1
|
Li W, Li J, Lin M, Liu K, Liu X, Zhou Y, Wang R. RCA-Supported Multipedal DNA Walker Integrated with TSDR for Simultaneous Detection of Single Nucleotide Polymorphisms in Circulating Tumor DNA. Anal Chem 2025; 97:6338-6346. [PMID: 40072018 DOI: 10.1021/acs.analchem.5c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Peripheral blood circulating tumor DNA (ctDNA) is a crucial liquid biopsy biomarker that correlates overall systemic tumor burden with malignant progression. However, identifying multiple single nucleotide polymorphisms (SNPs) in ctDNA presents significant challenges. In this study, we developed a rolling circle amplification (RCA)-supported multipedal DNA walker integrated with toehold-mediated strand displacement (TSDR) to facilitate the detection of ctDNA SNPs. Initially, separate identification of ctDNAs is performed using TSDR procedures, along with the release of the triggers for RCA. Once the RCA processes are initiated, long single-stranded oligonucleotide products containing repeated DNAzyme sequences are generated. Finally, these RCA products function as multipedal legs that traverse a track in a quasi-mechanical manner, producing detectable fluorescence signals. The multipedal DNA walking mechanism exhibits a high walking efficiency and signal amplification capability, as the multipedal legs can interact with multiple signal probes simultaneously. Concurrent detection of the wild type (WT) and mutation type (MT) of multiple ctDNAs is achieved, and the detection limits are at the attomolar (aM) level, with a linear range of 10 aM to 5.0 μM. Furthermore, the proposed method demonstrates remarkable specificity for mismatched sequences and single-base mutant genes, due to the TSDR-assisted detection process. Additionally, the analysis of ctDNA SNPs in clinical serum samples reveals significant differences in ctDNA expression between the blood of cancer patients and that of healthy individuals. Therefore, the proposed method can be employed for the detection of clinical ctDNA SNPs and demonstrates significant potential for early diagnosis, treatment monitoring, and prognosis.
Collapse
Affiliation(s)
- Wei Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Institute of Rural Revitalization, School of Pharmacy, Dezhou University, 253023 Dezhou, China
| | - Jiayue Li
- College of Pharmaceutical Science, Hebei University, 071002 Baoding, China
| | - Minzhao Lin
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Institute of Rural Revitalization, School of Pharmacy, Dezhou University, 253023 Dezhou, China
| | - Kai Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Institute of Rural Revitalization, School of Pharmacy, Dezhou University, 253023 Dezhou, China
| | - Xiaoting Liu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - Yi Zhou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - Rui Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Institute of Rural Revitalization, School of Pharmacy, Dezhou University, 253023 Dezhou, China
| |
Collapse
|
2
|
Verner EL, Jackson JB, Maddox C, Valkenburg KC, White JR, Occean J, Morris L, Karandikar A, Gerding KMR, Sausen M, Koohestani F, Severson EA, Jensen TJ, Caveney BJ, Eisenberg M, Ramkissoon SH, Greer AE. Analytical Validation of the Labcorp Plasma Complete Test, a Cell-Free DNA Comprehensive Genomic Profiling Tool for Precision Oncology. J Mol Diagn 2025; 27:216-231. [PMID: 39818317 DOI: 10.1016/j.jmoldx.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025] Open
Abstract
To help guide treatment decisions and trial matching, tumor genomic profiling is an essential precision oncology tool. Liquid biopsy, a complementary approach to tissue testing, can assess tumor-specific DNA alterations circulating in the blood. Labcorp Plasma Complete is a next-generation sequencing, cell-free DNA comprehensive genomic profiling test that identifies clinically relevant somatic variants across 521 genes in advanced and metastatic solid cancers. Over 800 unique sequencing libraries across 27 cancer types were evaluated to establish analytical sensitivity, specificity, accuracy, and precision, reproducibility, and repeatability (PRR). Sensitivity was verified for each variant type, with a median variant allele frequency (VAF) of 1.25% and 1.27% for panel-wide single nucleotide variants (SNVs) and insertions/deletions (indels) (sequence mutations), respectively, with <1% VAF sensitivity observed for clinically actionable variants, 1.72-fold for copy number amplifications (CNAs), 0.48% fusion read fraction for translocations, and 0.47% sequence mutation VAF for microsatellite instability-high (MSI-H). Specificity was 99.9999% for SNVs and 100% for other variant types. PRR resulted in 94.9% average positive agreement (APA) and 99.9% average negative agreement (ANA) for sequence mutations and 100% APA and ANA for CNAs, translocations, and MSI-H. Orthogonal assays were utilized to assess accuracy, demonstrating concordance of 97.4% positive percent agreement and >99.99997% negative percent agreement across all variants. Overall, the test demonstrates high sensitivity, specificity, accuracy, and robustness to enable informed clinical decision-making.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mark Sausen
- Labcorp Oncology (PGDx), Baltimore, Maryland
| | | | | | | | | | | | - Shakti H Ramkissoon
- Labcorp Oncology, Durham, North Carolina; Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
3
|
Ursekar R, Chaubal R, Gandhi KA, Talker E, Chitra J, Raja A, Mukhare RS, Singh A, Kadam A, Madhav M, Pandey S, Gupta S. Circulating tumour DNA as a promising biomarker for breast cancer diagnosis & treatment monitoring. Indian J Med Res 2025; 161:267-277. [PMID: 40347499 PMCID: PMC12066141 DOI: 10.25259/ijmr_1291_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/31/2025] [Indexed: 05/14/2025] Open
Abstract
Breast cancer contributes a large fraction to mortality among women diagnosed with cancer. It is important to monitor residual disease and extend the lead time to detect relapse in high-risk patients. Minimally invasive techniques that utilise circulating biomarkers are being explored for their potential in diagnosis, prognosis, and disease monitoring of breast cancer. Circulating biomarkers have been investigated as tools for breast cancer diagnosis, prognosis, prediction, and monitoring of therapeutic response and resistance. Among these, circulating tumour cells and cell-free plasma DNA (cfDNA) derived from tumour cells (circulating tumour DNA i.e. ctDNA) have been integrated into clinical trial designs. Among all circulating biomarkers, ctDNA stands out as a promising biomaterial with great potential as it is thought to mirror the tumour's evolution. However, its clinical utilisation is hampered mainly by gaps in knowledge of its biological properties and specific characteristics. The development of robust and standardised methods for assessing circulating biomarkers is essential for realising the potential of personalised medicine. This review aims to summarise the characteristics of ctDNA and its role in breast cancer, drawing from both basic and translational research to provide insights into its clinical application. This review suggests that ctDNA has the potential to be a non-invasive, real-time surrogate for tumour tissue-based biomarkers. In conclusion, circulating biomarkers have the potential to revolutionise breast cancer diagnosis, prognosis, and treatment monitoring, but the development of standardised methods for their assessment is essential. ctDNA, in particular, shows great promise as a liquid biopsy tool, but further research is needed to understand its biology and ensure its clinical utility fully.
Collapse
Affiliation(s)
- Riddhi Ursekar
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Rohan Chaubal
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Khushboo A. Gandhi
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Elizabeth Talker
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Jaya Chitra
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra, India
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Aishwarya Raja
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Rushikesh Sunil Mukhare
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Ankita Singh
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Anushree Kadam
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Mrudula Madhav
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Shwetali Pandey
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Sudeep Gupta
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Lee SS, Eitzmann DR, Anderson JL. Enhancing the interactions of ion-tagged oligonucleotides and magnetic ionic liquid supports for the sequence-specific extraction of hepatitis B virus DNA. Anal Chim Acta 2025; 1338:343563. [PMID: 39832845 DOI: 10.1016/j.aca.2024.343563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Infections from the hepatitis B virus (HBV) are a major risk factor for hepatocellular carcinoma, one of the most common types of liver cancer. Circulating cell-free DNA (ccfDNA) in human plasma can be used as a non-invasive biomarker for diagnosing HBV-related liver diseases. The isolation of target ccfDNA sequences is often challenging due to the co-extraction of highly abundant non-target DNA from samples. Ion-tagged oligonucleotide (ITO) probes coupled with magnetic ionic liquids (MIL) support have emerged as a promising methodology for sequence-specific DNA extractions to address challenges associated with solid supports such as streptavidin-coated magnetic bead. RESULTS ITOs, disubstituted ion-tagged oligonucleotide (DTO), and ion-tagged disubstituted oligonucleotide (ITDO) probes featuring various substituents including linear alkyl, branched alkyl, and perfluoroalkyl moieties were examined to enhance hydrophobic and fluorophilic interactions between the probes and a trihexyl(tetradecyl)phosphonium manganese(II) hexafluoroacetylacetonate ([P66614+][Mn(hfacac)3-]) MIL support. The ITO-MIL approach was optimized by adjusting the annealing temperature (45 °C), molar ratio of target DNA to ITO probe (1:100), and ionic strength (200 mM NaCl) to maximize the extraction of target DNA. The 3-allyl-1-(23-bis(pentylthio)propyl)imidazolium bromide ([AI(C5S)2+][Br-])-ITO probe featuring a branched alkyl substituent yielded a higher loading efficiency (48.05 ± 6.72 %) due to increased hydrophobic ITO-MIL interactions, compared to that of 24.57 ± 4.40 % for the 3-allyl-1-(3-(pentylthio)propyl)imidazolium bromide ([AIC5S+][Br-])-ITO probe with a linear alkyl substituent. The high affinity of ITO-MILinteractions minimized the loss of probe during successive wash steps, yielding an approximate 10-fold greater amount of extracted target DNA using the [AI(C5S)2+][Br-])-ITO probe compared to [AIC5S+][Br-])-ITO probe. SIGNIFICANCE This study provides novel synthetic approaches for tailoring probe substituents using thiol-ene and thiol-yne "click" chemistry. Hydrophobic and fluorophilic ITO-MIL interactions were systematically investigated. Optimal conditions for the ITO-MIL method significantly improved the amount of extracted DNA. The ITO-MIL method using the [AI(C5S)2+][Br-]-HBV-ITO probe demonstrated selective extraction of target HBV DNA in both DI water and diluted human plasma containing a high abundance of background DNA.
Collapse
Affiliation(s)
- Seong-Soo Lee
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| | - Derek R Eitzmann
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
5
|
Sorg BS, Byun JS, Westbrook VA, Tricoli JV, Doroshow JH, Harris LN. NCI workshop on ctDNA in cancer treatment and clinical care. J Natl Cancer Inst 2024; 116:1890-1895. [PMID: 39087596 PMCID: PMC11630565 DOI: 10.1093/jnci/djae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Detection of cell-free circulating tumor DNA (ctDNA) from solid tumors is a fast-evolving field with significant potential for improving patient treatment outcomes. The spectrum of applications for ctDNA assays is broad and includes very diverse intended uses that will require different strategies to demonstrate utility. On September 14-15, 2023, the National Cancer Institute held an in-person workshop in Rockville, MD titled "ctDNA in Cancer Treatment and Clinical Care." The goal of the workshop was to examine what is currently known and what needs to be determined for various ctDNA liquid biopsy use cases related to treatment and management of patients with solid tumors and to explore how the community can best assess the value of ctDNA assays and technology. Additionally, new approaches were presented that may show promise in the future. The information exchanged in this workshop will provide the community with a better understanding of this field and its potential to affect and benefit decision-making in the treatment of patients with solid tumors.
Collapse
Affiliation(s)
- Brian S Sorg
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jung S Byun
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - V Anne Westbrook
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lyndsay N Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Li W, Wang Z, Chen S, Zuo M, Xiang Y, Yuan Y, He Y, Zhang S, Liu Y. Metabolic checkpoints in glioblastomas: targets for new therapies and non-invasive detection. Front Oncol 2024; 14:1462424. [PMID: 39678512 PMCID: PMC11638224 DOI: 10.3389/fonc.2024.1462424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Glioblastoma (GBM) is a highly malignant tumor of the central nervous system that remains intractable despite advancements in current tumor treatment modalities, including immunotherapy. In recent years, metabolic checkpoints (aberrant metabolic pathways underlying the immunosuppressive tumor microenvironment) have gained attention as promising therapeutic targets and sensitive biomarkers across various cancers. Here, we briefly review the existing understanding of tumor metabolic checkpoints and their implications in the biology and management of GBM. Additionally, we discuss techniques that could evaluate metabolic checkpoints of GBM non-invasively, thereby potentially facilitating neo-adjuvant treatment and dynamic surveillance.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mingrong Zuo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Neurosurgery, West China Second University Hospital, Chengdu, China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yunbo Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuze He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuxin Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Seyedi S, Harris VK, Kapsetaki SE, Narayanan S, Saha D, Compton Z, Yousefi R, May A, Fakir E, Boddy AM, Gerlinger M, Wu C, Mina L, Huijben S, Gouge DH, Cisneros L, Ellsworth PC, Maley CC. Resistance Management for Cancer: Lessons from Farmers. Cancer Res 2024; 84:3715-3727. [PMID: 39356625 PMCID: PMC11565176 DOI: 10.1158/0008-5472.can-23-3374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/29/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
One of the main reasons we have not been able to cure cancers is that treatments select for drug-resistant cells. Pest managers face similar challenges with pesticides selecting for pesticide-resistant insects, resulting in similar mechanisms of resistance. Pest managers have developed 10 principles that could be translated to controlling cancers: (i) prevent onset, (ii) monitor continuously, (iii) identify thresholds below which there will be no intervention, (iv) change interventions in response to burden, (v) preferentially select nonchemical control methods, (vi) use target-specific drugs, (vii) use the lowest effective dose, (viii) reduce cross-resistance, (ix) evaluate success based on long-term management, and (x) forecast growth and response. These principles are general to all cancers and cancer drugs and so could be employed broadly to improve oncology. Here, we review the parallel difficulties in controlling drug resistance in pests and cancer cells. We show how the principles of resistance management in pests might be applied to cancer. Integrated pest management inspired the development of adaptive therapy in oncology to increase progression-free survival and quality of life in patients with cancers where cures are unlikely. These pest management principles have the potential to inform clinical trial design.
Collapse
Affiliation(s)
- Sareh Seyedi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Valerie K. Harris
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shrinath Narayanan
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Daniel Saha
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Zachary Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- University of Arizona Cancer Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Rezvan Yousefi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona
| | - Alexander May
- Research Casting International, Quinte West, Ontario, Canada
| | - Efe Fakir
- Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, North Carolina
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California
| | - Marco Gerlinger
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Christina Wu
- Division of Hematology and Medical Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona
| | | | - Silvie Huijben
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Dawn H. Gouge
- Department of Entomology, University of Arizona, Tucson, Arizona
| | - Luis Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| |
Collapse
|
8
|
Li L, Sun Y. Circulating tumor DNA methylation detection as biomarker and its application in tumor liquid biopsy: advances and challenges. MedComm (Beijing) 2024; 5:e766. [PMID: 39525954 PMCID: PMC11550092 DOI: 10.1002/mco2.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA) methylation, an innovative liquid biopsy biomarker, has emerged as a promising tool in early cancer diagnosis, monitoring, and prognosis prediction. As a noninvasive approach, liquid biopsy overcomes the limitations of traditional tissue biopsy. Among various biomarkers, ctDNA methylation has garnered significant attention due to its high specificity and early detection capability across diverse cancer types. Despite its immense potential, the clinical application of ctDNA methylation faces substantial challenges pertaining to sensitivity, specificity, and standardization. In this review, we begin by introducing the basic biology and common detection techniques of ctDNA methylation. We then explore recent advancements and the challenges faced in the clinical application of ctDNA methylation in liquid biopsies. This includes progress in early screening and diagnosis, identification of clinical molecular subtypes, monitoring of recurrence and minimal residual disease (MRD), prediction of treatment response and prognosis, assessment of tumor burden, and determination of tissue origin. Finally, we discuss the future perspectives and challenges of ctDNA methylation detection in clinical applications. This comprehensive overview underscores the vital role of ctDNA methylation in enhancing cancer diagnostic accuracy, personalizing treatments, and effectively monitoring disease progression, providing valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Lingyu Li
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Yingli Sun
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| |
Collapse
|
9
|
Sirajee AS, Kabiraj D, De S. Cell-free nucleic acid fragmentomics: A non-invasive window into cellular epigenomes. Transl Oncol 2024; 49:102085. [PMID: 39178576 PMCID: PMC11388671 DOI: 10.1016/j.tranon.2024.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024] Open
Abstract
Clinical genomic profiling of cell-free nucleic acids (e.g. cell-free DNA or cfDNA) from blood and other body fluids has ushered in a new era in non-invasive diagnostics and treatment monitoring strategies for health conditions and diseases such as cancer. Genomic analysis of cfDNAs not only identifies disease-associated mutations, but emerging findings suggest that structural, topological, and fragmentation characteristics of cfDNAs reveal crucial information about the location of source tissues, their epigenomes, and other clinically relevant characteristics, leading to the burgeoning field of fragmentomics. The field has seen rapid developments in computational and genomics methodologies for conducting large-scale studies on health conditions and diseases - that have led to fundamental, mechanistic discoveries as well as translational applications. Several recent studies have shown the clinical utilities of the cfDNA fragmentomics technique which has the potential to be effective for early disease diagnosis, determining treatment outcomes, and risk-free continuous patient monitoring in a non-invasive manner. In this article, we outline recent developments in computational genomic methodologies and analysis strategies, as well as the emerging insights from cfNA fragmentomics. We conclude by highlighting the current challenges and opportunities.
Collapse
Affiliation(s)
- Ahmad Salman Sirajee
- Department of Pathology and Laboratory Medicine, Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Debajyoti Kabiraj
- Department of Pathology and Laboratory Medicine, Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Subhajyoti De
- Department of Pathology and Laboratory Medicine, Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
10
|
Schenker M, Burotto M, Richardet M, Ciuleanu TE, Gonçalves A, Steeghs N, Schoffski P, Ascierto PA, Maio M, Lugowska I, Lupinacci L, Leary A, Delord JP, Grasselli J, Tan DSP, Friedmann J, Vuky J, Tschaika M, Konduru S, Vemula SV, Slepetis R, Kollia G, Pacius M, Duong Q, Huang N, Doshi P, Baden J, Di Nicola M. Randomized, open-label, phase 2 study of nivolumab plus ipilimumab or nivolumab monotherapy in patients with advanced or metastatic solid tumors of high tumor mutational burden. J Immunother Cancer 2024; 12:e008872. [PMID: 39107131 PMCID: PMC11308901 DOI: 10.1136/jitc-2024-008872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Checkpoint inhibitor therapy has demonstrated overall survival benefit in multiple tumor types. Tumor mutational burden (TMB) is a predictive biomarker for response to immunotherapies. This study evaluated the efficacy of nivolumab+ipilimumab in multiple tumor types based on TMB status evaluated using either tumor tissue (tTMB) or circulating tumor DNA in the blood (bTMB). PATIENTS AND METHODS Patients with metastatic or unresectable solid tumors with high (≥10 mutations per megabase) tTMB (tTMB-H) and/or bTMB (bTMB-H) who were refractory to standard therapies were randomized 2:1 to receive nivolumab+ipilimumab or nivolumab monotherapy in an open-label, phase 2 study (CheckMate 848; NCT03668119). tTMB and bTMB were determined by the Foundation Medicine FoundationOne® CDx test and bTMB Clinical Trial Assay, respectively. The dual primary endpoints were objective response rate (ORR) in patients with tTMB-H and/or bTMB-H tumors treated with nivolumab+ipilimumab. RESULTS In total, 201 patients refractory to standard therapies were randomized: 135 had tTMB-H and 125 had bTMB-H; 82 patients had dual tTMB-H/bTMB-H. In patients with tTMB-H, ORR was 38.6% (95% CI 28.4% to 49.6%) with nivolumab+ipilimumab and 29.8% (95% CI 17.3% to 44.9%) with nivolumab monotherapy. In patients with bTMB-H, ORR was 22.5% (95% CI 13.9% to 33.2%) with nivolumab+ipilimumab and 15.6% (95% CI 6.5% to 29.5%) with nivolumab monotherapy. Early and durable responses to treatment with nivolumab+ipilimumab were seen in patients with tTMB-H or bTMB-H. The safety profile of nivolumab+ipilimumab was manageable, with no new safety signals. CONCLUSIONS Patients with metastatic or unresectable solid tumors with TMB-H, as determined by tissue biopsy or by blood sample when tissue biopsy is unavailable, who have no other treatment options, may benefit from nivolumab+ipilimumab. TRIAL REGISTRATION NUMBER NCT03668119.
Collapse
Affiliation(s)
- Michael Schenker
- Sf Nectarie Oncology Center and University of Medicine and Pharmacy, Craiova, Romania
| | | | - Martin Richardet
- Fundación Richardet Longo, Instituto Oncológico de Córdoba, Córdoba, Argentina
| | - Tudor-Eliade Ciuleanu
- Department of Oncology, Oncology Institute Prof Dr Ion Chiricuta, Cluj-Napoca, Romania
- Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anthony Gonçalves
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Patrick Schoffski
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Michele Maio
- Department of Oncology, University of Siena and Center for Immuno-Oncology, Siena, Italy
| | - Iwona Lugowska
- Department of Early Phase Clinical Trials, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Alexandra Leary
- Université Paris-Saclay and Institut Gustave‑Roussy, Villejuif, France
| | - Jean-Pierre Delord
- Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, Toulouse, France
| | - Julieta Grasselli
- Center for Medical Education and Clinical Research (CEMIC) University Hospital, Buenos Aires, Argentina
| | - David S P Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
- Cancer Science Institute, National University of Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore
| | - Jennifer Friedmann
- Segal Cancer Center, Jewish General Hospital, Montreal, Québec, Canada
- Rossy Cancer Network, McGill University, Montreal, Québec, Canada
| | - Jacqueline Vuky
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | - Quyen Duong
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Ning Huang
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Parul Doshi
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | - Massimo Di Nicola
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
11
|
van der Leest P, Rozendal P, Hinrichs J, van Noesel CJM, Zwaenepoel K, Deiman B, Huijsmans CJJ, van Eijk R, Speel EJM, van Haastert RJ, Ligtenberg MJL, van Schaik RHN, Jansen MPHM, Dubbink HJ, de Leng WW, Leers MPG, Tamminga M, van den Broek D, van Kempen LC, Schuuring E. External Quality Assessment on Molecular Tumor Profiling with Circulating Tumor DNA-Based Methodologies Routinely Used in Clinical Pathology within the COIN Consortium. Clin Chem 2024; 70:759-767. [PMID: 38484302 DOI: 10.1093/clinchem/hvae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/21/2023] [Indexed: 05/03/2024]
Abstract
BACKGROUND Identification of tumor-derived variants in circulating tumor DNA (ctDNA) has potential as a sensitive and reliable surrogate for tumor tissue-based routine diagnostic testing. However, variations in pre(analytical) procedures affect the efficiency of ctDNA recovery. Here, an external quality assessment (EQA) was performed to determine the performance of ctDNA mutation detection work flows that are used in current diagnostic settings across laboratories within the Dutch COIN consortium (ctDNA on the road to implementation in The Netherlands). METHODS Aliquots of 3 high-volume diagnostic leukapheresis (DLA) plasma samples and 3 artificial reference plasma samples with predetermined mutations were distributed among 16 Dutch laboratories. Participating laboratories were requested to perform ctDNA analysis for BRAF exon 15, EGFR exon 18-21, and KRAS exon 2-3 using their regular circulating cell-free DNA (ccfDNA) analysis work flow. Laboratories were assessed based on adherence to the study protocol, overall detection rate, and overall genotyping performance. RESULTS A broad range of preanalytical conditions (e.g., plasma volume, elution volume, and extraction methods) and analytical methodologies (e.g., droplet digital PCR [ddPCR], small-panel PCR assays, and next-generation sequencing [NGS]) were used. Six laboratories (38%) had a performance score of >0.90; all other laboratories scored between 0.26 and 0.80. Although 13 laboratories (81%) reached a 100% overall detection rate, the therapeutically relevant EGFR p.(S752_I759del) (69%), EGFR p.(N771_H773dup) (50%), and KRAS p.(G12C) (48%) mutations were frequently not genotyped accurately. CONCLUSIONS Divergent (pre)analytical protocols could lead to discrepant clinical outcomes when using the same plasma samples. Standardization of (pre)analytical work flows can facilitate the implementation of reproducible liquid biopsy testing in the clinical routine.
Collapse
Affiliation(s)
- Paul van der Leest
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pim Rozendal
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - John Hinrichs
- Department of Pathology, Symbiant B.V., Alkmaar, the Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Karen Zwaenepoel
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Birgit Deiman
- Clinical Laboratory, Catharina Hospital Eindhoven, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, the Netherlands
- Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands
| | - Cornelis J J Huijsmans
- Pathologie-DNA, Laboratory for Molecular Diagnostics, Location Jeroen Bosch Hospital, 's-Hertogenbosch, the Netherlands
| | - Ronald van Eijk
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Ernst Jan M Speel
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rick J van Haastert
- Department of Clinical Chemistry, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pathology, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Maurice P H M Jansen
- Department of Medical Oncology, Laboratory of Translational Genomics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Hendrikus J Dubbink
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Wendy W de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mathie P G Leers
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Menno Tamminga
- Department of Pulmonary Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daan van den Broek
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Léon C van Kempen
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Ed Schuuring
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Ma Z, Xu J, Hou W, Lei Z, Li T, Shen W, Yu H, Liu C, Zhang J, Tang S. Detection of Single Nucleotide Polymorphisms of Circulating Tumor DNA by Strand Displacement Amplification Coupled with Liquid Chromatography. Anal Chem 2024; 96:5195-5204. [PMID: 38520334 DOI: 10.1021/acs.analchem.3c05500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
The detection of multiple single nucleotide polymorphisms (SNPs) of circulating tumor DNA (ctDNA) is still a great challenge. In this study, we designed enzyme-assisted nucleic acid strand displacement amplification combined with high-performance liquid chromatography (HPLC) for the simultaneous detection of three ctDNA SNPs. First, the trace ctDNA could be hybridized to the specially designed template strand, which initiated the strand displacement nucleic acid amplification process under the synergistic action of DNA polymerase and restriction endonuclease. Then, the targets would be replaced with G-quadruplex fluorescent probes with different tail lengths. Finally, the HPLC-fluorescence assay enabled the separation and quantification of multiple signals. Notably, this method can simultaneously detect both the wild type (WT) and mutant type (MT) of multiple ctDNA SNPs. Within a linear range of 0.1 fM-0.1 nM, the detection limits of BRAF V600E-WT, EGFR T790M-WT, and KRAS 134A-WT and BRAF V600E-MT, EGFR T790M-MT, and KRAS 134A-MT were 29, 31, and 11 aM and 22, 29, and 33 aM, respectively. By using this method, the mutation rates of multiple ctDNA SNPs in blood samples from patients with lung or breast cancer can be obtained in a simple way, providing a convenient and highly sensitive analytical assay for the early screening and monitoring of lung cancer.
Collapse
Affiliation(s)
- Ziyu Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Junjie Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Weilin Hou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Zi Lei
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Tingting Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Hui Yu
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang 212000, Jiangsu, P. R. China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
13
|
Crucitta S, Pasqualetti F, Gonnelli A, Ruglioni M, Luculli GI, Cantarella M, Ortenzi V, Scatena C, Paiar F, Naccarato AG, Danesi R, Del Re M. IDH1 mutation is detectable in plasma cell-free DNA and is associated with survival outcome in glioma patients. BMC Cancer 2024; 24:31. [PMID: 38172718 PMCID: PMC10763009 DOI: 10.1186/s12885-023-11726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA, liquid biopsy) is a powerful tool to detect molecular alterations. However, depending on tumor characteristics, biology and anatomic localization, cfDNA detection and analysis may be challenging. Gliomas are enclosed into an anatomic sanctuary, which obstacles the release of cfDNA into the peripheral blood. Therefore, the advantages of using liquid biopsy for brain tumors is still to be confirmed. The present study evaluates the ability of liquid biopsy to detect IDH1 mutations and its correlation with survival and clinical characteristics of glioma patients. METHODS Blood samples obtained from glioma patients were collected after surgery prior to the adjuvant therapy. cfDNA was extracted from plasma and IDH1 p.R132H mutation analysis was performed on a digital droplet PCR. χ2-test and Cohen k were used to assess the correlation between plasma and tissue IDH1 status, while Kaplan Meier curve and Cox regression analysis were applied to survival analysis. Statistical calculations were performed by MedCalc and GraphPad Prism software. RESULTS A total of 67 samples were collected. A concordance between IDH1 status in tissue and in plasma was found (p = 0.0024), and the presence of the IDH1 mutation both in tissue (138.8 months vs 24.4, p < 0.0001) and cfDNA (116.3 months vs 35.8, p = 0.016) was associated with longer median OS. A significant association between IDH1 mutation both in tissue and cfDNA, age, tumor grade and OS was demonstrated by univariate Cox regression analysis. No statistically significant association between IDH1 mutation and tumor grade was found (p = 0.10). CONCLUSIONS The present study demonstrates that liquid biopsy may be used in brain tumors to detect IDH1 mutation which represents an important prognostic biomarker in patients with different types of gliomas, being associated to OS.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
- Department of Oncology, University of Oxford, Oxford, UK
| | - Alessandra Gonnelli
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Martina Cantarella
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Valerio Ortenzi
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Department of Oncology and Hemato-Oncology, University of Milano, Via Festa del Perdono, 7, Milano, 20122, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
He J, Kalinava N, Doshi P, Pavlick DC, Albacker LA, Ebot EM, Tukachinsky H, Pratt J, Fusaro G, Oxnard GR, Green G, Fabrizio D, Baden J. Evaluation of tissue- and plasma-derived tumor mutational burden (TMB) and genomic alterations of interest in CheckMate 848, a study of nivolumab combined with ipilimumab and nivolumab alone in patients with advanced or metastatic solid tumors with high TMB. J Immunother Cancer 2023; 11:e007339. [PMID: 38035725 PMCID: PMC10689409 DOI: 10.1136/jitc-2023-007339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND An accumulation of somatic mutations in tumors leads to increased neoantigen levels and antitumor immune response. Tumor mutational burden (TMB) reflects the rate of somatic mutations in the tumor genome, as determined from tumor tissue (tTMB) or blood (bTMB). While high tTMB is a biomarker of immune checkpoint inhibitor (ICI) treatment efficacy, few studies have explored the clinical utility of bTMB, a less invasive alternative for TMB assessment. Establishing the correlation between tTMB and bTMB would provide insight into whether bTMB is a potential substitute for tTMB. We explored the tumor genomes of patients enrolled in CheckMate 848 with measurable TMB. The correlation between tTMB and bTMB, and the factors affecting it, were evaluated. METHODS In the phase 2 CheckMate 848 (NCT03668119) study, immuno-oncology-naïve patients with advanced, metastatic, or unresectable solid tumors and tTMB-high or bTMB-high (≥10 mut/Mb) were prospectively randomized 2:1 to receive nivolumab plus ipilimumab or nivolumab monotherapy. Tissue and plasma DNA sequencing was performed using the Foundation Medicine FoundationOne CDx and bTMB Clinical Trial Assays, respectively. tTMB was quantified from coding variants, insertions, and deletions, and bTMB from somatic base substitutions. Correlations between tTMB and bTMB were determined across samples and with respect to maximum somatic allele frequency (MSAF). Assay agreement and variant composition were also evaluated. RESULTS A total of 1,438 and 1,720 unique tissue and blood samples, respectively, were obtained from 1,954 patients and included >100 screened disease ontologies, with 1,017 unique pairs of tTMB and bTMB measurements available for assessment. Median tTMB and bTMB were 3.8 and 3.5 mut/Mb, respectively. A significant correlation between tTMB and bTMB (r=0.48, p<0.0001) was observed across all sample pairs, which increased to r=0.54 (p<0.0001) for samples with MSAF≥1%. Assay concordance was highest for samples with MSAF≥10% across multiple disease ontologies and observed for both responders and non-responders to ICI therapy. The variants contributing to tTMB and bTMB were similar. CONCLUSIONS We observed that tTMB and bTMB had a statistically significant correlation, particularly for samples with high MSAF, and that this correlation applied across disease ontologies. Further investigation into the clinical utility of bTMB is warranted.
Collapse
Affiliation(s)
- Jie He
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA
| | | | - Parul Doshi
- Gilead Sciences, Foster City, California, USA
| | | | | | - Ericka M Ebot
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA
| | | | - James Pratt
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Gina Fusaro
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | - George Green
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | - Jonathan Baden
- Solid Tumor Oncology Diagnostic Sciences, Bristol Myers Squibb, Princeton, New Jersey, USA
| |
Collapse
|
15
|
Rulten SL, Grose RP, Gatz SA, Jones JL, Cameron AJM. The Future of Precision Oncology. Int J Mol Sci 2023; 24:12613. [PMID: 37628794 PMCID: PMC10454858 DOI: 10.3390/ijms241612613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Our understanding of the molecular mechanisms underlying cancer development and evolution have evolved rapidly over recent years, and the variation from one patient to another is now widely recognized. Consequently, one-size-fits-all approaches to the treatment of cancer have been superseded by precision medicines that target specific disease characteristics, promising maximum clinical efficacy, minimal safety concerns, and reduced economic burden. While precision oncology has been very successful in the treatment of some tumors with specific characteristics, a large number of patients do not yet have access to precision medicines for their disease. The success of next-generation precision oncology depends on the discovery of new actionable disease characteristics, rapid, accurate, and comprehensive diagnosis of complex phenotypes within each patient, novel clinical trial designs with improved response rates, and worldwide access to novel targeted anticancer therapies for all patients. This review outlines some of the current technological trends, and highlights some of the complex multidisciplinary efforts that are underway to ensure that many more patients with cancer will be able to benefit from precision oncology in the near future.
Collapse
Affiliation(s)
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (R.P.G.); (J.L.J.)
| | - Susanne A. Gatz
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - J. Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (R.P.G.); (J.L.J.)
| | - Angus J. M. Cameron
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (R.P.G.); (J.L.J.)
| |
Collapse
|
16
|
Verner EL, Jackson JB, Severson E, Valkenburg KC, Greer AE, Riley DR, Sausen M, Maddox C, McGregor PM, Karandikar A, Hastings SB, Previs RA, Reddy VP, Jensen TJ, Ramkissoon SH. Validation of the Labcorp Plasma Focus Test to Facilitate Precision Oncology Through Cell-Free DNA Genomic Profiling of Solid Tumors. J Mol Diagn 2023; 25:477-489. [PMID: 37068734 DOI: 10.1016/j.jmoldx.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
Genomic profiling is critical for precision oncology to guide treatment decisions. Liquid biopsy testing is a complementary approach to tissue testing, particularly when tissue is not readily available. The Labcorp Plasma Focus test is a circulating cell-free DNA genomic profiling test that identifies actionable variants in solid cancers, including non-small-cell lung, colorectal, melanoma, breast, esophageal, gastroesophageal junction, and gastric cancers. This study highlights the analytical validation of the test, including accuracy compared with orthogonal methods, as well as sensitivity, specificity, precision, reproducibility, and repeatability. Concordance with orthogonal methods showed percent positive agreement of 98.7%, 89.3%, and 96.2% for single nucleotide variants (SNVs), insertion/deletions (indels), and copy number amplifications (CNAs), respectively, and 100.0% for translocations and microsatellite instability (MSI). Analytical sensitivity revealed a median limit of detection of 0.7% and 0.6% for SNVs and indels, 1.4-fold for CNAs, 0.5% variant allele frequency for translocations, and 0.6% for MSI. Specificity was >99% for SNVs/indels and 100% for CNAs, translocations, and MSI. Average positive agreement from precision, reproducibility, and repeatability experiments was 97.5% and 88.9% for SNVs/indels and CNAs, and 100% for translocations and MSI. Taken together, these data show that the Labcorp Plasma Focus test is a highly accurate, sensitive, and specific approach for cell-free DNA genomic profiling to supplement tissue testing and inform treatment decisions.
Collapse
Affiliation(s)
- Ellen L Verner
- Personal Genome Diagnostics (PGDx), Baltimore, Maryland.
| | | | - Eric Severson
- Enterprise Oncology, Labcorp, Durham, North Carolina
| | | | - Amy E Greer
- Personal Genome Diagnostics (PGDx), Baltimore, Maryland
| | - David R Riley
- Personal Genome Diagnostics (PGDx), Baltimore, Maryland
| | - Mark Sausen
- Personal Genome Diagnostics (PGDx), Baltimore, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xue R, Yang L, Yang M, Xue F, Li L, Liu M, Ren Y, Qi Y, Zhao J. Circulating cell-free DNA sequencing for early detection of lung cancer. Expert Rev Mol Diagn 2023; 23:589-606. [PMID: 37318381 DOI: 10.1080/14737159.2023.2224504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Lung cancer is a leading cause of death in patients with cancer. Early diagnosis is crucial to improve the prognosis of patients with lung cancer. Plasma circulating cell-free DNA (cfDNA) contains comprehensive genetic and epigenetic information from tissues throughout the body, suggesting that early detection of lung cancer can be done non-invasively, conveniently, and cost-effectively using high-sensitivity techniques such as sequencing. AREAS COVERED In this review, we summarize the latest technological innovations, coupled with next-generation sequencing (NGS), regarding genomic alterations, methylation, and fragmentomic features of cfDNA for the early detection of lung cancer, as well as their clinical advances. Additionally, we discuss the suitability of study designs for diagnostic accuracy evaluation for different target populations and clinical questions. EXPERT OPINION Currently, cfDNA-based early screening and diagnosis of lung cancer faces many challenges, such as unsatisfactory performance, lack of quality control standards, and poor repeatability. However, the progress of several large prospective studies employing epigenetic features has shown promising predictive performance, which has inspired cfDNA sequencing for future clinical applications. Furthermore, the development of multi-omics markers for lung cancer, including genome-wide methylation and fragmentomics, is expected to play an increasingly important role in the future.
Collapse
Affiliation(s)
- Ruyue Xue
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Yang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, China
- Nanjing Simcere Medical Laboratory Science Co, Ltd, Nanjing, Jiangsu, China
| | - Meijia Yang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Xue
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, China
- Nanjing Simcere Medical Laboratory Science Co, Ltd, Nanjing, Jiangsu, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Manjiao Liu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, China
- Nanjing Simcere Medical Laboratory Science Co, Ltd, Nanjing, Jiangsu, China
| | - Yong Ren
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, China
- Nanjing Simcere Medical Laboratory Science Co, Ltd, Nanjing, Jiangsu, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Dhillon S, Lopes G, Parker JL. The Effect of Biomarkers on Clinical Trial Risk in Gastric Cancer. Am J Clin Oncol 2023; 46:58-65. [PMID: 36662871 DOI: 10.1097/coc.0000000000000963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES This study examined clinical trial success rates for new drug developments in gastric cancer since 1998. We also examined the clinical trial design features that may mitigate the risk of clinical trial failure. MATERIALS AND METHODS Clinical trial data was obtained from clinicaltrials.gov. Drugs were included if they entered testing between January 1, 1998 and January 1, 2022 and were excluded if they did not have a completed phase I trial or treated secondary effects of gastric cancer. Transition probabilities were calculated for each phase and compared with industry averages. Success rates were determined based on biomarker usage, drug target, type of therapy, and drug chemistry. RESULTS Upon screening 1990 trials, 219 drugs met our inclusion criteria. The probability of a drug completing all phases of testing and obtaining FDA approval was 7%, which is below the 11% industry average. The use of biomarkers in clinical development resulted in nearly a 2-fold increase in the cumulative success rate. Biologics also exhibited higher success rates (17%) as opposed to small molecules (1%). This was true even when we compared both drug types that shared the same target. When comparing only receptor-targeted therapies, biologics (62%) continued to outperform small molecules (18%). Similarly, when narrowed down to drugs targeting solely HER2 receptors, biologics continued to prevail (64% vs. 24%). CONCLUSIONS Implementing biomarkers, receptor-targeted therapies, and biologics in clinical development improves clinical trial success rates in gastric cancer. Thus, physicians should prioritize the enrollment of gastric cancer patients in clinical trials that incorporate the aforementioned features.
Collapse
Affiliation(s)
- Sumeet Dhillon
- Department of Biology, University of Toronto Mississauga, Mississauga, ON
| | - Gilberto Lopes
- University of Miami, Miller School of Medicine, Miami, FL
| | - Jayson L Parker
- Department of Biology, University of Toronto Mississauga, Mississauga, ON
| |
Collapse
|
19
|
Catalano M, Generali D, Gatti M, Riboli B, Paganini L, Nesi G, Roviello G. DNA repair deficiency as circulating biomarker in prostate cancer. Front Oncol 2023; 13:1115241. [PMID: 36793600 PMCID: PMC9922904 DOI: 10.3389/fonc.2023.1115241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Deleterious aberrations in DNA repair genes are actionable in approximately 25% of metastatic castration-resistant prostate cancers (mCRPC) patients. Homology recombination repair (HRR) is the DNA damage repair (DDR) mechanism most frequently altered in prostate cancer; of note BRCA2 is the most frequently altered DDR gene in this tumor. Poly ADP-ribose polymerase inhibitors showed antitumor activity with a improvement in overall survival in mCRPC carrying somatic and/or germline alterations of HHR. Germline mutations are tested on peripheral blood samples using DNA extracted from peripheral blood leukocytes, while the somatic alterations are assessed by extracting DNA from a tumor tissue sample. However, each of these genetic tests have some limitations: the somatic tests are related to the sample availability and tumor heterogeneity, while the germline testing are mainly related to the inability to detect somatic HRR mutations. Therefore, the liquid biopsy, a non-invasive and easily repeatable test compared to tissue test, could identified somatic mutation detected on the circulating tumor DNA (ctDNA) extracted from a plasma. This approach should better represent the heterogeneity of the tumor compared to the primary biopsy and maybe helpful in monitoring the onset of potential mutations involved in treatment resistance. Furthermore, ctDNA may inform about timing and potential cooperation of multiple driver genes aberration guiding the treatment options in patients with mCRPC. However, the clinical use of ctDNA test in prostate cancer compared to blood and tissue testing are currently very limited. In this review, we summarize the current therapeutic indications in prostate cancer patients with DDR deficiency, the recommendation for germline and somatic-genomic testing in advanced PC and the advantages of the use liquid biopsy in clinical routine for mCRPC.
Collapse
Affiliation(s)
- Martina Catalano
- School of Human Health Sciences, University of Florence, Florence, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital Trieste, Trieste, Italy
| | - Marta Gatti
- Servizio di Citogenetica e Genetica - Azienda Socio-Sanitaria Territoriale (ASST) di Cremona, Cremona, Italy
| | - Barbara Riboli
- Servizio di Citogenetica e Genetica - Azienda Socio-Sanitaria Territoriale (ASST) di Cremona, Cremona, Italy
| | - Leda Paganini
- Servizio di Citogenetica e Genetica - Azienda Socio-Sanitaria Territoriale (ASST) di Cremona, Cremona, Italy
| | - Gabriella Nesi
- Department of Health Sciences, University of Florence, Florence, Italy
| | | |
Collapse
|
20
|
Dawood ZS, Alaimo L, Lima HA, Moazzam Z, Shaikh C, Ahmed AS, Munir MM, Endo Y, Pawlik TM. Circulating Tumor DNA, Imaging, and Carcinoembryonic Antigen: Comparison of Surveillance Strategies Among Patients Who Underwent Resection of Colorectal Cancer-A Systematic Review and Meta-analysis. Ann Surg Oncol 2023; 30:259-274. [PMID: 36219278 DOI: 10.1245/s10434-022-12641-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Almost one-third of colorectal cancer (CRC) patients experience recurrence after resection; nevertheless, follow-up strategies remain controversial. We sought to systematically assess and compare the accuracy of carcinoembryonic antigen (CEA), imaging [positron emission tomography (PET) and computed tomography (CT) scans], and circulating tumor DNA (CtDNA) as surveillance strategies. PATIENTS AND METHODS PubMed, Medline, Embase, Scopus, Cochrane, Web of Science, and CINAHL were systematically searched. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to assess methodological quality. We performed a bivariate random-effects meta-analysis and reported pooled sensitivity, specificity, and diagnostic odds ratio (DOR) values for each surveillance strategy. RESULTS Thirty studies were included in the analysis. PET scans had the highest sensitivity to detect recurrence (0.95; 95%CI 0.91-0.97), followed by CT scans (0.77; 95%CI 0.67-0.85). CtDNA positivity had the highest specificity to detect recurrence (0.95; 95%CI 0.91-0.97), followed by increased CEA levels (0.88; 95%CI 0.82-0.92). Furthermore, PET scans had the highest DOR to detect recurrence (DOR 120.7; 95%CI 48.9-297.9) followed by CtDNA (DOR 37.6; 95%CI 20.8-68.0). CONCLUSION PET scans had the highest sensitivity and DOR to detect recurrence, while CtDNA had the highest specificity and second highest DOR. Combinations of traditional cross-sectional/functional imaging and newer platforms such as CtDNA may result in optimized surveillance of patients following resection of CRC.
Collapse
Affiliation(s)
- Zaiba Shafik Dawood
- Medical College, The Aga Khan University Hospital, Stadium Road, Karachi, 74800, Pakistan
| | - Laura Alaimo
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Henrique A Lima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Zorays Moazzam
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Chanza Shaikh
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Muhammad Musaab Munir
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Yutaka Endo
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
21
|
Liu C, Yu Y, Wang G, Liu J, Liu R, Liu L, Yang X, Li H, Gao C, Lu Y, Zhuang J. From tumor mutational burden to characteristic targets analysis: Identifying the predictive biomarkers and natural product interventions in cancer management. Front Nutr 2022; 9:989989. [PMID: 36204371 PMCID: PMC9530334 DOI: 10.3389/fnut.2022.989989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
High-throughput next-generation sequencing (NGS) provides insights into genome-wide mutations and can be used to identify biomarkers for the prediction of immune and targeted responses. A deeper understanding of the molecular biological significance of genetic variation and effective interventions is required and ultimately needs to be associated with clinical benefits. We conducted a retrospective observational study of patients in two cancer cohorts who underwent NGS in a “real-world” setting. The association between differences in tumor mutational burden (TMB) and clinical presentation was evaluated. We aimed to identify several key mutation targets and describe their biological characteristics and potential clinical value. A pan-cancer dataset was downloaded as a verification set for further analysis and summary. Natural product screening for the targeted intervention of key markers was also achieved. The majority of tumor patients were younger adult males with advanced cancer. The gene identified with the highest mutation rate was TP53, followed by PIK3CA, EGFR, and LRP1B. The association of TMB (0–103.7 muts/Mb) with various clinical subgroups was determined. More frequent mutations, such as in LRP1B, as well as higher levels of ferritin and neuron-specific enolase, led to higher TMB levels. Further analysis of the key targets, LRP1B and APC, was performed, and mutations in LRP1B led to better immune benefits compared to APC. APC, one of the most frequently mutated genes in gastrointestinal tumors, was further investigated, and the potential interventions by cochinchinone B and rottlerin were clarified. In summary, based on the analysis of the characteristics of gene mutations in the “real world,” we obtained the potential association indicators of TMB, found the key signatures LRP1B and APC, and further described their biological significance and potential interventions.
Collapse
Affiliation(s)
- Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Yang Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ge Wang
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Jingyang Liu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoxu Yang
- School of Life Sciences and Technology, Weifang Medical University, Weifang, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Chundi Gao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Lu
- Department of Clinical Nutrition, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Traditional Chinese Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- *Correspondence: Yi Lu,
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- Jing Zhuang,
| |
Collapse
|
22
|
Arisi MF, Dotan E, Fernandez SV. Circulating Tumor DNA in Precision Oncology and Its Applications in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23084441. [PMID: 35457259 PMCID: PMC9024503 DOI: 10.3390/ijms23084441] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Circulating tumor DNA (ctDNA) is a component of cell-free DNA (cfDNA) that is shed by malignant tumors into the bloodstream and other bodily fluids. ctDNA can comprise up to 10% of a patient’s cfDNA depending on their tumor type and burden. The short half-life of ctDNA ensures that its detection captures tumor burden in real-time and offers a non-invasive method of repeatedly evaluating the genomic profile of a patient’s tumor. A challenge in ctDNA detection includes clonal hematopoiesis of indeterminate potential (CHIP), which can be distinguished from tumor variants using a paired whole-blood control. Most assays for ctDNA quantification rely on measurements of somatic variant allele frequency (VAF), which is a mutation-dependent method. Patients with certain types of solid tumors, including colorectal cancer (CRC), can have levels of cfDNA 50 times higher than healthy patients. ctDNA undergoes a precipitous drop shortly after tumor resection and therapy, and rising levels can foreshadow radiologic recurrence on the order of months. The amount of tumor bulk required for ctDNA detection is lower than that for computed tomography (CT) scan detection, with ctDNA detection preceding radiologic recurrence in many cases. cfDNA/ctDNA can be used for tumor molecular profiling to identify resistance mutations when tumor biopsy is not available, to detect minimal residual disease (MRD), to monitor therapy response, and for the detection of tumor relapse. Although ctDNA is not yet implemented in clinical practice, studies are ongoing to define the appropriate way to use it as a tool in the clinic. In this review article, we examine the general aspects of ctDNA, its status as a biomarker, and its role in the management of early (II–III) and late (IV; mCRC) stage colorectal cancer (CRC).
Collapse
Affiliation(s)
- Maria F. Arisi
- Sidney Kimmel Medical School, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Efrat Dotan
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Sandra V. Fernandez
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Correspondence:
| |
Collapse
|
23
|
Kalita-de Croft P, Joshi V, Saunus JM, Lakhani SR. Emerging Biomarkers for Diagnosis, Prevention and Treatment of Brain Metastases-From Biology to Clinical Utility. Diseases 2022; 10:11. [PMID: 35225863 PMCID: PMC8884016 DOI: 10.3390/diseases10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Primary malignancies of the lung, skin (melanoma), and breast have higher propensity for metastatic spread to the brain. Advances in molecular tumour profiling have aided the development of targeted therapies, stereotactic radiotherapy, and immunotherapy, which have led to some improvement in patient outcomes; however, the overall prognosis remains poor. Continued research to identify new prognostic and predictive biomarkers is necessary to further impact patient outcomes, as this will enable better risk stratification at the point of primary cancer diagnosis, earlier detection of metastatic deposits (for example, through surveillance), and more effective systemic treatments. Brain metastases exhibit considerable inter- and intratumoural heterogeneity-apart from distinct histology, treatment history and other clinical factors, the metastatic brain tumour microenvironment is incredibly variable both in terms of subclonal diversity and cellular composition. This review discusses emerging biomarkers; specifically, the biological context and potential clinical utility of tumour tissue biomarkers, circulating tumour cells, extracellular vesicles, and circulating tumour DNA.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Vaibhavi Joshi
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Jodi M. Saunus
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
- Pathology Queensland, The Royal Brisbane and Women’s Hospital Herston, Herston, QLD 4029, Australia
| |
Collapse
|
24
|
|
25
|
Guerrera LP, Napolitano S, De Falco V, Giunta EF, Vitiello PP, Gravina AG, Suarato G, Perrone A, Napolitano R, Martinelli E, Ciardiello F, Troiani T. Multiple Acquired Mutations Captured by Liquid Biopsy in the EGFR Addicted Metastatic Colorectal Cancer. Clin Colorectal Cancer 2021; 20:354-358. [PMID: 34454840 DOI: 10.1016/j.clcc.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Luigi Pio Guerrera
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Stefania Napolitano
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Vincenzo De Falco
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Emilio Francesco Giunta
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | | | - Antonietta Gerarda Gravina
- Unità di Epatogastroenterologia, Dipartimento di Medicina di Precisione. Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Gabriella Suarato
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Alessandra Perrone
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Rossella Napolitano
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Erika Martinelli
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Fortunato Ciardiello
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Teresa Troiani
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia.
| |
Collapse
|
26
|
de Miranda FS, Barauna VG, dos Santos L, Costa G, Vassallo PF, Campos LCG. Properties and Application of Cell-Free DNA as a Clinical Biomarker. Int J Mol Sci 2021; 22:9110. [PMID: 34502023 PMCID: PMC8431421 DOI: 10.3390/ijms22179110] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
Biomarkers are valuable tools in clinical practice. In 2001, the National Institutes of Health (NIH) standardized the definition of a biomarker as a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. A biomarker has clinical relevance when it presents precision, standardization and reproducibility, suitability to the patient, straightforward interpretation by clinicians, and high sensitivity and/or specificity by the parameter it proposes to identify. Thus, serum biomarkers should have advantages related to the simplicity of the procedures and to the fact that venous blood collection is commonplace in clinical practice. We described the potentiality of cfDNA as a general clinical biomarker and focused on endothelial dysfunction. Circulating cell-free DNA (cfDNA) refers to extracellular DNA present in body fluid that may be derived from both normal and diseased cells. An increasing number of studies demonstrate the potential use of cfDNA as a noninvasive biomarker to determine physiologic and pathologic conditions. However, although still scarce, increasing evidence has been reported regarding using cfDNA in cardiovascular diseases. Here, we have reviewed the history of cfDNA, its source, molecular features, and release mechanism. We also show recent studies that have investigated cfDNA as a possible marker of endothelial damage in clinical settings. In the cardiovascular system, the studies are quite new, and although interesting, stronger evidence is still needed. However, some drawbacks in cfDNA methodologies should be overcome before its recommendation as a biomarker in the clinical setting.
Collapse
Affiliation(s)
- Felipe Silva de Miranda
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| | - Valério Garrone Barauna
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Molecular Physiology Laboratory of Exercise Science, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Leandro dos Santos
- Academic Unit of Serra Talhada, Rural Federal University of Pernambuco, Serra Talhada 56909-535, Pernambuco, Brazil;
| | - Gustavo Costa
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Paula Frizera Vassallo
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
- Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Luciene Cristina Gastalho Campos
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
| |
Collapse
|
27
|
Wang H, Zhou F, Qiao M, Li X, Zhao C, Cheng L, Chen X, Zhou C. The Role of Circulating Tumor DNA in Advanced Non-Small Cell Lung Cancer Patients Treated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:671874. [PMID: 34367957 PMCID: PMC8335591 DOI: 10.3389/fonc.2021.671874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/02/2021] [Indexed: 12/30/2022] Open
Abstract
Background The use of circulating tumor DNA (ctDNA) to reflect clinical benefits of advanced non-small cell lung cancer (NSCLC) patients during immune checkpoint inhibitor (ICI) therapy remains controversial. This study aimed to determine the association of pre-treatment and early dynamic changes of ctDNA with clinical outcomes in advanced NSCLC patients treated with ICIs. Methods Electronic databases (PubMed, Embase, Web of Science, and Cochrane) were systematically searched to include relevant studies published in English up to November 2020. The primary outcomes were overall survival (OS) and progression-free survival (PFS) and the secondary outcome was objective response rate (ORR) with RECIST criteria. Results A total of 1017 patients from 10 studies were identified. The baseline ctDNA levels (detected versus not detected) showed no significant association with clinical outcomes regarding OS (hazard ratio [HR], 1.18; 95% confidence interval [CI], 0.93-1.51), PFS (HR, 0.98; 95% CI, 0.80-1.21), and ORR (odds ratio [OR], 0.89; 95% CI, 0.54-1.46). Interestingly, when taken early longitudinal assessment of ctDNA into consideration, the early reduction of the concentration of ctDNA was associated with significant improvements of OS (HR, 0.19; 95% CI, 0.10-0.35), PFS (HR, 0.30; 95% CI, 0.22-0.41) and ORR (OR, 0.07; 95% CI, 0.03-0.18). Further subgroup analyses revealed that the reduction magnitude did not significantly impact the association between ctDNA and clinical outcomes, suggesting that both patients with decreased ctDNA or a ≥50% reduction of ctDNA was associated with improved OS, PFS and ORR. Conclusion Early reduction of ctDNA was associated with improved OS, PFS and ORR in advanced NSCLC patients treated with ICIs. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO, CRD42021226255.
Collapse
Affiliation(s)
- Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Adashek JJ, Janku F, Kurzrock R. Signed in Blood: Circulating Tumor DNA in Cancer Diagnosis, Treatment and Screening. Cancers (Basel) 2021; 13:3600. [PMID: 34298813 PMCID: PMC8306582 DOI: 10.3390/cancers13143600] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
With the addition of molecular testing to the oncologist's diagnostic toolbox, patients have benefitted from the successes of gene- and immune-directed therapies. These therapies are often most effective when administered to the subset of malignancies harboring the target identified by molecular testing. An important advance in the application of molecular testing is the liquid biopsy, wherein circulating tumor DNA (ctDNA) is analyzed for point mutations, copy number alterations, and amplifications by polymerase chain reaction (PCR) and/or next-generation sequencing (NGS). The advantages of evaluating ctDNA over tissue DNA include (i) ctDNA requires only a tube of blood, rather than an invasive biopsy, (ii) ctDNA can plausibly reflect DNA shedding from multiple metastatic sites while tissue DNA reflects only the piece of tissue biopsied, and (iii) dynamic changes in ctDNA during therapy can be easily followed with repeat blood draws. Tissue biopsies allow comprehensive assessment of DNA, RNA, and protein expression in the tumor and its microenvironment as well as functional assays; however, tumor tissue acquisition is costly with a risk of complications. Herein, we review the ways in which ctDNA assessment can be leveraged to understand the dynamic changes of molecular landscape in cancers.
Collapse
Affiliation(s)
- Jacob J. Adashek
- Department of Internal Medicine, University of South Florida, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33606, USA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | |
Collapse
|
29
|
Gonzalez D, Mateo J, Stenzinger A, Rojo F, Shiller M, Wyatt AW, Penault‐Llorca F, Gomella LG, Eeles R, Bjartell A. Practical considerations for optimising homologous recombination repair mutation testing in patients with metastatic prostate cancer. J Pathol Clin Res 2021; 7:311-325. [PMID: 33630412 PMCID: PMC8185363 DOI: 10.1002/cjp2.203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 01/07/2023]
Abstract
Analysis of the genomic landscape of prostate cancer has identified different molecular subgroups with relevance for novel or existing targeted therapies. The recent approvals of the poly(ADP-ribose) polymerase (PARP) inhibitors olaparib and rucaparib in the metastatic castration-resistant prostate cancer (mCRPC) setting signal the need to embed molecular diagnostics in the clinical pathway of patients with mCRPC to identify those who can benefit from targeted therapies. Best practice guidelines in overall biospecimen collection and processing for molecular analysis are widely available for several tumour types. However, there is no standard protocol for molecular diagnostic testing in prostate cancer. Here, we provide a series of recommendations on specimen handling, sample pre-analytics, laboratory workflow, and testing pathways to maximise the success rates for clinical genomic analysis in prostate cancer. Early involvement of a multidisciplinary team of pathologists, urologists, oncologists, radiologists, nurses, molecular scientists, and laboratory staff is key to enable optimal workflow for specimen selection and preservation at the time of diagnosis so that samples are available for molecular analysis when required. Given the improved outcome of patients with mCRPC and homologous recombination repair gene alterations who have been treated with PARP inhibitors, there is an urgent need to incorporate high-quality genomic testing in the routine clinical pathway of these patients.
Collapse
Affiliation(s)
- David Gonzalez
- Patrick G Johnston Centre for Cancer ResearchQueen's UniversityBelfastUK
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO)Vall d'Hebron University HospitalBarcelonaSpain
| | | | - Federico Rojo
- Department of PathologyIIS‐Hospital Universitario Fundación Jiménez Díaz‐CIBERONCMadridSpain
| | - Michelle Shiller
- Department of PathologyBaylor University Medical CenterDallasTXUSA
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Frédérique Penault‐Llorca
- Centre Jean PerrinUniversité Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies ThéranostiquesClermont FerrandFrance
| | - Leonard G Gomella
- Department of Urology, Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Ros Eeles
- Division of Genetics and EpidemiologyThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUK
| | - Anders Bjartell
- Division of Urological Cancers, Department of Translational MedicineLund UniversityLundSweden
| |
Collapse
|
30
|
Cimadamore A, Cheng L, Massari F, Santoni M, Pepi L, Franzese C, Scarpelli M, Lopez-Beltran A, Galosi AB, Montironi R. Circulating Tumor DNA Testing for Homology Recombination Repair Genes in Prostate Cancer: From the Lab to the Clinic. Int J Mol Sci 2021; 22:5522. [PMID: 34073818 PMCID: PMC8197269 DOI: 10.3390/ijms22115522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Approximately 23% of metastatic castration-resistant prostate cancers (mCRPC) harbor deleterious aberrations in DNA repair genes. Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) therapy has shown improvements in overall survival in patients with mCRPC who harbor somatic and/or germline alterations of homology recombination repair (HRR) genes. Peripheral blood samples are typically used for the germline mutation analysis test using the DNA extracted from peripheral blood leucocytes. Somatic alterations can be assessed by extracting DNA from a tumor tissue sample or using circulating tumor DNA (ctDNA) extracted from a plasma sample. Each of these genetic tests has its own benefits and limitations. The main advantages compared to the tissue test are that liquid biopsy is a non-invasive and easily repeatable test with the value of better representing tumor heterogeneity than primary biopsy and of capturing changes and/or resistance mutations in the genetic tumor profile during disease progression. Furthermore, ctDNA can inform about mutation status and guide treatment options in patients with mCRPC. Clinical validation and test implementation into routine clinical practice are currently very limited. In this review, we discuss the state of the art of the ctDNA test in prostate cancer compared to blood and tissue testing. We also illustrate the ctDNA testing workflow, the available techniques for ctDNA extraction, sequencing, and analysis, describing advantages and limits of each techniques.
Collapse
Affiliation(s)
- Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (L.P.); (M.S.)
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy;
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Laura Pepi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (L.P.); (M.S.)
| | - Carmine Franzese
- Department of Specialist Clinical Science and Odontostomatology, Urology Division, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (C.F.); (A.B.G.)
| | - Marina Scarpelli
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (L.P.); (M.S.)
| | - Antonio Lopez-Beltran
- Department of Morphological Sciences, Cordoba University Medical School, 14071 Cordoba, Spain;
| | - Andrea Benedetto Galosi
- Department of Specialist Clinical Science and Odontostomatology, Urology Division, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (C.F.); (A.B.G.)
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (L.P.); (M.S.)
| |
Collapse
|
31
|
Chen K, Zhao H, Wang Z, Lan M. A novel signal amplification label based on AuPt alloy nanoparticles supported by high-active carbon for the electrochemical detection of circulating tumor DNA. Anal Chim Acta 2021; 1169:338628. [PMID: 34088375 DOI: 10.1016/j.aca.2021.338628] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023]
Abstract
The detection of circulating tumor DNA (ctDNA) has increasingly received a great deal of attention considering its significance in cancer diagnosis. And the signal amplification plays an important role in the development of sensitive ctDNA biosensors. Herein, the nanocomposites (denoted as HAC-AuPt), integrating from high-active carbon (HAC) and AuPt alloy nanoparticles, were synthesized and subsequently used as a signal amplification label to fabricate a sandwich-type ctDNA electrochemical biosensor. Characterizations demonstrated that HAC presents uniform size distribution and AuPt alloy nanoparticles were successfully loaded on HAC. The current response could be amplified to a great extent by the resultant HAC-AuPt due to its excellent electrochemical property. The nanocomposites were further bounded with DNA signal probes (SPs) via Au-S or Pt-S assembly to form SPs-label. After the capture probes (CPs) were immobilized on the electrode surface, the target DNA (tDNA) and SPs-label were stepwise incubated on the CPs-modified electrode, thus forming a sandwich-type structure. By monitoring the catalytic signal of HAC-AuPt towards the reduction process of H2O2, this biosensor provided a wide linear range of 10-8 mol/L - 10-16 mol/L with a low detection limit of 3.6 × 10-17 mol/L (S/N = 3) for the detection of the tDNA. Furthermore, obvious differences in response signals among different DNAs were observed benefitting from the excellent selectivity of the biosensor. Besides, the long-term stability, reproducibility, and recovery rate were proved to be outstanding. These results indicate that the established biosensor holds a potential application in the clinical diagnosis of ctDNA.
Collapse
Affiliation(s)
- Kaicha Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Zhenxing Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
32
|
Lu H, Liu R, Liu P, Lin W, Huang Y, Xiao R, Li Z, Ma J, Wang W, Li J, Sun LP, Guan BO. Au-NPs signal amplification ultra-sensitivity optical microfiber interferometric biosensor. OPTICS EXPRESS 2021; 29:13937-13948. [PMID: 33985120 DOI: 10.1364/oe.424878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
An optical microfiber interferometric biosensor for the low concentration detection of sequence-specific deoxyribonucleic acid (DNA) based on signal amplification technology via oligonucleotides linked to gold nanoparticles (Au-NPs) is proposed and experimentally analyzed. The sensor uses a "sandwich" detection strategy, in which capture probe DNA (DNA-c) is immobilized on the surface of the optical microfiber interferometer, the reporter probe DNA (DNA-r) is immobilized on the surface of Au-NPs, and the DNA-c and DNA-r are hybridized to the target probe DNA (DNA-t) in a sandwich arrangement. The dynamic detection of the DNA-t was found to range from 1.0×10-15 M to 1.0×10-8 M, and the limit of detection (LOD) concentration was 1.32 fM. This sensor exhibited not only a low LOD but also excellent selectivity against mismatched DNA-t, and it can be further developed for application in various sensing platforms.
Collapse
|
33
|
Kallionpää RA, Ahramo K, Aaltonen M, Pennanen P, Peltonen J, Peltonen S. Circulating free DNA in the plasma of individuals with neurofibromatosis type 1. Am J Med Genet A 2021; 185:1098-1104. [PMID: 33484105 DOI: 10.1002/ajmg.a.62081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant syndrome whose characteristic manifestations include benign neurofibromas, yet NF1 is also associated with a high risk of cancer. Measurements of circulating free plasma DNA (cfDNA) are gaining wider applicability in cancer diagnostics, targeting of therapy, and monitoring of therapeutic response. Individuals with NF1 are likely to be followed up using this method, but the effects of NF1 and neurofibromas on cfDNA levels are not known. We studied peripheral blood samples from 19 adults with NF1 and 12 healthy controls. The cfDNA was isolated from plasma with QIAamp Circulating Nucleic Acid Kit and quantified using the Qubit 2.0 Fluorometer. The cfDNA concentration of each sample was normalized relative to the plasma protein concentration. The normalized median concentration of cfDNA in plasma was 19.3 ng/ml (range 6.6-78.6) among individuals with NF1 and 15.9 ng/ml (range 4.8-47.0) among controls (p = .369). Individuals with NF1 who also had plexiform neurofibroma (pNF) showed non-significantly elevated cfDNA concentration compared to individuals with NF1 and without known pNF (median 25.4 vs. 18.8 ng/ml, p = .122). The effect of NF1 on cfDNA seems to be relatively small and NF1 is therefore unlikely to hamper the use of cfDNA-based assays.
Collapse
Affiliation(s)
- Roope A Kallionpää
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kaisa Ahramo
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marianna Aaltonen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku University of Applied Sciences, Turku, Finland
| | - Paula Pennanen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology and Venereology, University of Turku, Turku, Finland.,Department of Dermatology, Turku University Hospital, Turku, Finland.,Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Dermatology and Venereology, Region Västra Götaland Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
34
|
Jacob S, Davis AA, Gerratana L, Velimirovic M, Shah AN, Wehbe F, Katam N, Zhang Q, Flaum L, Siziopikou KP, Platanias LC, Gradishar WJ, Behdad A, Bardia A, Cristofanilli M. The Use of Serial Circulating Tumor DNA to Detect Resistance Alterations in Progressive Metastatic Breast Cancer. Clin Cancer Res 2020; 27:1361-1370. [PMID: 33323406 DOI: 10.1158/1078-0432.ccr-20-1566] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/18/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Circulating tumor DNA (ctDNA) is a promising tool for noninvasive longitudinal monitoring of genomic alterations. We analyzed serial ctDNA to characterize genomic evolution in progressive metastatic breast cancer. EXPERIMENTAL DESIGN This was a retrospective cohort between 2015 and 2019 obtained under an Institutional Review Board-approved protocol at Northwestern University (Chicago, IL). ctDNA samples were analyzed with Guardant360 next-generation sequencing (NGS) assay. A total of 86 patients had at least two serial ctDNA collections with the second drawn at first post-NGS progression (PN1) by imaging and clinical assessment. A total of 27 participants had ctDNA drawn at second post-NGS clinical progression (PN2). We analyzed alterations, mutant allele frequency (MAF), number of alterations (NOA), and sites of disease on imaging in close proximity to ctDNA evaluation. Matched pairs' variations in MAF, NOA, and alterations at progression were tested through Wilcoxon test. We identified an independent control cohort at Massachusetts General Hospital (Boston, MA) of 63 patients with serial ctDNA sampling and no evidence of progression. RESULTS We identified 44 hormone receptor-positive, 20 HER2+, and 22 triple-negative breast cancer cases. The significant alterations observed between baseline and PN1 were TP53 (P < 0.0075), PIK3CA (P < 0.0126), AR (P < 0.0126), FGFR1 (P < 0.0455), and ESR1 (P < 0.0143). Paired analyses revealed increased MAF and NOA from baseline to PN1 (P = 0.0026, and P < 0.0001, respectively). When compared with controls without progression, patients with ctDNA collection at times of progression were associated with increased MAF and NOA (P = 0.0042 and P < 0.0001, respectively). CONCLUSIONS Serial ctDNA testing identified resistance alterations and increased NOA and MAF were associated with disease progression. Prospective longitudinal ctDNA evaluation could potentially monitor tumor genomic evolution.
Collapse
Affiliation(s)
- Saya Jacob
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Andrew A Davis
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois.,Division of Hematology and Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Lorenzo Gerratana
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois.,Department of Medicine, University of Udine, Udine, Italy
| | | | - Ami N Shah
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Firas Wehbe
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Neelima Katam
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Qiang Zhang
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Lisa Flaum
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Kalliopi P Siziopikou
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois.,Department of Pathology, Northwestern University, Chicago, Illinois
| | - Leonidas C Platanias
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - William J Gradishar
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Amir Behdad
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois.,Department of Pathology, Northwestern University, Chicago, Illinois
| | - Aditya Bardia
- Massachusetts General Hospital, Boston, Massachusetts
| | - Massimo Cristofanilli
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois. .,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| |
Collapse
|
35
|
Tellez-Gabriel M, Knutsen E, Perander M. Current Status of Circulating Tumor Cells, Circulating Tumor DNA, and Exosomes in Breast Cancer Liquid Biopsies. Int J Mol Sci 2020; 21:E9457. [PMID: 33322643 PMCID: PMC7763984 DOI: 10.3390/ijms21249457] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide. Although the five-, ten- and fifteen-year survival rates are good for breast cancer patients diagnosed with early-stage disease, some cancers recur many years after completion of primary therapy. Tumor heterogeneity and clonal evolution may lead to distant metastasis and therapy resistance, which are the main causes of breast cancer-associated deaths. In the clinic today, imaging techniques like mammography and tissue biopsies are used to diagnose breast cancer. Even though these methods are important in primary diagnosis, they have limitations when it comes to longitudinal monitoring of residual disease after treatment, disease progression, therapy responses, and disease recurrence. Over the last few years, there has been an increasing interest in the diagnostic, prognostic, and predictive potential of circulating cancer-derived material acquired through liquid biopsies in breast cancer. Thanks to the development of sensitive devices and platforms, a variety of tumor-derived material, including circulating cancer cells (CTCs), circulating DNA (ctDNA), and biomolecules encapsulated in extracellular vesicles, can now be extracted and analyzed from body fluids. Here we will review the most recent studies on breast cancer, demonstrating the clinical potential and utility of CTCs and ctDNA. We will also review literature illustrating the potential of circulating exosomal RNA and proteins as future biomarkers in breast cancer. Finally, we will discuss some of the advantages and limitations of liquid biopsies and the future perspectives of this field in breast cancer management.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, 9011 Tromsø, Norway; (E.K.); (M.P.)
| | | | | |
Collapse
|
36
|
Bacot SM, Harper TA, Matthews RL, Fennell CJ, Akue A, KuKuruga MA, Lee S, Wang T, Feldman GM. Exploring the Potential Use of a PBMC-Based Functional Assay to Identify Predictive Biomarkers for Anti-PD-1 Immunotherapy. Int J Mol Sci 2020; 21:E9023. [PMID: 33261003 PMCID: PMC7730837 DOI: 10.3390/ijms21239023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023] Open
Abstract
The absence of reliable, robust, and non-invasive biomarkers for anti- Programmed cell death protein 1 (PD-1) immunotherapy is an urgent unmet medical need for the treatment of cancer patients. No predictive biomarkers have been established based on the direct assessment of T cell functions, the primary mechanism of action of anti-PD-1 therapy. In this study, we established a model system to test T cell functions modulated by Nivolumab using anti-CD3 monoclonal antibody (mAb)-stimulated peripheral blood mononuclear cells (PBMCs), and characterized T cell functions primarily based on the knowledge gained from retrospective observations of patients treated with anti-PD-1 immunotherapy. During a comprehensive cytokine profile assessment to identify potential biomarkers, we found that Nivolumab increases expression of T helper type 1 (Th1) associated cytokines such as interferon-γ (IFN-γ) and interleukin-2 (IL-2) in a subset of donors. Furthermore, Nivolumab increases production of Th2, Th9, and Th17 associated cytokines, as well as many proinflammatory cytokines such as IL-6 in a subset of donors. Conversely, Nivolumab treatment has no impact on T cell proliferation, expression of CD25, CD69, or Granzyme B, and only modestly increases in the expansion of regulatory T cells. Our results suggest that assessment of cytokine production using a simple PBMC-based T cell functional assay could be used as a potential predictive marker for anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Silvia M. Bacot
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.M.B.); (T.A.H.); (R.L.M.); (C.J.F.)
| | - Taylor A. Harper
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.M.B.); (T.A.H.); (R.L.M.); (C.J.F.)
| | - Rebecca L. Matthews
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.M.B.); (T.A.H.); (R.L.M.); (C.J.F.)
| | - Christie Jane Fennell
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.M.B.); (T.A.H.); (R.L.M.); (C.J.F.)
| | - Adovi Akue
- Office of Vaccines Research & Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (M.A.K.)
| | - Mark A. KuKuruga
- Office of Vaccines Research & Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (M.A.K.)
| | - Shiowjen Lee
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Tao Wang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.M.B.); (T.A.H.); (R.L.M.); (C.J.F.)
| | - Gerald M. Feldman
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.M.B.); (T.A.H.); (R.L.M.); (C.J.F.)
| |
Collapse
|
37
|
Lamy PJ, van der Leest P, Lozano N, Becht C, Duboeuf F, Groen HJM, Hilgers W, Pourel N, Rifaela N, Schuuring E, Alix-Panabières C. Mass Spectrometry as a Highly Sensitive Method for Specific Circulating Tumor DNA Analysis in NSCLC: A Comparison Study. Cancers (Basel) 2020; 12:cancers12103002. [PMID: 33081150 PMCID: PMC7602843 DOI: 10.3390/cancers12103002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary We compared the UltraSEEK™ Lung Panel on the MassARRAY® System (Agena Bioscience) with the FDA-approved Cobas® EGFR Mutation Test v2 for the detection of EGFR mutations in liquid biopsies of NSCLC patients, accompanied with preanalytical sample assessment using the novel Liquid IQ® Panel. For the detection of relevant predictive mutations using the UltraSEEK™ Lung Panel, an input of over 10 ng showed 100% concordance with Cobas® EGFR Mutation Test v2 and detection of all tissue confirmed mutations. In case of lower ccfDNA input, the risk of missing clinically relevant mutations should be considered. The use of a preanalytical ccfDNA quality control assay such as the Liquid IQ® Panel is recommended to confidently interpret results, avoiding bias induced by non-specific genomic DNA and low input of specific tumoral ccfDNA fragments. Abstract Plasma-based tumor mutational profiling is arising as a reliable approach to detect primary and therapy-induced resistance mutations required for accurate treatment decision making. Here, we compared the FDA-approved Cobas® EGFR Mutation Test v2 with the UltraSEEK™ Lung Panel on the MassARRAY® System on detection of EGFR mutations, accompanied with preanalytical sample assessment using the novel Liquid IQ® Panel. 137 cancer patient-derived cell-free plasma samples were analyzed with the Cobas® and UltraSEEK™ tests. Liquid IQ® analysis was initially validated (n = 84) and used to determine ccfDNA input for all samples. Subsequently, Liquid IQ® results were applied to harmonize ccfDNA input for the Cobas® and UltraSEEK™ tests for 63 NSCLC patients. The overall concordance between the Cobas® and UltraSEEK™ tests was 86%. The Cobas® test detected more EGFR exon19 deletions and L858R mutations, while the UltraSEEK™ test detected more T790M mutations. A 100% concordance in both the clinical (n = 137) and harmonized (n = 63) cohorts was observed when >10 ng of ccfDNA was used as determined by the Liquid IQ® Panel. The Cobas® and UltraSEEK™ tests showed similar sensitivity in EGFR mutation detection, particularly when ccfDNA input was sufficient. It is recommended to preanalytically determine the ccfDNA concentration accurately to ensure sufficient input for reliable interpretation and treatment decision making.
Collapse
Affiliation(s)
- Pierre-Jean Lamy
- Biopathologie et Génétique des Cancers, Institute d’Analyse Médicale Imagenome, Inovie, 6 Rue Fontenille, 34000 Montpellier, France;
- Correspondence: ; Tel.: +33-430-053-100
| | - Paul van der Leest
- Department of Pathology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (N.R.); (E.S.)
| | - Nicolas Lozano
- Biopathologie et Génétique des Cancers, Institute d’Analyse Médicale Imagenome, Inovie, 6 Rue Fontenille, 34000 Montpellier, France;
| | - Catherine Becht
- Oncologie Médicale, Clinique Clémenville, 25 rue Clémenville, 34000 Montpellier, France; (C.B.); (F.D.)
| | - Frédérique Duboeuf
- Oncologie Médicale, Clinique Clémenville, 25 rue Clémenville, 34000 Montpellier, France; (C.B.); (F.D.)
| | - Harry J. M. Groen
- Department of Pulmonary Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Werner Hilgers
- Oncologie Médicale, Institute Sainte Catherine, 250 Chemin de Baigne Pieds, 84918 Avignon, France; (W.H.); (N.P.)
| | - Nicolas Pourel
- Oncologie Médicale, Institute Sainte Catherine, 250 Chemin de Baigne Pieds, 84918 Avignon, France; (W.H.); (N.P.)
| | - Naomi Rifaela
- Department of Pathology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (N.R.); (E.S.)
| | - Ed Schuuring
- Department of Pathology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (N.R.); (E.S.)
| | - Catherine Alix-Panabières
- Laboratoire de Cellules Rares Circulantes, University Medical Center of Montpellier, 641, Avenue du Doyen Gaston GIRAUD, 34093 Montpellier, France;
| |
Collapse
|
38
|
Fattahi Z, Khosroushahi AY, Hasanzadeh M. Recent progress on developing of plasmon biosensing of tumor biomarkers: Efficient method towards early stage recognition of cancer. Biomed Pharmacother 2020; 132:110850. [PMID: 33068930 DOI: 10.1016/j.biopha.2020.110850] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second most extended disease with an improved death rate over the past several time. Due to the restrictions of cancer analysis methods, the patient's real survival rate is unknown. Therefore, early stage diagnosis of cancer is crucial for its strong detection. Bio-analysis based on biomarkers may help to overcome the problem Biosensors with high sensitivity and specificity, low-cost, high analysis speed and minimum limit of detection are practical alternatives for laboratory tests. Surface plasmon resonance (SPR) is reaching a maturity level sufficient for their application in detection and determination cancer biomarkers in clinical samples. This review discusses main concepts and performance characteristics of SPR biosensor. Mainly, it focuses on newly emerged enhanced SPR biosensors towards high-throughput and ultrasensitive screening of cancer biomarkers such as PSA, α-fetoprotein, CEA, CA125, CA 15-3, HER2, ctDNA, ALCAM, hCG, VEGF, TNF, Interleukin, IFN-γ, CD24, CD44, Ferritin, COLIV using labeling processes with focusing on the future application in biomedical research and clinical diagnosis. This article reviews current status of the field, showcasing a series of early successes in the application of SPR for clinical bioanalysis of cancer related biomolecules and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, while providing an outlook of the challenges currently associated with plasmonic materials, bioreceptor selection, microfluidics, and validation of a clinical bioassay for applying SPR biosensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical usage.
Collapse
Affiliation(s)
- Zahra Fattahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Li J, Guan X, Fan Z, Ching LM, Li Y, Wang X, Cao WM, Liu DX. Non-Invasive Biomarkers for Early Detection of Breast Cancer. Cancers (Basel) 2020; 12:E2767. [PMID: 32992445 PMCID: PMC7601650 DOI: 10.3390/cancers12102767] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Accurate early diagnosis of breast cancer is critical in the management of the disease. Although mammogram screening has been widely used for breast cancer screening, high false-positive and false-negative rates and radiation from mammography have always been a concern. Over the last 20 years, the emergence of "omics" strategies has resulted in significant advances in the search for non-invasive biomarkers for breast cancer diagnosis at an early stage. Circulating carcinoma antigens, circulating tumor cells, circulating cell-free tumor nucleic acids (DNA or RNA), circulating microRNAs, and circulating extracellular vesicles in the peripheral blood, nipple aspirate fluid, sweat, urine, and tears, as well as volatile organic compounds in the breath, have emerged as potential non-invasive diagnostic biomarkers to supplement current clinical approaches to earlier detection of breast cancer. In this review, we summarize the current progress of research in these areas.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xin Guan
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Zhimin Fan
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xiaojia Wang
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| |
Collapse
|
40
|
Huang A, Yang XR, Chung WY, Dennison AR, Zhou J. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther 2020; 5:146. [PMID: 32782275 PMCID: PMC7419547 DOI: 10.1038/s41392-020-00264-x] [Citation(s) in RCA: 473] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The last 3 years have seen the emergence of promising targeted therapies for the treatment of hepatocellular carcinoma (HCC). Sorafenib has been the mainstay of treatment for a decade and newer modalities were ineffective and did not confer any increased therapeutic benefit until the introduction of lenvatinib which was approved based on its non-inferiority to sorafenib. The subsequent success of regorafenib in HCC patients who progress on sorafenib treatment heralded a new era of second-line treatment and was quickly followed by ramucirumab, cabozantinib, and the most influential, immune checkpoint inhibitors (ICIs). Over the same period combination therapies, including anti-angiogenesis agents with ICIs, dual ICIs and targeted agents in conjunction with surgery or other loco-regional therapies, have been extensively investigated and have shown promise and provided the basis for exciting clinical trials. Work continues to develop additional novel therapeutic agents which could potentially augment the presently available options and understand the underlying mechanisms responsible for drug resistance, with the goal of improving the survival of patients with HCC.
Collapse
Affiliation(s)
- Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Yuan Chung
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Misawa K, Imai A, Matsui H, Kanai A, Misawa Y, Mochizuki D, Mima M, Yamada S, Kurokawa T, Nakagawa T, Mineta H. Identification of novel methylation markers in HPV-associated oropharyngeal cancer: genome-wide discovery, tissue verification and validation testing in ctDNA. Oncogene 2020; 39:4741-4755. [PMID: 32415241 PMCID: PMC7286817 DOI: 10.1038/s41388-020-1327-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/03/2022]
Abstract
Human papilloma virus (HPV)-associated oropharyngeal cancer (OPC) is an independent tumour type with regard to cellular, biological, and clinical features. The use of non-invasive biomarkers such as circulating tumour DNA (ctDNA) may be relevant in early diagnosis and eventually improve the outcomes of patients with head and neck squamous cell carcinoma (HNSCC). Genome-wide discovery using RNA sequencing and reduced representation bisulfite sequencing yielded 21 candidates for methylation-targeted genes. A verification study (252 HNSCC patients) using quantitative methylation-specific PCR (Q-MSP) identified 10 genes (ATP2A1, CALML5, DNAJC5G, GNMT, GPT, LY6D, LYNX1, MAL, MGC16275, and MRGPRF) that showed a significant increase recurrence in methylation groups with OPC. Further study on ctDNA using Q-MSP in HPV-associated OPC showed that three genes (CALML5, DNAJC5G, and LY6D) had a high predictive ability as emerging biomarkers for a validation set, each capable of discriminating between the plasma of the patients from healthy individuals. Among the 42 ctDNA samples, methylated CALML5, DNAJC5G, and LY6D were observed in 31 (73.8%), 19 (45.2%), and 19 (45.2%) samples, respectively. Among pre-treatment ctDNA samples, methylated CALML5, DNAJC5G, and LY6D were observed in 8/8 (100%), 7/8 (87.5%), and 7/8 (87.5%) samples, respectively. Methylated CALML5, DNAJC5G, and LY6D were found in 2/8 (25.0%), 0/8 (0%), and 1/8 (12.5%) of the final samples in the series, respectively. Here, we present the relationship between the methylation status of three specific genes and cancer recurrence for risk classification of HPV-associated OPC cases. In conclusion, ctDNA analysis has the potential to aid in determining patient prognosis and real-time surveillance for disease recurrences and serves as an alternative method of screening for HPV-associated OPC.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan.
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Kanai
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoya Kurokawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuya Nakagawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
42
|
van der Leest P, Boonstra PA, ter Elst A, van Kempen LC, Tibbesma M, Koopmans J, Miedema A, Tamminga M, Groen HJM, Reyners AKL, Schuuring E. Comparison of Circulating Cell-Free DNA Extraction Methods for Downstream Analysis in Cancer Patients. Cancers (Basel) 2020; 12:E1222. [PMID: 32414097 PMCID: PMC7281769 DOI: 10.3390/cancers12051222] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022] Open
Abstract
Circulating cell-free DNA (ccfDNA) may contain DNA originating from the tumor in plasma of cancer patients (ctDNA) and enables noninvasive cancer diagnosis, treatment predictive testing, and response monitoring. A recent multicenter evaluation of workflows by the CANCER-ID consortium using artificial spiked-in plasma showed significant differences and consequently the importance of carefully selecting ccfDNA extraction methods. Here, the quantity and integrity of extracted ccfDNA from the plasma of cancer patients were assessed. Twenty-one cancer patient-derived cell-free plasma samples were selected to compare the Qiagen CNA, Maxwell RSC ccfDNA plasma, and Zymo manual quick ccfDNA kit. High-volume citrate plasma samples collected by diagnostic leukapheresis from six cancer patients were used to compare the Qiagen CNA (2 mL) and QIAamp MinElute ccfDNA kit (8 mL). This study revealed similar integrity and similar levels of amplified short-sized fragments and tumor-specific mutants comparing the CNA and RSC kits. However, the CNA kit consistently showed the highest yield of ccfDNA and short-sized fragments, while the RSC and ME kits showed higher variant allelic frequencies (VAFs). Our study pinpoints the importance of standardizing preanalytical conditions as well as consensus on defining the input of ccfDNA to accurately detect ctDNA and be able to compare results in a clinical routine practice, within and between clinical studies.
Collapse
Affiliation(s)
- Paul van der Leest
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Pieter A. Boonstra
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.A.B.); (A.K.L.R.)
| | - Arja ter Elst
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Léon C. van Kempen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Marco Tibbesma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Jill Koopmans
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Anneke Miedema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Menno Tamminga
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.T.); (H.J.M.G.)
| | - Harry J. M. Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.T.); (H.J.M.G.)
| | - Anna K. L. Reyners
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.A.B.); (A.K.L.R.)
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| |
Collapse
|
43
|
Jia Q, Chiu L, Wu S, Bai J, Peng L, Zheng L, Zang R, Li X, Yuan B, Gao Y, Wu D, Li X, Wu L, Sun J, He J, Robinson BWS, Zhu B. Tracking Neoantigens by Personalized Circulating Tumor DNA Sequencing during Checkpoint Blockade Immunotherapy in Non-Small Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903410. [PMID: 32382482 PMCID: PMC7201246 DOI: 10.1002/advs.201903410] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 05/10/2023]
Abstract
The evolutionary dynamics of tumor-associated neoantigens carry information about drug sensitivity and resistance to the immune checkpoint blockade (ICB). However, the spectrum of somatic mutations is highly heterogeneous among patients, making it difficult to track neoantigens by circulating tumor DNA (ctDNA) sequencing using "one size fits all" commercial gene panels. Thus, individually customized panels (ICPs) are needed to track neoantigen evolution comprehensively during ICB treatment. Dominant neoantigens are predicted from whole exome sequencing data for treatment-naïve tumor tissues. Panels targeting predicted neoantigens are used for personalized ctDNA sequencing. Analyzing ten patients with non-small cell lung cancer, ICPs are effective for tracking most predicted dominant neoantigens (80-100%) in serial peripheral blood samples, and to detect substantially more genes (18-30) than the capacity of current commercial gene panels. A more than 50% decrease in ctDNA concentration after eight weeks of ICB administration is associated with favorable progression-free survival. Furthermore, at the individual level, the magnitude of the early ctDNA response is correlated with the subsequent change in tumor burden. The application of ICP-based ctDNA sequencing is expected to improve the understanding of ICB-driven tumor evolution and to provide personalized management strategies that optimize the clinical benefits of immunotherapies.
Collapse
Affiliation(s)
- Qingzhu Jia
- Institute of CancerXinqiao HospitalThe Army Medical UniversityXinqiao Main StreetChongqing400037China
- Chongqing Key Laboratory of ImmunotherapyXinqiao Main StreetChongqing400037China
| | - Luting Chiu
- Berry Oncology CorporationNO. 4 Science Park Road, Changping DistrictBeijing102206China
| | - Shuangxiu Wu
- Berry Oncology CorporationNO. 4 Science Park Road, Changping DistrictBeijing102206China
| | - Jian Bai
- Berry Oncology CorporationNO. 4 Science Park Road, Changping DistrictBeijing102206China
| | - Lina Peng
- Institute of CancerXinqiao HospitalThe Army Medical UniversityXinqiao Main StreetChongqing400037China
- Chongqing Key Laboratory of ImmunotherapyXinqiao Main StreetChongqing400037China
| | - Linpeng Zheng
- Institute of CancerXinqiao HospitalThe Army Medical UniversityXinqiao Main StreetChongqing400037China
- Chongqing Key Laboratory of ImmunotherapyXinqiao Main StreetChongqing400037China
| | - Rui Zang
- Institute of CancerXinqiao HospitalThe Army Medical UniversityXinqiao Main StreetChongqing400037China
| | - Xueqin Li
- Institute of CancerXinqiao HospitalThe Army Medical UniversityXinqiao Main StreetChongqing400037China
| | - Bibo Yuan
- Institute of CancerXinqiao HospitalThe Army Medical UniversityXinqiao Main StreetChongqing400037China
| | - Yixing Gao
- Institute of CancerXinqiao HospitalThe Army Medical UniversityXinqiao Main StreetChongqing400037China
- Chongqing Key Laboratory of ImmunotherapyXinqiao Main StreetChongqing400037China
| | - Dingyong Wu
- Institute of CancerXinqiao HospitalThe Army Medical UniversityXinqiao Main StreetChongqing400037China
| | - Xiaohong Li
- Institute of CancerXinqiao HospitalThe Army Medical UniversityXinqiao Main StreetChongqing400037China
| | - Lin Wu
- Berry Oncology CorporationNO. 4 Science Park Road, Changping DistrictBeijing102206China
| | - Jianguo Sun
- Institute of CancerXinqiao HospitalThe Army Medical UniversityXinqiao Main StreetChongqing400037China
- Chongqing Key Laboratory of ImmunotherapyXinqiao Main StreetChongqing400037China
| | - Ji He
- GeneCast Biotechnology Co., Ltd.35 Huayuan North Road, HealthWork Suite 901Beijing100191China
| | - Bruce W. S. Robinson
- School of Medicine and PharmacologyUniversity of Western Australia35 Stirling HighwayPerthWestern Australia6009Australia
- National Centre for Asbestos Related DiseasesGPO Box U1908PerthWestern Australia6845Australia
| | - Bo Zhu
- Institute of CancerXinqiao HospitalThe Army Medical UniversityXinqiao Main StreetChongqing400037China
- Chongqing Key Laboratory of ImmunotherapyXinqiao Main StreetChongqing400037China
| |
Collapse
|
44
|
Quantitative analysis of the BRAF V595E mutation in plasma cell-free DNA from dogs with urothelial carcinoma. PLoS One 2020; 15:e0232365. [PMID: 32330187 PMCID: PMC7182225 DOI: 10.1371/journal.pone.0232365] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/13/2020] [Indexed: 11/19/2022] Open
Abstract
Circulating tumor DNA (ctDNA), which carries tumor-specific mutations, is an emerging candidate biomarker for malignancies and for monitoring disease status in various human tumors. Recently, BRAF V595E mutation has been reported in 80% of dogs with urothelial carcinoma. This study investigates the BRAF V595E allele concentration in circulating cell-free DNA (cfDNA) and assesses the clinical significance of BRAF-mutated ctDNA levels in canines with urothelial carcinoma. A total of 15 dogs with urothelial carcinoma were included. cfDNA concentration was measured using a real-time polymerase chain reaction (PCR) of the LINE-1 gene. To measure the concentration of the mutated BRAF gene in cfDNA, allele-specific real-time PCR with a locked nucleic acid probe was performed. BRAF mutations were detected in 11 (73%) of the 15 tested tumor samples. BRAF-mutated ctDNA concentrations were significantly higher in dogs with the BRAF mutation (14.05 ± 13.51 ng/ml) than in wild-type dogs (0.21 ± 0.41 ng/ml) (p = 0.031). The amount of BRAF-mutated ctDNA in plasma increased with disease progression and responded to treatment. Our results show that BRAF-mutated ctDNA can be detected using allele-specific real-time PCR in plasma samples of canines with urothelial carcinoma with the BRAF V595E mutation. This ctDNA analysis may be a potentially useful tool for monitoring the progression of urothelial carcinoma and its response to treatment.
Collapse
|
45
|
Cheng Y, Shen J, Yuan L, Yang Y, Shen X, Qian H, Yu L, Li R, Lv X, Yan T, Li Y, Wang L, Liu B. A novel device to capture circulating tumor cells: Quantification and molecular analysis in lung cancer patients. J Biomater Appl 2020; 35:49-58. [PMID: 32223499 DOI: 10.1177/0885328220914408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Here, we describe a novel microfilter device to capture circulating tumor cells in an efficient and low-cost manner. Then, we validated the safety and clinical utility of the novel microfilter device. We next performed mutation analysis from circulating tumor cells collected from lung cancer patients using this new device. Our results indicate that this microfilter system can be used to investigate the genome landscape of circulating tumor cells collected from lung cancer patients. Further, our results highlight a proof-of-concept demonstration indicating that circulating tumor cell can be used for mutation profiling during tumor evolution, therapy prediction, and monitoring, with immediate clinical applicability.
Collapse
Affiliation(s)
- Yuxin Cheng
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jie Shen
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Ling Yuan
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yan Yang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaoyan Shen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Rutian Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xin Lv
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Tingting Yan
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yan Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lifeng Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
46
|
Dowling RJO, Sparano JA, Goodwin PJ, Bidard FC, Cescon DW, Chandarlapaty S, Deasy JO, Dowsett M, Gray RJ, Henry NL, Meric-Bernstam F, Perlmutter J, Sledge GW, Thorat MA, Bratman SV, Carey LA, Chang MC, DeMichele A, Ennis M, Jerzak KJ, Korde LA, Lohmann AE, Mamounas EP, Parulekar WR, Regan MM, Schramek D, Stambolic V, Whelan TJ, Wolff AC, Woodgett JR, Kalinsky K, Hayes DF. Toronto Workshop on Late Recurrence in Estrogen Receptor-Positive Breast Cancer: Part 2: Approaches to Predict and Identify Late Recurrence, Research Directions. JNCI Cancer Spectr 2019; 3:pkz049. [PMID: 32337478 PMCID: PMC7050024 DOI: 10.1093/jncics/pkz049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Late disease recurrence (more than 5 years after initial diagnosis) represents a clinical challenge in the treatment and management of estrogen receptor-positive breast cancer (BC). An international workshop was convened in Toronto, Canada, in February 2018 to review the current understanding of late recurrence and to identify critical issues that require future study. The underlying biological causes of late recurrence are complex, with the processes governing cancer cell dormancy, including immunosurveillance, cell proliferation, angiogenesis, and cellular stemness, being integral to disease progression. These critical processes are described herein as well as their role in influencing risk of recurrence. Moreover, observational and interventional clinical trials are proposed, with a focus on methods to identify patients at risk of recurrence and possible strategies to combat this in patients with estrogen receptor-positive BC. Because the problem of late BC recurrence of great importance, recent advances in disease detection and patient monitoring should be incorporated into novel clinical trials to evaluate approaches to enhance patient management. Indeed, future research on these issues is planned and will offer new options for effective late recurrence treatment and prevention strategies.
Collapse
Affiliation(s)
- Ryan J O Dowling
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph A Sparano
- Departments of Medicine and Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Albert Einstein Cancer Center, New York, NY
| | - Pamela J Goodwin
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill-Cornell Medical College, New York, NY
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mitch Dowsett
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, The Royal Marsden NHS Foundation Trust, Breast Cancer Now Research Centre, The Institute of Cancer Research, London, UK
| | - Robert J Gray
- Department of Biostatistics, Dana-Farber Cancer Institute, Boston, MA
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - N Lynn Henry
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - George W Sledge
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Mangesh A Thorat
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Martin C Chang
- University of Vermont Medical Center, Larner College of Medicine, Burlington, VT
| | - Angela DeMichele
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | | | - Katarzyna J Jerzak
- Division of Medical Oncology and Hematology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Larissa A Korde
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Ana Elisa Lohmann
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Wendy R Parulekar
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Meredith M Regan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Daniel Schramek
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Timothy J Whelan
- McMaster University and Juravinski Cancer Centre, Hamilton, ON, Canada
| | - Antonio C Wolff
- The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Jim R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Kevin Kalinsky
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center, and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
47
|
Abstract
Abstract
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. This can be achieved by leveraging omics information for accurate molecular characterization of tumors. Tumor tissue biopsies are currently the main source of information for molecular profiling. However, biopsies are invasive and limited in resolving spatiotemporal heterogeneity in tumor tissues. Alternative non-invasive liquid biopsies can exploit patient’s body fluids to access multiple layers of tumor-specific biological information (genomes, epigenomes, transcriptomes, proteomes, metabolomes, circulating tumor cells, and exosomes). Analysis and integration of these large and diverse datasets using statistical and machine learning approaches can yield important insights into tumor biology and lead to discovery of new diagnostic, predictive, and prognostic biomarkers. Translation of these new diagnostic tools into standard clinical practice could transform oncology, as demonstrated by a number of liquid biopsy assays already entering clinical use. In this review, we highlight successes and challenges facing the rapidly evolving field of cancer biomarker research.
Lay Summary
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. The discovery of biomarkers for precision oncology has been accelerated by high-throughput experimental and computational methods, which can inform fine-grained characterization of tumors for clinical decision-making. Moreover, advances in the liquid biopsy field allow non-invasive sampling of patient’s body fluids with the aim of analyzing circulating biomarkers, obviating the need for invasive tumor tissue biopsies. In this review, we highlight successes and challenges facing the rapidly evolving field of liquid biopsy cancer biomarker research.
Collapse
|
48
|
Prospective Evaluation of the Concordance of Commercial Circulating Tumor DNA Alterations with Tumor-Based Sequencing across Multiple Soft Tissue Sarcoma Subtypes. Cancers (Basel) 2019; 11:cancers11121829. [PMID: 31766329 PMCID: PMC6966562 DOI: 10.3390/cancers11121829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 01/23/2023] Open
Abstract
Soft tissue sarcomas (STS) are diverse tumors with heterogenous alterations. Platforms to detect circulating tumor DNA (ctDNA) have rapidly increased in popularity as they may avoid invasive biopsy morbidity. However, ctDNA profiling concordance with standard solid tumor comprehensive genomic profiling (CGP) is poorly characterized. Here, we report the outcomes of a single-institution experience comparing mutational results from commercial ctDNA and solid tumor CGP in advanced STS subjects. We identified STS subjects who had undergone solid tumor based CGP in four distinct cohorts: Dedifferentiated liposarcoma (DDLPS), leiomyosarcoma (LMS), undifferentiated pleomorphic sarcoma (UPS), and gastrointestinal stromal tumor (GIST). Subjects with radiographically measurable tumor were profiled using a commercial ctDNA CGP panel. Overlapping genes/exons on both biopsy panels were analyzed. Twenty-four subjects completed both ctDNA and solid tumor CGP. ctDNA was detected in 18/24 subjects. Subject level concordance rates in all overlapping genes were: LMS = 4/6; UPS = 2/6; DDLPS = 1/6; GIST = 0/6. Copy number alterations were notably poorly concordant. For subjects with short variant alterations and detectable tumor fractions, concordance with solid tumor CGP was 76% (13/17). LMS subjects had the highest median tumor fraction and concordance. No correlation was seen between tumor fraction or radiographic tumor volume largely driven by low estimated tumor fraction. A limitation of the study is that only targeted sequencing was performed. However, given the poor concordance in commonly altered genes, ctDNA panels in sarcoma cannot be broadly applied. Further, more extensive studies will need to be performed.
Collapse
|
49
|
|
50
|
Das J, Kelley SO. High-Performance Nucleic Acid Sensors for Liquid Biopsy Applications. Angew Chem Int Ed Engl 2019; 59:2554-2564. [PMID: 31332937 DOI: 10.1002/anie.201905005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/21/2019] [Indexed: 12/18/2022]
Abstract
Circulating tumour nucleic acids (ctNAs) are released from tumours cells and can be detected in blood samples, providing a way to track tumors without requiring a tissue sample. This "liquid biopsy" approach has the potential to replace invasive, painful, and costly tissue biopsies in cancer diagnosis and management. However, a very sensitive and specific approach is required to detect relatively low amounts of mutant sequences linked to cancer because they are masked by the high levels of wild-type sequences. This review discusses high-performance nucleic acid biosensors for ctNA analysis in patient samples. We compare sequencing- and amplification-based methods to next-generation sensors for ctDNA and ctRNA (including microRNA) profiling, such as electrochemical methods, surface plasmon resonance, Raman spectroscopy, and microfluidics and dielectrophoresis-based assays. We present an overview of the analytical sensitivity and accuracy of these methods as well as the biological and technical challenges they present.
Collapse
Affiliation(s)
- Jagotamoy Das
- Department of Pharmaceutical Sciences, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3M2, Canada
| |
Collapse
|