1
|
Clark CJ, Warren JL, Saiers JE, Ma X, Bell ML, Deziel NC. Predictors of early life residential mobility in urban and rural Pennsylvania children with acute lymphoblastic leukemia and implications for environmental exposure assessment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:990-999. [PMID: 38148338 DOI: 10.1038/s41370-023-00636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Residential mobility can introduce exposure misclassification in pediatric epidemiology studies using birth address only. OBJECTIVE We examined whether residential mobility varies by sociodemographic factors and urbanicity/rurality among children with cancer. METHODS Our study included 400 children born in Pennsylvania during 2002-2015 and diagnosed with leukemia at ages 2-7 years. Addresses were obtained from state registries at birth and diagnosis. We considered three aspects of mobility between birth and diagnosis: whether a child moved, whether a mover changed census tract, and distance moved. We evaluated predictors of these aspects in urban- and rural-born children using chi-square, t-tests, and regression analyses. RESULTS Overall, 58% of children moved between birth and diagnosis; suburban/rural-born children were more likely to move than urban-born children (67% versus 57%). The mean distance moved was 16.7 km in suburban/rural-born and 14.8 km in urban-born movers. In urban-born children, moving between birth and diagnosis was associated with race, education, participation in the Nutrition Program for Women, Infants and Children (WIC), and census tract-level income (all χ2 p < 0.01). Urban-born movers tended to be born in a census tract with a higher Social Vulnerability Index than non-movers (t-test p < 0.01). No factors were statistically significantly associated with any of the residential mobility metrics in suburban/rural-born children, although the sample size was small. IMPACT STATEMENT In this study of a vulnerable population of children with cancer, we found that rural-born children were more likely to move than urban-born children, however, the frequency of movers changing census tracts was equivalent. Mobility in urban-born children, but not rural-born, was associated with several social factors, although the sample size for rural-born children was small. Mobility could be an important source of misclassification depending on the spatial heterogeneity and resolution of the exposure data and whether the social factors are related to exposures or health outcomes. Our results highlight the importance of considering differences in mobility between urban and rural populations in spatial research.
Collapse
Affiliation(s)
- Cassandra J Clark
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College St., New Haven, CT, 06510, USA.
| | - Joshua L Warren
- Yale School of Public Health, Department of Biostatistics, 60 College St., New Haven, CT, 06510, USA
| | - James E Saiers
- Yale School of the Environment, 195 Prospect Street, New Haven, CT, 06511, USA
| | - Xiaomei Ma
- Yale School of Public Health, Department of Chronic Disease Epidemiology, 60 College St., New Haven, CT, 06510, USA
| | - Michelle L Bell
- Yale School of the Environment, 195 Prospect Street, New Haven, CT, 06511, USA
| | - Nicole C Deziel
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College St., New Haven, CT, 06510, USA
| |
Collapse
|
2
|
Ochodnicka-Mackovicova K, Mokry M, Haagmans M, Bradley TE, van Noesel CJM, Guikema JEJ. RAG1/2 induces double-stranded DNA breaks at non-Ig loci in the proximity of single sequence repeats in developing B cells. Eur J Immunol 2024; 54:e2350958. [PMID: 39046890 DOI: 10.1002/eji.202350958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
In developing B cells, V(D)J gene recombination is initiated by the RAG1/2 endonuclease complex, introducing double-stranded DNA breaks (DSBs) in V, D, and J genes and resulting in the formation of the hypervariable parts of immunoglobulins (Ig). Persistent or aberrant RAG1/2 targeting is a potential threat to genome integrity. While RAG1 and RAG2 have been shown to bind various regions genome-wide, the in vivo off-target DNA damage instigated by RAG1/2 endonuclease remains less well understood. In the current study, we identified regions containing RAG1/2-induced DNA breaks in mouse pre-B cells on a genome-wide scale using a global DNA DSB detection strategy. We detected 1489 putative RAG1/2-dependent DSBs, most of which were located outside the Ig loci. DNA sequence motif analysis showed a specific enrichment of RAG1/2-induced DNA DSBs at GA- and CA-repeats and GC-rich motifs. These findings provide further insights into RAG1/2 off-target activity. The ability of RAG1/2 to introduce DSBs on the non-Ig loci during the endogenous V(D)J recombination emphasizes its genotoxic potential in developing lymphocytes.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Martin Haagmans
- Core Facility Genomics, Department of Clinical Genetics, Amsterdam University Medical Center, The Netherlands
| | - Ted E Bradley
- Core Facility Genomics, Department of Clinical Genetics, Amsterdam University Medical Center, The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| |
Collapse
|
3
|
Boroumand-Noughabi S, Pashaee A, Montazer M, Rahmati A, Ayatollahi H, Sadeghian MH, Keramati MR. Investigating the Expression Pattern of the SETMAR Gene Transcript Variants in Childhood Acute Leukemia: Revisiting an Old Gene. J Pediatr Hematol Oncol 2023; 45:e603-e608. [PMID: 36706314 DOI: 10.1097/mph.0000000000002624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/20/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The chimeric enzyme SETMAR (or Metnase) has been associated with several DNA processes, including DNA damage repair through the non-homologous joining pathway and suppression of chromosomal translocation in mouse fibroblasts. SETMAR overexpression has been reported in certain cancers suggesting that it might contribute to the establishment or progression of these cancers. In leukemia, the SETMAR gene transcript variants have not been widely studied. Therefore, this study aimed to quantify 3 predominant SETMAR variants in 2 types of childhood acute leukemia, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). METHODS In this study, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the relative expression of 3 SETMAR transcript variants (Var 1, Var 2, and Var A) were evaluated in the bone marrow samples collected from 30 newly diagnosed patients with AML, 65 newly diagnosed patients with ALL, and 15 healthy individuals. RESULTS The expression of SETMAR variants 1 and A were significantly higher in AML patients compared with controls ( P =0.02, and P =0.009, respectively). Variant A expression was significantly higher in ALL compared with controls ( P =0.003). When comparing the expression in translocation-positive and negative subgroups, the expression of variant 1 was significantly higher in translocation-positive ALL patients ( P =0.03). The variants' distribution patterns differed concerning translocation status ( P =0.041), as variants 1 and A were dominant in the translocation-positive ALL group, and variant 2 was more prevalent in translocation-negative ones. CONCLUSIONS According to the results, SETMAR showed increased expression in pediatric acute leukemia's bone marrow samples, indicating a role for this molecule in leukemia pathogenesis. As this is the first report of SETMAR expression in pediatric leukemias, further studies are needed to investigate the causality of this association.
Collapse
Affiliation(s)
- Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| | | | | | - Atefe Rahmati
- Department of Hematology and Blood Banking
- Department of Basic Medical Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hossein Ayatollahi
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| | - Mohammad Hadi Sadeghian
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| | - Mohammad Reza Keramati
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| |
Collapse
|
4
|
Kosik P, Skorvaga M, Belyaev I. Preleukemic Fusion Genes Induced via Ionizing Radiation. Int J Mol Sci 2023; 24:ijms24076580. [PMID: 37047553 PMCID: PMC10095576 DOI: 10.3390/ijms24076580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Although the prevalence of leukemia is increasing, the agents responsible for this increase are not definitely known. While ionizing radiation (IR) was classified as a group one carcinogen by the IARC, the IR-induced cancers, including leukemia, are indistinguishable from those that are caused by other factors, so the risk estimation relies on epidemiological data. Several epidemiological studies on atomic bomb survivors and persons undergoing IR exposure during medical investigations or radiotherapy showed an association between radiation and leukemia. IR is also known to induce chromosomal translocations. Specific chromosomal translocations resulting in preleukemic fusion genes (PFGs) are generally accepted to be the first hit in the onset of many leukemias. Several studies indicated that incidence of PFGs in healthy newborns is up to 100-times higher than childhood leukemia with the same chromosomal aberrations. Because of this fact, it has been suggested that PFGs are not able to induce leukemia alone, but secondary mutations are necessary. PFGs also have to occur in specific cell populations of hematopoetic stem cells with higher leukemogenic potential. In this review, we describe the connection between IR, PFGs, and cancer, focusing on recurrent PFGs where an association with IR has been established.
Collapse
Affiliation(s)
- Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Milan Skorvaga
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
5
|
He JR, Yu Y, Fang F, Gissler M, Magnus P, László KD, Ward MH, Paltiel O, Tikellis G, Maule MM, Qiu X, Du J, Valdimarsdóttir UA, Rahimi K, Wiemels JL, Linet MS, Hirst JE, Li J, Dwyer T. Evaluation of Maternal Infection During Pregnancy and Childhood Leukemia Among Offspring in Denmark. JAMA Netw Open 2023; 6:e230133. [PMID: 36808241 PMCID: PMC9941888 DOI: 10.1001/jamanetworkopen.2023.0133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
IMPORTANCE Maternal infection is common during pregnancy and is an important potential cause of fetal genetic and immunological abnormalities. Maternal infection has been reported to be associated with childhood leukemia in previous case-control or small cohort studies. OBJECTIVE To evaluate the association of maternal infection during pregnancy with childhood leukemia among offspring in a large study. DESIGN, SETTING, AND PARTICIPANTS This population-based cohort study used data from 7 Danish national registries (including the Danish Medical Birth Register, the Danish National Patient Registry, the Danish National Cancer Registry, and others) for all live births in Denmark between 1978 and 2015. Swedish registry data for all live births between 1988 and 2014 were used to validate the findings for the Danish cohort. Data were analyzed from December 2019 to December 2021. EXPOSURES Maternal infection during pregnancy categorized by anatomic locations identified from the Danish National Patient Registry. MAIN OUTCOMES AND MEASURES The primary outcome was any leukemia; secondary outcomes were acute lymphoid leukemia (ALL) and acute myeloid leukemia (AML). Offspring childhood leukemia was identified in the Danish National Cancer Registry. Associations were first assessed in the whole cohort using Cox proportional hazards regression models, adjusted for potential confounders. A sibling analysis was performed to account for unmeasured familial confounding. RESULTS This study included 2 222 797 children, 51.3% of whom were boys. During the approximately 27 million person-years of follow-up (mean [SD], 12.0 [4.6] years per person), 1307 children were diagnosed with leukemia (ALL, 1050; AML, 165; or other, 92). Children born to mothers with infection during pregnancy had a 35% increased risk of leukemia (adjusted hazard ratio [HR], 1.35 [95% CI, 1.04-1.77]) compared with offspring of mothers without infection. Maternal genital and urinary tract infections were associated with a 142% and 65% increased risk of childhood leukemia, with HRs of 2.42 (95% CI, 1.50-3.92) and 1.65 (95% CI, 1.15-2.36), respectively. No association was observed for respiratory tract, digestive, or other infections. The sibling analysis showed comparable estimates to the whole-cohort analysis. The association patterns for ALL and AML were similar to that for any leukemia. No association was observed for maternal infection and brain tumors, lymphoma, or other childhood cancers. CONCLUSIONS AND RELEVANCE In this cohort study of approximately 2.2 million children, maternal genitourinary tract infection during pregnancy was associated with childhood leukemia among offspring. If confirmed in future studies, our findings may have implications for understanding the etiology and developing preventive measures for childhood leukemia.
Collapse
Affiliation(s)
- Jian-Rong He
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Yongfu Yu
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Mika Gissler
- Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Sweden
- Academic Primary Health Care Centre, Region Stockholm, Sweden
- Department of Child Psychiatry, Turku University Hospital, Turku University, Turku, Finland
- Department of Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Mary H. Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Ora Paltiel
- Braun School of Public Health and Community Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gabriella Tikellis
- Murdoch Children’s Research Institute, Royal Children’s Hospital, University of Melbourne, Melbourne, Australia
| | - Milena Maria Maule
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
- Azienda Ospedaliera Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiangbo Du
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Unnur Anna Valdimarsdóttir
- Center of Public Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Kazem Rahimi
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Joseph L. Wiemels
- Center for Genetic Epidemiology, University of Southern California, Los Angeles
| | - Martha S. Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jane E. Hirst
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
- George Institute for Global Health, London, United Kingdom
| | - Jiong Li
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Terence Dwyer
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
- Clinical Sciences Theme, Heart Group, Murdoch Children’s Research Institute, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Clark CJ, Johnson NP, Soriano M, Warren JL, Sorrentino KM, Kadan-Lottick NS, Saiers JE, Ma X, Deziel NC. Unconventional Oil and Gas Development Exposure and Risk of Childhood Acute Lymphoblastic Leukemia: A Case-Control Study in Pennsylvania, 2009-2017. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87001. [PMID: 35975995 PMCID: PMC9383266 DOI: 10.1289/ehp11092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Unconventional oil and gas development (UOGD) releases chemicals that have been linked to cancer and childhood leukemia. Studies of UOGD exposure and childhood leukemia are extremely limited. OBJECTIVE The objective of this study was to evaluate potential associations between residential proximity to UOGD and risk of acute lymphoblastic leukemia (ALL), the most common form of childhood leukemia, in a large regional sample using UOGD-specific metrics, including a novel metric to represent the water pathway. METHODS We conducted a registry-based case-control study of 405 children ages 2-7 y diagnosed with ALL in Pennsylvania between 2009-2017, and 2,080 controls matched on birth year. We used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between residential proximity to UOGD (including a new water pathway-specific proximity metric) and ALL in two exposure windows: a primary window (3 months preconception to 1 y prior to diagnosis/reference date) and a perinatal window (preconception to birth). RESULTS Children with at least one UOG well within 2 km of their birth residence during the primary window had 1.98 times the odds of developing ALL in comparison with those with no UOG wells [95% confidence interval (CI): 1.06, 3.69]. Children with at least one vs. no UOG wells within 2 km during the perinatal window had 2.80 times the odds of developing ALL (95% CI: 1.11, 7.05). These relationships were slightly attenuated after adjusting for maternal race and socio-economic status [odds ratio (OR) = 1.74 (95% CI: 0.93, 3.27) and OR = 2.35 (95% CI: 0.93, 5.95)], respectively). The ORs produced by models using the water pathway-specific metric were similar in magnitude to the aggregate metric. DISCUSSION Our study including a novel UOGD metric found UOGD to be a risk factor for childhood ALL. This work adds to mounting evidence of UOGD's impacts on children's health, providing additional support for limiting UOGD near residences. https://doi.org/10.1289/EHP11092.
Collapse
Affiliation(s)
- Cassandra J. Clark
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Nicholaus P. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, New Haven, Connecticut, USA
| | - Mario Soriano
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Keli M. Sorrentino
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, New Haven, Connecticut, USA
| | - Nina S. Kadan-Lottick
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - James E. Saiers
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Vanlallawma A, Lallawmzuali D, Pautu JL, Scaria V, Sivasubbu S, Kumar NS. Whole exome sequencing of pediatric leukemia reveals a novel InDel within FLT-3 gene in AML patient from Mizo tribal population, Northeast India. BMC Genom Data 2022; 23:23. [PMID: 35350997 PMCID: PMC8961913 DOI: 10.1186/s12863-022-01037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background Leukemia is the most common type of cancer in pediatrics. Genomic mutations contribute towards the molecular mechanism of disease progression and also helps in diagnosis and prognosis. This is the first scientific mutational exploration in whole exome of pediatric leukemia patients from a cancer prone endogamous Mizo tribal population, Northeast India. Result Three non-synonymous exonic variants in NOTCH1 (p.V1699E), MUTYH (p.G143E) and PTPN11 (p.S502P) were found to be pathogenic. A novel in-frame insertion-deletion within the juxtamembrane domain of FLT3 (p.Tyr589_Tyr591delinsTrpAlaGlyAsp) was also observed. Conclusion These unique variants could have a potential mutational significance and these could be candidate genes in elucidating the possibility of predisposition to cancers within the population. This study merits further investigation for its role in diagnosis and prognosis and also suggests the need for population wide screening to identify unique mutations that might play a key role towards precision medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01037-x.
Collapse
Affiliation(s)
- Andrew Vanlallawma
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Doris Lallawmzuali
- Department of Pathology, Mizoram State Cancer Institute, Zemabawk, Aizawl, Mizoram, 796017, India
| | - Jeremy L Pautu
- Department of Medical Oncology, Mizoram State Cancer Institute, Zemabawk, Aizawl, Mizoram, 796017, India
| | - Vinod Scaria
- CSIR - Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi, 110025, India
| | - Sridhar Sivasubbu
- CSIR - Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi, 110025, India
| | | |
Collapse
|
8
|
Whitehead TP, Wiemels JL, Zhou M, Kang AY, McCoy LS, Wang R, Fitch B, Petrick LM, Yano Y, Imani P, Rappaport SM, Dahl GV, Kogan SC, Ma X, Metayer C. Cytokine Levels at Birth in Children Who Developed Acute Lymphoblastic Leukemia. Cancer Epidemiol Biomarkers Prev 2021; 30:1526-1535. [PMID: 34078642 DOI: 10.1158/1055-9965.epi-20-1704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Prenatal immune development may play an important role in the etiology of childhood acute lymphoblastic leukemia (ALL). METHODS Seven cytokines, IL1β, IL4, IL6, IL8, GM-CSF, TNFα, and VEGF, were analyzed in blood spots collected at birth from 1,020 ALL cases and 1,003 controls participating in the California Childhood Leukemia Study. ORs and 95% confidence intervals (95% CI) associated with an interquartile range increment in cytokine levels were calculated using logistic regression, adjusting for sociodemographic and birth characteristics. RESULTS We found that patients with ALL were born with higher levels of a group of correlated cytokines than controls [IL1β: OR of 1.18 (95% confidence interval [CI], 1.03-1.35); IL8: 1.19 (1.03-1.38); TNFα: 1.15 (1.01-1.30); VEGF: 1.16 (1.01-1.33)], especially among children of Latina mothers (ORs from 1.31 to 1.40) and for ALL with high hyperdiploidy (ORs as high as 1.27). We found that neonatal cytokine levels were correlated with neonatal levels of endogenous metabolites which had been previously associated with ALL risk; however, there was no evidence that the cytokines were mediating the relationship between these metabolites and ALL risk. CONCLUSIONS We posit that children born with altered cytokine levels are set on a trajectory towards an increased risk for subsequent aberrant immune reactions that can initiate ALL. IMPACT This is the first study to evaluate the interplay between levels of immunomodulatory cytokines at birth, prenatal exposures, and the risk of childhood ALL.
Collapse
Affiliation(s)
- Todd P Whitehead
- School of Public Health, University of California, Berkeley, Berkeley, California.
| | - Joseph L Wiemels
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mi Zhou
- School of Medicine, University of California, San Francisco, San Francisco, California
| | - Alice Y Kang
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Lucie S McCoy
- School of Medicine, University of California, San Francisco, San Francisco, California
| | - Rong Wang
- Yale School of Public Health, Yale University, New Haven, Connecticut
| | - Briana Fitch
- School of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Yukiko Yano
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Partow Imani
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Stephen M Rappaport
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Gary V Dahl
- Lucile Salter Packard Children's Hospital, Stanford University, Palo Alto, California
| | - Scott C Kogan
- School of Medicine, University of California, San Francisco, San Francisco, California
| | - Xiaomei Ma
- Yale School of Public Health, Yale University, New Haven, Connecticut
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, California
| |
Collapse
|
9
|
Kellaway S, Chin PS, Barneh F, Bonifer C, Heidenreich O. t(8;21) Acute Myeloid Leukemia as a Paradigm for the Understanding of Leukemogenesis at the Level of Gene Regulation and Chromatin Programming. Cells 2020; 9:E2681. [PMID: 33322186 PMCID: PMC7763303 DOI: 10.3390/cells9122681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous disease with multiple sub-types which are defined by different somatic mutations that cause blood cell differentiation to go astray. Mutations occur in genes encoding members of the cellular machinery controlling transcription and chromatin structure, including transcription factors, chromatin modifiers, DNA-methyltransferases, but also signaling molecules that activate inducible transcription factors controlling gene expression and cell growth. Mutant cells in AML patients are unable to differentiate and adopt new identities that are shaped by the original driver mutation and by rewiring their gene regulatory networks into regulatory phenotypes with enhanced fitness. One of the best-studied AML-subtypes is the t(8;21) AML which carries a translocation fusing the DNA-binding domain of the hematopoietic master regulator RUNX1 to the ETO gene. The resulting oncoprotein, RUNX1/ETO has been studied for decades, both at the biochemical but also at the systems biology level. It functions as a dominant-negative version of RUNX1 and interferes with multiple cellular processes associated with myeloid differentiation, growth regulation and genome stability. In this review, we summarize our current knowledge of how this protein reprograms normal into malignant cells and how our current knowledge could be harnessed to treat the disease.
Collapse
Affiliation(s)
- Sophie Kellaway
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Paulynn S. Chin
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Farnaz Barneh
- Princess Máxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, The Netherlands;
| | - Constanze Bonifer
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Olaf Heidenreich
- Princess Máxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, The Netherlands;
| |
Collapse
|
10
|
Vanlallawma A, Zami Z, Pautu JL, Bawihtlung Z, Khenglawt L, Lallawmzuali D, Chhakchhuak L, Senthil Kumar N. Pediatric leukemia could be driven predominantly by non-synonymous variants in mitochondrial complex V in Mizo population from Northeast India. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:245-249. [PMID: 32609037 DOI: 10.1080/24701394.2020.1786545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Leukemia is the most common childhood malignancy and studies had been carried out with promising revelations in its diagnosis and prognosis. However, majority of the studies are focused on nuclear alterations, while mitochondrial mutations are not well studied. Although there are studies of mitochondrial mutations in the adult leukemias, it does not represent the same for childhood malignancy. This is the first scientific report on the mtDNA mutational pattern of pediatric leukemic cases from a endogamous tribal population in Northeast India. ATP6 involved in the Complex V was found to be more altered with respect to the Non-synonymous variants. mtDNA variations in the non-coding region (D-Loop - g.152 T>C) and in the coding region (MT-ND2, g.4824 A>G, p.T119A) showed a maternal inheritance which could reveal a genetic predisposition with lower penetrance. D-Loop variant (g.152 T>C) could be a diagnostic marker in accordance with previous report but is in contrast to pertaining only in AML - M3 subtype rather was found across in myeloid malignancies.
Collapse
Affiliation(s)
| | - Zothan Zami
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India
| | - Jeremy L Pautu
- Mizoram State Cancer Institute, Zemabawk, Aizawl, Mizoram, India
| | | | | | | | | | | |
Collapse
|
11
|
Absalan M, Ghahremani MH, Jabbarpour Z, Karimi R, Shafei S, Heidari R, Akbariqomi M, Tavoosidana G. Application of Chromosome Conformation Capture Method for Detection MYC/TRD Chromosomal Translocation in Leukemia Cell Line. Int J Hematol Oncol Stem Cell Res 2020; 14:200-212. [PMID: 33024527 PMCID: PMC7521395 DOI: 10.18502/ijhoscr.v14i3.3729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/27/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Chromosomal breakpoints are the most common cause of hereditary diseases and cancers. Today, many standard clinical methods such as cytogenetic and PCR based techniques are used which have limitation regarding detection resolution. Chromosome conformation capture is a method for detecting gene proximity and chromosomal rearrangements. Materials and Methods: In this study, SKW3 cell line was used for detecting t(8;14)(q24;q11) using a 3C-based technique. SKW3 cell line was used for 3C library preparation. For Inverse PCR, two regions were selected in upstream and downstream of the viewpoint locus on chromosome 8-MYC gene based on EcoRI restriction sites. The captured sequence with intra-chromosomal interaction between chr8-c-MYC and chr14-TRD was selected for the translocation PCR primer design. Results: The DNA fragment captured in 3C PCR showed a specific TRD sequence translocated downstream of the MYC gene. Translocation PCR demonstrated the existence of (8; 14) (q24; q11) MYC /TRD in both library and genomic DNA. Conclusion: This result demonstrated 3C- based method could be used as a useful low-cost easy operating technique in chromosomal rearrangements detection. In this study, the integration of whole genome library monitoring and PCR method was used as a high- through put method in chromosomal breakpoints detection.
Collapse
Affiliation(s)
- Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Pharmacology and Toxicology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Jabbarpour
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Karimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shilan Shafei
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariqomi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Navarrete-Meneses MDP, Pérez-Vera P. Pyrethroid pesticide exposure and hematological cancer: epidemiological, biological and molecular evidence. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:197-210. [PMID: 30903760 DOI: 10.1515/reveh-2018-0070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Pyrethroid insecticides are commonly used worldwide. The chronic effects of these compounds are of concern given that epidemiological studies have suggested an association with hematological cancer, particularly in children. However, the biological evidence at molecular and cellular levels is limited. A review on the molecular and cellular effects of pyrethroids is helpful to guide the study of the biological plausibility of the association of pyrethroids with hematological cancer. We reviewed studies suggesting that pyrethroids are genotoxic, induce genetic rearrangements, alter gene expression and modify DNA. All of these biological modifications could potentially contribute to the carcinogenic process in hematopoietic cells.
Collapse
Affiliation(s)
- María Del Pilar Navarrete-Meneses
- Cancer Genetics Laboratory, Human Genetics Department, National Pediatrics Institute, Mexico City, Mexico
- Graduate Program in Biological Sciences, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Patricia Pérez-Vera
- Cancer Genetics Laboratory, Human Genetics Department, National Pediatrics Institute, Mexico City, Mexico
| |
Collapse
|
13
|
Han Q, Ma J, Gu Y, Song H, Kapadia M, Kawasawa YI, Dovat S, Song C, Ge Z. RAG1 high expression associated with IKZF1 dysfunction in adult B-cell acute lymphoblastic leukemia. J Cancer 2019; 10:3842-3850. [PMID: 31333801 PMCID: PMC6636280 DOI: 10.7150/jca.33989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
The recombination mediated by recombination activating gene (RAG) is not only the dominant mutational process but also the predominant driver of oncogenic genomic rearrangement in acute lymphoblastic leukemia (ALL). It is further responsible for leukemic clonal evolution. In this study, significant RAG1 increase is observed in the subsets of B-ALL patients, and high expression of RAG1 is observed to be correlated with high proliferation markers. IKZF1-encoded protein, IKAROS, directly binds to the RAG1 promoter and regulates RAG1 expression in leukemic cells. CK2 inhibitor by increasing IKAROS activity significantly suppresses RAG1 expression in ALL in an IKAROS-dependent manner. Patients with IKZF1 deletion have significantly higher expression of RAG1 compared to that without IKZF1 deletion. CK2 inhibitor treatment also results in an increase in IKZF1 binding to the RAG1 promoter and suppression of RAG1 expression in primary ALL cells. Taken together, these results demonstrate that RAG1 high expression is associated with high proliferation markers in B-ALL. Our data for the first time proved that RAG1 expression is directly suppressed by IKAROS. Our results also reveal drive oncogenesis of B-ALL is driven by high expression of RAG1 with IKAROS dysfunction together, which have significance in an integrated prognostic model for adult ALL.
Collapse
Affiliation(s)
- Qi Han
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Jinlong Ma
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yan Gu
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Huihui Song
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Malika Kapadia
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA17033, USA
| | - Yuka Imamura Kawasawa
- International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Genome Sciences and Bioinformatics Core Facility, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA17033, USA
| | - Sinisa Dovat
- International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA17033, USA
| | - Chunhua Song
- International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA17033, USA
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| |
Collapse
|
14
|
Paulraj P, Diamond S, Razzaqi F, Ozeran JD, Longhurst M, Andersen EF, Toydemir RM, Hong B. Pediatric acute myeloid leukemia with t(7;21)(p22;q22). Genes Chromosomes Cancer 2019; 58:551-557. [PMID: 30706625 DOI: 10.1002/gcc.22740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023] Open
Abstract
The t(7;21)(p22;q22) resulting in RUNX1-USP42 fusion, is a rare but recurrent cytogenetic abnormality associated with acute myeloid leukemia (AML) and myelodysplastic syndromes. The prognostic significance of this translocation has not been well established due to the limited number of patients. Herein, we report three pediatric AML patients with t(7;21)(p22;q22). All three patients presented with pancytopenia or leukopenia at diagnosis, accompanied by abnormal immunophenotypic expression of CD7 and CD56 on leukemic blasts. One patient had t(7;21)(p22;q22) as the sole abnormality, whereas the other two patients had additional numerical and structural aberrations including loss of 5q material. Fluorescence in situ hybridization analysis on interphase cells or sequential examination of metaphases showed the RUNX1 rearrangement and confirmed translocation 7;21. Genomic SNP microarray analysis, performed on DNA extracted from the bone marrow from the patient with isolated t(7;21)(p22;q22), showed a 32.2 Mb copy neutral loss of heterozygosity (cnLOH) within the short arm of chromosome 11. After 2-4 cycles of chemotherapy, all three patients underwent allogeneic hematopoietic stem cell transplantation (HSCT). One patient died due to complications related to viral reactivation and graft-versus-host disease. The other two patients achieved complete remission after HSCT. Our data displayed the accompanying cytogenetic abnormalities including del(5q) and cnLOH of 11p, the frequent pathological features shared with other reported cases, and clinical outcome in pediatric AML patients with t(7;21)(p22;q22). The heterogeneity in AML harboring similar cytogenetic alterations may be attributed to additional uncovered genetic lesions.
Collapse
Affiliation(s)
- Prabakaran Paulraj
- Department of Pathology, University of Utah, Salt Lake City, Utah.,Cytogenetics Division, ARUP Laboratories, Salt Lake City, Utah
| | - Steven Diamond
- Institute for Pediatric Cancer & Blood Disorders, Joseph M. Sanzari Children's Hospital, HackensackUMC, Hackensack, New Jersey
| | - Faisal Razzaqi
- Cancer and Blood Disorders Center, Valley Children's Hospital, Madera, California.,Department of Pediatrics, University of California, San Francisco-Fresno, California
| | - J Daniel Ozeran
- Cancer and Blood Disorders Center, Valley Children's Hospital, Madera, California.,Department of Pediatrics, University of California, San Francisco-Fresno, California
| | - Maria Longhurst
- Cytogenetics Division, ARUP Laboratories, Salt Lake City, Utah
| | - Erica F Andersen
- Department of Pathology, University of Utah, Salt Lake City, Utah.,Cytogenetics Division, ARUP Laboratories, Salt Lake City, Utah
| | - Reha M Toydemir
- Department of Pathology, University of Utah, Salt Lake City, Utah.,Cytogenetics Division, ARUP Laboratories, Salt Lake City, Utah.,Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Bo Hong
- Department of Pathology, University of Utah, Salt Lake City, Utah.,Cytogenetics Division, ARUP Laboratories, Salt Lake City, Utah
| |
Collapse
|
15
|
Abu-Arja RF, Dargart JL, Bajwa RPS, Kahwash SB, Auletta JJ, Rangarajan HG. Monozygotic twins diagnosed simultaneously with RAM immunophenotype acute myeloid leukemia. Pediatr Transplant 2018; 22:e13291. [PMID: 30220110 DOI: 10.1111/petr.13291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
AML with the RAM immunophenotype is associated with extremely poor prognosis. We report a rare case of monozygotic twins presenting simultaneously at the age of 2 years with RAM AML. Each twin underwent a myeloablative 7/10 unrelated umbilical cord blood transplant. Pretransplant Twin A's bone marrow was negative for MRD by flow cytometry (<0.01%) unlike Twin B's bone marrow (0.07%). Twin A is alive in remission 3 years from transplant. Twin B developed primary graft failure, but subsequently rescued with a haploidentical stem cell transplant. However, she relapsed and died 13 months from diagnosis. The twins' clinical courses demonstrate that upfront intensive chemotherapy to achieve negative MRD, followed by allogeneic hematopoietic stem cell transplant as postremission intensification strategy, should be considered in this high-risk AML.
Collapse
Affiliation(s)
- Rolla F Abu-Arja
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Jamie L Dargart
- Department of Pediatric Hematology and Oncology, ProMedica Toledo Children's Hospital, Toledo, Ohio
| | - Rajinder P S Bajwa
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Samir B Kahwash
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Jeffery J Auletta
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Hemalatha G Rangarajan
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
16
|
Qian M, Zhang H, Kham SKY, Liu S, Jiang C, Zhao X, Lu Y, Goodings C, Lin TN, Zhang R, Moriyama T, Yin Z, Li Z, Quah TC, Ariffin H, Tan AM, Shen S, Bhojwani D, Hu S, Chen S, Zheng H, Pui CH, Yeoh AEJ, Yang JJ. Whole-transcriptome sequencing identifies a distinct subtype of acute lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP. Genome Res 2016; 27:185-195. [PMID: 27903646 PMCID: PMC5287225 DOI: 10.1101/gr.209163.116] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 11/29/2016] [Indexed: 12/30/2022]
Abstract
Chromosomal translocations are a genomic hallmark of many hematologic malignancies. Often as initiating events, these structural abnormalities result in fusion proteins involving transcription factors important for hematopoietic differentiation and/or signaling molecules regulating cell proliferation and cell cycle. In contrast, epigenetic regulator genes are more frequently targeted by somatic sequence mutations, possibly as secondary events to further potentiate leukemogenesis. Through comprehensive whole-transcriptome sequencing of 231 children with acute lymphoblastic leukemia (ALL), we identified 58 putative functional and predominant fusion genes in 54.1% of patients (n = 125), 31 of which have not been reported previously. In particular, we described a distinct ALL subtype with a characteristic gene expression signature predominantly driven by chromosomal rearrangements of the ZNF384 gene with histone acetyltransferases EP300 and CREBBP. ZNF384-rearranged ALL showed significant up-regulation of CLCF1 and BTLA expression, and ZNF384 fusion proteins consistently showed higher activity to promote transcription of these target genes relative to wild-type ZNF384 in vitro. Ectopic expression of EP300-ZNF384 and CREBBP-ZNF384 fusion altered differentiation of mouse hematopoietic stem and progenitor cells and also potentiated oncogenic transformation in vitro. EP300- and CREBBP-ZNF384 fusions resulted in loss of histone lysine acetyltransferase activity in a dominant-negative fashion, with concomitant global reduction of histone acetylation and increased sensitivity of leukemia cells to histone deacetylase inhibitors. In conclusion, our results indicate that gene fusion is a common class of genomic abnormalities in childhood ALL and that recurrent translocations involving EP300 and CREBBP may cause epigenetic deregulation with potential for therapeutic targeting.
Collapse
Affiliation(s)
- Maoxiang Qian
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Hui Zhang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.,Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China, 510120
| | - Shirley Kow-Yin Kham
- Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599
| | - Shuguang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China, 100045
| | - Chuang Jiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China, 200240
| | - Xujie Zhao
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yi Lu
- Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599
| | - Charnise Goodings
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Ting-Nien Lin
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Ranran Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China, 510120
| | - Takaya Moriyama
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Zhaohong Yin
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Zhenhua Li
- Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599
| | - Thuan Chong Quah
- Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599.,VIVA-University Children's Cancer Centre, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, 119228
| | - Hany Ariffin
- Paediatric Haematology-Oncology Unit, University of Malaya Medical Centre, Kuala Lumpur, Malaysia, 59100
| | - Ah Moy Tan
- KKH-CCF Children's Cancer Centre, Paediatric Haematology & Oncology, KK Women's and Children's Hospital, Singapore, 229899
| | - Shuhong Shen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 200127
| | - Deepa Bhojwani
- Department of Pediatrics, Children's Hospital of Los Angeles, Los Angeles, California 90027, USA
| | - Shaoyan Hu
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China, 215025
| | - Suning Chen
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China, 215006
| | - Huyong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China, 100045
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.,Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Allen Eng-Juh Yeoh
- Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599.,VIVA-University Children's Cancer Centre, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, 119228
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.,Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
17
|
Whitehead TP, Metayer C, Wiemels JL, Singer AW, Miller MD. Childhood Leukemia and Primary Prevention. Curr Probl Pediatr Adolesc Health Care 2016; 46:317-352. [PMID: 27968954 PMCID: PMC5161115 DOI: 10.1016/j.cppeds.2016.08.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leukemia is the most common pediatric cancer, affecting 3800 children per year in the United States. Its annual incidence has increased over the last decades, especially among Latinos. Although most children diagnosed with leukemia are now cured, many suffer long-term complications, and primary prevention efforts are urgently needed. The early onset of leukemia-usually before 5 years of age-and the presence at birth of "pre-leukemic" genetic signatures indicate that pre- and postnatal events are critical to the development of the disease. In contrast to most pediatric cancers, there is a growing body of literature-in the United States and internationally-that has implicated several environmental, infectious, and dietary risk factors in the etiology of childhood leukemia, mainly for acute lymphoblastic leukemia, the most common subtype. For example, exposures to pesticides, tobacco smoke, solvents, and traffic emissions have consistently demonstrated positive associations with the risk of developing childhood leukemia. In contrast, intake of vitamins and folate supplementation during the preconception period or pregnancy, breastfeeding, and exposure to routine childhood infections have been shown to reduce the risk of childhood leukemia. Some children may be especially vulnerable to these risk factors, as demonstrated by a disproportionate burden of childhood leukemia in the Latino population of California. The evidence supporting the associations between childhood leukemia and its risk factors-including pooled analyses from around the world and systematic reviews-is strong; however, the dissemination of this knowledge to clinicians has been limited. To protect children's health, it is prudent to initiate programs designed to alter exposure to well-established leukemia risk factors rather than to suspend judgment until no uncertainty remains. Primary prevention programs for childhood leukemia would also result in the significant co-benefits of reductions in other adverse health outcomes that are common in children, such as detriments to neurocognitive development.
Collapse
Affiliation(s)
- Todd P Whitehead
- Department of Epidemiology, School of Public Health, University of California, Berkeley, CA; Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA.
| | - Catherine Metayer
- Department of Epidemiology, School of Public Health, University of California, Berkeley, CA; Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA
| | - Joseph L Wiemels
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA; Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, CA
| | - Amanda W Singer
- Department of Epidemiology, School of Public Health, University of California, Berkeley, CA
| | - Mark D Miller
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA; Western States Pediatric Environmental Health Specialty Unit, University of California, San Francisco, CA
| |
Collapse
|
18
|
Idris SZ, Hassan N, Lee LJ, Md Noor S, Osman R, Abdul-Jalil M, Nordin AJ, Abdullah M. Increased regulatory T cells in acute lymphoblastic leukaemia patients. Hematology 2016; 21:206-12. [DOI: 10.1080/10245332.2015.1101965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Siti-Zuleha Idris
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norfarazieda Hassan
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Le-Jie Lee
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sabariah Md Noor
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raudhawati Osman
- Haematology Unit, Department of Pathology, Hospital Kuala Lumpur, Jalan Pahang, Malaysia
| | - Marsitah Abdul-Jalil
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Abdul-Jalil Nordin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
Idris SZ, Hassan N, Lee LJ, Md Noor S, Osman R, Abdul-Jalil M, Nordin AJ, Abdullah M. Increased regulatory T cells in acute lymphoblastic leukemia patients. ACTA ACUST UNITED AC 2015; 20:523-9. [PMID: 26119924 DOI: 10.1179/1607845415y.0000000025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Regulation in adaptive immune response balances a fine line that prevents instigation of self-damage or fall into unresponsiveness permitting abnormal cell growth. Mechanisms that keep this balance in check include regulatory T cells (Tregs). Tregs consist of a small but heterogeneous population which may be identified by the phenotype, CD3+CD4+CD25+CD127-. Role of Tregs in pathogenesis of cancers is thus far supported by evidence of increased Tregs in various cancers and may contribute to poorer prognosis. Tregs may also be important in acute leukemias. OBJECTIVE A review of the literature on Tregs in acute leukemias was conducted and Tregs were determined in B-cell acute lymphoblastic leukemias (ALLs). RESULTS Studies on Tregs in B-cell ALL are few and controversial. We observed a significantly increased percentage of Tregs (mean ± SD, 9.72 ± 3.79% vs. 7.05 ± 1.74%; P = 0.047) in the bone marrow/peripheral blood of ALL (n = 17) compared to peripheral blood of normal controls (n = 35). A positive trend between Tregs and age (R = 0.474, P = 0.055, n = 17) implicates this factor of poor prognosis in B-cell ALL. DISCUSSION Tregs in cancer are particularly significant in immunotherapy. The manipulation of the immune system to treat cancer has for a long time ignored regulatory mechanisms inducible or in place. In lymphoma studies tumor-specific mechanisms that are unlike conventional methods in the induction of Tregs have been hypothesized. In addition, tumor-infiltrating Tregs may present different profiles from peripheral blood pictures. Tregs will continue to be dissected to reveal their mysteries and their impact on clinical significance.
Collapse
|
20
|
Škorvaga M, Nikitina E, Kubeš M, Košík P, Gajdošechová B, Leitnerová M, Copáková L, Belyaev I. Incidence of common preleukemic gene fusions in umbilical cord blood in Slovak population. PLoS One 2014; 9:e91116. [PMID: 24621554 PMCID: PMC3951330 DOI: 10.1371/journal.pone.0091116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/06/2014] [Indexed: 12/11/2022] Open
Abstract
The first event in origination of many childhood leukemias is likely the presence of preleukemic clone (transformed hematopoietic stem/progenitor cells with preleukemic gene fusions (PGF)) in newborn. Thus, the screening of umbilical cord blood (UCB) for PGF may be of high importance for developing strategies for childhood leukemia prevention and treatment. However, the data on incidence of PGF in UCB are contradictive. We have compared multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (RT qPCR) in neonates from Slovak National Birth Cohort. According to multiplex PCR, all 135 screened samples were negative for the most frequent PGF of B-lineage acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). To explore the prevalence of prognostically important TEL-AML1, MLL-AF4 and BCR-ABL (p190), 200 UCB were screened using RT qPCR. The initial screening showed an unexpectedly high incidence of studied PGF. The validation of selected samples in two laboratories confirmed approximately ¼ of UCB positive, resulting in ∼4% incidence of TEL-AML1, ∼6.25% incidence of BCR-ABL1 p190, and ∼0.75% frequency of MLL-AF4. In most cases, the PGF presented at very low level, about 1–5 copies per 105 cells. We hypothesize that low PGF numbers reflect their relatively late origin and are likely to be eliminated in further development while higher number of PGF reflects earlier origination and may represent higher risk for leukemia.
Collapse
Affiliation(s)
- Milan Škorvaga
- Department of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ekaterina Nikitina
- Department of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Laboratory of Oncovirology, Cancer Research Institute, Siberian Branch of the Russian Academy of Medical Sciences, Tomsk, Russian Federation
| | - Miroslav Kubeš
- Laboratory of R&D, Eurocord-Slovakia, Bratislava, Slovak Republic
| | - Pavol Košík
- Department of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Beata Gajdošechová
- Department of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Michaela Leitnerová
- Department of Clinical Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Lucia Copáková
- Department of Clinical Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Igor Belyaev
- Department of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
- * E-mail:
| |
Collapse
|
21
|
Xiao J, Lee ST, Xiao Y, Ma X, Houseman EA, Hsu LI, Roy R, Wrensch M, de Smith AJ, Chokkalingam A, Buffler P, Wiencke JK, Wiemels JL. PTPRG inhibition by DNA methylation and cooperation with RAS gene activation in childhood acute lymphoblastic leukemia. Int J Cancer 2014; 135:1101-9. [PMID: 24496747 DOI: 10.1002/ijc.28759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/24/2014] [Indexed: 01/12/2023]
Abstract
While the cytogenetic and genetic characteristics of childhood acute lymphoblastic leukemias (ALL) are well studied, less clearly understood are the contributing epigenetic mechanisms that influence the leukemia phenotype. Our previous studies and others identified gene mutation (RAS) and DNA methylation (FHIT) to be associated with the most common cytogenetic subgroup of childhood ALL, high hyperdiploidy (having five more chromosomes). We screened DNA methylation profiles, using a genome-wide high-dimension platform of 166 childhood ALLs and 6 normal pre-B cell samples and observed a strong association of DNA methylation status at the PTPRG locus in human samples with levels of PTPRG gene expression as well as with RAS gene mutation status. In the 293 cell line, we found that PTPRG expression induces dephosphorylation of ERK, a downstream RAS target that may be critical for mutant RAS-induced cell growth. In addition, PTPRG expression is upregulated by RAS activation under DNA hypomethylating conditions. An element within the PTPRG promoter is bound by the RAS-responsive transcription factor RREB1, also under hypomethylating conditions. In conclusion, we provide evidence that DNA methylation of the PTPRG gene is a complementary event in oncogenesis induced by RAS mutations. Evidence for additional roles for PTPR family member genes is also suggested. This provides a potential therapeutic target for RAS-related leukemias as well as insight into childhood ALL etiology and pathophysiology.
Collapse
Affiliation(s)
- Jianqiao Xiao
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Goodman M, LaKind JS, Fagliano JA, Lash TL, Wiemels JL, Winn DM, Patel C, Van Eenwyk J, Kohler BA, Schisterman EF, Albert P, Mattison DR. Cancer cluster investigations: review of the past and proposals for the future. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:1479-99. [PMID: 24477211 PMCID: PMC3945549 DOI: 10.3390/ijerph110201479] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 12/18/2022]
Abstract
Residential clusters of non-communicable diseases are a source of enduring public concern, and at times, controversy. Many clusters reported to public health agencies by concerned citizens are accompanied by expectations that investigations will uncover a cause of disease. While goals, methods and conclusions of cluster studies are debated in the scientific literature and popular press, investigations of reported residential clusters rarely provide definitive answers about disease etiology. Further, it is inherently difficult to study a cluster for diseases with complex etiology and long latency (e.g., most cancers). Regardless, cluster investigations remain an important function of local, state and federal public health agencies. Challenges limiting the ability of cluster investigations to uncover causes for disease include the need to consider long latency, low statistical power of most analyses, uncertain definitions of cluster boundaries and population of interest, and in- and out-migration. A multi-disciplinary Workshop was held to discuss innovative and/or under-explored approaches to investigate cancer clusters. Several potentially fruitful paths forward are described, including modern methods of reconstructing residential history, improved approaches to analyzing spatial data, improved utilization of electronic data sources, advances using biomarkers of carcinogenesis, novel concepts for grouping cases, investigations of infectious etiology of cancer, and "omics" approaches.
Collapse
Affiliation(s)
- Michael Goodman
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
| | - Judy S LaKind
- LaKind Associates, LLC, 106 Oakdale Avenue, Catonsville, MD 21228, USA.
| | - Jerald A Fagliano
- Division of Epidemiology, Environmental and Occupational Health, New Jersey Department of Health, P.O. Box 369, Trenton, NJ 08625, USA.
| | - Timothy L Lash
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
| | - Joseph L Wiemels
- Division of Cancer Epidemiology, Department of Epidemiology & Biostatistics, School of Medicine, University of California, Helen Diller Family Cancer Research Building, HD 274 1450 3rd Street, San Francisco, MC 0520, San Francisco, CA 94158, USA.
| | - Deborah M Winn
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD 20892, USA.
| | - Chirag Patel
- School of Medicine, Stanford University, 1265 Welch Road, Stanford, CA 94305, USA.
| | - Juliet Van Eenwyk
- Washington State Department of Health, P.O. Box 47812, Olympia, WA 98504, USA.
| | - Betsy A Kohler
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
| | - Enrique F Schisterman
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
| | - Paul Albert
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
| | - Donald R Mattison
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Seiler RL, Wiemels JL. Occurrence of ²¹⁰Po and biological effects of low-level exposure: the need for research. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1230-7. [PMID: 22538346 PMCID: PMC3440115 DOI: 10.1289/ehp.1104607] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 04/26/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND Polonium-210 (²¹⁰Po) concentrations that exceed 1 Bq/L in drinking-water supplies have been reported from four widely separated U.S. states where exposure to it went unnoticed for decades. The radionuclide grandparents of ²¹⁰Po are common in sediments, and segments of the public may be chronically exposed to low levels of ²¹⁰Po in drinking water or in food products from animals raised in contaminated areas. OBJECTIVES We summarized information on the environmental behavior, biokinetics, and toxicology of ²¹⁰Po and identified the need for future research. METHODS Potential linkages between environmental exposure to ²¹⁰Po and human health effects were identified in a literature review. DISCUSSION ²¹⁰Po accumulates in the ovaries where it kills primary oocytes at low doses. Because of its radiosensitivity and tendency to concentrate ²¹⁰Po, the ovary may be the critical organ in determining the lowest injurious dose for ²¹⁰Po. ²¹⁰Po also accumulates in the yolk sac of the embryo and in the fetal and placental tissues. Low-level exposure to ²¹⁰Po may have subtle, long-term biological effects because of its tropism towards reproductive and embryonic and fetal tissues where exposure to a single alpha particle may kill or damage critical cells. ²¹⁰Po is present in cigarettes and maternal smoking has several effects that appear consistent with the toxicology of ²¹⁰Po. CONCLUSIONS Much of the important biological and toxicological research on ²¹⁰Po is more than four decades old. New research is needed to evaluate environmental exposure to ²¹⁰Po and the biological effects of low-dose exposure to it so that public health officials can develop appropriate mitigation measures where necessary.
Collapse
Affiliation(s)
- Ralph L Seiler
- Environmental Sciences Graduate Program, University of Nevada-Reno, P.O. Box 1025, Carson City, NV 89702, USA.
| | | |
Collapse
|
24
|
Wang JH. Mechanisms and impacts of chromosomal translocations in cancers. Front Med 2012; 6:263-74. [PMID: 22865120 DOI: 10.1007/s11684-012-0215-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022]
Abstract
Chromosomal aberrations have been associated with cancer development since their discovery more than a hundred years ago. Chromosomal translocations, a type of particular structural changes involving heterologous chromosomes, have made a critical impact on diagnosis, prognosis and treatment of cancers. For example, the discovery of translocation between chromosomes 9 and 22 and the subsequent success of targeting the fusion product BCR-ABL transformed the therapy for chronic myelogenous leukemia. In the past few decades, tremendous progress has been achieved towards elucidating the mechanism causing chromosomal translocations. This review focuses on the basic mechanisms underlying the generation of chromosomal translocations. In particular, the contribution of frequency of DNA double strand breaks and spatial proximity of translocating loci is discussed.
Collapse
Affiliation(s)
- Jing H Wang
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
25
|
Wiemels J. Perspectives on the causes of childhood leukemia. Chem Biol Interact 2012; 196:59-67. [PMID: 22326931 PMCID: PMC3839796 DOI: 10.1016/j.cbi.2012.01.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/05/2012] [Accepted: 01/24/2012] [Indexed: 12/22/2022]
Abstract
Acute leukemia is the most common cancer in children but the causes of the disease in the majority of cases are not known. About 80% are precursor-B cell in origin (CD19+, CD10+), and this immunophenotype has increased in incidence over the past several decades in the Western world. Part of this increase may be due to the introduction of new chemical exposures into the child's environment including parental smoking, pesticides, traffic fumes, paint and household chemicals. However, much of the increase in leukemia rates is likely linked to altered patterns of infection during early childhood development, mirroring causal pathways responsible for a similarly increased incidence of other childhood-diagnosed immune-related illnesses including allergy, asthma, and type 1 diabetes. Factors linked to childhood leukemia that are likely surrogates for immune stimulation include exposure to childcare settings, parity status and birth order, vaccination history, and population mixing. In case-control studies, acute lymphoblastic leukemia (ALL) is consistently inversely associated with greater exposure to infections, via daycare and later birth order. New evidence suggests also that children who contract leukemia may harbor a congenital defect in immune responder status, as indicated by lower levels of the immunosuppressive cytokine IL-10 at birth in children who grow up to contract leukemia, as well as higher need for clinical care for infections within the first year of life despite having lower levels of exposure to infections. One manifestation of this phenomenon may be leukemia clusters which tend to appear as a leukemia "outbreak" among populations with low herd immunity to a new infection. Critical answers to the etiology of childhood leukemia will require incorporating new tools into traditional epidemiologic approaches - including the classification of leukemia at a molecular scale, better exposure assessments at all points in a child's life, a comprehensive understanding of genetic risk factors, and an appraisal of the interplay between infectious exposures and the status of immune response in individuals.
Collapse
Affiliation(s)
- Joseph Wiemels
- Department of Epidemiology and Biostatistics, University of California San Francisco, Helen Diller Cancer Center Research Building, 1450 3rd Street, HD274, San Francisco, CA 94158, United States.
| |
Collapse
|
26
|
Turner MC, Wigle DT, Krewski D. Residential pesticides and childhood leukemia: a systematic review and meta-analysis. CIENCIA & SAUDE COLETIVA 2011; 16:1915-31. [DOI: 10.1590/s1413-81232011000300026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 07/29/2009] [Indexed: 11/21/2022] Open
Abstract
It is a systematic review and meta-analysis of previous observational epidemiologic studies examining the relationship between residential pesticide exposures during critical exposure time windows (preconception, pregnancy, and childhood) and childhood leukemia. Searches of Medline and other electronic databases were performed (1950-2009). Study selection, data abstraction, and quality assessment were performed by two independent reviewers. Random effects models were used to obtain summary odds ratios (ORs) and 95% confidence intervals (Cis). Of the 17 identified studies, 15 were included in the meta-analysis. Exposures during pregnancy to unspecified residential pesticides insecticides, and herbicides were positively associated with childhood leukemia. Exposures during childhood to unspecified residential pesticides and insecticides were also positively associated with childhood leukemia, but there was no association with herbicides. Positive associations were observed between childhood leukemia and residential pesticide exposures. Further work is needed to confirm previous findings based on self-report, to examine potential exposure-response relationships, and to assess specific pesticides and toxicologically related subgroups of pesticides in more detail.
Collapse
|
27
|
Chang P, Kang M, Xiao A, Chang J, Feusner J, Buffler P, Wiemels J. FLT3 mutation incidence and timing of origin in a population case series of pediatric leukemia. BMC Cancer 2010; 10:513. [PMID: 20875128 PMCID: PMC2955609 DOI: 10.1186/1471-2407-10-513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/27/2010] [Indexed: 12/11/2022] Open
Abstract
Background Mutations in FLT3 result in activated tyrosine kinase activity, cell growth stimulation, and a poor prognosis among various subtypes of leukemia. The causes and timing of the mutations are not currently known. We evaluated the prevalence and timing of origin of FLT3 mutations in a population series of childhood leukemia patients from Northern California. Methods We screened and sequenced FLT3 mutations (point mutations and internal tandem duplications, ITDs) among 517 childhood leukemia patients, and assessed whether these mutations occurred before or after birth using sensitive "backtracking" methods. Results We determined a mutation prevalence of 9 of 73 acute myeloid leukemias (AMLs, 12%) and 9 of 441 acute lymphocytic leukemias (ALLs, 2%). Among AMLs, FLT3 mutations were more common in older patients, and among ALLs, FLT3 mutations were more common in patients with high hyperdiploidy (3.7%) than those without this cytogenetic feature (1.4%). Five FLT3 ITDs, one deletion mutation, and 3 point mutations were assessed for their presence in neonatal Guthrie spots using sensitive real-time PCR techniques, and no patients were found to harbor FLT3 mutations at birth. Conclusions FLT3 mutations were not common in our population-based patient series in California, and patients who harbor FLT3 mutations most likely acquire them after they are born.
Collapse
Affiliation(s)
- Patrick Chang
- Department of Epidemiology and Biostatistics, UCSF, Helen Diller Cancer Research Building, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Latino-Martel P, Chan DSM, Druesne-Pecollo N, Barrandon E, Hercberg S, Norat T. Maternal alcohol consumption during pregnancy and risk of childhood leukemia: systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 2010; 19:1238-60. [PMID: 20447918 DOI: 10.1158/1055-9965.epi-09-1110] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Leukemia is the most frequently occurring cancer in children. Although its etiology is largely unknown, leukemia is believed to result from an interaction between genetic and environmental factors. Among different potential risk factors, the possible role of maternal alcohol consumption during pregnancy has been questioned. METHODS To assess the association between maternal alcohol consumption during pregnancy and childhood leukemia, a systematic review and meta-analysis of published studies was done. RESULTS Twenty-one case-control studies were included in categorical and dose-response meta-analyses. No cohort study was identified. Analyses were conducted by type of leukemia, children's age at diagnosis, and type of alcoholic beverage and trimester of pregnancy at alcohol use. Alcohol intake during pregnancy (yes versus no) was statistically significantly associated with childhood acute myeloid leukemia (AML) [odds ratio (OR), 1.56; 95% confidence interval (CI), 1.13-2.15] but not with acute lymphoblastic leukemia (OR, 1.10; 95% CI, 0.93-1.29). Heterogeneity between studies was observed. The OR of AML for an increase of a drink per week was 1.24 (95% CI, 0.94-1.64). The association of alcohol intake during pregnancy with AML was observed for cancers diagnosed at age 0 to 4 years (OR, 2.68; 95% CI, 1.85-3.89) in five studies without heterogeneity (I2<or=0.1%). CONCLUSIONS The results of case-control studies indicate that maternal alcohol consumption during pregnancy is associated with a significantly increased risk of AML in young children. IMPACT Avoidance of maternal alcohol drinking during pregnancy might contribute to a decrease in the risk of childhood AML.
Collapse
|
29
|
Turner MC, Wigle DT, Krewski D. Residential pesticides and childhood leukemia: a systematic review and meta-analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:33-41. [PMID: 20056585 PMCID: PMC2831964 DOI: 10.1289/ehp.0900966] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 07/29/2009] [Indexed: 05/05/2023]
Abstract
OBJECTIVE We conducted a systematic review and meta-analysis of previous observational epidemiologic studies examining the relationship between residential pesticide exposures during critical exposure time windows (preconception, pregnancy, and childhood) and childhood leukemia. DATA SOURCES Searches of MEDLINE and other electronic databases were performed (1950-2009). Reports were included if they were original epidemiologic studies of childhood leukemia, followed a case-control or cohort design, and assessed at least one index of residential/household pesticide exposure/use. No language criteria were applied. DATA EXTRACTION Study selection, data abstraction, and quality assessment were performed by two independent reviewers. Random effects models were used to obtain summary odds ratios (ORs) and 95% confidence intervals (CIs). DATA SYNTHESIS Of the 17 identified studies, 15 were included in the meta-analysis. Exposures during pregnancy to unspecified residential pesticides (summary OR = 1.54; 95% CI, 1.13-2.11; I2 = 66%), insecticides (OR = 2.05; 95% CI, 1.80-2.32; I2 = 0%), and herbicides (OR = 1.61; 95% CI, 1.20-2.16; I2 = 0%) were positively associated with childhood leukemia. Exposures during childhood to unspecified residential pesticides (OR = 1.38; 95% CI, 1.12-1.70; I2 = 4%) and insecticides (OR = 1.61; 95% CI, 1.33-1.95; I2 = 0%) were also positively associated with childhood leukemia, but there was no association with herbicides. CONCLUSIONS Positive associations were observed between childhood leukemia and residential pesticide exposures. Further work is needed to confirm previous findings based on self-report, to examine potential exposure-response relationships, and to assess specific pesticides and toxicologically related subgroups of pesticides in more detail.
Collapse
Affiliation(s)
- Michelle C Turner
- McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa, Ottawa, Canada.
| | | | | |
Collapse
|
30
|
Lau A, Belanger CL, Winn LM. In utero and acute exposure to benzene: Investigation of DNA double-strand breaks and DNA recombination in mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 676:74-82. [DOI: 10.1016/j.mrgentox.2009.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/27/2009] [Accepted: 04/01/2009] [Indexed: 11/26/2022]
|
31
|
Scélo G, Metayer C, Zhang L, Wiemels JL, Aldrich MC, Selvin S, Month S, Smith MT, Buffler PA. Household exposure to paint and petroleum solvents, chromosomal translocations, and the risk of childhood leukemia. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:133-9. [PMID: 19165400 PMCID: PMC2627857 DOI: 10.1289/ehp.11927] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 10/10/2008] [Indexed: 05/27/2023]
Abstract
BACKGROUND Few studies have examined the association between home use of solvents and paint and the risk of childhood leukemia. OBJECTIVES In this case-control study, we examined whether the use of paint and petroleum solvents at home before birth and in early childhood influenced the risk of leukemia in children. METHODS We based our analyses on 550 cases of acute lymphoblastic leukemia (ALL), 100 cases of acute myeloid leukemia (AML), and one or two controls per case individually matched for sex, age, Hispanic status, and race. We conducted further analyses by cytogenetic subtype. We used conditional logistic regression techniques to adjust for income. RESULTS ALL risk was significantly associated with paint exposure [odds ratio (OR) = 1.65; 95% confidence interval (CI), 1.26-2.15], with a higher risk observed when paint was used postnatally, by a person other than the mother, or frequently. The association was restricted to leukemia with translocations between chromosomes 12 and 21 (OR = 4.16; 95% CI, 1.66-10.4). We found no significant association between solvent use and ALL risk overall (OR = 1.15; 95% CI, 0.87-1.51) or for various cytogenetic subtypes, but we observed a significant association in the 2.0- to 5.9-year age group (OR = 1.55; 95% CI, 1.07-2.25). In contrast, a significant increased risk for AML was associated with solvent (OR = 2.54; 95% CI, 1.19-5.42) but not with paint exposure (OR = 0.64; 95% CI, 0.32-1.25). CONCLUSIONS The association of ALL risk with paint exposure was strong, consistent with a causal relationship, but further studies are needed to confirm the association of ALL and AML risk with solvent exposure.
Collapse
Affiliation(s)
- Ghislaine Scélo
- School of Public Health, University of California-Berkeley, Berkeley, California 94704-7380, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Portier C. Risk factors for childhood leukaemia. Discussion and summary. RADIATION PROTECTION DOSIMETRY 2008; 132:273-274. [PMID: 19066250 PMCID: PMC2902893 DOI: 10.1093/rpd/ncn282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Christopher Portier
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
33
|
Rabkin CS, Janz S. Overview of mechanisms and consequences of chromosomal translocation. J Natl Cancer Inst Monogr 2008:1. [PMID: 18647992 DOI: 10.1093/jncimonographs/lgn021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Charles S Rabkin
- Viral Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|
34
|
Metayer C, Buffler PA. Residential exposures to pesticides and childhood leukaemia. RADIATION PROTECTION DOSIMETRY 2008; 132:212-9. [PMID: 18940823 PMCID: PMC2879096 DOI: 10.1093/rpd/ncn266] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Like many chemicals, carcinogenicity of pesticides is poorly characterised in humans, especially in children, so that the present knowledge about childhood leukaemia risk derives primarily from epidemiological studies. Overall, case-control studies published in the last decade have reported positive associations with home use of insecticides, mostly before the child's birth, while findings for herbicides are mixed. Previous studies relied solely on self-reports, therefore lacking information on active ingredients and effects of potential recall bias. Few series to date have examined the influence of children's genetic susceptibility related to transport and metabolism of pesticides. To overcome these limitations, investigators of the Northern California Childhood Leukaemia Study (NCCLS) have undertaken, in collaboration with a multidisciplinary team, a comprehensive assessment of residential pesticide exposure, including: (1) quality control of self-reports; (2) home pesticide inventory and linkage to the Environmental Protection Agency to obtain data on active ingredients; (3) collection and laboratory analyses of approximately 600 home dust samples for over 60 pesticides and (4) geographic information studies using California environmental databases to assess exposure to agricultural pesticides. The NCCLS is also conducting large-scale genotyping to evaluate the role of genes in xenobiotic pathways relevant to the transport and metabolism of pesticides. A better quantification of children's exposures to pesticides at home is critical to the evaluation of childhood leukaemia risk, especially for future gene-environment interaction studies.
Collapse
Affiliation(s)
- Catherine Metayer
- School of Public Health, University of California, 2150 Shattuck Avenue, Suite 500, Berkeley, CA 94720-7080, USA.
| | | |
Collapse
|