrence Through Genome-Wide Association Study. J Gastroenterol Hepatol 2025; 40:482-490. [PMID: 39629711 DOI: 10.1111/jgh.16840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/20/2024] [Accepted: 11/17/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND Many patients with colorectal polyposis demonstrate negative results in germline mutation test. This study aimed to uncover genetic variants associated with nonhereditary colorectal polyposis using a genome-wide association study (GWAS). METHODS At a single referral university hospital, between January 2012 and September 2021, 638 patients with ≥ 10 biopsy-proven cumulative polyps on colonoscopy without germline mutations related to hereditary colorectal cancer or polyposis were included. The control group comprised 1863 individuals from the Korea Medical Institute, each having undergone at least two colonoscopies, all of which were normal. This study utilized GWAS to identify susceptibility loci for nonhereditary colorectal polyposis. Genetic differences between patients with and without ≥ 10 polyp recurrences were analyzed using Cox proportional hazards models. RESULTS GWAS revealed 71 novel risk single-nucleotide polymorphisms (SNPs) not seen in previous colorectal cancer and polyp GWAS. Five genes (UPF3A, BICRA, CBWD6, PDE4DIP, and ABCC4) overlapping seven SNPs (rs566295755, rs2770288, rs1012003, rs201270202, rs71264659, rs1699813, and rs149368557), previously linked to colorectal cancer, were identified as significant risk factors for nonhereditary colorectal polyposis. Two novel genes (CNTN4 and CNTNAP3B), not previously associated with colorectal diseases, were identified. Three SNPs (rs149368557, rs12438834, and rs9707935) were significantly associated with higher risk of recurrence of polyposis. The gene overlapping with rs149368557 was ABCC4, which was also significantly associated with an increased risk of nonhereditary colorectal polyposis. CONCLUSION This study identified 71 novel risk variants for nonhereditary colorectal polyposis, with three SNPs (rs149368557, rs12438834, and rs9707935) indicating significant associations with increased risk of polyposis recurrence.
Collapse
Affiliation(s)
- Jung Hyun Ji
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Su Hyun Lee
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea
| | - Chan Il Jeon
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Jihun Jang
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihye Park
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Jung Park
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Jun Park
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Cancer Prevention Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Tae Il Kim
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Cancer Prevention Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Goldberg SR, Ko LK, Hsu L, Yin H, Kooperberg C, Peters U, Burnett-Hartman AN. Patient Perspectives on Personalized Risk Communication Using Polygenic Risk Scores to Inform Colorectal Cancer Screening Decisions. AJPM FOCUS 2025; 4:100308. [PMID: 39866161 PMCID: PMC11761838 DOI: 10.1016/j.focus.2024.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Introduction Colorectal cancer is increasingly diagnosed in people aged <50 years. New U.S. guidelines recommend screening initiation at age 45 years. Providing personalized risk for colorectal cancer using polygenic risk scores may be an opportunity to engage this younger population in colorectal cancer screening. There is limited research on patient understanding of polygenic risk scores results and use of polygenic risk scores to inform colorectal cancer screening decisions. Methods From May 2022 to June 2023, 20 Kaiser Permanente Colorado members aged 46-51 years who had been offered colorectal cancer screening but had never completed it signed consent to provide a saliva sample for colorectal cancer polygenic risk score analysis. After receiving personalized polygenic risk scores for colorectal cancer, participants completed a semistructured interview regarding the understanding of their polygenic risk scores, perceived colorectal cancer risk, and intention to screen. Thematic analysis was conducted using Atlas.ti, Version 8. Results Of the 19 participants who successfully completed polygenic risk score-related testing and a semistructured interview, 13 were female, 14 never smoked cigarettes, 6 were Hispanic, and 13 were non-Hispanic White. One participant had high risk for colorectal cancer on the basis of polygenic risk score results. Qualitative interviews showed participants' understanding of their results, trust in polygenic risk scores, perception of risk for colorectal cancer, plans to complete colorectal cancer screening, intent to share polygenic risk scores with healthcare providers, and concerns about genetic results impacting health care. Conclusions Qualitative analyses suggest that participants were interested in and understood their polygenic risk score results. Further study is needed to develop guidelines, effective calls to action, provider engagement, and health education materials on use of polygenic risk scores for health decision making.
Collapse
Affiliation(s)
- Shauna R. Goldberg
- Kaiser Permanente Colorado Institute for Health Research, Aurora, Colorado
| | - Linda K. Ko
- Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Health Systems and Population Health, University of Washington, Seattle, Washington
| | - Li Hsu
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Hang Yin
- Fred Hutchinson Cancer Center, Seattle, Washington
| | | | | | - Andrea N. Burnett-Hartman
- Kaiser Permanente Colorado Institute for Health Research, Aurora, Colorado
- Fred Hutchinson Cancer Center, Seattle, Washington
| |
Collapse
|
5
|
Vermani L, Samola Winnberg J, Liu W, Soller V, Sjödin T, Lindblad M, Lindblom A. A Haplotype GWAS in Syndromic Familial Colorectal Cancer. Int J Mol Sci 2025; 26:817. [PMID: 39859530 PMCID: PMC11765965 DOI: 10.3390/ijms26020817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
A previous genome-wide association study (GWAS) in colorectal cancer (CRC) patients with gastric and/or prostate cancer in their families suggested genetic loci with a shared risk for these three cancers. A second haplotype GWAS was undertaken in the same colorectal cancer patients and different controls with the aim of confirming the result and finding novel loci. The haplotype GWAS analysis involved 685 patients with colorectal cancer cases and 1642 healthy controls from Sweden. A logistic regression model was used with a sliding window haplotype approach. Whole-genome and exome sequencing datawere used to find candidate SNPs to be tested in a nested case-control study. In the analysis of 685 colorectal cancer cases and 1642 controls, all ten candidate loci from the previous study were confirmed. Fifty candidate loci were suggested with a p-value < 5 × 10-6 and odds ratios between 1.35-6.52. Two of the 50 loci, on 13q33.3 and 16q23.3, were the same as in the previous study. Whole-genome or exome data from 122 colorectal cancer patients was used to search for candidate variants in these 50 loci. A nested case-control study was performed to test genetic variants at 11 loci in a cohort of 827 familial colorectal cancer and a sub-cohort of 293 familial CRC cases with colorectal, gastric, and/or prostate cancer within their families and 1530 healthy controls. One SNP, rs115943733 on 10q11.21, reached statistical significance (OR = 3.26, p = 0.009). Seven SNPs in 4 loci had a higher OR in the smaller cohort compared to the larger study CRC cases. The results in this GWAS gave support for suggested loci with an increased shared risk of CRC, gastric, and/or prostate cancer. Further studies are needed to confirm the shared risk to be able to use this information in cancer prevention.
Collapse
Affiliation(s)
- Litika Vermani
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (V.S.); (T.S.)
| | - Johanna Samola Winnberg
- Division of Surgery, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (J.S.W.); (M.L.)
- Department of Upper Abdominal Diseases, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Wen Liu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (V.S.); (T.S.)
- Department of Neuroscience, Uppsala University, 75237 Uppsala, Sweden
| | - Veronika Soller
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (V.S.); (T.S.)
| | - Tilde Sjödin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (V.S.); (T.S.)
| | - Mats Lindblad
- Division of Surgery, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (J.S.W.); (M.L.)
- Department of Upper Abdominal Diseases, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (V.S.); (T.S.)
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
6
|
Thomas CE, Lin Y, Kim M, Kawaguchi ES, Qu C, Um CY, Lynch BM, Van Guelpen B, Tsilidis K, Carreras-Torres R, van Duijnhoven FJB, Sakoda LC, Campbell PT, Tian Y, Chang-Claude J, Bézieau S, Budiarto A, Palmer JR, Newcomb PA, Casey G, Le Marchandz L, Giannakis M, Li CI, Gsur A, Newton C, Obón-Santacana M, Moreno V, Vodicka P, Brenner H, Hoffmeister M, Pellatt AJ, Schoen RE, Dimou N, Murphy N, Gunter MJ, Castellví-Bel S, Figueiredo JC, Chan AT, Song M, Li L, Bishop DT, Gruber SB, Baurley JW, Bien SA, Conti DV, Huyghe JR, Kundaje A, Su YR, Wang J, Keku TO, Woods MO, Berndt SI, Chanock SJ, Tangen CM, Wolk A, Burnett-Hartman A, Wu AH, White E, Devall MA, Díez-Obrero V, Drew DA, Giovannucci E, Hidaka A, Kim AE, Lewinger JP, Morrison J, Ose J, Papadimitriou N, Pardamean B, Peoples AR, Ruiz-Narvaez EA, Shcherbina A, Stern MC, Chen X, Thomas DC, Platz EA, Gauderman WJ, Peters U, Hsu L. Characterization of Additive Gene-environment Interactions For Colorectal Cancer Risk. Epidemiology 2025; 36:126-138. [PMID: 39316822 DOI: 10.1097/ede.0000000000001795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common, fatal cancer. Identifying subgroups who may benefit more from intervention is of critical public health importance. Previous studies have assessed multiplicative interaction between genetic risk scores and environmental factors, but few have assessed additive interaction, the relevant public health measure. METHODS Using resources from CRC consortia, including 45,247 CRC cases and 52,671 controls, we assessed multiplicative and additive interaction (relative excess risk due to interaction, RERI) using logistic regression between 13 harmonized environmental factors and genetic risk score, including 141 variants associated with CRC risk. RESULTS There was no evidence of multiplicative interaction between environmental factors and genetic risk score. There was additive interaction where, for individuals with high genetic susceptibility, either heavy drinking (RERI = 0.24, 95% confidence interval [CI] = 0.13, 0.36), ever smoking (0.11 [0.05, 0.16]), high body mass index (female 0.09 [0.05, 0.13], male 0.10 [0.05, 0.14]), or high red meat intake (highest versus lowest quartile 0.18 [0.09, 0.27]) was associated with excess CRC risk greater than that for individuals with average genetic susceptibility. Conversely, we estimate those with high genetic susceptibility may benefit more from reducing CRC risk with aspirin/nonsteroidal anti-inflammatory drugs use (-0.16 [-0.20, -0.11]) or higher intake of fruit, fiber, or calcium (highest quartile versus lowest quartile -0.12 [-0.18, -0.050]; -0.16 [-0.23, -0.09]; -0.11 [-0.18, -0.05], respectively) than those with average genetic susceptibility. CONCLUSIONS Additive interaction is important to assess for identifying subgroups who may benefit from intervention. The subgroups identified in this study may help inform precision CRC prevention.
Collapse
Affiliation(s)
- Claire E Thomas
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Yi Lin
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Michelle Kim
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Eric S Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Conghui Qu
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA
| | - Brigid M Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kostas Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina, School of Medicine, Ioannina, Greece
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, Girona, Spain
| | | | - Lori C Sakoda
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA
| | - Polly A Newcomb
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | | | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Christopher I Li
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Christina Newton
- Department of Population Science, American Cancer Society, Atlanta, GA
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Victor Moreno
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew J Pellatt
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert E Schoen
- Departments of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Departments of Epidemiology and Nutrition, Harvard TH Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA
| | - D Timothy Bishop
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte CA
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA
| | - Stephanie A Bien
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jeroen R Huyghe
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA
- Department of Computer Science, Stanford University, Stanford, CA
| | - Yu-Ru Su
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jun Wang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Anna H Wu
- University of Southern California, Department of Population and Public Health Sciences, Los Angeles, CA
| | - Emily White
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| | - Matthew A Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA
| | - Virginia Díez-Obrero
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - David A Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Edward Giovannucci
- Harvard TH Chan School of Public Health
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Akihisa Hidaka
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Anita R Peoples
- Huntsman Cancer Institute, Salt Lake City, UT
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Edward A Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA
- Department of Computer Science, Stanford University, Stanford, CA
| | - Mariana C Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ulrike Peters
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Li Hsu
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Biostatistics, University of Washington, Seattle, WA
| |
Collapse
|
7
|
Barot S, Vermani L, Blom J, Larsson S, Liljegren A, Lindblom A. Candidate Genetic Loci Modifying the Colorectal Cancer Risk Caused by Lifestyle Risk Factors. Clin Transl Gastroenterol 2025; 16:e00790. [PMID: 39665592 PMCID: PMC11756881 DOI: 10.14309/ctg.0000000000000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION 65%-70% of colorectal cancer (CRC) cases are considered sporadic; they arise under the influence of environmental factors in individuals lacking a family history of CRC. Low-risk genetic variants are believed to contribute to CRC risk, in tandem with lifestyle factors. METHODS Six hundred sixteen nonfamilial Swedish CRC cases with at least 1 of the following 5 risk factors: smoking, excessive alcohol consumption, physical inactivity, adherence to an unhealthy diet, and excess body weight were included in this study. A control group consisting of 1,642 healthy individuals was used. Cases and controls were genotyped from blood samples at the Centre for Inherited Disease Research at Johns Hopkins University within the Colorectal Transdisciplinary Study research collaboration, using the Illumina Infinium OncoArray-500 K BeadChip. Five separate genome-wide haplotype association analyses were performed, one for each risk factor. Logistic regression models were used to estimate associations between haplotypes (exposure) and CRC (outcome) in cases with lifestyle risk factors vs controls. Haplotypes with an odds ratio >1 were considered candidate risk markers, denoting an area of interest in the genome. A significance threshold of P < 5 × 10 -8 was used. RESULTS We found 17 haplotype regions significantly associated with CRC in cases vs controls. Several regions included genes linked to inflammation and tumor promotion. DISCUSSION We concluded that having certain genetic variants was associated with an increased risk of CRC compared with healthy controls among cases with known lifestyle risk factors. The interplay of lifestyle and genetic risk factors calls for further elucidation.
Collapse
Affiliation(s)
- Shabane Barot
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden;
- Department of Oncology, Södersjukhuset, Stockholm, Sweden;
| | - Litika Vermani
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden;
| | - Johannes Blom
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden;
- Department of Medical Epidemiology and Statistics, Karolinska Institutet, Stockholm, Sweden;
| | - Susanna Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden;
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden;
| | - Annelie Liljegren
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden;
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden;
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Vermani L, Wolk A, Lindblom A. A GWAS Suggesting Genetic Modifiers to Increase the Risk of Colorectal Cancer from Antibiotic Use. Cancers (Basel) 2024; 17:12. [PMID: 39796643 PMCID: PMC11718953 DOI: 10.3390/cancers17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Antibiotics have recently been suggested to increase the risk of colorectal cancer. Here, we aimed to investigate the association of frequent antibiotic use and genetic susceptibility with the increased risk of the development of colorectal cancer. Therefore, a genome-wide association study was conducted in colorectal cancer patients with frequent antibiotic use and controls to identify potential chromosomal regions that could indicate an increased risk of colorectal cancer associated with antibiotic use. The results were replicated with a case-case analysis. METHODS A genome-wide case-control study involving 143 colorectal cancer cases with frequent exposure to antibiotics and 1642 healthy individuals with unknown antibiotic use was undertaken. A logistic regression model was used to identify associations between certain chromosomal regions (loci) and the risk of colorectal cancer in cases with frequent antibiotic use. The results were replicated in a follow-up association case-case study comparing the frequent users to those with a more modest use of antibiotics. RESULTS Six chromosomal regions were associated with colorectal cancer in patients exposed to frequent antibiotic use. Two of the six regions contained genes already suggested to be associated with colorectal cancer tumorigenesis, epithelial-mesenchymal transition and colorectal cancer recurrence. The results for the six chromosomal regions were further replicated in a case-case analysis where all the chromosomal regions were confirmed with high odds ratios (ORs) supporting the hypothesis that frequent antibiotic use is associated with an increased risk of colorectal cancer development. CONCLUSIONS The study suggested that genetic modifiers could influence the risk of colorectal cancer associated with the frequent use of antibiotics.
Collapse
Affiliation(s)
- Litika Vermani
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, 17177 Stockholm, Sweden;
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
9
|
Samola Winnberg J, Vermani L, Liu W, Soller V, Thutkawkorapin J, Lindblad M, Lindblom A. A genome-wide association study in Swedish colorectal cancer patients with gastric- and prostate cancer in relatives. Hered Cancer Clin Pract 2024; 22:25. [PMID: 39543761 PMCID: PMC11562479 DOI: 10.1186/s13053-024-00299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND A complex inheritance has been suggested in families with colorectal-, gastric- and prostate cancer. Therefore, we conducted a genome-wide association study (GWAS) in colorectal cancer patients, who's relatives had prostate-, and/or gastric cancer. METHODS The GWAS analysis consisted of 685 cases of colorectal cancer and 4780 healthy controls from Sweden. A sliding window haplotype analysis was conducted using a logistic regression model. Thereafter, we performed sequencing to find candidate variants, finally to be tested in a nested case-control study. RESULTS Candidate loci/genes on ten chromosomal regions were suggested with odds ratios between 1.71-3.62 and p-values < 5 × 10-8 in the analysis. The regions suggested were 1q32.2, 3q29, 4q35.1, 4p15.31, 4q26, 8p23.1, 13q33.3, 13q13.3, 16q23.3 and 22q11.21. All regions, except one on 1q32.2, had protein coding genes, many already shown to be involved in cancer, such as ZDHHC19, SYNPO2, PCYT1A, MYO16, TXNRD2, COMT, and CDH13. Sequencing of DNA from 122 colorectal cancer patients with gastric- and/or prostate cancer in their families was performed to search for candidate variants in the haplotype regions. The identified candidate variants were tested in a nested case-control study of similar colorectal cancer cases and controls. There was some support for an increased risk of colorectal-, gastric-, and/or prostate cancer in all the six loci tested. CONCLUSIONS This study demonstrated a proof of principle strategy to identify risk variants found by GWAS, and identified ten candidate loci that could be associated with colorectal, gastric- and prostate cancer.
Collapse
Affiliation(s)
- Johanna Samola Winnberg
- Division of Surgery, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm, Sweden.
- Karolinska University Hospital Huddinge, Stockholm, 141 86, Sweden.
| | - Litika Vermani
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Wen Liu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Veronika Soller
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jessada Thutkawkorapin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mats Lindblad
- Division of Surgery, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm, Sweden
- Karolinska University Hospital Huddinge, Stockholm, 141 86, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
- K1 MMK Clinical Genetics, Stockholm, 171 76, Sweden.
| |
Collapse
|
10
|
Fummey E, Navarro P, Plazzer JP, Frayling IM, Knott S, Tenesa A. Estimating cancer risk in carriers of Lynch syndrome variants in UK Biobank. J Med Genet 2024; 61:861-869. [PMID: 39004446 PMCID: PMC11420727 DOI: 10.1136/jmg-2023-109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
BackgroundLynch syndrome (LS) is an inherited cancer predisposition syndrome caused by genetic variants affecting DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 Cancer risk in LS is estimated from cohorts of individuals ascertained by individual or family history of cancer, which may upwardly bias estimates. METHODS 830 carriers of pathogenic or likely pathogenic (path_MMR) MMR gene variants classified by InSiGHT were identified in 454 756 UK Biobank (UKB) participants using whole-exome sequence. Nelson-Aalen survival analysis was used to estimate cumulative incidence of colorectal, endometrial and breast cancer (BC). RESULTS Cumulative incidence of colorectal and endometrial cancer (EC) by age 70 years was elevated in path_MMR carriers compared with non-carriers (colorectal: 11.8% (95% confidence interval (CI): 9.5% to 14.6%) vs 1.7% (95% CI: 1.6% to 1.7%), endometrial: 13.4% (95% CI: 10.2% to 17.6%) vs 1.0% (95% CI: 0.9% to 1.0%)), but the magnitude of this increase differed between genes. Cumulative BC incidence by age 70 years was not elevated in path_MMR carriers compared with non-carriers (8.9% (95% CI: 6.3% to 12.4%) vs 7.5% (95% CI: 7.4% to 7.6%)). Cumulative cancer incidence estimates in UKB were similar to estimates from the Prospective Lynch Syndrome Database for all genes and cancers, except there was no evidence for elevated EC risk in carriers of pathogenic PMS2 variants in UKB. CONCLUSION These results support offering incidentally identified carriers of any path_MMR surveillance to manage colorectal cancer risk. Incidentally identified carriers of pathogenic variants in MLH1, MSH2 and MSH6 would also benefit from interventions to reduce EC risk. The results suggest that BC is not an LS-related cancer.
Collapse
Affiliation(s)
- Eilidh Fummey
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- The Roslin Institute, University of Edinburgh, Roslin, Midlothian, UK
| | - John-Paul Plazzer
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ian M Frayling
- The Centre for Familial Intestinal Cancer, St Mark's the National Bowel Hospital and Academic Institute, London, UK
- Institute of Cancer & Genetics, Cardiff University, Cardiff, UK
| | - Sara Knott
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Albert Tenesa
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- The Roslin Institute, University of Edinburgh, Roslin, Midlothian, UK
| |
Collapse
|
11
|
Li A, Gao H, Wu H, Xie Y, Jia Z, Yang Z, Zhang Z, Zhang X. Genetic association and functional implications of TLR4 rs1927914 polymorphism on colon cancer risk. BMC Cancer 2024; 24:858. [PMID: 39026223 PMCID: PMC11256370 DOI: 10.1186/s12885-024-12604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Colon cancer remains a major health concern worldwide, with genetic factors playing a crucial role in its development. Toll-like receptors (TLRs) has been implicated in various cancers, but their role in colon cancer is not well understood. This study aims to identify functional polymorphisms in the promoter and 3'UTR regions of TLRs and evaluate their association with colon cancer susceptibility. METHODS We conducted a case-control study involving 410 colon cancer patients and 410 healthy controls from the Chinese population. Genotyping of polymorphisms in TLR3, TLR4, TLR5 and TLR7 was performed using PCR-RFLP and TaqMan MGB probes. Using logistic regression analysis, we evaluated the association of TLRs polymorphisms and the susceptibility to colon cancer. To understand the biological implications of the TLR4 rs1927914 polymorphism, we conducted functional assays, including luciferase reporter assay and electrophoretic mobility shift assay (EMSA). RESULTS Our results demonstrated that the G-allele of the TLR4 rs1927914 polymorphism is significantly associated with a decreased risk of colon cancer (OR = 0.68, 95%CI = 0.50-0.91). Stratified analysis showed that TLR4 rs1927914 AG or GG genotype contributed to a decreased risk of colon cancer among younger individuals (OR = 0.52, 95%CI = 0.34-0.81), males (OR = 0.58, 95%CI = 0.38-0.87), non-smokers (OR = 0.58, 95%CI = 0.41-0.83) and non-drinker with OR (95%CI) of 0.66 (0.46-0.93). Functional assays demonstrated that in HCT116 and LOVO colon cancer cells, the luciferase activity driven by the TLR4 promoter with the rs1927914A allele was 5.43 and 2.07 times higher, respectively, compared to that driven by the promoter containing the rs1927914G allele. Electrophoretic mobility shift assay (EMSA) results indicated that the rs1927914G allele enhanced transcription factor binding. Using the transcription factor prediction tool, we found that the G allele facilitates binding of the repressive transcription factor Oct1, while the A allele does not. CONCLUSION The TLR4 rs1927914 polymorphism influence the susceptibility to colon cancer, with the G allele offering a protective effect through modulation of gene expression. These insights enhance our understanding of the genetic determinants of colon cancer risk and highlight TLR4 as a promising target for cancer prevention strategies.
Collapse
Affiliation(s)
- Ang Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, 063210, China
| | - Hui Gao
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Hongjiao Wu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Yuning Xie
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhenxian Jia
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhenbang Yang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhi Zhang
- Affliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China.
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China.
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, 063210, China.
| |
Collapse
|
12
|
Gorfine M, Qu C, Peters U, Hsu L. Unveiling challenges in Mendelian randomization for gene-environment interaction. Genet Epidemiol 2024; 48:164-189. [PMID: 38420714 PMCID: PMC11197907 DOI: 10.1002/gepi.22552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Gene-environment (GxE) interactions play a crucial role in understanding the complex etiology of various traits, but assessing them using observational data can be challenging due to unmeasured confounders for lifestyle and environmental risk factors. Mendelian randomization (MR) has emerged as a valuable method for assessing causal relationships based on observational data. This approach utilizes genetic variants as instrumental variables (IVs) with the aim of providing a valid statistical test and estimation of causal effects in the presence of unmeasured confounders. MR has gained substantial popularity in recent years largely due to the success of genome-wide association studies. Many methods have been developed for MR; however, limited work has been done on evaluating GxE interaction. In this paper, we focus on two primary IV approaches: the two-stage predictor substitution and the two-stage residual inclusion, and extend them to accommodate GxE interaction under both the linear and logistic regression models for continuous and binary outcomes, respectively. Comprehensive simulation study and analytical derivations reveal that resolving the linear regression model is relatively straightforward. In contrast, the logistic regression model presents a considerably more intricate challenge, which demands additional effort.
Collapse
Affiliation(s)
- Malka Gorfine
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Conghui Qu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Li Hsu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
13
|
Tian Y, Lin Y, Qu C, Arndt V, Baurley JW, Berndt SI, Bien SA, Bishop DT, Brenner H, Buchanan DD, Budiarto A, Campbell PT, Carreras-Torres R, Casey G, Chan AT, Chen R, Chen X, Conti DV, Díez-Obrero V, Dimou N, Drew DA, Figueiredo JC, Gallinger S, Giles GG, Gruber SB, Gunter MJ, Harlid S, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Jordahl KM, Joshi AD, Keku TO, Kawaguchi E, Kim AE, Kundaje A, Larsson SC, Marchand LL, Lewinger JP, Li L, Moreno V, Morrison J, Murphy N, Nan H, Nassir R, Newcomb PA, Obón-Santacana M, Ogino S, Ose J, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Potter JD, Prentice RL, Rennert G, Ruiz-Narvaez EA, Sakoda LC, Schoen RE, Shcherbina A, Stern MC, Su YR, Thibodeau SN, Thomas DC, Tsilidis KK, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, White E, Wolk A, Woods MO, Wu AH, Peters U, Gauderman WJ, Hsu L, Chang-Claude J. Genetic risk impacts the association of menopausal hormone therapy with colorectal cancer risk. Br J Cancer 2024; 130:1687-1696. [PMID: 38561434 PMCID: PMC11091089 DOI: 10.1038/s41416-024-02638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Menopausal hormone therapy (MHT), a common treatment to relieve symptoms of menopause, is associated with a lower risk of colorectal cancer (CRC). To inform CRC risk prediction and MHT risk-benefit assessment, we aimed to evaluate the joint association of a polygenic risk score (PRS) for CRC and MHT on CRC risk. METHODS We used data from 28,486 postmenopausal women (11,519 cases and 16,967 controls) of European descent. A PRS based on 141 CRC-associated genetic variants was modeled as a categorical variable in quartiles. Multiplicative interaction between PRS and MHT use was evaluated using logistic regression. Additive interaction was measured using the relative excess risk due to interaction (RERI). 30-year cumulative risks of CRC for 50-year-old women according to MHT use and PRS were calculated. RESULTS The reduction in odds ratios by MHT use was larger in women within the highest quartile of PRS compared to that in women within the lowest quartile of PRS (p-value = 2.7 × 10-8). At the highest quartile of PRS, the 30-year CRC risk was statistically significantly lower for women taking any MHT than for women not taking any MHT, 3.7% (3.3%-4.0%) vs 6.1% (5.7%-6.5%) (difference 2.4%, P-value = 1.83 × 10-14); these differences were also statistically significant but smaller in magnitude in the lowest PRS quartile, 1.6% (1.4%-1.8%) vs 2.2% (1.9%-2.4%) (difference 0.6%, P-value = 1.01 × 10-3), indicating 4 times greater reduction in absolute risk associated with any MHT use in the highest compared to the lowest quartile of genetic CRC risk. CONCLUSIONS MHT use has a greater impact on the reduction of CRC risk for women at higher genetic risk. These findings have implications for the development of risk prediction models for CRC and potentially for the consideration of genetic information in the risk-benefit assessment of MHT use.
Collapse
Affiliation(s)
- Yu Tian
- School of Public Health, Capital Medical University, Beijing, China
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute Dr Josep Trueta (IDIBGI), Salt, 17190, Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Kristina M Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Amit D Joshi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Hongmei Nan
- Department of Global Health, Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indianapolis, Indianapolis, IN, USA
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura'a University, Mecca, Saudi Arabia
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Tokyo Medical and Dental University (Institute of Science Tokyo), Tokyo, Japan
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Hochschule Hannover, University of Applied Sciences and Arts, Department III: Media, Information and Design, Hannover, Germany
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J Pellatt
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita R Peoples
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Edward A Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anna Shcherbina
- Biomedical Informatics Program, Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Mariana C Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, NL, Canada
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- University Cancer Centre Hamburg (UCCH), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
14
|
Gholami M. Novel genetic association between obesity, colorectal cancer, and inflammatory bowel disease. J Diabetes Metab Disord 2024; 23:739-744. [PMID: 38932827 PMCID: PMC11196566 DOI: 10.1007/s40200-023-01343-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 06/28/2024]
Abstract
Purpose Obesity/overweight is an important risk factor for CRC and IBD. The aim of this study was to investigate the role of common genetic factors and haplotypes associated with obesity, CRC and IBD. Methods Significant GWAS variants associated with CRC, IBD or obesity were extracted from the GWAS catalog. The common variants between CRC-IBD, CRC-obesity or IBD-obesity were identified. Finally, the haplotypic structure between these diseases was identified, and SNP function analysis, gene-gene expression, protein-protein interactions, gene survival analysis and pathway analysis were performed with the results. Results While the results showed several common variants between CRC and IBD, IBD and obesity, and CRC and obesity identified in previous GWAS, rs3184504 was the only common variant for CRC-IBD-obesity (P ≤ 5E-8). The result also identified a haplotypic block AGCAGT (r2 ≥ 0.8 and D'≥0.08) associated with the common variants of CRC-IBD-obesity. These variants are located on the SH2B3 gene, whose expression level decreases in both colon and rectal cancers (P ≤ 1E-3) and which has protein-protein interaction with inflammation- and cancer-associated genes. Conclusion The rs3184504 variant and the novel haplotype AGCAGT co-occurred in CRC, IBD, obesity, and inflammation. This novel haplotype could potentially be used in genetic panels to identify CRC/IBD susceptibility in obese patients.
Collapse
Affiliation(s)
- Morteza Gholami
- North Research Center, Pasteur Institute of Iran, Amol, Iran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Drew DA, Kim AE, Lin Y, Qu C, Morrison J, Lewinger JP, Kawaguchi E, Wang J, Fu Y, Zemlianskaia N, Díez-Obrero V, Bien SA, Dimou N, Albanes D, Baurley JW, Wu AH, Buchanan DD, Potter JD, Prentice RL, Harlid S, Arndt V, Barry EL, Berndt SI, Bouras E, Brenner H, Budiarto A, Burnett-Hartman A, Campbell PT, Carreras-Torres R, Casey G, Chang-Claude J, Conti DV, Devall MA, Figueiredo JC, Gruber SB, Gsur A, Gunter MJ, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Jordahl KM, Kundaje A, Le Marchand L, Li L, Lynch BM, Murphy N, Nassir R, Newcomb PA, Newton CC, Obón-Santacana M, Ogino S, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Rennert G, Ruiz-Narvaez E, Sakoda LC, Scacheri PC, Schmit SL, Schoen RE, Stern MC, Su YR, Thomas DC, Tian Y, Tsilidis KK, Ulrich CM, Um CY, van Duijnhoven FJ, Van Guelpen B, White E, Hsu L, Moreno V, Peters U, Chan AT, Gauderman WJ. Two genome-wide interaction loci modify the association of nonsteroidal anti-inflammatory drugs with colorectal cancer. SCIENCE ADVANCES 2024; 10:eadk3121. [PMID: 38809988 PMCID: PMC11135391 DOI: 10.1126/sciadv.adk3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Regular, long-term aspirin use may act synergistically with genetic variants, particularly those in mechanistically relevant pathways, to confer a protective effect on colorectal cancer (CRC) risk. We leveraged pooled data from 52 clinical trial, cohort, and case-control studies that included 30,806 CRC cases and 41,861 controls of European ancestry to conduct a genome-wide interaction scan between regular aspirin/nonsteroidal anti-inflammatory drug (NSAID) use and imputed genetic variants. After adjusting for multiple comparisons, we identified statistically significant interactions between regular aspirin/NSAID use and variants in 6q24.1 (top hit rs72833769), which has evidence of influencing expression of TBC1D7 (a subunit of the TSC1-TSC2 complex, a key regulator of MTOR activity), and variants in 5p13.1 (top hit rs350047), which is associated with expression of PTGER4 (codes a cell surface receptor directly involved in the mode of action of aspirin). Genetic variants with functional impact may modulate the chemopreventive effect of regular aspirin use, and our study identifies putative previously unidentified targets for additional mechanistic interrogation.
Collapse
Affiliation(s)
- David A. Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andre E. Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jun Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yubo Fu
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Natalia Zemlianskaia
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Stephanie A. Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - John D. Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Ross L. Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth L. Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emmanouil Bouras
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | | | - Peter T. Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - David V. Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew A.M. Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jane C. Figueiredo
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen B. Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrea Gsur
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R. Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina M. Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, Charlottesville, VA, USA
| | - Brigid M. Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura’a University, Mecca, Saudi Arabia
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J. Pellatt
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita R. Peoples
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lori C. Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Peter C. Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie L. Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Robert E. Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mariana C. Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yu-Ru Su
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Duncan C. Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Caroline Y. Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Andrew T. Chan
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - W. James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Shen H, Chen Y, Xu M, Zhou J, Huang C, Wang Z, Shao Y, Zhang H, Lu Y, Li S, Fu Z. Cellular senescence gene TACC3 associated with colorectal cancer risk via genetic and DNA methylated alteration. Arch Toxicol 2024; 98:1499-1513. [PMID: 38480537 DOI: 10.1007/s00204-024-03702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
Cell senescence genes play a vital role in the pathogenesis of colorectal cancer, a process that may involve the triggering of genetic variations and reversible phenotypes caused by epigenetic modifications. However, the specific regulatory mechanisms remain unclear. Using CellAge and The Cancer Genome Atlas databases and in-house RNA-seq data, DNA methylation-modified cellular senescence genes (DMCSGs) were validated by Support Vector Machine and correlation analyses. In 1150 cases and 1342 controls, we identified colorectal cancer risk variants in DMCSGs. The regulatory effects of gene, variant, and DNA methylation were explored through dual-luciferase and 5-azacytidine treatment experiments, complemented by multiple database analyses. Biological functions of key gene were evaluated via cell proliferation assays, SA-β-gal staining, senescence marker detection, and immune infiltration analyses. The genetic variant rs4558926 in the downstream of TACC3 was significantly associated with colorectal cancer risk (OR = 1.35, P = 3.22 × 10-4). TACC3 mRNA expression increased due to rs4558926 C > G and decreased DNA methylation levels. The CpG sites in the TACC3 promoter region were regulated by rs4558926. TACC3 knockdown decreased proliferation and senescence in colorectal cancer cells. In addition, subjects with high-TACC3 expression presented an immunosuppressive microenvironment. These findings provide insights into the involvement of genetic variants of cellular senescence genes in the development and progression of colorectal cancer.
Collapse
Affiliation(s)
- Hengyang Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Menghuan Xu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jieyu Zhou
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changzhi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenling Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Shao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfei Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Schmit SL, Tsai YY, Bonner JD, Sanz-Pamplona R, Joshi AD, Ugai T, Lindsey SS, Melas M, McDonnell KJ, Idos GE, Walker CP, Qu C, Kast WM, Da Silva DM, Glickman JN, Chan AT, Giannakis M, Nowak JA, Rennert HS, Robins HS, Ogino S, Greenson JK, Moreno V, Rennert G, Gruber SB. Germline genetic regulation of the colorectal tumor immune microenvironment. BMC Genomics 2024; 25:409. [PMID: 38664626 PMCID: PMC11046907 DOI: 10.1186/s12864-024-10295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE To evaluate the contribution of germline genetics to regulating the briskness and diversity of T cell responses in CRC, we conducted a genome-wide association study to examine the associations between germline genetic variation and quantitative measures of T cell landscapes in 2,876 colorectal tumors from participants in the Molecular Epidemiology of Colorectal Cancer Study (MECC). METHODS Germline DNA samples were genotyped and imputed using genome-wide arrays. Tumor DNA samples were extracted from paraffin blocks, and T cell receptor clonality and abundance were quantified by immunoSEQ (Adaptive Biotechnologies, Seattle, WA). Tumor infiltrating lymphocytes per high powered field (TILs/hpf) were scored by a gastrointestinal pathologist. Regression models were used to evaluate the associations between each variant and the three T-cell features, adjusting for sex, age, genotyping platform, and global ancestry. Three independent datasets were used for replication. RESULTS We identified a SNP (rs4918567) near RBM20 associated with clonality at a genome-wide significant threshold of 5 × 10- 8, with a consistent direction of association in both discovery and replication datasets. Expression quantitative trait (eQTL) analyses and in silico functional annotation for these loci provided insights into potential functional roles, including a statistically significant eQTL between the T allele at rs4918567 and higher expression of ADRA2A (P = 0.012) in healthy colon mucosa. CONCLUSIONS Our study suggests that germline genetic variation is associated with the quantity and diversity of adaptive immune responses in CRC. Further studies are warranted to replicate these findings in additional samples and to investigate functional genomic mechanisms.
Collapse
Affiliation(s)
- Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA.
| | - Ya-Yu Tsai
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph D Bonner
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Rebeca Sanz-Pamplona
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sidney S Lindsey
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Marilena Melas
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Kevin J McDonnell
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Gregory E Idos
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Christopher P Walker
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Chenxu Qu
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - W Martin Kast
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Diane M Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Marios Giannakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hedy S Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | | | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Tokyo Medical and Dental University (Institute of Science Tokyo), Tokyo, Japan
| | - Joel K Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Victor Moreno
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Gad Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | - Stephen B Gruber
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
18
|
Tamlander M, Jermy B, Seppälä TT, Färkkilä M, Widén E, Ripatti S, Mars N. Genome-wide polygenic risk scores for colorectal cancer have implications for risk-based screening. Br J Cancer 2024; 130:651-659. [PMID: 38172535 PMCID: PMC10876651 DOI: 10.1038/s41416-023-02536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Hereditary factors, including single genetic variants and family history, can be used for targeting colorectal cancer (CRC) screening, but limited data exist on the impact of polygenic risk scores (PRS) on risk-based CRC screening. METHODS Using longitudinal health and genomics data on 453,733 Finnish individuals including 8801 CRC cases, we estimated the impact of a genome-wide CRC PRS on CRC screening initiation age through population-calibrated incidence estimation over the life course in men and women. RESULTS Compared to the cumulative incidence of CRC at age 60 in Finland (the current age for starting screening in Finland), a comparable cumulative incidence was reached 5 and 11 years earlier in persons with high PRS (80-99% and >99%, respectively), while those with a low PRS (< 20%) reached comparable incidence 7 years later. The PRS was associated with increased risk of post-colonoscopy CRC after negative colonoscopy (hazard ratio 1.76 per PRS SD, 95% CI 1.54-2.01). Moreover, the PRS predicted colorectal adenoma incidence and improved incident CRC risk prediction over non-genetic risk factors. CONCLUSIONS Our findings demonstrate that a CRC PRS can be used for risk stratification of CRC, with further research needed to optimally integrate the PRS into risk-based screening.
Collapse
Affiliation(s)
- Max Tamlander
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Bradley Jermy
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Toni T Seppälä
- Faculty of Medicine and Health Technology, University of Tampere and TAYS Cancer Centre, Tampere, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland
- Abdominal Center, Helsinki University Hospital, Helsinki University, Helsinki, Finland
| | - Martti Färkkilä
- Abdominal Center, Helsinki University Hospital, Helsinki University, Helsinki, Finland
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nina Mars
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
19
|
Stern MC, Mendez JS, Kim AE, Obón-Santacana M, Moratalla-Navarro F, Martín V, Moreno V, Lin Y, Bien SA, Qu C, Su YR, White E, Harrison TA, Huyghe JR, Tangen CM, Newcomb PA, Phipps AI, Thomas CE, Kawaguchi ES, Lewinger JP, Morrison JL, Conti DV, Wang J, Thomas DC, Platz EA, Visvanathan K, Keku TO, Newton CC, Um CY, Kundaje A, Shcherbina A, Murphy N, Gunter MJ, Dimou N, Papadimitriou N, Bézieau S, van Duijnhoven FJB, Männistö S, Rennert G, Wolk A, Hoffmeister M, Brenner H, Chang-Claude J, Tian Y, Marchand LL, Cotterchio M, Tsilidis KK, Bishop DT, Melaku YA, Lynch BM, Buchanan DD, Ulrich CM, Ose J, Peoples AR, Pellatt AJ, Li L, Devall MAM, Campbell PT, Albanes D, Weinstein SJ, Berndt SI, Gruber SB, Ruiz-Narvaez E, Song M, Joshi AD, Drew DA, Petrick JL, Chan AT, Giannakis M, Peters U, Hsu L, Gauderman WJ. Genome-Wide Gene-Environment Interaction Analyses to Understand the Relationship between Red Meat and Processed Meat Intake and Colorectal Cancer Risk. Cancer Epidemiol Biomarkers Prev 2024; 33:400-410. [PMID: 38112776 PMCID: PMC11343583 DOI: 10.1158/1055-9965.epi-23-0717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/05/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND High red meat and/or processed meat consumption are established colorectal cancer risk factors. We conducted a genome-wide gene-environment (GxE) interaction analysis to identify genetic variants that may modify these associations. METHODS A pooled sample of 29,842 colorectal cancer cases and 39,635 controls of European ancestry from 27 studies were included. Quantiles for red meat and processed meat intake were constructed from harmonized questionnaire data. Genotyping arrays were imputed to the Haplotype Reference Consortium. Two-step EDGE and joint tests of GxE interaction were utilized in our genome-wide scan. RESULTS Meta-analyses confirmed positive associations between increased consumption of red meat and processed meat with colorectal cancer risk [per quartile red meat OR = 1.30; 95% confidence interval (CI) = 1.21-1.41; processed meat OR = 1.40; 95% CI = 1.20-1.63]. Two significant genome-wide GxE interactions for red meat consumption were found. Joint GxE tests revealed the rs4871179 SNP in chromosome 8 (downstream of HAS2); greater than median of consumption ORs = 1.38 (95% CI = 1.29-1.46), 1.20 (95% CI = 1.12-1.27), and 1.07 (95% CI = 0.95-1.19) for CC, CG, and GG, respectively. The two-step EDGE method identified the rs35352860 SNP in chromosome 18 (SMAD7 intron); greater than median of consumption ORs = 1.18 (95% CI = 1.11-1.24), 1.35 (95% CI = 1.26-1.44), and 1.46 (95% CI = 1.26-1.69) for CC, CT, and TT, respectively. CONCLUSIONS We propose two novel biomarkers that support the role of meat consumption with an increased risk of colorectal cancer. IMPACT The reported GxE interactions may explain the increased risk of colorectal cancer in certain population subgroups.
Collapse
Affiliation(s)
- Mariana C. Stern
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joel Sanchez Mendez
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Andre E. Kim
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ferran Moratalla-Navarro
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Vicente Martín
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- The Research Group in Gene – Environment and Health Interactions (GIIGAS) / Institut of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain
- Faculty of Health Sciences, Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, Universidad de León, 24071 León, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Catherine M Tangen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Claire E Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Eric S. Kawaguchi
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Juan Pablo Lewinger
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - John L Morrison
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David V Conti
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jun Wang
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Duncan C Thomas
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Franzel JB van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Satu Männistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | | | | | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Yohannes Adama Melaku
- Flinders Health and Medical Research Institute, Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Brigid M. Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Anita R. Peoples
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Andrew J Pellatt
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Matthew AM Devall
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte CA, USA
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amit D Joshi
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica L Petrick
- Slone Epidemiology Center at, Boston University, Boston, Massachusetts, USA
| | - Andrew T Chan
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Marios Giannakis
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - W. James Gauderman
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
20
|
Zhang M, Wang X, Yang N, Zhu X, Lu Z, Cai Y, Li B, Zhu Y, Li X, Wei Y, Zhang S, Tian J, Miao X. Prioritization of risk genes in colorectal cancer by integrative analysis of multi-omics data and gene networks. SCIENCE CHINA. LIFE SCIENCES 2024; 67:132-148. [PMID: 37747674 DOI: 10.1007/s11427-023-2439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/26/2023]
Abstract
Genome-wide association studies (GWASs) have identified over 140 colorectal cancer (CRC)-associated loci; however, target genes at the majority of loci and underlying molecular mechanisms are poorly understood. Here, we utilized a Bayesian approach, integrative risk gene selector (iRIGS), to prioritize risk genes at CRC GWAS loci by integrating multi-omics data. As a result, a total of 105 high-confidence risk genes (HRGs) were identified, which exhibited strong gene dependencies for CRC and enrichment in the biological processes implicated in CRC. Among the 105 HRGs, CEBPB, located at the 20q13.13 locus, acted as a transcription factor playing critical roles in cancer. Our subsequent assays indicated the tumor promoter function of CEBPB that facilitated CRC cell proliferation by regulating multiple oncogenic pathways such as MAPK, PI3K-Akt, and Ras signaling. Next, by integrating a fine-mapping analysis and three independent case-control studies in Chinese populations consisting of 8,039 cases and 12,775 controls, we elucidated that rs1810503, a putative functional variant regulating CEBPB, was associated with CRC risk (OR=0.90, 95%CI=0.86-0.93, P=1.07×10-7). The association between rs1810503 and CRC risk was further validated in three additional multi-ancestry populations consisting of 24,254 cases and 58,741 controls. Mechanistically, the rs1810503 A to T allele change weakened the enhancer activity in an allele-specific manner to decrease CEBPB expression via long-range promoter-enhancer interactions, mediated by the transcription factor, REST, and thus decreased CRC risk. In summary, our study provides a genetic resource and a generalizable strategy for CRC etiology investigation, and highlights the biological implications of CEBPB in CRC tumorigenesis, shedding new light on the etiology of CRC.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Cancer Epidemiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, Zhengzhou, 450008, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangpan Li
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China
| | - Shaokai Zhang
- Department of Cancer Epidemiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, Zhengzhou, 450008, China.
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430073, China.
- Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
21
|
Bouras E, Kim AE, Lin Y, Morrison J, Du M, Albanes D, Barry EL, Baurley JW, Berndt SI, Bien SA, Bishop TD, Brenner H, Budiarto A, Burnett-Hartman A, Campbell PT, Carreras-Torres R, Casey G, Cenggoro TW, Chan AT, Chang-Claude J, Conti DV, Cotterchio M, Devall M, Diez-Obrero V, Dimou N, Drew DA, Figueiredo JC, Giles GG, Gruber SB, Gunter MJ, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Joshi AD, Kawaguchi ES, Keku TO, Kundaje A, Le Marchand L, Lewinger JP, Li L, Lynch BM, Mahesworo B, Männistö S, Moreno V, Murphy N, Newcomb PA, Obón-Santacana M, Ose J, Palmer JR, Papadimitriou N, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Potter JD, Qi L, Qu C, Rennert G, Ruiz-Narvaez E, Sakoda LC, Schmit SL, Shcherbina A, Stern MC, Su YR, Tangen CM, Thomas DC, Tian Y, Um CY, van Duijnhoven FJ, Van Guelpen B, Visvanathan K, Wang J, White E, Wolk A, Woods MO, Ulrich CM, Hsu L, Gauderman WJ, Peters U, Tsilidis KK. Genome-wide interaction analysis of folate for colorectal cancer risk. Am J Clin Nutr 2023; 118:881-891. [PMID: 37640106 PMCID: PMC10636229 DOI: 10.1016/j.ajcnut.2023.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Epidemiological and experimental evidence suggests that higher folate intake is associated with decreased colorectal cancer (CRC) risk; however, the mechanisms underlying this relationship are not fully understood. Genetic variation that may have a direct or indirect impact on folate metabolism can provide insights into folate's role in CRC. OBJECTIVES Our aim was to perform a genome-wide interaction analysis to identify genetic variants that may modify the association of folate on CRC risk. METHODS We applied traditional case-control logistic regression, joint 3-degree of freedom, and a 2-step weighted hypothesis approach to test the interactions of common variants (allele frequency >1%) across the genome and dietary folate, folic acid supplement use, and total folate in relation to risk of CRC in 30,550 cases and 42,336 controls from 51 studies from 3 genetic consortia (CCFR, CORECT, GECCO). RESULTS Inverse associations of dietary, total folate, and folic acid supplement with CRC were found (odds ratio [OR]: 0.93; 95% confidence interval [CI]: 0.90, 0.96; and 0.91; 95% CI: 0.89, 0.94 per quartile higher intake, and 0.82 (95% CI: 0.78, 0.88) for users compared with nonusers, respectively). Interactions (P-interaction < 5×10-8) of folic acid supplement and variants in the 3p25.2 locus (in the region of Synapsin II [SYN2]/tissue inhibitor of metalloproteinase 4 [TIMP4]) were found using traditional interaction analysis, with variant rs150924902 (located upstream to SYN2) showing the strongest interaction. In stratified analyses by rs150924902 genotypes, folate supplementation was associated with decreased CRC risk among those carrying the TT genotype (OR: 0.82; 95% CI: 0.79, 0.86) but increased CRC risk among those carrying the TA genotype (OR: 1.63; 95% CI: 1.29, 2.05), suggesting a qualitative interaction (P-interaction = 1.4×10-8). No interactions were observed for dietary and total folate. CONCLUSIONS Variation in 3p25.2 locus may modify the association of folate supplement with CRC risk. Experimental studies and studies incorporating other relevant omics data are warranted to validate this finding.
Collapse
Affiliation(s)
- Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia; BioRealm LLC, Walnut, CA, United States
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Timothy D Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia; Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | | | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Robert Carreras-Torres
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Tjeng Wawan Cenggoro
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia; Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States; Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | | | - Matthew Devall
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States; Department of Public Health Sciences, Center for Public Health Genomics, Charlottesville, VA, United States
| | - Virginia Diez-Obrero
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Eric S Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, United States
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, United States; Department of Computer Science, Stanford University, Stanford, CA, United States
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, United States
| | - Brigid M Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Victor Moreno
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; School of Public Health, University of Washington, Seattle, WA, United States
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jennifer Ose
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, United States
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, United States
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J Pellatt
- Department of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Anita R Peoples
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, United States
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Lihong Qi
- Department of Public Health Sciences, University of California Davis, Davis, CA, United States
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States; Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA, United States; Department of Computer Science, Stanford University, Stanford, CA, United States
| | - Mariana C Stern
- Department of Population and Public Health Sciences and Norris Comprehensive Cancer Center, Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; School of Public Health, Capital Medical University, Beijing, China
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Franzel Jb van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jun Wang
- Department of Population and Public Health Sciences and Norris Comprehensive Cancer Center, Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, United States
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St John's, Canada
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, United States
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Epidemiology, University of Washington, Seattle, WA, United States.
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom.
| |
Collapse
|
22
|
Thomas M, Su YR, Rosenthal EA, Sakoda LC, Schmit SL, Timofeeva MN, Chen Z, Fernandez-Rozadilla C, Law PJ, Murphy N, Carreras-Torres R, Diez-Obrero V, van Duijnhoven FJB, Jiang S, Shin A, Wolk A, Phipps AI, Burnett-Hartman A, Gsur A, Chan AT, Zauber AG, Wu AH, Lindblom A, Um CY, Tangen CM, Gignoux C, Newton C, Haiman CA, Qu C, Bishop DT, Buchanan DD, Crosslin DR, Conti DV, Kim DH, Hauser E, White E, Siegel E, Schumacher FR, Rennert G, Giles GG, Hampel H, Brenner H, Oze I, Oh JH, Lee JK, Schneider JL, Chang-Claude J, Kim J, Huyghe JR, Zheng J, Hampe J, Greenson J, Hopper JL, Palmer JR, Visvanathan K, Matsuo K, Matsuda K, Jung KJ, Li L, Le Marchand L, Vodickova L, Bujanda L, Gunter MJ, Matejcic M, Jenkins MA, Slattery ML, D'Amato M, Wang M, Hoffmeister M, Woods MO, Kim M, Song M, Iwasaki M, Du M, Udaltsova N, Sawada N, Vodicka P, Campbell PT, Newcomb PA, Cai Q, Pearlman R, Pai RK, Schoen RE, Steinfelder RS, Haile RW, Vandenputtelaar R, Prentice RL, Küry S, Castellví-Bel S, Tsugane S, Berndt SI, Lee SC, Brezina S, Weinstein SJ, Chanock SJ, Jee SH, Kweon SS, Vadaparampil S, Harrison TA, Yamaji T, et alThomas M, Su YR, Rosenthal EA, Sakoda LC, Schmit SL, Timofeeva MN, Chen Z, Fernandez-Rozadilla C, Law PJ, Murphy N, Carreras-Torres R, Diez-Obrero V, van Duijnhoven FJB, Jiang S, Shin A, Wolk A, Phipps AI, Burnett-Hartman A, Gsur A, Chan AT, Zauber AG, Wu AH, Lindblom A, Um CY, Tangen CM, Gignoux C, Newton C, Haiman CA, Qu C, Bishop DT, Buchanan DD, Crosslin DR, Conti DV, Kim DH, Hauser E, White E, Siegel E, Schumacher FR, Rennert G, Giles GG, Hampel H, Brenner H, Oze I, Oh JH, Lee JK, Schneider JL, Chang-Claude J, Kim J, Huyghe JR, Zheng J, Hampe J, Greenson J, Hopper JL, Palmer JR, Visvanathan K, Matsuo K, Matsuda K, Jung KJ, Li L, Le Marchand L, Vodickova L, Bujanda L, Gunter MJ, Matejcic M, Jenkins MA, Slattery ML, D'Amato M, Wang M, Hoffmeister M, Woods MO, Kim M, Song M, Iwasaki M, Du M, Udaltsova N, Sawada N, Vodicka P, Campbell PT, Newcomb PA, Cai Q, Pearlman R, Pai RK, Schoen RE, Steinfelder RS, Haile RW, Vandenputtelaar R, Prentice RL, Küry S, Castellví-Bel S, Tsugane S, Berndt SI, Lee SC, Brezina S, Weinstein SJ, Chanock SJ, Jee SH, Kweon SS, Vadaparampil S, Harrison TA, Yamaji T, Keku TO, Vymetalkova V, Arndt V, Jia WH, Shu XO, Lin Y, Ahn YO, Stadler ZK, Van Guelpen B, Ulrich CM, Platz EA, Potter JD, Li CI, Meester R, Moreno V, Figueiredo JC, Casey G, Lansdorp Vogelaar I, Dunlop MG, Gruber SB, Hayes RB, Pharoah PDP, Houlston RS, Jarvik GP, Tomlinson IP, Zheng W, Corley DA, Peters U, Hsu L. Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations. Nat Commun 2023; 14:6147. [PMID: 37783704 PMCID: PMC10545678 DOI: 10.1038/s41467-023-41819-0] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice.
Collapse
Affiliation(s)
- Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, USA
| | - Elisabeth A Rosenthal
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA, 98195, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, USA
| | - Maria N Timofeeva
- Danish Institute for Advanced Study (DIAS), Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, U, Germany
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ceres Fernandez-Rozadilla
- Instituto de Investigacion Sanitaria de Santiago (IDIS), Choupana sn, 15706, Santiago de Compostela, Spain
- Edinburgh Cancer Research Centre, Institute of Genomics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Reseach, London, SW7 3RP, UK
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, 17190, Girona, Spain
| | - Virginia Diez-Obrero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, 08908, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, 08908, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, 08908, Spain
| | | | - Shangqing Jiang
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul, South Korea
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | | | - Andrea Gsur
- .Center for Cancer Research, Medical University Vienna, Vienna, Austria
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Ann G Zauber
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna H Wu
- University of Southern California, Preventative Medicine, Los Angeles, CA, USA
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chris Gignoux
- Colorado Center for Personalized Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Christina Newton
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Christopher A Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3000, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3000, Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - David R Crosslin
- Department of Bioinformatics and Medical Education, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dong-Hyun Kim
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, South Korea
| | - Elizabeth Hauser
- VA Cooperative Studies Program Epidemiology Center, Durham Veterans Affairs Health Care System, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Erin Siegel
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Isao Oze
- .Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Jae Hwan Oh
- .Research Institute and Hospital, National Cancer Center, Goyang, South Korea, South Korea
| | - Jeffrey K Lee
- .Department of Gastroenterology, Kaiser Permanente San Francisco Medical Center, San Francisco, CA, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48104, USA
| | | | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do, South Korea
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jiayin Zheng
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Joel Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48104, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Julie R Palmer
- Slone Epidemiology Center, School of Medicine, Boston University, Boston, MA, USA
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Keum Ji Jung
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Luis Bujanda
- Department of Gastroenterology, Biodonostia Health Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Mark A Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3000, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Mauro D'Amato
- Department of Medicine and Surgery, LUM University, Camassima, Italy
- Gastrointestinal Genetics Lab, CIC bioGUNE-BRTA, Derio, Spain
| | - Meilin Wang
- Department of Environmental Genomics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Michelle Kim
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Departments of Epidemiology and Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Mulong Du
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Natalia Udaltsova
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Robert W Haile
- Samuel Oschin Comprehensive Cancer Institute, CEDARS-SINAI, Los Angeles, CA, USA
| | - Rosita Vandenputtelaar
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, F-44000, Nantes, France
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Soo Chin Lee
- National University Cancer Institute, Singapore, Singapore
| | - Stefanie Brezina
- .Center for Cancer Research, Medical University Vienna, Vienna, Austria
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Susan Vadaparampil
- Departments of Epidemiology and Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Ou Shu
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul, South Korea
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Reinier Meester
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jane C Figueiredo
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Iris Lansdorp Vogelaar
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Malcolm G Dunlop
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, U, Germany
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Reseach, London, SW7 3RP, UK
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA, 98195, USA
| | - Ian P Tomlinson
- Edinburgh Cancer Research Centre, Institute of Genomics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Department of Gastroenterology, Kaiser Permanente Medical Center, San Francisco, CA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
23
|
Mahmood K, Thomas M, Qu C, Hsu L, Buchanan DD, Peters U. Elucidating the Risk of Colorectal Cancer for Variants in Hereditary Colorectal Cancer Genes. Gastroenterology 2023; 165:1070-1076.e3. [PMID: 37453563 PMCID: PMC10866455 DOI: 10.1053/j.gastro.2023.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
| | - Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Biostatistics, University of Washington, Seattle, Washington.
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington.
| |
Collapse
|
24
|
Ying P, Chen C, Lu Z, Chen S, Zhang M, Cai Y, Zhang F, Huang J, Fan L, Ning C, Li Y, Wang W, Geng H, Liu Y, Tian W, Yang Z, Liu J, Huang C, Yang X, Xu B, Li H, Zhu X, Li N, Li B, Wei Y, Zhu Y, Tian J, Miao X. Genome-wide enhancer-gene regulatory maps link causal variants to target genes underlying human cancer risk. Nat Commun 2023; 14:5958. [PMID: 37749132 PMCID: PMC10520073 DOI: 10.1038/s41467-023-41690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Genome-wide association studies have identified numerous variants associated with human complex traits, most of which reside in the non-coding regions, but biological mechanisms remain unclear. However, assigning function to the non-coding elements is still challenging. Here we apply Activity-by-Contact (ABC) model to evaluate enhancer-gene regulation effect by integrating multi-omics data and identified 544,849 connections across 20 cancer types. ABC model outperforms previous approaches in linking regulatory variants to target genes. Furthermore, we identify over 30,000 enhancer-gene connections in colorectal cancer (CRC) tissues. By integrating large-scale population cohorts (23,813 cases and 29,973 controls) and multipronged functional assays, we demonstrate an ABC regulatory variant rs4810856 associated with CRC risk (Odds Ratio = 1.11, 95%CI = 1.05-1.16, P = 4.02 × 10-5) by acting as an allele-specific enhancer to distally facilitate PREX1, CSE1L and STAU1 expression, which synergistically activate p-AKT signaling. Our study provides comprehensive regulation maps and illuminates a single variant regulating multiple genes, providing insights into cancer etiology.
Collapse
Grants
- Distinguished Young Scholars of China (NSFC-81925032), Key Program of National Natural Science Foundation of China (NSFC-82130098), the Fundamental Research Funds for the Central Universities (2042022rc0026, 2042023kf1005),Knowledge Innovation Program of Wuhan (2023020201010060).
- Youth Program of National Natural Science Foundation of China (NSFC-82003547), Program of Health Commission of Hubei Province (WJ2023M045) and Fundamental Research Funds for the Central Universities (WHU: 2042022kf1031).
- The National Science Fund for Excellent Young Scholars (NSFC-82322058), Program of National Natural Science Foundation of China (NSFC-82103929, NSFC-82273713), Young Elite Scientists Sponsorship Program by cst(2022QNRC001), National Science Fund for Distinguished Young Scholars of Hubei Province of China (2023AFA046), Fundamental Research Funds for the Central Universities (WHU:2042022kf1205) and Knowledge Innovation Program of Wuhan (whkxjsj011, 2023020201010073).
Collapse
Affiliation(s)
- Pingting Ying
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Can Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuoni Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Fuwei Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jinyu Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Linyun Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yanmin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Wenzhuo Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Hui Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yizhuo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Wen Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiuyang Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Heng Li
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Lai J, Wong CK, Schmidt DF, Kapuscinski MK, Alpen K, MacInnis RJ, Buchanan DD, Win AK, Figueiredo JC, Chan AT, Harrison TA, Hoffmeister M, White E, Le Marchand L, Pai RK, Peters U, Hopper JL, Jenkins MA, Makalic E. Using DEPendency of Association on the Number of Top Hits (DEPTH) as a Complementary Tool to Identify Novel Colorectal Cancer Susceptibility Loci. Cancer Epidemiol Biomarkers Prev 2023; 32:1153-1159. [PMID: 37364297 PMCID: PMC10529807 DOI: 10.1158/1055-9965.epi-22-1209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/27/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND DEPendency of association on the number of Top Hits (DEPTH) is an approach to identify candidate susceptibility regions by considering the risk signals from overlapping groups of sequential variants across the genome. METHODS We applied a DEPTH analysis using a sliding window of 200 SNPs to colorectal cancer data from the Colon Cancer Family Registry (CCFR; 5,735 cases and 3,688 controls), and Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO; 8,865 cases and 10,285 controls) studies. A DEPTH score > 1 was used to identify candidate susceptibility regions common to both analyses. We compared DEPTH results against those from conventional genome-wide association study (GWAS) analyses of these two studies as well as against 132 published susceptibility regions. RESULTS Initial DEPTH analysis revealed 2,622 (CCFR) and 3,686 (GECCO) candidate susceptibility regions, of which 569 were common to both studies. Bootstrapping revealed 40 and 49 candidate susceptibility regions in the CCFR and GECCO data sets, respectively. Notably, DEPTH identified at least 82 regions that would not be detected using conventional GWAS methods, nor had they been identified by previous colorectal cancer GWASs. We found four reproducible candidate susceptibility regions (2q22.2, 2q33.1, 6p21.32, 13q14.3). The highest DEPTH scores were in the human leukocyte antigen locus at 6p21 where the strongest associated SNPs were rs762216297, rs149490268, rs114741460, and rs199707618 for the CCFR data, and rs9270761 for the GECCO data. CONCLUSIONS DEPTH can identify candidate susceptibility regions for colorectal cancer not identified using conventional analyses of larger datasets. IMPACT DEPTH has potential as a powerful complementary tool to conventional GWAS analyses for discovering susceptibility regions within the genome.
Collapse
Affiliation(s)
- John Lai
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- Australian Genome Research Facility, Brisbane, Australia
| | - Chi Kuen Wong
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- Genetic Technologies Limited, Melbourne, Australia
| | - Daniel F. Schmidt
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
| | - Miroslaw K. Kapuscinski
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Karen Alpen
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Robert J. MacInnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Aung K. Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genetic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Jane C. Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Andrew T. Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Rish K. Pai
- Department of Pathology and Laboratory Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
26
|
Dimou N, Kim AE, Flanagan O, Murphy N, Diez-Obrero V, Shcherbina A, Aglago EK, Bouras E, Campbell PT, Casey G, Gallinger S, Gruber SB, Jenkins MA, Lin Y, Moreno V, Ruiz-Narvaez E, Stern MC, Tian Y, Tsilidis KK, Arndt V, Barry EL, Baurley JW, Berndt SI, Bézieau S, Bien SA, Bishop DT, Brenner H, Budiarto A, Carreras-Torres R, Cenggoro TW, Chan AT, Chang-Claude J, Chanock SJ, Chen X, Conti DV, Dampier CH, Devall M, Drew DA, Figueiredo JC, Giles GG, Gsur A, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jordahl K, Kawaguchi E, Keku TO, Larsson SC, Le Marchand L, Lewinger JP, Li L, Mahesworo B, Morrison J, Newcomb PA, Newton CC, Obon-Santacana M, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Peoples AR, Pharoah PDP, Platz EA, Potter JD, Rennert G, Scacheri PC, Schoen RE, Su YR, Tangen CM, Thibodeau SN, Thomas DC, Ulrich CM, Um CY, van Duijnhoven FJB, Visvanathan K, Vodicka P, Vodickova L, White E, Wolk A, Woods MO, Qu C, Kundaje A, Hsu L, Gauderman WJ, Gunter MJ, Peters U. Probing the diabetes and colorectal cancer relationship using gene - environment interaction analyses. Br J Cancer 2023; 129:511-520. [PMID: 37365285 PMCID: PMC10403521 DOI: 10.1038/s41416-023-02312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Diabetes is an established risk factor for colorectal cancer. However, the mechanisms underlying this relationship still require investigation and it is not known if the association is modified by genetic variants. To address these questions, we undertook a genome-wide gene-environment interaction analysis. METHODS We used data from 3 genetic consortia (CCFR, CORECT, GECCO; 31,318 colorectal cancer cases/41,499 controls) and undertook genome-wide gene-environment interaction analyses with colorectal cancer risk, including interaction tests of genetics(G)xdiabetes (1-degree of freedom; d.f.) and joint testing of Gxdiabetes, G-colorectal cancer association (2-d.f. joint test) and G-diabetes correlation (3-d.f. joint test). RESULTS Based on the joint tests, we found that the association of diabetes with colorectal cancer risk is modified by loci on chromosomes 8q24.11 (rs3802177, SLC30A8 - ORAA: 1.62, 95% CI: 1.34-1.96; ORAG: 1.41, 95% CI: 1.30-1.54; ORGG: 1.22, 95% CI: 1.13-1.31; p-value3-d.f.: 5.46 × 10-11) and 13q14.13 (rs9526201, LRCH1 - ORGG: 2.11, 95% CI: 1.56-2.83; ORGA: 1.52, 95% CI: 1.38-1.68; ORAA: 1.13, 95% CI: 1.06-1.21; p-value2-d.f.: 7.84 × 10-09). DISCUSSION These results suggest that variation in genes related to insulin signaling (SLC30A8) and immune function (LRCH1) may modify the association of diabetes with colorectal cancer risk and provide novel insights into the biology underlying the diabetes and colorectal cancer relationship.
Collapse
Affiliation(s)
- Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France.
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Orlagh Flanagan
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Virginia Diez-Obrero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, 08908, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, 08908, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, Barcelona, 08908, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, 08908, Spain
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Elom K Aglago
- School of Public Health, Imperial College London, London, United Kingdom
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Graham Casey
- Department of Public Health Sciences, Center for Public Health Genomics, Charlottesville, VA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen B Gruber
- Center for Precision Medicine, Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Victor Moreno
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, 08908, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Mariana C Stern
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Kostas K Tsilidis
- School of Public Health, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique médicale, F-44000, Nantes, France
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 8908, Barcelona, Spain
| | - Tjeng Wawan Cenggoro
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher H Dampier
- Department of Public Health Sciences, Center for Public Health Genomics, Charlottesville, VA, USA
- Department of General Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Matthew Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - David A Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kristina Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Christina C Newton
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Mireia Obon-Santacana
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, 08908L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jennifer Ose
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UH, USA
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Anita R Peoples
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UH, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yu-Ru Su
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Duncan C Thomas
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UH, USA
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Kala Visvanathan
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, NL, Canada
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- School of Public Health, Imperial College London, London, United Kingdom
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Aglago EK, Kim A, Lin Y, Qu C, Evangelou M, Ren Y, Morrison J, Albanes D, Arndt V, Barry EL, Baurley JW, Berndt SI, Bien SA, Bishop DT, Bouras E, Brenner H, Buchanan DD, Budiarto A, Carreras-Torres R, Casey G, Cenggoro TW, Chan AT, Chang-Claude J, Chen X, Conti DV, Devall M, Diez-Obrero V, Dimou N, Drew D, Figueiredo JC, Gallinger S, Giles GG, Gruber SB, Gsur A, Gunter MJ, Hampel H, Harlid S, Hidaka A, Harrison TA, Hoffmeister M, Huyghe JR, Jenkins MA, Jordahl K, Joshi AD, Kawaguchi ES, Keku TO, Kundaje A, Larsson SC, Marchand LL, Lewinger JP, Li L, Lynch BM, Mahesworo B, Mandic M, Obón-Santacana M, Moreno V, Murphy N, Nan H, Nassir R, Newcomb PA, Ogino S, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Peoples AR, Platz EA, Potter JD, Prentice RL, Rennert G, Ruiz-Narvaez E, Sakoda LC, Scacheri PC, Schmit SL, Schoen RE, Shcherbina A, Slattery ML, Stern MC, Su YR, Tangen CM, Thibodeau SN, Thomas DC, Tian Y, Ulrich CM, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, Vodicka P, Wang J, White E, Wolk A, Woods MO, Wu AH, Zemlianskaia N, Hsu L, Gauderman WJ, Peters U, Tsilidis KK, Campbell PT. A Genetic Locus within the FMN1/GREM1 Gene Region Interacts with Body Mass Index in Colorectal Cancer Risk. Cancer Res 2023; 83:2572-2583. [PMID: 37249599 PMCID: PMC10391330 DOI: 10.1158/0008-5472.can-22-3713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/25/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Gene-environment interactions (G × E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G × E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G × E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G × E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant G×BMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer. SIGNIFICANCE This gene-environment interaction analysis revealed a genetic locus in FMN1/GREM1 that interacts with body mass index in colorectal cancer risk, suggesting potential implications for precision prevention strategies.
Collapse
Affiliation(s)
- Elom K. Aglago
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom
| | - Andre Kim
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Marina Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom
| | - Yu Ren
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom
| | - John Morrison
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth L. Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - James W. Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, California
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie A. Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - D. Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Robert Carreras-Torres
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Tjeng Wawan Cenggoro
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew T. Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - David V. Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Matthew Devall
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Virginia Diez-Obrero
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - David Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jane C. Figueiredo
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Stephen B. Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte California
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte California
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R. Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Kristina Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Amit D. Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Eric S. Kawaguchi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Temitope O. Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California
- Department of Computer Science, Stanford University, Stanford, California
| | - Susanna C. Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Juan Pablo Lewinger
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Brigid M. Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Physical Activity Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Marko Mandic
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Mireia Obón-Santacana
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Victor Moreno
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indianapolis, Indiana
- IU Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura'a University, Mecca, Saudi Arabia
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Julie R. Palmer
- Department of Medicine, Boston University School of Medicine, Slone Epidemiology Center, Boston University, Boston, Massachusetts
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Anita R. Peoples
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John D. Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Ross L. Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Lori C. Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Peter C. Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | | | - Robert E. Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, California
- Department of Computer Science, Stanford University, Stanford, California
| | - Martha L. Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Mariana C. Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Catherine M. Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephen N. Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Duncan C. Thomas
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Franzel JB van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jun Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O. Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Natalia Zemlianskaia
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - W. James Gauderman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Peter T. Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
28
|
Romero-Garmendia I, Garcia-Etxebarria K. From Omic Layers to Personalized Medicine in Colorectal Cancer: The Road Ahead. Genes (Basel) 2023; 14:1430. [PMID: 37510334 PMCID: PMC10379575 DOI: 10.3390/genes14071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Colorectal cancer is a major health concern since it is a highly diagnosed cancer and the second cause of death among cancers. Thus, the most suitable biomarkers for its diagnosis, prognosis, and treatment have been studied to improve and personalize the prevention and clinical management of colorectal cancer. The emergence of omic techniques has provided a great opportunity to better study CRC and make personalized medicine feasible. In this review, we will try to summarize how the analysis of the omic layers can be useful for personalized medicine and the existing difficulties. We will discuss how single and multiple omic layer analyses have been used to improve the prediction of the risk of CRC and its outcomes and how to overcome the challenges in the use of omic layers in personalized medicine.
Collapse
Affiliation(s)
- Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), 48940 Leioa, Spain
| | - Koldo Garcia-Etxebarria
- Biodonostia, Gastrointestinal Genetics Group, 20014 San Sebastián, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| |
Collapse
|
29
|
Singh AK, Talseth-Palmer B, Xavier A, Scott RJ, Drabløs F, Sjursen W. Detection of germline variants with pathogenic potential in 48 patients with familial colorectal cancer by using whole exome sequencing. BMC Med Genomics 2023; 16:126. [PMID: 37296477 PMCID: PMC10257304 DOI: 10.1186/s12920-023-01562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Hereditary genetic mutations causing predisposition to colorectal cancer are accountable for approximately 30% of all colorectal cancer cases. However, only a small fraction of these are high penetrant mutations occurring in DNA mismatch repair genes, causing one of several types of familial colorectal cancer (CRC) syndromes. Most of the mutations are low-penetrant variants, contributing to an increased risk of familial colorectal cancer, and they are often found in additional genes and pathways not previously associated with CRC. The aim of this study was to identify such variants, both high-penetrant and low-penetrant ones. METHODS We performed whole exome sequencing on constitutional DNA extracted from blood of 48 patients suspected of familial colorectal cancer and used multiple in silico prediction tools and available literature-based evidence to detect and investigate genetic variants. RESULTS We identified several causative and some potentially causative germline variants in genes known for their association with colorectal cancer. In addition, we identified several variants in genes not typically included in relevant gene panels for colorectal cancer, including CFTR, PABPC1 and TYRO3, which may be associated with an increased risk for cancer. CONCLUSIONS Identification of variants in additional genes that potentially can be associated with familial colorectal cancer indicates a larger genetic spectrum of this disease, not limited only to mismatch repair genes. Usage of multiple in silico tools based on different methods and combined through a consensus approach increases the sensitivity of predictions and narrows down a large list of variants to the ones that are most likely to be significant.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway.
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | - Bente Talseth-Palmer
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Møre and Romsdal Hospital Trust, Research Unit, Ålesund, Norway
- NSW Health Pathology, Newcastle, Australia
| | - Alexandre Xavier
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Rodney J Scott
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- NSW Health Pathology, Newcastle, Australia
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Wenche Sjursen
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
30
|
Cai Z, Li P, Zhu W, Wei J, Lu J, Song X, Li K, Li S, Li M. Metagenomic analysis reveals gut plasmids as diagnosis markers for colorectal cancer. Front Microbiol 2023; 14:1130446. [PMID: 37283932 PMCID: PMC10239823 DOI: 10.3389/fmicb.2023.1130446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Background Colorectal cancer (CRC) is linked to distinct gut microbiome patterns. The efficacy of gut bacteria as diagnostic biomarkers for CRC has been confirmed. Despite the potential to influence microbiome physiology and evolution, the set of plasmids in the gut microbiome remains understudied. Methods We investigated the essential features of gut plasmid using metagenomic data of 1,242 samples from eight distinct geographic cohorts. We identified 198 plasmid-related sequences that differed in abundance between CRC patients and controls and screened 21 markers for the CRC diagnosis model. We utilize these plasmid markers combined with bacteria to construct a random forest classifier model to diagnose CRC. Results The plasmid markers were able to distinguish between the CRC patients and controls [mean area under the receiver operating characteristic curve (AUC = 0.70)] and maintained accuracy in two independent cohorts. In comparison to the bacteria-only model, the performance of the composite panel created by combining plasmid and bacteria features was significantly improved in all training cohorts (mean AUCcomposite = 0.804 and mean AUCbacteria = 0.787) and maintained high accuracy in all independent cohorts (mean AUCcomposite = 0.839 and mean AUCbacteria = 0.821). In comparison to controls, we found that the bacteria-plasmid correlation strength was weaker in CRC patients. Additionally, the KEGG orthology (KO) genes in plasmids that are independent of bacteria or plasmids significantly correlated with CRC. Conclusion We identified plasmid features associated with CRC and showed how plasmid and bacterial markers could be combined to further enhance CRC diagnosis accuracy.
Collapse
Affiliation(s)
- Zhiyuan Cai
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wen Zhu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jingyue Wei
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jieyu Lu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiaoyi Song
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Kunwei Li
- Radiology Department, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Sikai Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Man Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
31
|
Hatcher C, Richenberg G, Waterson S, Nguyen LH, Joshi AD, Carreras-Torres R, Moreno V, Chan AT, Gunter M, Lin Y, Qu C, Song M, Casey G, Figueiredo JC, Gruber SB, Hampe J, Hampel H, Jenkins MA, Keku TO, Peters U, Tangen CM, Wu AH, Hughes DA, Rühlemann MC, Raes J, Timpson NJ, Wade KH. Application of Mendelian randomization to explore the causal role of the human gut microbiome in colorectal cancer. Sci Rep 2023; 13:5968. [PMID: 37045850 PMCID: PMC10097673 DOI: 10.1038/s41598-023-31840-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
The role of the human gut microbiome in colorectal cancer (CRC) is unclear as most studies on the topic are unable to discern correlation from causation. We apply two-sample Mendelian randomization (MR) to estimate the causal relationship between the gut microbiome and CRC. We used summary-level data from independent genome-wide association studies to estimate the causal effect of 14 microbial traits (n = 3890 individuals) on overall CRC (55,168 cases, 65,160 controls) and site-specific CRC risk, conducting several sensitivity analyses to understand the nature of results. Initial MR analysis suggested that a higher abundance of Bifidobacterium and presence of an unclassified group of bacteria within the Bacteroidales order in the gut increased overall and site-specific CRC risk. However, sensitivity analyses suggested that instruments used to estimate relationships were likely complex and involved in many potential horizontal pleiotropic pathways, demonstrating that caution is needed when interpreting MR analyses with gut microbiome exposures. In assessing reverse causality, we did not find strong evidence that CRC causally affected these microbial traits. Whilst our study initially identified potential causal roles for two microbial traits in CRC, importantly, further exploration of these relationships highlighted that these were unlikely to reflect causality.
Collapse
Affiliation(s)
- Charlie Hatcher
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - George Richenberg
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Samuel Waterson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - Long H Nguyen
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Amit D Joshi
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), 17190, Salt, Girona, Spain
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Universitat de Barcelona Institute of Complex Systems (UBICS), Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Andrew T Chan
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Marc Gunter
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon, CEDEX 08, France
| | - Yi Lin
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98109, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Division of Gastroenterology, Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen B Gruber
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Anna H Wu
- Preventative Medicine, University of Southern California, Los Angeles, CA, USA
| | - David A Hughes
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Malte C Rühlemann
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven, University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Kaitlin H Wade
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK.
| |
Collapse
|
32
|
Hassanin E, Spier I, Bobbili DR, Aldisi R, Klinkhammer H, David F, Dueñas N, Hüneburg R, Perne C, Brunet J, Capella G, Nöthen MM, Forstner AJ, Mayr A, Krawitz P, May P, Aretz S, Maj C. Clinically relevant combined effect of polygenic background, rare pathogenic germline variants, and family history on colorectal cancer incidence. BMC Med Genomics 2023; 16:42. [PMID: 36872334 PMCID: PMC9987090 DOI: 10.1186/s12920-023-01469-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND AND AIMS Summarised in polygenic risk scores (PRS), the effect of common, low penetrant genetic variants associated with colorectal cancer (CRC), can be used for risk stratification. METHODS To assess the combined impact of the PRS and other main factors on CRC risk, 163,516 individuals from the UK Biobank were stratified as follows: 1. carriers status for germline pathogenic variants (PV) in CRC susceptibility genes (APC, MLH1, MSH2, MSH6, PMS2), 2. low (< 20%), intermediate (20-80%), or high PRS (> 80%), and 3. family history (FH) of CRC. Multivariable logistic regression and Cox proportional hazards models were applied to compare odds ratios and to compute the lifetime incidence, respectively. RESULTS Depending on the PRS, the CRC lifetime incidence for non-carriers ranges between 6 and 22%, compared to 40% and 74% for carriers. A suspicious FH is associated with a further increase of the cumulative incidence reaching 26% for non-carriers and 98% for carriers. In non-carriers without FH, but high PRS, the CRC risk is doubled, whereas a low PRS even in the context of a FH results in a decreased risk. The full model including PRS, carrier status, and FH improved the area under the curve in risk prediction (0.704). CONCLUSION The findings demonstrate that CRC risks are strongly influenced by the PRS for both a sporadic and monogenic background. FH, PV, and common variants complementary contribute to CRC risk. The implementation of PRS in routine care will likely improve personalized risk stratification, which will in turn guide tailored preventive surveillance strategies in high, intermediate, and low risk groups.
Collapse
Affiliation(s)
- Emadeldin Hassanin
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany.,European Reference Network on Genetic Tumour Rsik Syndromes (ERNGENTURIS) - Project ID No 739547, Nijmegen, The Netherlands
| | - Dheeraj R Bobbili
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Rana Aldisi
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany.,Medical Faculty, Institute for Medical Biometry, Informatics and Epidemiology, University Bonn, Bonn, Germany
| | - Friederike David
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Nuria Dueñas
- Hereditary Cancer Program, Catalan Institute of Oncology-IDIBELL, ONCOBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Robert Hüneburg
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany.,Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Claudia Perne
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Joan Brunet
- European Reference Network on Genetic Tumour Rsik Syndromes (ERNGENTURIS) - Project ID No 739547, Nijmegen, The Netherlands.,Hereditary Cancer Program, Catalan Institute of Oncology-IDIBELL, ONCOBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology-IDBIGI, 17007, Girona, Spain
| | - Gabriel Capella
- European Reference Network on Genetic Tumour Rsik Syndromes (ERNGENTURIS) - Project ID No 739547, Nijmegen, The Netherlands.,Hereditary Cancer Program, Catalan Institute of Oncology-IDIBELL, ONCOBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Markus M Nöthen
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Centre for Human Genetics, University of Marburg, Marburg, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Andreas Mayr
- Medical Faculty, Institute for Medical Biometry, Informatics and Epidemiology, University Bonn, Bonn, Germany
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany. .,National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany. .,European Reference Network on Genetic Tumour Rsik Syndromes (ERNGENTURIS) - Project ID No 739547, Nijmegen, The Netherlands.
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
33
|
Guan Z, Begg CB, Shen R. Predicting Cancer Risk from Germline Whole-exome Sequencing Data Using a Novel Context-based Variant Aggregation Approach. CANCER RESEARCH COMMUNICATIONS 2023; 3:483-488. [PMID: 36969913 PMCID: PMC10032232 DOI: 10.1158/2767-9764.crc-22-0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Many studies have shown that the distributions of the genomic, nucleotide, and epigenetic contexts of somatic variants in tumors are informative of cancer etiology. Recently, a new direction of research has focused on extracting signals from the contexts of germline variants and evidence has emerged that patterns defined by these factors are associated with oncogenic pathways, histologic subtypes, and prognosis. It remains an open question whether aggregating germline variants using meta-features capturing their genomic, nucleotide, and epigenetic contexts can improve cancer risk prediction. This aggregation approach can potentially increase statistical power for detecting signals from rare variants, which have been hypothesized to be a major source of the missing heritability of cancer. Using germline whole-exome sequencing data from the UK Biobank, we developed risk models for 10 cancer types using known risk variants (cancer-associated SNPs and pathogenic variants in known cancer predisposition genes) as well as models that additionally include the meta-features. The meta-features did not improve the prediction accuracy of models based on known risk variants. It is possible that expanding the approach to whole-genome sequencing can lead to gains in prediction accuracy. Significance There is evidence that cancer is partly caused by rare genetic variants that have not yet been identified. We investigate this issue using novel statistical methods and data from the UK Biobank.
Collapse
Affiliation(s)
- Zoe Guan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Colin B. Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
34
|
Cavestro GM, Mannucci A, Balaguer F, Hampel H, Kupfer SS, Repici A, Sartore-Bianchi A, Seppälä TT, Valentini V, Boland CR, Brand RE, Buffart TE, Burke CA, Caccialanza R, Cannizzaro R, Cascinu S, Cercek A, Crosbie EJ, Danese S, Dekker E, Daca-Alvarez M, Deni F, Dominguez-Valentin M, Eng C, Goel A, Guillem JG, Houwen BBSL, Kahi C, Kalady MF, Kastrinos F, Kühn F, Laghi L, Latchford A, Liska D, Lynch P, Malesci A, Mauri G, Meldolesi E, Møller P, Monahan KJ, Möslein G, Murphy CC, Nass K, Ng K, Oliani C, Papaleo E, Patel SG, Puzzono M, Remo A, Ricciardiello L, Ripamonti CI, Siena S, Singh SK, Stadler ZK, Stanich PP, Syngal S, Turi S, Urso ED, Valle L, Vanni VS, Vilar E, Vitellaro M, You YQN, Yurgelun MB, Zuppardo RA, Stoffel EM. Delphi Initiative for Early-Onset Colorectal Cancer (DIRECt) International Management Guidelines. Clin Gastroenterol Hepatol 2023; 21:581-603.e33. [PMID: 36549470 PMCID: PMC11207185 DOI: 10.1016/j.cgh.2022.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Patients with early-onset colorectal cancer (eoCRC) are managed according to guidelines that are not age-specific. A multidisciplinary international group (DIRECt), composed of 69 experts, was convened to develop the first evidence-based consensus recommendations for eoCRC. METHODS After reviewing the published literature, a Delphi methodology was used to draft and respond to clinically relevant questions. Each statement underwent 3 rounds of voting and reached a consensus level of agreement of ≥80%. RESULTS The DIRECt group produced 31 statements in 7 areas of interest: diagnosis, risk factors, genetics, pathology-oncology, endoscopy, therapy, and supportive care. There was strong consensus that all individuals younger than 50 should undergo CRC risk stratification and prompt symptom assessment. All newly diagnosed eoCRC patients should receive germline genetic testing, ideally before surgery. On the basis of current evidence, endoscopic, surgical, and oncologic treatment of eoCRC should not differ from later-onset CRC, except for individuals with pathogenic or likely pathogenic germline variants. The evidence on chemotherapy is not sufficient to recommend changes to established therapeutic protocols. Fertility preservation and sexual health are important to address in eoCRC survivors. The DIRECt group highlighted areas with knowledge gaps that should be prioritized in future research efforts, including age at first screening for the general population, use of fecal immunochemical tests, chemotherapy, endoscopic therapy, and post-treatment surveillance for eoCRC patients. CONCLUSIONS The DIRECt group produced the first consensus recommendations on eoCRC. All statements should be considered together with the accompanying comments and literature reviews. We highlighted areas where research should be prioritized. These guidelines represent a useful tool for clinicians caring for patients with eoCRC.
Collapse
Affiliation(s)
- Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Alessandro Mannucci
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Sonia S Kupfer
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, Chicago, Illinois
| | - Alessandro Repici
- Gastrointestinal Endoscopy Unit, Humanitas University, Humanitas Research Hospital, Rozzano, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, and Department of Hematology Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Toni T Seppälä
- Faculty of Medicine and Medical Technology, University of Tampere and TAYS Cancer Centre, Arvo Ylpön katu, Tampere, Finland; Unit of Gastroenterological Surgery, Tampere University Hospital, Elämänaukio, Tampere, Finland; Applied Tumor Genomics Research Program and Department of Surgery, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Vincenzo Valentini
- Department of Radiology, Radiation Oncology and Hematology, Università Cattolica del Sacro Cuore di Roma, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Clement Richard Boland
- Department of Medicine, Division of Gastroenterology, University of California San Diego, San Diego, California
| | - Randall E Brand
- Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tineke E Buffart
- Department of Medical Oncology. Amsterdam UMC, Location de Boelelaan, Amsterdam, The Netherlands
| | - Carol A Burke
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic, Cleveland, Ohio
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Renato Cannizzaro
- SOC Gastroenterologia Oncologica e Sperimentale Centro di Riferimento Oncologico di Aviano (CRO) IRCCS 33081, Aviano, Italy
| | - Stefano Cascinu
- Oncology Department, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emma J Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, United Kingdom; Division of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Silvio Danese
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Daca-Alvarez
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesco Deni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Cathy Eng
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Ajay Goel
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, California
| | - Josè G Guillem
- Department of Surgery and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Britt B S L Houwen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Charles Kahi
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matthew F Kalady
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Fay Kastrinos
- Division of Digestive and Liver Diseases, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center and the Vagelos College of Physicians and Surgeons, New York, New York
| | - Florian Kühn
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Luigi Laghi
- Department of Medicine and Surgery, University of Parma, Parma, and Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Andrew Latchford
- Lynch Syndrome Clinic, Centre for Familial Intestinal Cancer, St Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, United Kingdom
| | - David Liska
- Department of Colorectal Surgery and Edward J. DeBartolo Jr Family Center for Young-Onset Colorectal Cancer, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Patrick Lynch
- Department of Gastroenterology, M. D. Anderson Cancer Center, Houston, Texas
| | - Alberto Malesci
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Mauri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, and Department of Hematology Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Elisa Meldolesi
- Department of Radiology, Radiation Oncology and Hematology, Università Cattolica del Sacro Cuore di Roma, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Pål Møller
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Kevin J Monahan
- Lynch Syndrome Clinic, Centre for Familial Intestinal Cancer, St Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, United Kingdom; Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, United Kingdom
| | - Gabriela Möslein
- Surgical Center for Hereditary Tumors, Ev. BETHESDA Khs. Duisburg, Academic Hospital University of Düsseldorf, Düsseldorf, Germany
| | - Caitlin C Murphy
- School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | - Karlijn Nass
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Kimmie Ng
- Young-Onset Colorectal Cancer Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Cristina Oliani
- Medical Oncology, AULSS 5 Polesana, Santa Maria Della Misericordia Hospital, Rovigo, Italy
| | - Enrico Papaleo
- Centro Scienze della Natalità, Department of Obstetrics and Gynecology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Swati G Patel
- University of Colorado Anschutz Medical Center and Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Marta Puzzono
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Remo
- Pathology Unit, Mater Salutis Hospital, ULSS9, Legnago, Verona, Italy
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, Universita degli Studi di Bologna, Bologna, Italy
| | - Carla Ida Ripamonti
- Department of Onco-Haematology, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, and Department of Hematology Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Satish K Singh
- Department of Medicine, Section of Gastroenterology, VA Boston Healthcare System and Boston University, Boston, Massachusetts
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter P Stanich
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sapna Syngal
- Brigham and Women's Hospital, Harvard Medical School, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Stefano Turi
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Damiano Urso
- Chirurgia Generale 3, Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), University Hospital of Padova, Padova, Italy
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Center (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Madrid, Spain
| | - Valeria Stella Vanni
- Centro Scienze della Natalità, Department of Obstetrics and Gynecology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marco Vitellaro
- Unit of Hereditary Digestive Tract Tumours, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Yi-Qian Nancy You
- Department of Colon & Rectal Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew B Yurgelun
- Brigham and Women's Hospital, Harvard Medical School, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Raffaella Alessia Zuppardo
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena M Stoffel
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
35
|
Kawaguchi ES, Kim AE, Pablo Lewinger J, Gauderman WJ. Improved two-step testing of genome-wide gene-environment interactions. Genet Epidemiol 2023; 47:152-166. [PMID: 36571162 PMCID: PMC9974838 DOI: 10.1002/gepi.22509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 11/11/2022] [Indexed: 12/27/2022]
Abstract
Two-step tests for gene-environment (G × E $G\times E$ ) interactions exploit marginal single-nucleotide polymorphism (SNP) effects to improve the power of a genome-wide interaction scan. They combine a screening step based on marginal effects used to "bin" SNPs for weighted hypothesis testing in the second step to deliver greater power over single-step tests while preserving the genome-wide Type I error. However, the presence of many SNPs with detectable marginal effects on the trait of interest can reduce power by "displacing" true interactions with weaker marginal effects and by adding to the number of tests that need to be corrected for multiple testing. We introduce a new significance-based allocation into bins for Step-2G × E $G\times E$ testing that overcomes the displacement issue and propose a computationally efficient approach to account for multiple testing within bins. Simulation results demonstrate that these simple improvements can provide substantially greater power than current methods under several scenarios. An application to a multistudy collaboration for understanding colorectal cancer reveals a G × Sex interaction located near the SMAD7 gene.
Collapse
Affiliation(s)
- Eric S. Kawaguchi
- Department of Population and Public Health Sciences, University of Southern California, California, USA
| | - Andre E. Kim
- Department of Population and Public Health Sciences, University of Southern California, California, USA
| | - Juan Pablo Lewinger
- Department of Population and Public Health Sciences, University of Southern California, California, USA
| | - W. James Gauderman
- Department of Population and Public Health Sciences, University of Southern California, California, USA
| |
Collapse
|
36
|
Witonsky D, Bielski MC, Li J, Lawrence KM, Mendoza IN, Usman H, Kupfer SS. Genomic and epigenomic responses to aspirin in human colonic organoids. Physiol Genomics 2023; 55:101-112. [PMID: 36645669 PMCID: PMC10069959 DOI: 10.1152/physiolgenomics.00070.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
Aspirin (ASA) is a proven chemoprotective agent for colorectal cancer, though mechanisms underlying these effects are incompletely understood. Human organoids are an ideal system to study genomic and epigenomic host-environment interactions. We use human colonic organoids to profile ASA responses on genome-wide gene expression and chromatin accessibility. Human colonic organoids from one individual were cultured and treated in triplicate with 3 mM ASA or vehicle control (DMSO) for 24 h. Gene expression and chromatin accessibility were measured using RNA- and ATAC-sequencing, respectively. Differentially expressed genes were analyzed using DESeq2. Top genes were validated by qPCR. Gene set enrichment was performed by SetRank. Differentially accessible peaks were analyzed using DiffBind and edgeR. Peak annotation and differential transcription factor motifs were determined by HOMER and diffTF. The results showed robust transcriptional responses to ASA with significant enrichment for fatty acid oxidation and peroxisome proliferator-activated receptor (PPAR) signaling that were validated in independent organoid lines. A large number of differentially accessible chromatin regions were found in response to ASA with significant enrichment for Fos, Jun, and Hnf transcription factor motifs. Integrated analysis of epigenomic and genomic treatment responses highlighted gene regions that could mediate ASA's specific effects in the colon including those involved in chemoprotection and/or toxicity. Assessment of chromatin accessibility and transcriptional responses to ASA yielded new observations about genome-wide effects in the colon facilitated by application of human colonic organoids. This framework can be applied to study colonic ASA responses between individuals and populations in future studies.
Collapse
Affiliation(s)
- David Witonsky
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Margaret C Bielski
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Jinchao Li
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Kristi M Lawrence
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Ishmael N Mendoza
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Hina Usman
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Sonia S Kupfer
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
37
|
Gorlov IP, Amos CI. Why does the X chromosome lag behind autosomes in GWAS findings? PLoS Genet 2023; 19:e1010472. [PMID: 36848382 PMCID: PMC9997976 DOI: 10.1371/journal.pgen.1010472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/09/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
The X-chromosome is among the largest human chromosomes. It differs from autosomes by a number of important features including hemizygosity in males, an almost complete inactivation of one copy in females, and unique patterns of recombination. We used data from the Catalog of Published Genome Wide Association Studies to compare densities of the GWAS-detected SNPs on the X-chromosome and autosomes. The density of GWAS-detected SNPs on the X-chromosome is 6-fold lower compared to the density of the GWAS-detected SNPs on autosomes. Differences between the X-chromosome and autosomes cannot be explained by differences in the overall SNP density, lower X-chromosome coverage by genotyping platforms or low call rate of X-chromosomal SNPs. Similar differences in the density of GWAS-detected SNPs were found in female-only GWASs (e.g. ovarian cancer GWASs). We hypothesized that the lower density of GWAS-detected SNPs on the X-chromosome compared to autosomes is not a result of a methodological bias, e.g. differences in coverage or call rates, but has a real underlying biological reason-a lower density of functional SNPs on the X-chromosome versus autosomes. This hypothesis is supported by the observation that (i) the overall SNP density of X-chromosome is lower compared to the SNP density on autosomes and that (ii) the density of genic SNPs on the X-chromosome is lower compared to autosomes while densities of intergenic SNPs are similar.
Collapse
Affiliation(s)
- Ivan P. Gorlov
- Baylor College of Medicine, Institute for Clinical & Translational Research, One Baylor Plaza, Houston, Texas, United States of America
| | - Christopher I. Amos
- Baylor College of Medicine, Institute for Clinical & Translational Research, One Baylor Plaza, Houston, Texas, United States of America
| |
Collapse
|
38
|
Thomas M, Su YR, Rosenthal EA, Sakoda LC, Schmit SL, Timofeeva MN, Chen Z, Fernandez-Rozadilla C, Law PJ, Murphy N, Carreras-Torres R, Diez-Obrero V, van Duijnhoven FJ, Jiang S, Shin A, Wolk A, Phipps AI, Burnett-Hartman A, Gsur A, Chan AT, Zauber AG, Wu AH, Lindblom A, Um CY, Tangen CM, Gignoux C, Newton C, Haiman CA, Qu C, Bishop DT, Buchanan DD, Crosslin DR, Conti DV, Kim DH, Hauser E, White E, Siegel E, Schumacher FR, Rennert G, Giles GG, Hampel H, Brenner H, Oze I, Oh JH, Lee JK, Schneider JL, Chang-Claude J, Kim J, Huyghe JR, Zheng J, Hampe J, Greenson J, Hopper JL, Palmer JR, Visvanathan K, Matsuo K, Matsuda K, Jung KJ, Li L, Marchand LL, Vodickova L, Bujanda L, Gunter MJ, Matejcic M, Jenkins MA, Slattery ML, D'Amato M, Wang M, Hoffmeister M, Woods MO, Kim M, Song M, Iwasaki M, Du M, Udaltsova N, Sawada N, Vodicka P, Campbell PT, Newcomb PA, Cai Q, Pearlman R, Pai RK, Schoen RE, Steinfelder RS, Haile RW, Vandenputtelaar R, Prentice RL, Küry S, Castellví-Bel S, Tsugane S, Berndt SI, Lee SC, Brezina S, Weinstein SJ, Chanock SJ, Jee SH, Kweon SS, Vadaparampil S, Harrison TA, Yamaji T, et alThomas M, Su YR, Rosenthal EA, Sakoda LC, Schmit SL, Timofeeva MN, Chen Z, Fernandez-Rozadilla C, Law PJ, Murphy N, Carreras-Torres R, Diez-Obrero V, van Duijnhoven FJ, Jiang S, Shin A, Wolk A, Phipps AI, Burnett-Hartman A, Gsur A, Chan AT, Zauber AG, Wu AH, Lindblom A, Um CY, Tangen CM, Gignoux C, Newton C, Haiman CA, Qu C, Bishop DT, Buchanan DD, Crosslin DR, Conti DV, Kim DH, Hauser E, White E, Siegel E, Schumacher FR, Rennert G, Giles GG, Hampel H, Brenner H, Oze I, Oh JH, Lee JK, Schneider JL, Chang-Claude J, Kim J, Huyghe JR, Zheng J, Hampe J, Greenson J, Hopper JL, Palmer JR, Visvanathan K, Matsuo K, Matsuda K, Jung KJ, Li L, Marchand LL, Vodickova L, Bujanda L, Gunter MJ, Matejcic M, Jenkins MA, Slattery ML, D'Amato M, Wang M, Hoffmeister M, Woods MO, Kim M, Song M, Iwasaki M, Du M, Udaltsova N, Sawada N, Vodicka P, Campbell PT, Newcomb PA, Cai Q, Pearlman R, Pai RK, Schoen RE, Steinfelder RS, Haile RW, Vandenputtelaar R, Prentice RL, Küry S, Castellví-Bel S, Tsugane S, Berndt SI, Lee SC, Brezina S, Weinstein SJ, Chanock SJ, Jee SH, Kweon SS, Vadaparampil S, Harrison TA, Yamaji T, Keku TO, Vymetalkova V, Arndt V, Jia WH, Shu XO, Lin Y, Ahn YO, Stadler ZK, Van Guelpen B, Ulrich CM, Platz EA, Potter JD, Li CI, Meester R, Moreno V, Figueiredo JC, Casey G, Vogelaar IL, Dunlop MG, Gruber SB, Hayes RB, Pharoah PDP, Houlston RS, Jarvik GP, Tomlinson IP, Zheng W, Corley DA, Peters U, Hsu L. Combining Asian-European Genome-Wide Association Studies of Colorectal Cancer Improves Risk Prediction Across Race and Ethnicity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.19.23284737. [PMID: 36789420 PMCID: PMC9928144 DOI: 10.1101/2023.01.19.23284737] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expanded PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS were 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1,681-3,651 cases and 8,696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They were significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values<0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice.
Collapse
|
39
|
Long-Term Simulation of Microgravity Induces Changes in Gene Expression in Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24021181. [PMID: 36674696 PMCID: PMC9864731 DOI: 10.3390/ijms24021181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Microgravity changes the gene expression pattern in various cell types. This study focuses on the breast cancer cell lines MCF-7 (less invasive) and MDA-MB-231 (triple-negative, highly invasive). The cells were cultured for 14 days under simulated microgravity (s-µg) conditions using a random positioning machine (RPM). We investigated cytoskeletal and extracellular matrix (ECM) factors as well as focal adhesion (FA) and the transmembrane proteins involved in different cellular signaling pathways (MAPK, PAM and VEGF). The mRNA expressions of 24 genes of interest (TUBB, ACTB, COL1A1, COL4A5, LAMA3, ITGB1, CD44, VEGF, FLK1, EGFR, SRC, FAK1, RAF1, AKT1, ERK1, MAPK14, MAP2K1, MTOR, RICTOR, VCL, PXN, CDKN1, CTNNA1 and CTNNB1) were determined by quantitative real-time PCR (qPCR) and studied using STRING interaction analysis. Histochemical staining was carried out to investigate the morphology of the adherent cells (ADs) and the multicellular spheroids (MCSs) after RPM exposure. To better understand this experimental model in the context of breast cancer patients, a weighted gene co-expression network analysis (WGCNA) was conducted to obtain the expression profiles of 35 breast cell lines from the HMS LINCS Database. The qPCR-verified genes were searched in the mammalian phenotype database and the human genome-wide association studies (GWAS) Catalog. The results demonstrated the positive association between the real metastatic microtumor environment and MCSs with respect to the extracellular matrix, cytoskeleton, morphology, different cellular signaling pathway key proteins and several other components. In summary, the microgravity-engineered three-dimensional MCS model can be utilized to study breast cancer cell behavior and to assess the therapeutic efficacies of drugs against breast cancer in the future.
Collapse
|
40
|
Guo F, Edelmann D, Cardoso R, Chen X, Carr PR, Chang-Claude J, Hoffmeister M, Brenner H. Polygenic Risk Score for Defining Personalized Surveillance Intervals After Adenoma Detection and Removal at Colonoscopy. Clin Gastroenterol Hepatol 2023; 21:210-219.e11. [PMID: 35331942 DOI: 10.1016/j.cgh.2022.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Polygenic risk scores (PRSs) could help to define personalized colorectal cancer (CRC) screening strategies. The aim of this study was to evaluate whether a PRS, along with adenoma characteristics, could help to define more personalized and risk-adapted surveillance intervals. METHODS In a population-based, case-control study from Germany, detailed information on previous colonoscopies and a PRS based on 140 CRC-related, single-nucleotide polymorphisms was obtained from 4696 CRC cases and 3709 controls. Participants were classified as having low, medium, or high genetic risk according to tertiles of PRSs among controls. We calculated the absolute risk of CRC based on the PRS and colonoscopy history and findings. RESULTS We observed major variations of CRC risk according to the PRS, including among individuals with detection and removal of adenomas at colonoscopy. For instance, the estimated 10-year absolute risk of CRC for 50-year-old men and women with no polyps, for whom repeat screening colonoscopy is recommended after 10 years only, was 0.2%. Equivalent absolute risks were estimated for people with low-risk adenomas and low PRS. However, the same levels of absolute risk were reached within 3 to 5 years by those with low-risk adenomas and high PRS and with high-risk adenomas irrespective of the PRS. CONCLUSIONS Consideration of genetic predisposition to CRC risk, as determined by a PRS, could help to define personalized, risk-adapted surveillance intervals after detection and removal of adenomas at screening colonoscopy. However, whether the risk variation is strong enough to direct clinical risk stratification needs to be explored further.
Collapse
Affiliation(s)
- Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Dominic Edelmann
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Rafael Cardoso
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany; Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Prudence R Carr
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany; Cancer Epidemiology Group, University Medical Center Hamburg-Eppendorf, University Cancer Center Hamburg, Hamburg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany; German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
41
|
Gigic B, van Roekel E, Holowatyj AN, Brezina S, Geijsen AJMR, Ulvik A, Ose J, Koole JL, Damerell V, Kiblawi R, Gumpenberger T, Lin T, Kvalheim G, Koelsch T, Kok DE, van Duijnhoven FJ, Bours MJ, Baierl A, Li CI, Grady W, Vickers K, Habermann N, Schneider M, Kampman E, Ueland PM, Ulrich A, Weijenberg M, Gsur A, Ulrich C. Cohort profile: Biomarkers related to folate-dependent one-carbon metabolism in colorectal cancer recurrence and survival - the FOCUS Consortium. BMJ Open 2022; 12:e062930. [PMID: 36549742 PMCID: PMC9772678 DOI: 10.1136/bmjopen-2022-062930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The overarching goal of the FOCUS (biomarkers related to folate-dependent one-carbon metabolism in colorectal cancer (CRC) recurrence and survival) Consortium is to unravel the effect of folate and folate-mediated one-carbon metabolism (FOCM) biomarkers on CRC prognosis to provide clinically relevant advice on folate intake to cancer patients and define future tertiary prevention strategies. PARTICIPANTS The FOCUS Consortium is an international, prospective cohort of 2401 women and men above 18 years of age who were diagnosed with a primary invasive non-metastatic (stages I-III) CRC. The consortium comprises patients from Austria, two sites from the Netherlands, Germany and two sites from the USA. Patients are recruited after CRC diagnosis and followed at 6 and 12 months after enrolment. At each time point, sociodemographic data, data on health behaviour and clinical data are collected, blood samples are drawn. FINDINGS TO DATE An increased risk of cancer recurrences was observed among patients with higher compared with lower circulating folic acid concentrations. Furthermore, specific folate species within the FOCM pathway were associated with both inflammation and angiogenesis pathways among patients with CRC. In addition, higher vitamin B6 status was associated with better quality of life at 6 months post-treatment. FUTURE PLANS Better insights into the research on associations between folate and FOCM biomarkers and clinical outcomes in patients with CRC will facilitate the development of guidelines regarding folate intake in order to provide clinically relevant advice to patients with cancer, health professionals involved in patient care, and ultimately further tertiary prevention strategies in the future. The FOCUS Consortium offers an excellent infrastructure for short-term and long-term research projects and for combining additional biomarkers and data resulting from the individual cohorts within the next years, for example, microbiome data, omics and multiomics data or CT-quantified body composition data.
Collapse
Affiliation(s)
- Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Eline van Roekel
- Department of Epidemiology, Maastricht University, Maastricht, The Netherlands
| | - Andreana N Holowatyj
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Stefanie Brezina
- Center for Cancer Research, Medical University of Vienna, Wien, Austria
| | - Anne J M R Geijsen
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Janna L Koole
- Department of Epidemiology, Maastricht University, Maastricht, The Netherlands
| | - Victoria Damerell
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Rama Kiblawi
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Tengda Lin
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Torsten Koelsch
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Franzel J van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Martijn J Bours
- Department of Epidemiology, Maastricht University, Maastricht, The Netherlands
| | - Andreas Baierl
- Department of Statistics and Operations Research, University of Vienna, Wien, Austria
| | - Christopher I Li
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - William Grady
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kathy Vickers
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nina Habermann
- Genome Biology, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Surgical Department I, Städtische Kliniken Neuss, Lukaskrankenhaus GmbH, Neuss, Germany
| | - Matty Weijenberg
- Department of Epidemiology, Maastricht University, Maastricht, The Netherlands
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Wien, Austria
| | - Cornelia Ulrich
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
42
|
Yang W, Zhang T, Song X, Dong G, Xu L, Jiang F. SNP-Target Genes Interaction Perturbing the Cancer Risk in the Post-GWAS. Cancers (Basel) 2022; 14:5636. [PMID: 36428729 PMCID: PMC9688512 DOI: 10.3390/cancers14225636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer ranks as the second leading cause of death worldwide, and, being a genetic disease, it is highly heritable. Over the past few decades, genome-wide association studies (GWAS) have identified many risk-associated loci harboring hundreds of single nucleotide polymorphisms (SNPs). Some of these cancer-associated SNPs have been revealed as causal, and the functional characterization of the mechanisms underlying the cancer risk association has been illuminated in some instances. In this review, based on the different positions of SNPs and their modes of action, we discuss the mechanisms underlying how SNPs regulate the expression of target genes to consequently affect tumorigenesis and the development of cancer.
Collapse
Affiliation(s)
- Wenmin Yang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Te Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Xuming Song
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
43
|
Ping J, Yang Y, Wen W, Kweon SS, Matsuda K, Jia WH, Shin A, Gao YT, Matsuo K, Kim J, Kim DH, Jee SH, Cai Q, Chen Z, Tao R, Shin MH, Tanikawa C, Pan ZZ, Oh JH, Oze I, Ahn YO, Jung KJ, Ren Z, Shu XO, Long J, Zheng W. Developing and validating polygenic risk scores for colorectal cancer risk prediction in East Asians. Int J Cancer 2022; 151:1726-1736. [PMID: 35765848 PMCID: PMC9509464 DOI: 10.1002/ijc.34194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Abstract
Several polygenic risk scores (PRSs) have been developed to predict the risk of colorectal cancer (CRC) in European descendants. We used genome-wide association study (GWAS) data from 22 702 cases and 212 486 controls of Asian ancestry to develop PRSs and validated them in two case-control studies (1454 Korean and 1736 Chinese). Eleven PRSs were derived using three approaches: GWAS-identified CRC risk SNPs, CRC risk variants identified through fine-mapping of known risk loci and genome-wide risk prediction algorithms. Logistic regression was used to estimate odds ratios (ORs) and area under the curve (AUC). PRS115-EAS , a PRS with 115 GWAS-reported risk variants derived from East-Asian data, validated significantly better than PRS115-EUR derived from European descendants. In the Korea validation set, OR per SD increase of PRS115-EAS was 1.63 (95% CI = 1.46-1.82; AUC = 0.63), compared with OR of 1.44 (95% CI = 1.29-1.60, AUC = 0.60) for PRS115-EUR . PRS115-EAS/EUR derived using meta-analysis results of both populations slightly improved the AUC to 0.64. Similar but weaker associations were found in the China validation set. Individuals among the highest 5% of PRS115-EAS/EUR have a 2.52-fold elevated CRC risk compared with the medium (41-60th) risk group and have a 12% to 20% risk of developing CRC by age 85. PRSs constructed using results from fine-mapping and genome-wide algorithms did not perform as well as PRS115-EAS and PRS115-EAS/EUR in risk prediction, possibly due to a small sample size. Our results indicate that CRC PRSs are promising in predicting CRC risk in East Asians and highlights the importance of using population-specific data to build CRC risk prediction models.
Collapse
Affiliation(s)
- Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yu-Tang Gao
- State Key Laboratory of Oncogenes and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do, South Korea
| | - Dong-Hyun Kim
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University, 37212 Nashville, TN, USA
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Gyeonggi-do, South Korea
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Keum Ji Jung
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Zefang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
44
|
Polygenic Risk Scores Associated with Tumor Immune Infiltration in Common Cancers. Cancers (Basel) 2022; 14:cancers14225571. [PMID: 36428664 PMCID: PMC9688863 DOI: 10.3390/cancers14225571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
It is largely unknown whether genetic susceptibility contributes to tumor immune infiltration in common cancers. We systematically investigated the association between polygenic risk scores (PRSs) and tumor immune infiltration in common cancers. First, we constructed a PRS for common cancers using the risk variants identified in previous genome-wide association studies. Then, we analyzed 139 immune traits predicted by previous studies by examining gene expression data in tumor tissues from The Cancer Genome Atlas (TCGA). We applied regression analyses to evaluate the associations between PRS and immune traits for each cancer overall and stratified by stage, including 2160 pathologically confirmed cases of breast, colorectal, lung, ovarian, pancreatic, and prostate cancers in the White population. At a nominal (p < 0.05) significance level, we identified 31 significant associations between PRS and immune traits. In the analyses stratified by stage for breast, colorectal, lung adenocarcinoma, and lung squamous cell carcinoma, we identified 65 significant associations, including 56 associations that were undetected by the overall analysis. This study provides evidence for genetic risk factors affecting immune infiltration and provides novel insights into the role of genetic susceptibility in immune responses, underlying cancer development, prognosis, and the potential role of an early diagnostic or therapeutic targeting strategy.
Collapse
|
45
|
Al-Harbi N, Vaali-Mohammed MA, Al-Omar S, Zubaidi A, Al-Obeed O, Abdulla MH, Mansour L. Rs10204525 Polymorphism of the Programmed Death (PD-1) Gene Is Associated with Increased Risk in a Saudi Arabian Population with Colorectal Cancer. Medicina (B Aires) 2022; 58:medicina58101439. [PMID: 36295599 PMCID: PMC9607617 DOI: 10.3390/medicina58101439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Checkpoint programmed death-1 (PD-1) has been identified as an immunosuppressive molecule implicated in the immune evasion of transformed cells. It is highly expressed in tumor cells in order to evade host immunosurveillance. In this study, we aimed to assess the association between single nucleotide polymorphisms (SNP) of PD-1 and the risk of colorectal cancer (CRC) in the Saudi population. For this case-control study, the TaqMan assay method was used for genotyping three SNPs in the PD-1 gene in 100 CRC patients and 100 healthy controls. Associations were estimated using odds ratios (ORs) and 95% confidence intervals (95% CIs) for multiple inheritance models (codominant, dominant, recessive, over-dominant, and log-additive). Moreover, PD-1 gene expression levels were evaluated using quantitative real-time PCR in colon cancer tissue and adjacent colon tissues. We found that the PD-1 rs10204525 A allele was associated with an increased risk of developing CRC (OR = 2.35; p = 0.00657). In addition, the PD-1 rs10204525 AA homozygote genotype was associated with a high risk of developing CRC in the codominant (OR = 21.65; p = 0.0014), recessive (OR = 10.97; p = 0.0015), and additive (OR = 1.98; p = 0.012) models. A weak protective effect was found for the rs2227981 GG genotype (OR = 2.52; p = 0.034), and no significant association was found between the rs2227982 and CRC. Haplotype analysis showed that the rs10204525, rs2227981, rs2227982 A-A-G haplotype was associated with a significantly increased risk of CRC (OR = 6.79; p =0.031).
Collapse
Affiliation(s)
- Nouf Al-Harbi
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh 11451, Saudi Arabia
| | | | - Suliman Al-Omar
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh 11451, Saudi Arabia
| | - Ahmed Zubaidi
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Omar Al-Obeed
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Maha-Hamadien Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
- Correspondence: (M.-H.A.); or (L.M.)
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh 11451, Saudi Arabia
- Correspondence: (M.-H.A.); or (L.M.)
| |
Collapse
|
46
|
Wu E, Ni JT, Chen X, Zhu ZH, Xu HQ, Tao L, Xie T. Genetic risk, incident colorectal cancer, and the benefits of adhering to a healthy lifestyle: A prospective study using data from UK Biobank and FinnGen. Front Oncol 2022; 12:894086. [PMID: 36276143 PMCID: PMC9582975 DOI: 10.3389/fonc.2022.894086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/13/2022] [Indexed: 08/03/2023] Open
Abstract
Background Genetic factors increase the individual risk of colorectal cancer (CRC); however, the extent to which a healthy lifestyle can offset increased genetic risk is unknown. This study investigated whether a healthy lifestyle is associated with lower CRC risk, regardless of genetic risk. Methods We recruited 390,365 participants without cancer at baseline (2006-2010) from the UK Biobank. The primary outcome was CRC incidence. A healthy lifestyle score constructed using 16 factors of six dimensions (smoking, drinking, body mass index, diet, exercise, and sleep) was categorized into three risk categories: favorable, intermediate, and unfavorable. To calculate the polygenic risk scores (PRSs) of UK Biobank participants, we extracted 454,678 single nucleotide polymorphisms (SNPs) from the UK Biobank and FinnGen Biobank after quality control. Cox proportional hazards regression was performed to evaluate the associations and was expressed as hazard ratios (HRs) with 95% confidence intervals (CIs). Results During a median follow-up of 10.90 years, 4,090 new CRC cases were reported in the UK Biobank. The "best-fit" PRSs were constructed using 59 SNPs based on the UK Biobank cohort and FinnGen genome-wide association study summary data (R2 = 0.23%) and were divided into low (lowest quintile), intermediate (including second-fourth quintile), and high (highest quintile) genetic risk categories. The multivariate-adjusted Cox model revealed that participants with favorable lifestyles had HRs of 0.66 (95% CI = 0.60-0.72) for developing CRC vs. those with unfavorable lifestyles; low genetic risk was associated with a decreased risk of CRC (HR = 0.67, 95% CI =0.61-0.74) compared with those with high genetic risk. The HRs for low genetic risk participants with favorable lifestyles were 0.44 (95% CI =0.36-0.55) vs. participants with high genetic risk and unfavorable lifestyles. Among the participants with low, intermediate, or high genetic risk, the HRs of favorable vs. unfavorable lifestyles were 0.74, 0.64, and 0.72 (all p< 0.05). Conclusions Low genetic risk and a favorable lifestyle were significantly associated with a decreased risk of CRC. A favorable lifestyle was associated with a lower CRC risk, regardless of genetic risk.
Collapse
Affiliation(s)
- E. Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Zhejiang, China
| | - Jun-Tao Ni
- Scientific Research Department, Women’s Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xin Chen
- School of Public Health, Hangzhou Normal University, Zhejiang, China
| | - Zhao-Hui Zhu
- School of Public Health, Hangzhou Normal University, Zhejiang, China
| | - Hong-Quan Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lin Tao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
47
|
Scott RJ. Modifier genes and Lynch syndrome: some considerations. Hered Cancer Clin Pract 2022; 20:35. [PMID: 36088367 PMCID: PMC9463843 DOI: 10.1186/s13053-022-00240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractLynch Syndrome (LS) is a highly variable entity with some patients presenting at very young ages with malignancy whereas others may never develop a malignancy yet carry an unequivocal genetic predisposition to disease. The most frequent LS malignancy remains colorectal cancer, a disease that is thought to involve genetic as well as environmental factors in its aetiology. Environmental insults are undeniably associated with cancer risk, especially those imparted by such activities as smoking and excessive alcohol consumption. Notwithstanding, in an inherited predisposition the expected exposures to an environmental insult are considered to be complex and require knowledge about the respective exposure and how it might interact with a genetic predisposition. Typically, smoking is one of the major confounders when considering environmental factors that can influence disease expression on a background of significant genetic risk. In addition to environmental triggers, the risk of developing a malignancy for people carrying an inherited predisposition to disease can be influenced by additional genetic factors that do not necessarily segregate with a disease predisposition allele. The purpose of this review is to examine the current state of modifier gene detection in people with a genetic predisposition to develop LS and present some data that supports the notion that modifier genes are gene specific thus explaining why some modifier gene studies have failed to identify associations when this is not taken into account.
Collapse
|
48
|
Mariosa D, Smith-Byrne K, Richardson TG, Ferrari P, Gunter MJ, Papadimitriou N, Murphy N, Christakoudi S, Tsilidis KK, Riboli E, Muller D, Purdue MP, Chanock SJ, Hung RJ, Amos CI, O’Mara TA, Amiano P, Pasanisi F, Rodriguez-Barranco M, Krogh V, Tjønneland A, Halkjær J, Perez-Cornago A, Chirlaque MD, Skeie G, Rylander C, Borch KB, Aune D, Heath AK, Ward HA, Schulze M, Bonet C, Weiderpass E, Davey Smith G, Brennan P, Johansson M. Body Size at Different Ages and Risk of 6 Cancers: A Mendelian Randomization and Prospective Cohort Study. J Natl Cancer Inst 2022; 114:1296-1300. [PMID: 35438160 PMCID: PMC9468294 DOI: 10.1093/jnci/djac061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/11/2022] [Accepted: 03/16/2022] [Indexed: 02/02/2023] Open
Abstract
It is unclear if body weight in early life affects cancer risk independently of adult body weight. To investigate this question for 6 obesity-related cancers, we performed univariable and multivariable analyses using 1) Mendelian randomization (MR) analysis and 2) longitudinal analyses in prospective cohorts. Both the MR and longitudinal analyses indicated that larger early life body size was associated with higher risk of endometrial (odds ratioMR = 1.61, 95% confidence interval = 1.23 to 2.11) and kidney (odds ratioMR = 1.40, 95% confidence interval = 1.09 to 1.80) cancer. These associations were attenuated after accounting for adult body size in both the MR and cohort analyses. Early life body mass index (BMI) was not consistently associated with the other investigated cancers. The lack of clear independent risk associations suggests that early life BMI influences endometrial and kidney cancer risk mainly through pathways that are common with adult BMI.
Collapse
Affiliation(s)
- Daniela Mariosa
- International Agency for Research on Cancer (IARC/WHO), Genomic Epidemiology Branch, Lyon, France
| | - Karl Smith-Byrne
- International Agency for Research on Cancer (IARC/WHO), Genomic Epidemiology Branch, Lyon, France
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Pietro Ferrari
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Marc J Gunter
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Nikos Papadimitriou
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Neil Murphy
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC Centre for Transplantation, King’s College London, London, UK
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - David Muller
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Tracy A O’Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastián, Spain
- Epidemiology of Chronic and Communicable Diseases Group, Biodonostia Health Research Institute, San Sebastián, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Fabrizio Pasanisi
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Miguel Rodriguez-Barranco
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jytte Halkjær
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Guri Skeie
- Department of Community Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Charlotta Rylander
- Department of Community Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
| | | | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Heather A Ward
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- IQVIA, Epidemiology and Outcomes Research, Real World Solutions, IQVIA, Cambridge, MA, USA
| | - Matthias Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Catalina Bonet
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology- IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Paul Brennan
- International Agency for Research on Cancer (IARC/WHO), Genomic Epidemiology Branch, Lyon, France
| | - Mattias Johansson
- International Agency for Research on Cancer (IARC/WHO), Genomic Epidemiology Branch, Lyon, France
| |
Collapse
|
49
|
Garcia-Etxebarria K, Etxart A, Barrero M, Nafria B, Segues Merino NM, Romero-Garmendia I, Franke A, D’Amato M, Bujanda L. Performance of the Use of Genetic Information to Assess the Risk of Colorectal Cancer in the Basque Population. Cancers (Basel) 2022; 14:4193. [PMID: 36077729 PMCID: PMC9454881 DOI: 10.3390/cancers14174193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/14/2023] Open
Abstract
Although the genetic contribution to colorectal cancer (CRC) has been studied in various populations, studies on the applicability of available genetic information in the Basque population are scarce. In total, 835 CRC cases and 940 controls from the Basque population were genotyped and genome-wide association studies were carried out. Mendelian Randomization analyses were used to discover the effect of modifiable risk factors and microbiota on CRC. In total, 25 polygenic risk score models were evaluated to assess their performance in CRC risk calculation. Moreover, 492 inflammatory bowel disease cases were used to assess whether that genetic information would not confuse both conditions. Five suggestive (p < 5 × 10−6) loci were associated with CRC risk, where genes previously associated with CRC were located (e.g., ABCA12, ATIC or ERBB4). Moreover, the analyses of CRC locations detected additional genes consistent with the biology of CRC. The possible contribution of cholesterol, BMI, Firmicutes and Cyanobacteria to CRC risk was detected by Mendelian Randomization. Finally, although polygenic risk score models showed variable performance, the best model performed correctly regardless of the location and did not misclassify inflammatory bowel disease cases. Our results are consistent with CRC biology and genetic risk models and could be applied to assess CRC risk in the Basque population.
Collapse
Affiliation(s)
- Koldo Garcia-Etxebarria
- Biodonostia, Gastrointestinal Genetics Group, 20014 San Sebastián, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Ane Etxart
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Maialen Barrero
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Beatriz Nafria
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Nerea Miren Segues Merino
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), 48940 Leioa, Spain
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE, Basque Research and Technology Alliance, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Sciences, 48009 Bilbao, Spain
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| |
Collapse
|
50
|
Devall MA, Eaton S, Ali MW, Powell SM, Li L, Casey G. Insights into Early Onset Colorectal Cancer through Analysis of Normal Colon Organoids of Familial Adenomatous Polyposis Patients. Cancers (Basel) 2022; 14:4138. [PMID: 36077675 PMCID: PMC9454756 DOI: 10.3390/cancers14174138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023] Open
Abstract
Early onset colorectal cancer (EOCRC) rates have increased in recent decades. While lowering the recommended age for routine colonoscopies to 45 may reduce this burden, such measures do not address those who develop CRC before that age. Additional measures are needed to identify individuals at-risk for CRC. To better define transcriptomic events that precede the development of CRC, we performed RNA-sequencing analysis in colon organoids derived from seven healthy and six familial adenomatous polyposis (FAP) patients. This led to the identification of 2635 significant differentially expressed genes (FDR < 0.05). Through secondary analysis of publicly available datasets, we found that these genes were enriched for significant genes also present in FAP CRC and non-hereditary CRC datasets, including a subset that were unique to EOCRC. By exposing FAP colon organoids to a three-day ethanol treatment, we found that two EOCRC-relevant genes were also targets of CRC related lifestyle factors. Our data provides unique insight into the potential, early mechanisms of CRC development in colon epithelial cells, which may provide biomarkers for patient monitoring. We also show how modifiable lifestyle factors may further alter genes relevant to EOCRC, adding weight to the hypothesis that such factors represent an important contributor to increased EOCRC incidence.
Collapse
Affiliation(s)
- Matthew A. Devall
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Stephen Eaton
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Mourad W. Ali
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Steven M. Powell
- Digestive Health Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22911, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
- Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22911, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|